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Abstract. Recently both face recognition and body-based person re-
identification have been extended from single-image based scenarios to
video-based or even more generally image-set based problems. Set-based
recognition brings new research and application opportunities while at
the same time raises great modeling and optimization challenges. How to
make the best use of the available multiple samples for each individual
while at the same time not be disturbed by the great within-set varia-
tions is considered by us to be the major issue. Due to the difficulty of
designing a global optimal learning model, most existing solutions are
still based on unsupervised matching, which can be further categorized
into three groups: a) set-based signature generation, b) direct set-to-set
matching, and c) between-set distance finding. The first two count on
good feature representation while the third explores data set structure
and set-based distance measurement. The main shortage of them is the
lack of learning-based discrimination ability. In this paper, we propose a
set-based discriminative ranking model (SBDR), which iterates between
set-to-set distance finding and discriminative feature space projection to
achieve simultaneous optimization of these two. Extensive experiments
on widely-used face recognition and person re-identification datasets not
only demonstrate the superiority of our approach, but also shed some
light on its properties and application domain.

1 Introduction

The existing research on object recognition mainly focuses on single-image based
approaches, i.e., recognizing a single instance at each time. However, in many
real applications like recognizing people in video surveillance (either by face
or full body), it is not only possible but also easy to get multiple images or
video frames for both query and gallery objects. And if allowed, users usually
prefer to use as many images of each object as possible, because they think that
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Fig. 1. Illustration of the proposed set-based discriminative ranking of a relevant and
an irrelevant image sets in the gallery given a query set of images

more candidates generally mean more information and should result in better
recognition performance. Such a belief comes from the experiences of human
vision, and it has also been proved by recent research efforts [1–4].

Though set-based recognition is believed to be more promising than recog-
nition based on single images, it brings new challenges: the images in a single
set may be taken by different cameras under different conditions (illumination,
viewpoint, background, etc.), and the object itself may also have large appear-
ance changes (pose, occlusion, etc.). Such a wide coverage increases the chance
of finding the correct matchings between sets, but could also increase the proba-
bility of making mistakes. How to make the best use of multiple instances while
at the same time be discriminative on distinguishing image sets from different
classes becomes the key issue. Existing supervised classification methods usually
suppose the data to be recognized is a single instance which can be represented
by a feature vector in the same space as the training samples stay, so they are
not directly applicable to set-based recognition tasks.

In this paper, we propose a novel approach to optimize a global set-based
recognition objective function by iteratively optimizing between-set distance
finding and feature space projection (or namely metric learning). As shown in
Figure 1, given a query set Q and two arbitrary gallery sets Xi and Xj , each
of which contains multiple images of an object, our approach finds the distance
between each pair of query-gallery sets by computing the geometric distance
of their approximated convex hulls (distance of closest approach) [1]. It can be
treated as finding the closest points from them, though by convex approxima-
tion these points may be virtual as they can be linear combinations of actual
sample points. Then a maximum-margin-based ranking algorithm is adopted to
learn a good metric, making the closest approach between correct query-gallery
pair smaller than that between incorrect ones as much as possible. Such a met-
ric learning can be viewed as feature space projection. After that, the closest
approach between each query-gallery pair is updated in the new feature space,
and it will activate another metric learning step. The iteration between these two
continues until convergence is achieved. Experimental results on both face recog-
nition and person re-identification demonstrate that our approach consistently
outperforms state-of-the-art methods without parameter tuning.
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2 Related Work

Existing methods on set-based object recognition depend much on the object
categories they are working on. Generally speaking, research on face recognition
focuses much on exploring the distribution [5] or structure of the data sets [6–8]
and designing the between-set distance [9, 2], while in the literature of person re-
identification, more attention has been paid to feature representation [3, 10, 4].
Such a phenomenon to some extent is due to the differences between these two
categories: usually human bodies have greater appearance variations and oc-
clusions than faces, causing difficulties for feature representation. Nevertheless,
they are valuable attempts for solving the generic set-based recognition prob-
lems. Here we briefly categorize them into three groups: a) set-based signature
generation, b) direct set-to-set matching, and c) between-set distance finding.

The first two groups count on exploring new features, in which group (a) aims
at a single global and informative representation for each query/gallery set while
group (b) looks for good features for individual images. More concretely, in 2006,
a spatiotemporal segmentation algorithm was employed to generate signatures
that are invariant to variations in illumination, pose, and the dynamic appear-
ance of clothing, followed by clustering and matching methods [11]. Three years
later, a new signature called HPE (Histogram Plus Epitome) [10] was proposed
to integrate global HSV color histogram with local epitome descriptors (generic
and local epitomes). The most recent work in group (a) is called MRCG (Mean
Riemannian Covariance Grid) [4] which divides each image into a dense grid
structure with overlapping cells, and then describe each cell by the region covari-
ance features [12]. Specially designed mean and variance functions were applied
to the cells to form a signature and then a similarity function was proposed to
compare two signatures. Though these signatures are compact and directly com-
patible with image-based matching/classification algorithms, it is hard to make
them both representative and discriminative. Unlike them, the feature represen-
tation in group (b) does not have to meet such high demands as it seeks for the
cooperation with set-to-set matching methods. A typical approach is the one
named SDALF (Symmetry-driven Accumulation of Local Features) [3], which
explores the symmetry and asymmetry of the human body to partition it into
three parts and then uses three types of features to describe each part (except
the smallest head part). A weighted combination of distances on these features
was defined as the image-to-image distance, and the minimum distance among
all possible image-pairs was adopted for set-to-set matching. Though this group
takes the advantage of having multiple candidates in each set for matching, the
effectiveness of it still largely depends on the goodness of features which requires
a case-dependent careful design.

Instead of focusing on features, the third group works on set structure extrac-
tion and distance computation. Between-set distance finding approaches were
mainly proposed for face recognition. Among these efforts, two recently in-
troduced methods are remarkable. One is AHISD/CHISD (Affine/Convex Hull
based Image Set Distance) [1], which characterizes each image set (query/gallery)
in terms of an affine/convex hull of the feature vectors of its images, and then
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finds the geometric distance (distance of closest approach) between two hulls to
serve as the set-to-set distance. Such a convex approximation is less overfitting
than the models based on sample points because it can generate new samples
on the hull, and the approach can also be robust to outliers to some extent. The
other work is named SANP (Sparse Approximated Nearest Points) [2] which en-
forces the sparsity of samples used for point generation via linear combination.
Compared with direct set-to-set matching, this group of methods can make a
better use of the data sets, however, as they are unsupervised, the feature space
where the data sets stay directly determines their effectiveness since all the di-
mensions are equally weighted for distance computation.

3 Set Based Discriminative Ranking

The problem of set-based object recognition can be formulated as follows. Given
a query Q ∈ Q where Q is the query space and Q itself is an image set containing
the same object, the goal is to recognize the identity/category of the object
by comparing to a gallery of image sets X , each of which (X ∈ X ) is about
a specific object or object category1. Motivated by both the theoretical and
practical advantage of using ranking-based models for recognition [13, 14], here
we propose a discriminative ranking method for solving the set-based recognition
problem2. In this setting, for each query Q, we divide the gallery into two groups
I+Q andI−Q , where I+Q are the indices of image sets containing the same object as

Q, i.e. relevant sets, and I−Q denotes irrelevant ones. Then the desired ranking
of the gallery sets y∗

Q ∈ Y (where Y is the space of all the feasible rankings)

will be the one that satisfies: ∀i ∈ I+Q , j ∈ I−Q , Xi ≺y∗

Q
Xj, which denotes that a

relevant set should always be ranked before any irrelevant set.

3.1 Set-Based Ranking Model

Given an arbitrary query set Q ∈ Q and the whole gallery X composed by
a batch of image sets, we define a joint feature map for a candidate ranking
yQ of gallery X as ψ(Q,X ,yQ). Then a desired ranking algorithm should be
able to learn a model w that can successfully distinguish the correct ranking
y∗
Q from any other incorrect ranking yQ. Following the maximum-margin-based

formation, it can be approached by optimizing the following objective function:

min
w

{f(w) +
C

|Q|

∑

Q

ξQ}, (1)

s.t.

〈w, ψ
(

Q,X ,y∗
Q

)

〉 ≥ 〈w, ψ (Q,X ,yQ)〉+∆
(

y∗
Q,yQ

)

− ξQ,

∀Q ∈ Q, ∀yQ �= y∗
Q;

ξQ ≥ 0, ∀Q ∈ Q.

1 To be easily understandable, in remainder of the paper “recognition” will simply
mean “identification” though our model can also applies to object categorization.

2 Classification models (e.g. Structured SVM) can also be adopted here. We choose
ranking for a potential application of our model to search and retrieval applications.
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where ξQ is the slack variable for Q and C is the trade-off parameter.∆
(

y∗
Q,yQ

)

is the loss function measuring the penalty of predicting yQ instead of y∗
Q. And

in the test stage, given an input query Q, the model will infer the best ranking
of X from the compatibility score:

y∗
Q = arg max

yQ∈Y
〈w, ψ (Q,X ,yQ)〉. (2)

We decompose the feature map by the so-called partial order features [15]:

ψpo(Q,X ,yQ) =
∑

i∈I
+

Q

∑

j∈I
−

Q

yij

⎛

⎝

φ (Q,Xi)− φ (Q,Xj)
∣

∣

∣I
+
Q

∣

∣

∣ ·
∣

∣

∣I
−
Q

∣

∣

∣

⎞

⎠, (3)

where

yij =

{

1 Xi≺yQ
Xj

−1 Xi≻yQ
Xj

,

and φ(Q,Xi) is a feature map characterizing the relationship between query set
Q and gallery setXi. Like what has been studied in single-instance-based ranking
[16], it can be proved that such a definition has a very attractive property: given
the model w, the ranking y∗

Q that maximizes 〈w, ψ
(

Q,X ,y∗
Q

)

〉 is the one that
sorts X by descending 〈w, φ(Q,Xi)〉, where Xi is an arbitrary set in X . This
property transfers the ranking problem to a weighted set-to-set similarity scoring
problem.

Now the problem becomes how to define a proper set-to-set joint feature map
φ(Q,Xi). It looks like an extension of the traditional relative feature map or
“relative distance” as called in [17], however, for two sets which may contain
different numbers of points it is nontrivial to design such a relative feature map
as simple feature subtraction cannot be directly applied to point sets.

3.2 Set-to-Set Distance Metric

Let W 
 0 denote a symmetric, positive semi-definite matrix in R
d×d, then

the distance between two arbitrary samples xk and xl in the d dimensional
feature space under the metric defined by W can be denoted as ‖xk − xl‖W =
√

(xk − xl)TW (xk − xl). To avoid the square root operation, we can just use
the squared distance ‖xk − xl‖

2
W instead:

dW (xk,xl)
∆
= (xk − xl)

TW (xk − xl) (4)

= tr(W (xk − xl)(xk − xl)
T ) (5)

= 〈W, (xk − xl)(xk − xl)
T 〉F , (6)

where tr(·) means the trace of a matrix and 〈·, ·〉F denotes the Frobenius inner
product. Eqn. 6 presents a way to separate the metric matrix W from the oper-
ation of feature vectors. Therefore, as stated in [16], (xk − xl)(xk − xl)

T can be
used to define the relative feature map between xk and xl:

φ(xk,xl)
∆
= −(xk − xl)(xk − xl)

T . (7)
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Therefore, if we can define our set-to-set relative feature map similar to that, then
by replacing the vector style model parameter w with the metric matrix W and
changing the normal inner product 〈w, φ(Q,Xi)〉 to the Frobenius inner prod-
uct 〈W,φ(Q,Xi)〉F , the large-margin-based objective function for ranking will
directly optimize the set-to-set distance metric. About the embedded function
f(W ) in the objective function, there may be different options such as tr(W ),
1
2 tr(W

TW ), etc. tr(W ) is a good choice for us as it prefers sparse solutions.
Inspired by the closest points based set-to-set distance and the nearest neigh-

bor based set-to-set matching, we define our set-to-set distance metric as follows:

dS↔S
W (Xi, Xj)

∆
= min

xi
k
∈Xi,x

j

l
∈Xj

dW (xi
k,x

j
l ) (8)

= min
xi
k
∈Xi,x

j

l
∈Xj

(xi
k − x

j
l )

TW (xi
k − x

j
l ) (9)

= min
xi
k
∈Xi,x

j

l
∈Xj

〈W, (xi
k − x

j
l )(x

i
k − x

j
l )

T 〉F . (10)

Then, we can choose

〈W,φ(Q,Xi)〉F = −dS↔S
W (Q,Xi) (11)

for our ranking model. However, as minimization cannot be exchanged with
the Frobenius inner product, we do not have an explicit form for φ(Q,Xi).
Nevertheless, it doesn’t influence the usage of distance metric in our model.

3.3 Geometric Distance between Convex Models

The definition of the set-to-set distance metric in Eqn. 9 has two limitations.
On one side, it needs to compute the minimum pair-wise distance over two sets
which is computationally expensive as it is a quadratic form of the number
of set points. On the other side, the distance highly depends on the actual
positions of sample points which indicates low generalization ability. Similar
to the recently proposed approaches on set-based distance finding [1, 2], we
break these two limitations by using convex approximations of the point sets and
then measure their dissimilarity by the geometric distance between them. For
example, when the affine hull is adopted for convex approximation, dS↔S

W (Xi, Xj)
can be rewritten as the minimum distance between two affine hulls of Xi and
Xj :

dS↔S
W (Xi, Xj) = (Xiα

∗
i −Xjα

∗
j )

TW (Xiα
∗
i −Xjα

∗
j ),

in which the linear combination coefficient vectors α∗
i and α

∗
j can be found by

(α∗
i ,α

∗
j ) = argmin

αi,αj

(Xiαi −Xjαj)
TW (Xiαi −Xjαj),

s.t.

ni
∑

k=1

αik = 1 =

nj
∑

k′=1

αjk′ ,

where ni and nj are the numbers of points in Xi and Xj , respectively.
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Recall that the metric matrix W is positive semi-definite, so that we can
perform eigen decomposition to it:

W = AΛAT = PPT , P = AΛ
1
2 ,

where the columns of A are eigenvectors of W and Λ is a diagonal matrix whose
diagonals are the corresponding eigenvalues. Therefore, the geometric distance
can be transformed to

dS↔S
W (Xi, Xj) = ‖PTXiα

∗
i − PTXjα

∗
j‖

2 = ‖XP
i α

∗
i −XP

j α
∗
j‖

2, (12)

where XP
i = PTXi and XP

j = PTXj can be viewed as feature space projections
of the original point sets Xi and Xj. After the projection by P , it becomes a
traditional geometric distance between affine hulls. By bounding the coefficients
αik and αjk′ within a predefined range [L,U ], we can constrain the hulls to be
the reduced affine hulls or even convex hulls (L = 0, U ≥ 1), so that AHISD and
CHISD methods [1] can be directly used here, along with their extended kernel
versions. If we put sparsity constraints on αi and αj , then it becomes the SANP
model. Therefore, both the two latest set-based distance finding models can be
used in our set-to-set distance metric.

3.4 Simultaneous Optimization

As the above formulation shows, our set-based ranking model directly embeds
the set-based geometric distance finding in the maximum-margin based model
learning. Therefore, the optimization of the convex approximation coefficients
αs and the optimization of the ranking model (namely W ) are mutually depen-
dent which demands simultaneous optimization. However, it is hard to directly
optimize them in a single objective function because they are optimizing over dif-
ferent data (two sets vs. multiple sets) with different objectives and constraints.
Therefore, we use an iterative algorithm in this work to do the simultaneous
optimization.

The procedure of our Set-based Discriminative Ranking (SBDR) model is
briefly described in Algorithm 1. The framework is based on the 1-Slack margin-
rescaling cutting-plane algorithm as described in [18]. We have also extended the
efficient computation strategy proposed in [16] for the implementation of our set-
to-set distances dS↔S

W (Qi, Xi) and adopting them for both constraint updating
and metric optimization. Readers are referred to [16] for implementation details.

In the iteration, on one hand, the set-to-set distance finding generally de-
creases all the weighted joint features (i.e., the set-to-set distances), thus indi-
rectly decrease ξ, resulting a reduction of the objective function value, while on
the other hand, metric learning also approaches the global optimal by optimiz-
ing W . Therefore, it will finally converge. In our experiments to be presented as
below, it always converged within 30 iterations.
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Algorithm 1. Learning the SBDR model:

Require:

Query set collection Q, gallery set collection X , desired rankings y∗
1 , . . . ,y

∗
|Q| of X

for each query set, slack trade-off C > 0, termination threshold ǫ > 0.
Ensure: Metric matrix W .
1: Initialize W with a diagonal matrix whose diagonal values are standard deviations

of the whole dataset on each feature dimension.
2: Initialize working set of constraints: C ← ∅.
3: repeat

Compute the currently optimal metric in Eqn. 1.
4: Compute set-to-set distances:

∀Qi ∈ Q,∀Xi ∈ X , dS↔S
W (Qi, Xi).

5: Update the working set of constraints:
6: for i = 1 → |Q| do
7: yQi

← argmax
y∈Y

{

∆
(

y∗
Qi

,y
)

+ 〈W,ψpo(Qi,X ,y)〉
F

}

8: end for

9: C ← C ∪
{

(y1, . . . ,y|Q|)
}

.

10: until

1

|Q|

|Q|
∑

i=1

{

∆
(

y
∗
Qi

,yQi

)

−
〈

W,ψpo(Qi,X ,y
∗
Qi

)− ψpo(Qi,X ,yQi
)
〉

F

}

≤ ξ + ǫ.

4 Experiments and Results

We evaluate the proposed approach “SBDR” with CHISD (linear) and SANP
as its geometric distance finder (denoted by “SBDRCHISD” and “SBDRSANP”
respectively) on two representative set-based recognition tasks: face recognition
and person re-identification. They are not only important in many real appli-
cations, but are also representative of two typical cases for research: faces are
relatively more rigid with less appearance variations but the between-class dif-
ferences are also very subtle, while person re-identification has greater appear-
ance variations (caused by both the object itself and its surrounding environ-
ment) which challenge both feature representation and the recognition model.
Therefore, we present comparisons with state-of-the-art methods on widely used
databases for these two different tasks, with experimental details and results
presented separately for clarity.

4.1 Experiments on Face Recognition

The well-known Honda/UCSD [19] and the CMU MoBo [20] datasets are used
for our experiments. The Honda/UCSD dataset was collected for video-based
face recognition, containing 20 individuals in 59 video sequences. We use the
version from [2] which has the faces detected, resized to gray-scale images of
size 20 × 20 and histogram equalized. The length of each sequence varies from
13 to 782. Within each sequence there are large pose variations with moderate
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expression changes. The raw pixels of images were used as features. The CMU
MoBo dataset was originally built for pose recognition, but recently the human
faces have been detected and resized to 40× 40 for face recognition. There are
24 individuals appearing in 96 sequences, which were captured from multiple
cameras with four different walking styles: slow, fast, inclined, and carrying a
ball. Each individual appears in 4 sequences which cover different walking styles.

We used the exact LBP features as adopted by CHISD and SANP for CMU
MoBo dataset, and followed their original experimental setting: select one se-
quence for each individual as the gallery set and use the other 3 as query sets.
The gallery-query splitting on Honda/UCSD data exactly follows [2], i.e., 20 se-
quences for query and the remaining 39 for gallery. Since the performance on the
whole sequences of the Honda/UCSD dataset has got saturated (SANP claimed
100% accuracy), we sampled 50 or 100 frames per sequence instead. This strategy
has also been applied to the CMU MoBo dataset for in-depth comparison.

The frame sampling strategy was originally proposed by [2], however, it simply
treats the first 50/100 frames in the beginning of each sequence as testing sam-
ples, which may be improper for long sequences with probably more variations in
the remaining frames. Therefore, we propose to experiment on two different types
of sampling strategies to better show the properties of the data and recognition
algorithms: Type I refers to sampling from the beginning of each sequence for
testing and randomly sampling images from the rest for training; while Type II

stands for doing random sampling for both training and testing without overlap-
ping. For those short sequences which do not have enough frames, we sampled
as many as we can while making the training and test datasets balanced. For
each setting, the results are averaged over 10 trials to eliminate the uncertainty
of random sampling.

As the recently proposed CHISD and SANP models present so far the best
performance on these two datasets and our model can directly utilizes them,
in this paper we just compare our “SBDR” model with these two approaches.
We used Prec@k with k = 1 as our loss function since the evaluation is on the
recognition rate, and we set C = 10 without further tuning.

Table 1. Average recognition rate (%) on faces. The stars indicate that the results
are different from the ones presented in [2] due to the small change of experimental
settings. Detailed explanations are given in the text.

50 frames 100 frames
Dataset Sampling Strategy Type I Type II Type I Type II

Honda/UCSD

CHISD∗ 80.51 93.85 78.97 94.02
SBDRCHISD 83.08 96.41 84.10 95.73
SANP∗ 81.03 91.03 83.59 92.31
SBDRSANP 87.69 95.64 89.23 97.95

CMU MoBo

CHISD∗ 90.28 96.11 93.06 96.67
SBDRCHISD 93.89 97.78 95.56 98.61
SANP∗ 88.89 93.06 93.06 96.67
SBDRSANP 95.00 98.61 96.11 98.89
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Experimental results are shown in Table 1. They not only clearly demonstrate
the superiority of the proposed SBDR approach but also provide important in-
sights on how to use it properly (data sampling and set-distance finder selection).
We explain the results from the following perspectives.

– SBDR significantly outperforms both CHISD and

SANP, and SANP fits SBDR better than CHISD. All the results
consistently show that embedding discriminative metric learning using the
proposed SBDR model can significantly improve the performance of unsuper-
vised set-based distance-finding methods (CHISD and SANP), and such an
improvement is much greater over SANP. For almost all the cases (with only
one exception), SBDRSANP performs better than SBDRCHISD even when
SANP itself performs worse than CHISD. A positive reason for such an in-
teresting phenomenon might be that SANP provides SBDR with between-set
distances determined by sparse but representative samples which could be
more informative for discriminative learning than those distances computed
over all the samples in the CHISD model.

– Wider within-class variation coverage results in better recognition

performance. For the same set size, random sampling is more likely results
in larger within-set variations than sequential sampling from the beginning
of the video sequences, which can be witnessed by the difference between
training sets and testing set for sampling strategy Type I as presented in Fig.
2. As expected, experimental results clearly show that for all the methods
the performance on randomly sampled testing sets is much better than that
on sequentially sampled ones. This is more significant on the Honda/UCSD
dataset, which may due to that the facial appearance changes more gradu-
ally and sequentially in the Honda/UCSD dataset than in the CMU Mobo
dataset.

– CHISD vs. SANP: CHISD performs better on sparse data, but

SANP exceeds as the within-set data density increases. For sampling
strategy Type II, CHISD performs considerably better than SANP on both
datasets when the set size equals 50, but the superiority is weakened or even
eliminated when the set size goes up to 100. Such a change over the growing
of set size can be observed for sampling strategy Type I as well. Results
on the Honda/UCSD dataset demonstrate that more significantly, which
coincides with the experimental results in [2], though the exact numbers
there are different from the ones shown here due to two reasons: we have
much smaller testing sets for persons with less than 50/100 images (in such
cases only half of them are used for testing while the other half are reserved
for training), and our results are averaged over 10 trails instead of only one
trail. With the same set size, comparing to CHISD, SANP performs better on
Type I than Type II, this is because Type I has smaller within-set variations
so that the density of data is relatively higher than that of Type II.

Note that even with only 100 frames per set for testing, the recognition rate
of SBDRSANP has already passed the ones ever reported by other state-of-the-
art methods (excluding CHISD and SBDR as they have already been compared
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Fig. 2.Different sampling styles (random and sequential) result in different within-class
variation coverage for each set. Without loss of generality, the training and testing sets
for the first 5 persons (P1 to P5) in the Honda/UCSD dataset are presented using
sampling strategy Type I with a set size of 50. Therefore, both the test sets for query
and gallery are sequentially sampled from the beginning, while the training sets are
randomly sampled from the remaining frames of each sequence. It can be clearly seen
that the training sets have larger within-set variations.

with) using full length sequences. More concretely, the best ever reported rate
on the Honda/UCSD dataset is 97.44% with averagely 267 frames per set, while
that on the CMU Mobo dataset is 95.97% with averagely 496 frames per set [2].

4.2 Experiments on Person Re-identification

Datasets and Settings: There are two publicly available and commonly used
datasets for set-based (or namely multiple-shot) person re-identification: the
ETHZ dataset [21] and the i-LIDS dataset [22]. However, due to the recently
saturated performance on the ETHZ dataset [4] which suggests its unsuitability
for further comparison, we only experiment on the i-LIDS dataset in this paper.

The i-LIDS dataset for person re-identification was adjusted from the 2008
i-LIDS Multiple-Camera Tracking Scenario (MCTS), released by the Home Of-
fice of UK for the research on cross-camera human tracking. Since its introduc-
tion, it has been tested by almost all of the approaches proposed for person
re-identification. It contains 476 images of 119 unique individuals. As the im-
ages are automatically extracted, the width-height-ratio varies and misalignment
happens. Though it has an average of 4 images for each individual, the actual
number varies from 2 to 8. This dataset is very challenging due to that it was
collected by two non-overlapping cameras from two different view angles at a
busy airport and there are many occlusions and truncations, as well as large
illumination changes, as shown in Fig. 3. Since there are too few images for
each person, we follow the setting in [17] to have only one image per person for
gallery sets (actually not sets any more), and the other images for query sets.
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(a) Two non-overlapping views (b) Images of sampled individual persons

Fig. 3. The i-LIDS dataset for person re-identification. (a) shows the two non-
overlapping views selected for the dataset. (b) lists the cropped images for several
persons, of which the first two rows show the great intra-class variations including
viewpoint, pose, illumination, occlusion and background changes, while the last two
rows present the rather small within-class variations between some pairs of persons.
Red/black bounding boxes are used to separate different persons.

The same color and texture features as used in [17] and [23] were adopted in our
experiments.

Comparison with Existing Methods: We compare our approach with the
state-of-the-art methods from each of the three groups mentioned in Section 2.
Concretely, they are: MRCG [4] for set-based signature generation, SDALF [3] for
direct set-to-set matching, CHISD (linear) for set-based distance finding. Note
that the sparsity-based SANP model is not suitable here due to the extremely
small set size (“N=1” for gallery sets and averagely “N=3” for query sets). They
represent the latest and so far the most powerful methods in each specific group.
Unfortunately these three groups of methods are all unsupervised and as far as
we are aware there is no existing work on using supervised learning to directly
optimizes multiple-shot (i.e. set-based) re-identification. Therefore, to show the
advantage of set-based recognition we also present here the best results from
two recently proposed single image based classification and ranking algorithms:
RankSVM [24] and PRDC [17], with exactly the same feature representation
and experimental setting as ours. For the loss function in our model, we just
used the Mean Reciprocal Rank (MRR) as in [14]. The trade-off parameter C

was set to 10 without cross-validation. Since we randomly sampled the data for
training and test, all the experiments are repeated 10 times for averaging.

Results and Analysis: As shown in Table 2, using simple features for repre-
sentation and training with about the same amount of data as that for testing
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Table 2. Top ranked matching rate (%) on i-LIDS dataset, where “r” means rank

Unsupervised p = 50
Methods SDALF MRCG RankSVM PRDC CHISD SBDRCHISD

r = 1 34.96 45.80 37.41 37.83 41.80 46.60

r = 5 60.92 66.81 63.02 63.70 68.80 71.60

r = 10 73.36 75.21 73.50 75.09 83.60 80.40
r = 20 83.78 83.61 88.30 88.35 94.40 90.40

(the number of individuals for testing p = 50), SBDRCHISD performs signifi-
cantly better than SDALF and MRCG which have paid great efforts on feature
design. For comparing with other learning-based methods, we choose different
training-test-ratios by changing p following PRDC [17]. Though in that paper
PRDC was claimed to be less overfitting than other learning based approaches,
the experimental results presented in Table 3 show that our proposed SBDR
model is even more promising when the training set is small (decreasing less
as the training set shrinks). Overall, SBDRCHISD can get a better performance
(lower ranks matter more) than CHISD, indicating that SBDRCHISD learns a
better feature space for set-based distance metric than the original space.

Table 3. Top ranked matching rate (%) on i-LIDS dataset, where “r” means rank

p = 30 p = 80
Methods RankSVM PRDC CHISD SBDRCHISD RankSVM PRDC CHISD SBDRCHISD

r = 1 42.96 44.05 50.67 53.67 31.73 32.60 37.87 37.75
r = 5 71.30 72.74 76.00 79.00 55.69 54.55 61.75 64.13

r = 10 85.15 84.69 90.00 88.67 67.02 65.89 75.37 76.38

r = 20 96.99 96.29 98.67 97.67 77.78 78.30 84.13 84.63

5 Conclusions and Future Work

In this paper we presents a novel model called “set based discriminative ranking”
for set-based recognition. It simultaneously optimizes the set-to-set geometric
distance finding and the feature space projection, resulting in a discriminative
set-distance-based model. As far as we are aware, this is the first time a global
optimal learning-based model is proposed for solving this challenging problem.
We demonstrate its superiority by comparing with the state-of-the-art methods
on two representative object recognition tasks: face recognition and person re-
identification. Since our model is a general approach which makes no assumptions
on the data, future work can be done on applying it to other object recognition
tasks, along with other related problems like image search and retrieval.
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