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Set-based Prediction of Traffic Participants

Considering Occlusions and Traffic Rules
Markus Koschi and Matthias Althoff

Abstract—Provably safe motion planning for automated road
vehicles must ensure that planned motions do not result in a
collision with other traffic participants. This is a major challenge
in autonomous driving, since the future behavior of other traffic
participants is not known and since traffic participants are often
hidden due to occlusions. In this work, we propose a formal set-
based prediction that contains all acceptable future behaviors of
both detected and potentially hidden traffic participants. Based
on formalized traffic rules and nondeterministic motion models,
we perform reachability analysis to predict the set of possible
occupancies and velocities of vehicles, pedestrians, and cyclists.
Real-world experiments with a test vehicle in various traffic
situations demonstrate the applicability and real-time capability
of our over-approximative prediction for both online verification
and fail-safe trajectory planning. Even in congested, complex
traffic scenarios, our forecasting approach enables self-driving
vehicles to never cause accidents.

I. INTRODUCTION

BY accounting for safety in a rigorous and formal manner,

we verify that autonomous vehicles do not cause any

accident, which is referred to as legal safety [1]–[5]. Absolute

safety is not possible, since other traffic participants can easily

cause inevitable collisions, e. g., by crashing into the back of

an autonomous vehicle. If every traffic participant adheres to

legal safety, which most traffic participants do, no collisions

will occur. Related safety concepts are passive safety [6],

which requires the autonomous vehicle to be at rest when

a collision occurs, and Responsibility-Sensitive Safety (RSS)

[7], which determines the traffic participant responsible for a

collision based on safe distances for specific driving situations.

However, if traffic participants behave differently than pre-

dicted by the autonomous vehicle, a collision for which the

autonomous vehicle is responsible might be inevitable. There-

fore, we propose a set-based prediction that formally encloses

all acceptable future behaviors of other traffic participants. A

legal specification defines which behaviors are considered to

be acceptable. It explicitly represents our assumptions based

on traffic rules, while the degree of conformity to traffic rules

can be parameterized by the user. Some people might argue

that one cannot restrict acceptable behaviors; however, these

behaviors are based on applicable law, and we believe that it

is better to provide guarantees under these legal assumptions

than to provide no guarantees (which is the case for most

probabilistic approaches).

The planned motion of the ego vehicle, i. e., the autonomous

vehicle under control, is safe if its motion does not intersect
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Fig. 1. Snapshot of our real-world experiments with a BMW 7 series test
vehicle. The motion of the ego vehicle is provably safe if its trajectory
never intersects with any predicted occupancy of detected and phantom (i. e.,
potentially hidden) traffic participants.

with any predicted occupancy of all detected and potentially

hidden traffic participants. For example, consider a situation

where the ego vehicle intends to turn left at an intersection

but has to yield to oncoming traffic (cf. Fig. 1). Set-based

prediction allows the ego vehicle to obtain a trajectory that

is provably collision-free against all oncoming and crossing

traffic. In [8], we have shown that this does not result in overly

conservative behaviors for the ego vehicle. Our proposed

method has several applications for autonomous vehicles and

driver assistance systems:

a) Safe states: Based on the predicted occupancies, we

can determine the maximum drivable area [9], the maximum

Time-To-React [10], and the Point of No Return [11]. By ad-

ditionally considering the predicted velocity, we can compute

safe states for the ego vehicle, e. g., to maintain a safe distance

to other vehicles [12]. To guarantee safety for an infinite time

horizon, the planned motion of the ego vehicle must end in

a state that is safe forever. Such invariably safe states can be

determined using our set-based prediction [13].

b) Trajectory planning: Several trajectory planners for

provably safe motions without being overly conservative use

our prediction tool (SPOT [14]) [15]–[18] or assume the

existence of a set-based prediction [19], [20].

c) Verification: Verification of a trajectory means that

we check whether this trajectory complies with a given spec-

ification. Online verification of automated vehicles using set-

based prediction is shown in [3], [8]. It can be extended to an

anytime approach [21] and be embedded in any given vehicle

framework [22]. For industrial robots, set-based prediction

of human body parts has also been successfully used for

verification [23].
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A. Related work

We solely focus on motion prediction of other traffic

participants [24]–[26], which is an integral part of motion

planning [27]–[29] and risk assessment [24], [30]. The fol-

lowing related aspects are beyond the scope of this paper:

extracting the information of surrounding traffic participants

from sensor measurements [31]–[33], the uncertainty of these

measurements [34]–[36], and implications on the prediction

for connected vehicles [37], [38].

We categorize prominent early or most recent works by

whether they compute a) a finite number of future trajectories,

b) a probability distribution, or c) a bounded set of states. Since

our proposed prediction considers occlusions, unlike most of

the reviewed works, we subsequently present works on motion

planning in the presence of occlusions1.
a) Trajectories: Early works consider single trajectories

of other traffic participants for collision avoidance [39]. To

obtain a probabilistic prediction, multiple trajectory hypothe-

ses can be weighted by probabilities obtained from Monte

Carlo sampling [40]. Alternatively, intention estimation, i. e.,

a probabilistic classification into discrete, semantically inter-

pretable maneuver classes, is often performed based on support

vector machines [41], hidden Markov models [42], or Bayesian

networks [43]–[45]; particularly for pedestrians, Gaussian pro-

cess dynamical models are often used [46]. In most of these

works, motion models generate a trajectory for each distinct

maneuver class. In contrast, recurrent neural networks often

directly predict a trajectory [47], [48]. Predicted trajectories

can be compared using validation metrics [49] or similarity

measures [50].
b) Probability distribution: To consider that other traffic

participants have infinitely many future behaviors, we can

compute a probability distribution, e. g., of kinematic variables

using dynamic Bayesian networks [51]–[53]. Furthermore,

neural networks have been proposed to predict most likely

behaviors of vehicles on highways [54], [55], of pedestrians

[56], and of cyclists [57]. For pedestrians, also linear quadratic

regulator-based models are used [58]. Probability distributions

can be represented as occupancy grids, which are obtained

through machine learning [59]–[62] or Markov chains [63].

Overall, probability distributions can be used for motion

planning [64]–[66], but they usually do not strictly bound

all possible future behaviors as required for provably safe

motions.
c) Bounded sets: Set-based prediction utilizes reachabil-

ity analysis to compute all future behaviors of other traffic

participants in accordance with the assumptions made [67].

Instead of specifying the input constraints for the reacha-

bility analysis in the assumptions, the constraints can also

be estimated from Gaussian processes [68]. The work of

[67] is extended in [16] by considering occlusions. Set-based

prediction is also able to consider interaction between traffic

participants [69] and formalized traffic rules [14], [70]. The

predicted occupancy sets can also be weighted by probabilities

[71], [72]

1By the term occlusion, we mean that the environment model of the ego
vehicle misses information from non-observable parts outside of its field of
view.

d) Occlusion: The risk from occlusions is tackled either

by shrinking the field of view over the prediction horizon

[73]–[76] or by introducing and predicting individual, po-

tentially present obstacles (aka phantom or virtual objects)

[1], [16], [77]–[85]. Early works considering occlusions are

motion planners for mobile robots [86], [73]–[75]. Later, risk

assessment systems for road vehicles have included occluded

intersections [77]–[80]. In recent motion planners, a partially

observable Markov decision process optimizes the behavior of

the ego vehicle such that the collision risk due to occlusions is

reduced [81]–[84]. In a pedestrian collision avoidance system,

a partially observable Markov decision process propagates the

belief states of occluded pedestrians based on reachable sets

[85]. The occlusion-aware motion planner in [87] remains

collision-free in specific traffic situations for which the authors

have manually defined the worst-case. In contrast, the planners

in [16], [88] generalize to arbitrary traffic situations, since they

use a set-based prediction. In particular, [16] introduces phan-

tom vehicles that could have right of way, and [88] extends

[16] by optimizing comfort while keeping safety guarantees.

Using reachability analysis, [76] guarantees passive safety for

autonomous vehicles despite occlusions.

B. Contributions

This work significantly extends our previous work on set-

based prediction [14], [67], [69], [70] and other previous

works, especially [16], by considering 1) all safety-relevant

occluded vehicles, pedestrians, and static obstacles, 2) priori-

ties of traffic participants at intersections, 3) safe distances to

the ego vehicle, 4) limited turning radii of vehicles, and 5) by

validating the prediction in real-world experiments.

Overall, we present a holistic, formal prediction that enables

provably safe motions for the ego vehicle. In particular, our

prediction offers the following properties:

• uncertainty-aware, i. e., we consider all uncertainties from

sensor measurements as well as of the future evolution

of the environment;

• complete, i. e., our over-approximative prediction is guar-

anteed to contain any acceptable behavior;

• occlusion-aware, i. e., risks due to occlusions are consid-

ered by formally creating phantom objects;

• interaction-aware, i. e., interactions between the ego ve-

hicle and other vehicles and between other vehicles are

considered;

• considering traffic rules, i. e., restrictions due to the

internationally applicable convention on road traffic [89];

• robust against traffic participants violating traffic rules,

high measurement uncertainties, and incomplete environ-

ment models in the conducted experiments;

• designed for both structured and non-structured environ-

ments and not restricted to predefined behaviors;

• computes predictions for arbitrary time intervals without

having to consider predictions of previous time steps; and

• real-time capable for a replanning rate of 50Hz.

The remainder of this paper is organized as follows. Sec. II

introduces the required formalization and our problem state-

ment. In Sec. III, we describe our legal specification and



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, 2020 3

provide an overview of the prediction algorithm. Sec. IV

presents our extension for occlusions, and Sec. V details

all used models for the prediction. We continue with our

constraint management in Sec. VI and evaluate our prediction

by numerical and real-world experiments in Sec. VII. Finally,

Sec. VIII concludes this paper and proposes future work.

II. PRELIMINARIES

Throughout this paper, we will describe our method for

the current planning cycle starting at t0 when receiving an

updated environment model from the ego vehicle. The initial

time of the planning cycle before t0 is denoted by tc−1. The

environment model Ω := 〈P,N ,DP ,F〉 is formalized by its

elements in the following subsections.

A. Notation

Vectors and matrices are written in bold and sets using a

calligraphic font. For a vector ν ∈ R
n, the operator proj�(ν)

projects ν to its element(s) �. The lower and upper limits of

an interval [ν] ⊂ R are written with overlines and underlines,

respectively, i. e., [ν] := [ν, ν], and the comparison operators

for intervals are defined as [ν] > a⇔ ν > a.

The operator conv(C1, C2) returns the convex hull of the

sets C1 and C2, and C1 ⊕ C2 denotes the Minkowski addition

of C1 and C2. The set of the Boolean values is denoted by B :=
{true, false}. The power set of Rn is denoted by Pow(Rn). A

disk, i. e., a circular area, with center [cx, cy]
T and radius r is

denoted by C
(

[cx, cy]
T , r
)

:=
{

[x, y]T | (x−cx)
2+(y−cy)

2 ≤
r2
}

. The 2-dimensional rotation matrix is defined as

R(α) :=

[

cos(α) − sin(α)
sin(α) cos(α)

]

. (1)

B. Formalization of traffic participants

The state vector of a traffic participant in a Cartesian

coordinate frame is s(t) :=
[

x(t), y(t), v(t), ψ(t)
]T

∈ R
4

and consists of the position in x-direction and y-direction
[

x(t), y(t)
]T

, the scalar velocity v(t), and the heading ψ(t).
The set of all traffic participants is P . Each traffic participant

p ∈ P is described by the tuple p := 〈cp,Sp0 ,A
p,Qp〉, where

• cp ∈ C is the classification consisting of the type,

which is either ego vehicle, pedestrian, or vehicle

(with subtypes car, truck, bus, motorcycle, and bicy-

cle), the attribute detected or phantom (see Sec. IV),

and the attribute dynamic or static. Thus, C :=
{

{ego, ped, {veh × {car, truck, bus,motcyc, cyc}}} ×
{detected, phantom} × {dyn, static}

}

.

• Sp0 :=
[

[x0], [y0], [v0], [ψ0]
]T

⊂ R
4 is the set of uncertain

initial states at t0. Bounded measurement uncertainties

can be provided by set-based observers [90], [91].

• Ap is the uncertain size of p. For the ego vehicle and other

vehicles, we use rectangles with length [ℓ] and width [w],
and for pedestrians, we use circles with radius [r]. The

reference point of a traffic participant is its geometric

center.

• Qp is the tuple of parameters for p (see Tab. I).

The superscript � in ν� denotes that variable ν describes

traffic participant � ∈ P or all traffic participants with

classification � ⊂ C, e. g., we write νveh for all vehicles

except the ego vehicle. For the sake of clarity, we write ν
instead of ν� unless a distinction is necessary.

The operator occ(s(t),A) : R4 × R
2 → Pow(R2) returns

the set of points in the two-dimensional Cartesian frame that

are occupied by the traffic participant. For a set of states

S(t), the occupancy operator is defined as occ(S(t),A) :=
{occ(s(t),A) | s(t) ∈ S(t)}.

To account for the limited sensor range of the ego vehicle

and occlusions from other objects, we introduce the field of

view:

Definition 1 (Field of view F ): The field of view F ⊂ R
2

is the maximum area in which all other traffic participants are

guaranteed to be detected at the initial time.

C. Formalization of the road network

The road network N := 〈Wroad,Wprio(t),D〉 describes the

environment in separate layers for vehicles (N veh), bicycles

(N cyc), and pedestrians (N ped) and is formalized by its

elements as follows.

Definition 2 (Allowed positions Wroad): Wroad ⊂ R
2 de-

scribes all positions in the road network that the corresponding

types of traffic participants may occupy.

For example, Wcyc
road can be restricted to bicycle lanes or also

contain the rest of the carriageway (cf. [89, 25§1(a), 27§4]).

The allowed positions Wped
road for pedestrians consist of all

sidewalks and pedestrian crossings and, if desired, other parts

of the environment, e. g., parking areas or unclassified areas.

Definition 3 (Priority-based positions Wprio): Wprio(t) ⊂
Wroad describes the time-dependent positions that the corre-

sponding types of traffic participants may occupy at time t
without violating the priority of other traffic participants. This

especially includes restrictions due to traffic lights and when

turning at intersections.

In each layer2, the road network is modeled by lanelets [93],

which are atomic, interconnected, and drivable/walkable road

segments:

Definition 4 (Lanelet l): A lanelet l is defined by its left and

right bound, where each bound is represented by an array of

points, as shown in Fig. 2a for l1.

The bounds of a lanelet should be constructed so that the

lanelet is at least as wide as the real lane; to anticipate that

traffic participants slightly violate lane markings, the width of

a lanelet can be enlarged by a user-defined margin. The driving

direction of a lanelet is implicitly defined by its left and right

bound; for pedestrian lanelets, we do not make a distinction of

the driving direction. If two lanelets have a drivable/walkable

connection, their relation is modeled as either longitudinally

adjacent (i. e., predecessor and successor) or laterally adjacent.

2Instead of separate layers, one can also use the concept in Lanelet2 [92].
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We construct a graph of the road network (for each of its

layers), where a node represents a set of laterally adjacent

lanelets depending on the two Boolean constraint parameters

blane1 ∈ {noLat, lat} and blane2 ∈ {drivDir, anyDir}:

• if blane1 = noLat, a node contains only one lanelet and

no laterally adjacent lanelets (see graph in Fig. 2a);

• if blane1 = lat ∧ blane2 = drivDir, a node contains all

laterally adjacent lanelets with the same driving direction

(see graph in Fig. 2b or 2c);

• if blane1 = lat ∧ blane2 = anyDir, a node contains all

laterally adjacent lanelets (see graph in Fig. 2d).

Two nodes are connected in the graph, if at least one lanelet in

the one node is longitudinally adjacent to at least one lanelet

in the other node.

Definition 5 (Driving corridor D): A driving corridor D is

a union of lanelets along a path through the graph of the road

network, as shown in Fig. 2.

If a lanelet or its laterally adjacent lanelets have multiple

successors/predecessors, as in the case of road forks/merges,

multiple driving corridors are created, e. g., l2 is included

in D2 describing a right turn (see Fig. 2b) and also in D3

describing a left turn (see Fig. 2c). Furthermore, each driving

corridor provides a speed limit vspeedLim > 0, and the operator

occ(D) : D → Pow(R2) returns the occupancy of D.

Definition 6 (All driving corridors D): The set of all driv-

ing corridors D(blane1 , blane2) is obtained by performing

breadth-first graph search on the graph of the road network

constructed for the given values of blane1 and blane2 . The

initial nodes are all nodes that contain only lanelets with no

predecessor, and the goal nodes are all nodes that contain only

lanelets with no successor.

Definition 7 (Corridors of a traffic participant Dp): The

set of driving corridors of traffic participant p is denoted by

Dp(blane1 , blane2) ⊂ D(blane1 , blane2) and is provided by the

environment model.

For example, the set of driving corridors of the vehicle in Fig. 2

can be Dp(noLat, drivDir) = {D1} or Dp(lat, drivDir) =
{D2, D3}. When using the parameters bplane1 , b

p
lane2

of a traffic

participant p, we only write Dp for brevity. Furthermore, let

the forward driving corridor ~D be the part of D that is not

behind occ(S0,A) with respect to the driving direction (cf.
~Dego
reach in Fig. 3 later).

D. Reachable set of traffic participants

Let us define the prerequisites for the reachability analysis

based on [67, Sec. IV].

Definition 8 (Model M ): A model M is defined as the tuple

M := 〈fM ,SM ,UM 〉, where fM is the right-hand side of

the differential equation describing the motion of a traffic

participant by

ṡ(t) = fM
(

s(t),u(t)
)

, (2)

and SM (t) ⊆ R
n and UM (t) ⊆ R

m denote the admissible

sets bounding the states s(t) and inputs u(t) of the traffic

participant, respectively.

Γ(ζ)
driving corridor Di

road networkleft and right bound of l1
graph of the

l1

(a) D1 using blane1 = noLat.

Υ(ξ)l2

(b) D2 using blane1 = lat and blane2 = drivDir.

Υ(ξ)l2

(c) D3 using blane1 = lat and blane2 = drivDir.

Υ(ξ)

(d) D4 using blane1 = lat and blane2 = anyDir.

Fig. 2. The road network N (here, we only show the layer for vehicles) is
modeled by lanelets l (see left part). (a)–(d) Given the values for blane1 and
blane2 , we construct the graph of the road network (see right part) and show
a possible driving corridor Di (yellow in both left and right part).

When starting at a state s(t0) ∈ S0 and using an input

trajectory u(·), a possible solution of (2) at time t ≥ t0 is

denoted by χ
(

t; s(t0),u(·)
)

.

Definition 9 (Reachable set R): The reachable set R of

model M is the set of states that are reachable at time t ≥ t0
from the initial set S0 when applying all admissible inputs

UM (t) while staying within SM (t):

R(t;M, t0) :=

{

χ
(

t, s(t0),u(·)
)

∣

∣

∣

∣

s(t0) ∈ S0, ∀t
⋆ ∈ [t0, t] :

χ
(

t⋆; s(t0),u(·)
)

∈ SM (t⋆),u(t⋆) ∈ UM (t⋆)

}

.

To over-approximate the reachable set of a model, we intro-

duce abstractions:

Definition 10 (Abstraction): Model M2 is an abstraction of

model M1, if ∀t ≥ t0 : R(t;M1, t0) ⊆ R(t;M2, t0).

To efficiently minimize the over-approximation caused by an

abstraction, we use several abstractions:

Lemma 1 (Combining abstractions): If Mi, i = 2, . . . ,m,

are abstractions of model M1, the intersection of their reach-
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able sets remains an over-approximation of the reachable set

of the original model M1:

∀t ≥ t0 : R(t;M1, t0) ⊆
m
⋂

i=2

R(t;Mi, t0). �

Proof: The over-approximation directly follows from [3,

Prop. V.1]. �

If considering the reachable set only at distinct points

in time, we cannot provide any safety guarantees for the

ego vehicle between these points in time. Thus, we need to

compute the reachable set for a time interval [t] := [t, t] ≥
t0 : R([t];M, t0) :=

⋃

t∈[t] R(t;M, t0).

E. Problem statement

Let Mreal be the model that exactly describes the motions

of a traffic participant that can be performed in the real world

and comply with all applicable traffic rules. Our goal is to

predict the future reachable set of a model Mpred that is an

abstraction of Mreal, i. e., R(t;Mreal, t0) ⊆ R(t;Mpred, t0)
for any t ∈ [t], with as little over-approximation as possible.

III. SPECIFICATION AND OVERALL ALGORITHM

Instead of trying to explicitly describe all acceptable be-

haviors in abstraction Mpred, we define constraints in our

specification that lead to an over-approximation of acceptable

behaviors. Our specification is chosen such that the prediction

conforms to legal safety based on traffic rules. Thus, it is

in line with RSS [7] and rulebooks [94], which both specify

acceptable behaviors for the ego vehicle, while we, from the

prediction perspective, focus on the acceptable behaviors of

other traffic participants. Note that our approach has the benefit

that even if we do not model all traffic rules, our prediction

remains over-approximative.

Our parameterizable specification consists of independent

constraints C that are listed in Tab. I. Each constraint is

defined by its parameters, textual description, formalization,

and source. The Boolean parameters b allow us to enable

or disable constraints individually, and the parameters ∆
allow us to tune our reaction to violations of constraints (see

Sec. VI later). The longitudinal direction is described with

respect to the driving direction. In summary, our specification

either constrains the dynamics of other traffic participants (see

upper part of Tab. I) or constrains the allowed regions in the

environment (see lower part of Tab. I).

Alg. 1 provides an overview of our prediction running in

every planning cycle. At the current initial time t0, we receive

as input an updated environment model Ω0 = 〈P,N ,DP ,F〉
of the ego vehicle. If available, the environment model from

the previous planning cycle can also be provided (cf. optional

input of Alg. 1). The parameters Q (cf. Tab. I) are initialized

as desired by the user (cf. Tab. IV later).

First, we create phantom traffic participants that capture the

risks from potentially undetected traffic participants (line 1 of

Alg. 1; cf. Sec. IV). For each traffic participant (except the

ego vehicle), we validate its constraint parameters Qp (line 3;

cf. Sec. VI) and choose all valid abstractions Mp
⋄ (line 4; cf.

Algorithm 1 SET-BASEDPREDICTION

Input: environment model Ω0 = 〈P,N ,DP ,F〉 at t0 (containing
p = 〈cp,Sp

0 ,A
p,Qp〉 for each p ∈ P), default parameters Q,

and set τ of arbitrary time intervals [t] ≥ t0
Optional input: environment model Ωc−1 from previous cycle
Output: over-approximative reachable set Rp for each p ∈ P

1: P .ADDPHANTOMS(N , F , Q) ⊲ consider occlusions
2: for all p ∈ P do
3: Qp ← VALIDATECONSTRAINTS(Ω0, Ωc−1)
4: Qp ← SELECTVALIDABSTRACTIONS(cp, Qp)
5: Rp(·;Mp

pred, t0) ← R
4 ⊲ initialize

6: for all M
p
⋄ ∈ Q

p do
7: for all [t] ∈ τ do
8: Rp([t];Mp

⋄ , t0) ← REACH([t], Mp
⋄ , p, N , Dp, Qp)

9: Rp([t];Mp

pred, t0)←R
p([t];Mp

pred, t0)∩R
p([t];Mp

⋄ , t0)
10: end for
11: end for
12: end for
13: INTERACTION(Rp(·) for all p ∈ P , N ) ⊲ optional
14: return Rp([t];Mp

pred, t0) for all p ∈ P and [t] ∈ τ

Tab. II). Next, for each given time interval [t], we compute the

reachable set of each valid abstraction (line 8; cf. Sec. V) and

intersect them to obtain a tight over-approximative reachable

set (line 9; cf. Sec. V-F).

The time complexity of our algorithm is linear in the number

of traffic participants and the number of time intervals. Our

algorithm can be parallelized for each traffic participant and

each abstraction. Line 13 of Alg. 1 optionally considers the

interaction between vehicles as described in [69], e. g., that a

vehicle cannot tunnel through a stationary vehicle.

IV. OCCLUSION

To consider traffic participants that are hidden due to oc-

clusions and therefore cannot be predicted directly, we create

all phantom traffic participants p = 〈c,S0,A,Q〉 that could

be relevant for the motion of the ego vehicle, as summarized

in Alg. 2, visualized in Fig. 3, and described subsequently.

Def. 1 implies that no traffic participant can suddenly appear

within the field of view, but may enter the field of view at

any time t > t0. Thus, we intersect the boundary of the

field of view with all driving corridors D(lat, drivDir) of

each layer and split the boundary at each intersection point

into border segments (or edges) e (lines 1–3 of Alg. 2; cf.

Fig. 3). The resulting set E := {e1, . . . , ei} contains all border

segments e of the field of view through which phantom traffic

participants can emerge. To consider additional sources of

traffic participants, e. g., doors where pedestrians can appear,

each source can be modeled as an additional driving corridor.

Border segment e is relevant for the motion of the ego

vehicle, if the ego vehicle can be influenced by a phantom

traffic participant that is positioned at e and performs any

acceptable behavior in accordance with our legal specification.

Therefore, we require all forward driving corridors of the ego

vehicle ~Dego
reach := ~Dego(begolane1

, begolane2
), as shown in Fig. 3.

When using begolane1
= lat and begolane2

= anyDir, we will create

phantom traffic participants considering all possible behaviors

of the ego vehicle. In case we know that the ego vehicle will
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TABLE I
LEGAL SPECIFICATION CONSTRAINING THE ACCEPTABLE BEHAVIORS OF OTHER TRAFFIC PARTICIPANTS.

Constraint Parameters Description and formalization (based on state variables ∀t ≥ t0) Source

Camax amax > 0, ∆amax ≥ 0 Absolute acceleration, i. e., accelerating and braking, does not exceed amax:
|v̇(t)| ≤ amax.

physical law (friction circle)

Cvmax vmax > 0, ∆vmax ≥ 0 Absolute velocity does not exceed vmax: |v(t)| ≤ vmax. physical law and ISO 13855

CspeedLim fspeed ≥ 1, ∆fspeed
≥ 0 For vehicles, longitudinal velocity does not exceed the official speed limit

vspeedLim multiplied by a speeding factor fspeed: |vξ(t)|≤vspeedLim ·fspeed.
[89, 13§1–2]

Cengine vS > 0 For vehicles, above the switching velocity vS , longitudinal acceleration is
decreasing inversely proportional to longitudinal velocity due to limited engine
power: |vξ(t)| < vS ∨ |v̇ξ(t)| ≤ amax ·

vS
|vξ(t)|

.

physical law

Creverse breverse∈B, ∆vreverse≤0 For vehicles, it is forbidden to reverse, i. e., to drive backwards in longitudinal
direction: vξ(t) ≥ 0.

[89, 14§2]

Cvmin
vmin ∈ R, ∆vmin

≥ 0 For vehicles, longitudinal velocity does not fall below vmin: vξ(t) ≥ vmin. [89, 13§4, 23§1]

Cturn 0 ≤ δmax ≤ π/2, ℓwb> 0,

ℓovr ≥ 0, ℓovr ≥ ℓovr

For vehicles, the steering angle does not exceed δmax, and turning within lanes
is forbidden: occ

(

s(t),A
)

∩ Oturn(tc−1) = ∅.
physical law and [89, 14§2]

Croad broad ∈ B It is forbidden to leave Wroad, which are the allowed positions for this type of
traffic participant (cf. Def. 2): occ

(

s(t),A
)

⊆ Wroad.
[89, 1§(d)–(j)]

Cprio bprio ∈ B It is forbidden to occupy parts of the road network that intersect with other lanes
(including forks and merging lanes) for which other traffic participants currently
have priority: occ

(

s(t),A
)

⊆ Oprio(t; t0).

[89, 18§1–7, 20§6(b), 21§2]

Clane blane1 ∈ {noLat, lat},
blane2 ∈ {drivDir, anyDir}

For vehicles, changing lanes is restricted: ~D(t)⊆ ~D(tc−1) using the same N ;
if blane1 = noLat : It is forbidden to change to any other lane.
if blane2 = drivDir : It is forbidden to change to a lane that is not appropriate
with respect to the direction of traffic.

[89, 10§4–5, 11§1–11]

Csafe T ego ≥ 0, aegocomfort ≥ 0 For vehicles, a safe distance (measured along the centerline of the lanes) to the
ego vehicle must be kept when driving behind the ego vehicle or merging in
front of it.

[89, 13§5, 11§2(d)]

not overtake in a lane not appropriate to the direction of traffic,

we can use begolane2
= drivDir, and if we know that the ego

vehicle will not change to any laterally adjacent lane, we can

Seg. e Phantom

dyn. vehicle

static vehicle

pedestrian

not relevant

dashed unnecessary

Fig. 3. When intersecting the field of view (bright area) of the ego vehicle
with all driving corridors of each layer of the road network, we obtain
border segments e. At each e, we introduce phantom traffic participants
(see legend) if they could be relevant for the motion of the ego vehicle,
which is determined using the forward driving corridors of the ego vehicle
~Dego
reach = ~Dego(lat, drivDir) (yellow area) and extends [16, Fig. 2].

use begolane1
= noLat; this minimizes the set ~Dego

reach to reduce

computation costs.

Let us denote the forward driving corridors when starting at

e by ~D(e) ⊂ D(lat, drivDir). By comparing ~Dego
reach with ~D(e)

as described in lines 5–17 of Alg. 2, we determine whether

e is relevant and what classification c for a phantom traffic

participant at e is required (cf. Fig. 3). An example for a border

segment that is not relevant for the motion of the ego vehicle

is the blue segment in Fig. 3.

Next, in lines 18–28 of Alg. 2, we set the initial positions as

the border segment e (which spans across all laterally adjacent

lanelets with the same driving direction), the initial velocities

as all admissible velocities in the driving corridor of e, the

initial heading aligned with the driving direction, and the

size to the values given in Tab. IV so that e ⊂ occ(S0,A).
As a result, the phantom traffic participant is modeled as

an abstraction of any possibly appearing traffic participant.

Finally, we add the phantom traffic participant to P (line 29

of Alg. 2); thus, it will be predicted analogously to the detected

traffic participants (cf. Alg. 1).

We might have added multiple phantom vehicles in the same

driving corridor, as shown in the right part of Fig. 3 (dashed

segments). If the forward driving corridor of a dynamic

phantom vehicle is completely enclosed by the forward driving

corridor of another dynamic phantom vehicle, we can remove

the latter phantom vehicle, since it is further away from the

ego vehicle and its threat is already considered by the other,

former phantom vehicle (line 31 and 40 of Alg. 2).
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Algorithm 2 ADDPHANTOMS()

Input: road network N , field of view F , default parameters Q
Output: set of phantom traffic participants P

1: Eveh ← F ∩ D
veh(lat, drivDir)

2: Ecyc ← F ∩ D
cyc(lat, drivDir)

3: Eped ← F ∩ D
ped(lat, drivDir)

4: for all e ∈ {Eveh ∪ Ecyc ∪ Eped} do

5: if e ∈ Eveh and ~D(e) ⊆ ~Dego
reach then

6: c ← {veh, phantom, static} ⊲ vehicle ahead

7: else if e ∈ Eveh and ~Dego
reach ⊆

~D(e) then
8: c ← {veh, phantom, dyn} ⊲ vehicle behind

9: else if e ∈ Eveh and occ( ~Dego
reach) ∩ occ

(

~D(e)
)

6= ∅ then
10: c ← {veh, phantom, dyn} ⊲ crossing vehicle

11: else if e ∈ Ecyc and occ( ~Dego
reach) ∩ occ

(

~D(e)
)

6= ∅ then
12: c ← {cyc, phantom, dyn} ⊲ crossing cyclist

13: else if e ∈ Eped then
14: c ← {ped, phantom, dyn} ⊲ pedestrian
15: else
16: continue ⊲ not relevant, as no interaction with ego vehicle
17: end if
18: if ped ∈ c then ⊲ initial state for pedestrian
19: [v0] ← [0, vpedmax] ⊲ from Q
20: [ψ0] ← [−π, π]
21: A ← CREATECIRCLE(Q)
22: else ⊲ initial state for vehicle (incl. cyclist)
23: [v0] ← [0, vmax,ξ] ⊲ from Q and (5)

24: ψ0 ← GETDRIVINGDIRECTION( ~D(e))
25: A ← CREATERECTANGLE(Q)
26: end if
27: [[x0], [y0]]

T ← CREATEBOUNDINGBOX(e)
28: D ← D(e)
29: P .ADD(〈c,

[

[x0], [y0], [v0], [ψ0]
]T
,A,Q〉)

30: end for
31: P ← REMOVEUNNECESSARYPHANTOMS(P , N ) ⊲ optional
32: return P

33: function REMOVEUNNECESSARYPHANTOMS(P , N )
34: for all i, j ∈ P do
35: if i = j or veh 6∈ c

i or phantom 6∈ c
i or c

i 6= c
j then

36: break
37: else if static ∈ c

i and ~Di ⊆ ~Dj then
38: P .REMOVE(i) ⊲ j is behind i and the ego vehicle is

behind both
39: else if dyn ∈ c

i and ~Di ⊆ ~Dj then
40: P .REMOVE(j) ⊲ i is in front of j and either both are

behind the ego vehicle or both are approaching the ego vehicle
41: end if
42: end for
43: return P
44: end function

V. ABSTRACTIONS

We minimize the over-approximation of our prediction by

using several abstractions (cf. Lemma 1). Tab. II provides

an overview of the proposed abstractions and their covered

constraints so that all constraints of Tab. I are considered.

Some abstractions require that other constraints have not been

violated, i. e., the Boolean parameters given in Tab. II must

be true; otherwise, this abstraction cannot be computed and

gets disabled, e. g., Mlong is omitted if broad = false. In the

following subsections, we define these abstractions and present

how to compute their reachable set and occupancy.

TABLE II
OVERVIEW OF THE ABSTRACTIONS.

Abstraction Covers constraints Requires See

Macc Camax n/a Sec. V-A

Mvel Cvmax n/a Sec. V-A

Mlong CspeedLim, Cengine,
Creverse, Cvmin

, Croad,
Clane (and both Camax

and Cvmax only in
longitudinal direction)

broad Sec. V-B

Mturn Cturn broad ∧ breverse Sec. V-D

Mprio Cprio broad ∧ bprio Sec. V-E

Msafe Csafe broad ∧ breverse Sec. V-C

A. Abstractions based on point-mass model (Macc and Mvel)

To describe a point-mass model, let us rewrite the state

vector as s(t) = [x(t), y(t), vx(t), vy(t)]
T ∈ R

4 with vx(t) =
v(t) · cos(ψ(t)) and vy(t) = v(t) · sin(ψ(t)). Analogously, the

set of initial states is S0 =
[

[x0], [y0], [vx0
], [vy0 ]

]T
⊂ R

4.

The input for the abstractions based on a point-mass model

consists of the acceleration in x-direction and y-direction, i. e.,

u(t) = [ux(t), uy(t)]
T ∈ R

2.

Definition 11 (Acceleration-bounded abstraction Macc):

Abstraction Macc := 〈fMacc
,SMacc

,UMacc
〉 is an acceleration-

bounded point-mass model (Camax
), where

ẋ(t) = vx(t), ẏ(t) = vy(t), v̇x(t) = ux(t), v̇y(t) = uy(t),

SMacc
:= R

4,

UMacc
:=
{

[ux(t), uy(t)]
T
∣

∣

√

ux(t)2+uy(t)2 ≤ amax

}

.

Proposition 1 (Reachable set of Macc): The reachable set

of Macc for a time interval [t] ≥ t0 is

R([t];Macc, t0) = conv
(

T hom(t) · S0,T hom(t) · S0

)

⊕

T inp(t) · UMacc
,

as shown in the blue part of Fig. 4 and where

T hom(t) =









1 0 t− t0 0
0 1 0 t− t0
0 0 1 0
0 0 0 1









,

T inp(t) =









1/2 · (t− t0)
2 0

0 1/2 · (t− t0)
2

t− t0 0
0 t− t0









. �

Proof: The reachable set directly follows from [70, Prop. 2].�

To compute the occupancy of R([t];Macc, t0) for vehicles,

we require the heading. However, due to the state represen-

tation of the point-mass model, the reachable set does not

contain a bound for the heading. In our previous work [67], we

have assumed that the heading is constant over the prediction

horizon. In this work, we do not make this assumption. We

can bound the heading until the earliest point in time tv=0 at
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x

y

conv
(

T hom(t) · S0,T hom(t) · S0
)

T inp(t) · UMacc

R([t];Macc, t0)

ξmin(t)

T inp(t+∆t) · UMacc

T inp(∆t) · UMacc

ψ
0

T hom(t+∆t) · S0

[vx(t), vy(t)]T ψ̃(t)

S0

R⋆(t+∆t;Macc, t0)

Fig. 4. Blue part (upper left): The reachable set R([t];Macc, t0) is bounded
by the Minkowski addition of the homogeneous solution T hom([t]) ·S0 with
the input solution T inp(t) · UMacc

(cf. Prop. 1 and [70, Fig. 3]). Green part
(lower right): A bound on the heading ψ([t]) for Macc is obtained from the
velocity vector [vx(t), vy(t)]T that has to point withinR⋆(t+∆t;Macc, t0)
(cf. Lemma 2). Red line (left): To prevent reversing, we restrict the minimum
positions in Mlong to ξmin(t) based on R(tv=0;Macc, t0) (cf. (8)). Note
that all sets are projected onto the position domain.

which the vehicle can come to a standstill when fully braking:

tv=0 :=

{

v0
amax

+ t0 if v0 ≥ 0

−∞ otherwise.
(3)

Lemma 2 (Bounds for ψ of Macc): Due to the limited ac-

celeration in Macc, the heading of a vehicle for [t] ≥ t0 is

ψ([t]) ∈

{

[

ψ
0
− ψ̃(t), ψ0 + ψ̃(t)

]

if t < tv=0

R otherwise,

with ψ̃(t) := sin−1
(

amax

v0
· (t− t0)

)

. �

Proof: Let ∆t > 0, t ≥ t0, and t + ∆t < tv=0. A

velocity vector [vx(t), vy(t)]
T at t in R(t;Macc, t0)

has to point to a position in R⋆(t + ∆t;Macc, t0) :=
T hom(t+∆t) ·S0⊕

(

T inp(t+∆t) ·UMacc
−T inp(∆t) ·UMacc

)

,

since we can accelerate by UMacc
during ∆t but must satisfy

Prop. 1 at t + ∆t (see Fig. 4). The maximum angle of

this velocity vector can be described by the tangent against

projx,y

(

R(t;Macc, t0)
)

and projx,y

(

R⋆(t+∆t;Macc, t0)
)

.

The angle of a tangent on two circles is the inverse of the sine

function of the difference of their radii divided by the distance

of their center points [95]; for our case (see Fig. 4), ψ̃(t) =

sin−1

(

projx,y((T inp(t+∆t)−T inp(∆t))·UMacc−T inp(t)·UMacc)
‖projx,y(T hom(t+∆t)·S0 −T hom(t)·S0)‖

2

)

.

Using t⋆ := t − t0 and a v0 ∈ [v0], this evaluates to

ψ̃(t) = sin−1
(

1/2·((t⋆+∆t)2−∆t2)·amax − 1/2·t⋆·amax

v0·(t⋆+∆t)− v0·t⋆

)

. After

simplifying the term and by selecting the v0 ∈ [v0] that

maximizes ψ̃(t), we obtain ψ̃(t) = sin−1
(

amax

v0
· (t− t0)

)

.

Since the inverse of the sine function is monotonic,

∀t ∈ [t, t] : ψ̃(t) ≤ ψ̃(t). Finally, we add the initial heading

[ψ0] and obtain the bound on ψ([t]). �

Definition 12 (Velocity-bounded abstraction Mvel):

Abstraction Mvel := 〈fMacc
,SMvel

,UMvel
〉 is a velocity-

bounded point-mass model (Cvmax
), where

SMvel
:=
{

[x(t), y(t), vx(t), vy(t)]
T
∣

∣

√

vx(t)2 + vy(t)2 ≤ vmax

}

,

UMvel
:= R

2.

When using Macc and Mvel at the same time, the constraint

on acceleration is more restrictive than the constraint on

velocity until the earliest point in time tvmax
at which vmax or

−vmax can be reached:

tvmax
=
vmax −max

(

|v0|, |v0|
)

amax
+ t0. (4)

Thus, if tvmax
> t0, we can reduce the over-approximation in

the reachable set of Mvel by initializing it at tvmax
with the

result of Macc (instead of at t0 with S0):

Proposition 2 (Reachable set of Mvel): The reachable set

of Mvel for [t] > tvmax
is

R([t];Mvel, tvmax
) =

{

[x, y, v, ψ]T
∣

∣

∣

∣

[x, y]T ∈

projx,y

(

R(tvmax
;Macc, t0)

)

⊕ C
(

[0, 0]T , vmax · (t− tvmax
)
)

,

v ∈ [−vmax, vmax], ψ ∈ R

}

. �

Proof: The reachable set directly follows from [70, (9)]. �

B. Abstraction in longitudinal direction (Mlong)

So far, we have covered constraints on absolute acceleration

and absolute velocity. With abstraction Mlong, we restrict the

motion of vehicles in longitudinal direction and to the road.

According to Croad and Clane, the admissible positions on the

road are obtained from the driving corridors of vehicle p as

occ(Dp).

For each driving corridor D ∈ Dp, we define a curvilinear

coordinate frame along a reference path Υ(ξ) : R → R
2,

where the path variable ξ represents the arc length. Since

we want to over-approximate the behavior of vehicles when

accelerating in driving direction, we require that Υ(ξ) is

the shortest possible path through the driving corridor. This

shortest path is obtained by following the inner bound of the

driving corridor (i. e., the bound in the inside of the curve),

while jumping at inflection points instantaneously to the new

inner bound, as described in [67, Def. 8] and illustrated in

Fig. 2b–2d.

To describe motions along Υ(ξ), we rewrite s(t) =

[ξ(t), vξ(t)]
T ∈ R

2 and S0 =
[

[ξ0], [vξ0 ]
]T

⊂ R
2 by using

vξ(t) = v(t), i. e., we over-approximate the longitudinal

velocity by the absolute velocity. The maximum longitudinal

velocity is determined by the more restrictive constraint of

CspeedLim and Cvmax
(cf. Tab. I) as

vmax,ξ := min(vspeedLim · fspeed, vmax), (5)
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and the minimum longitudinal velocity is determined by the

more restrictive constraint of Creverse, Cvmin
, and Cvmax

as

vmin,ξ :=

{

max(vmin, 0) if breverse = true

max(vmin,−vmax,ξ) otherwise.
(6)

In combination with Camax
(only in longitudinal direction)

and Cengine, we describe the maximum longitudinal accelera-

tion amax,ξ (i. e., the limit on increasing the signed velocity)

and the minimum longitudinal acceleration amin,ξ (i. e., the

limit on decreasing the signed velocity) as

amax,ξ

(

vξ(t)
)

:= (7a)


















0 if vξ(t) ≥ vmax,ξ

amax ·
vS

|vξ(t)|
if vS ≤ vξ(t) < vmax,ξ

amax if 0 ≤ vξ(t) < min(vS , vmax,ξ)

∞ if vξ(t) < 0,

amin,ξ

(

vξ(t)
)

:= (7b)


















−∞ if vξ(t) > 0

−amax if 0 ≥ vξ(t) > max(−vS , vmin,ξ)

−amax ·
vS

|vξ(t)|
if − vS ≥ vξ(t) > vmin,ξ

0 if vξ(t) ≤ min(0, vmin,ξ),

which extends [67, ac2,long] by considering reversing. Note

that in (7a) and (7b), the braking acceleration (i. e., decreasing

the absolute velocity) is set to infinity, since braking behaviors

cannot be over-approximated using the shortest path. However,

braking behaviors are already considered by Macc. Since Macc

does not consider vmin,ξ, we restrict the minimum reachable

position (see red line in Fig. 4) to

ξmin(t) := (8)
{

projx

(

R(tv=0;Macc, t0)
)

if vmin,ξ ≥ 0 ∧ t ≥ tv=0 ≥ t0

−∞ otherwise,

when assuming without loss of generality that the mean

heading is aligned with the x-axis and by transforming ξmin(t)
to Υ(ξ). Using the above definitions, we define our abstraction:

Definition 13 (Abstraction Mlong for driving corridors):

Abstraction Mlong := 〈fMlong
,SMlong

,UMlong
〉 is defined

along the shortest path Υ(ξ) of each driving corridor D:

ξ̇(t) = vξ(t), v̇ξ(t) = uξ(t),

SMlong
:=
{

[ξ(t), vξ(t)]
T
∣

∣ ξ(t) ≥ ξmin(t),

vξ(t) ∈ [vmin,ξ, vmax,ξ]
}

,

UMlong
:=
{

uξ(t) ∈ [amin,ξ

(

vξ(t)
)

, amax,ξ

(

vξ(t)
)

]
}

.

Proposition 3 (Reachable set of Mlong): The reachable set

of Mlong for [t] ≥ t0 is

R([t];Mlong, t0) =

{

[ξ, vξ]
T

∣

∣

∣

∣

ξ ∈

[

max

(

∫ t

t0

∫ t

t0

amin,ξ

(

vξ(t)
)

d2t, ξmin(t)

)

,

∫ t

t0

∫ t

t0

amax,ξ

(

vξ(t)
)

d2t

]

,

vξ ∈

[
∫ t

t0

amin,ξ

(

vξ(t)
)

dt,

∫ t

t0

amax,ξ

(

vξ(t)
)

dt

]}

,

where the integrals can be solved stepwise according to the

discontinuities in (7). �

Proof: The reachable set directly follows from [67, Thm. 2].�

To compute the occupancy of R([t];Mlong, t0), we enlarge

[ξ([t])] by ±
(

ℓ
2
+ w2

)

1/2 so that all headings ψ(t) ∈ R are

considered, and we restrict the lateral positions such that the

occupancy remains within occ(D).

C. Abstraction based on safe distance (Msafe)

To consider that vehicles have to maintain a safe distance

to the ego vehicle (Csafe), we determine the area Osafe that

has to be kept free by other vehicles. In contrast to the other

abstractions, we need to construct Osafe such that it is under-

approximative, since Osafe is subtracted from the prediction

via set difference.

We apply this abstraction Msafe for each forward driving

corridor of the ego vehicle without laterally adjacent lanelets,

i. e., ∀ ~Dego
safe ∈ ~Dego(noLat, drivDir) (cf. Fig. 5 and Def. 7).

Vehicles driving in front of the ego vehicle are excluded for

Msafe, since it is the responsibility of the ego vehicle to main-

tain a safe distance in this case. Thus, we only consider vehi-

cles for Msafe that drive behind or next to the ego vehicle with

the same driving direction or that can eventually merge into

the lane of the ego vehicle, i. e.,
(

~D(noLat, drivDir) 6⊆ ~Dego
safe

)

∧
(

~D(lat, drivDir) ∩ ~Dego
safe 6= ∅

)

(cf. Fig. 2 and 5).

To compute the safe distance, we assume that vehicles

brake until standstill and do not reverse, i. e., breverse = true.

We further assume that the ego vehicle may accelerate with

aegocomfort ≥ 0 until vegomax,ξ (cf. (5)), i. e., its velocity is at

least vego(t) := min(vego0 + aegocomfort · (t − t0), v
ego
max,ξ). If

another vehicle merges in front of the ego vehicle and performs

emergency braking, we assume that the ego vehicle is able to

react by braking with −aegomax after its reaction delay T ego.

Lemma 3 (Relative safe distance): A vehicle is only al-

lowed to merge in front of the ego vehicle if it maintains

at least the safe distance dsafe:

dsafe([t]) :=















dsafe,1 if (amax < aegomax) ∧
(

vego

aegomax
< v⋆

amax

)

∧
(

v⋆ < vego
)

dsafe,2 otherwise,

other vehicle

ego vehicle

ζsafe,front([t])

Γ(ζ) of ~Dego
safe

~Dego
safe

dsafe(tmerge)

ζsafe,rear

~D(true, true)

ζego(tmerge)

ℓego/2

ζsafe(tmerge)

ζ(tmerge)

dbrake(t− tmerge)

Osafe([t]; t0)

Fig. 5. The safe distance occupancy Osafe([t]; t0) is constructed from

ζsafe,rear to ζsafe,front([t]) along Γ(ζ) of each ~Dego
safe and considers that

the other vehicle may legally be allowed to merge in front of the ego vehicle.
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where

dsafe,1 :=

(

v − amax · T
ego − vego

)2

2 · (aegomax − amax)
+ 1/2 · amax · T

ego2+

(

vego − v
)

· T ego,

dsafe,2 :=
vego2

2 · aegomax
−

v2

2 · amax
+ vego · T ego,

with, for [t] ≥ t0,

v := max
(

projvξ(R(t;Mlong, t0)), 0
)

,

v⋆ := max
(

projvξ(R(t;Mlong, t0))− amax · T
ego, 0

)

,

vego := max
(

vego(t+ T ego), 0
)

. �

Proof: The safe distance for exact velocities, a single point in

time, and constant velocity of the ego vehicle during T ego

is provided in [96, Thm. 2.8]. Since the safe distance is

monotonic with respect to v and vego (which can be easily

shown by computing the derivative of dsafe,1 and dsafe,2) and

both v and vego are monotonic with respect to t, we can select

the bound of each interval such that the safe distance is under-

approximated, i. e., argmin
(

dsafe(·)
)

, and we can allow the

ego vehicle to accelerate during its reaction delay. �

To describe the safe distance along the centerline of the road

and relative to the minimum position of the ego vehicle for an

under-approximation, we define a curvilinear coordinate frame

along the reference path Γ(ζ) for each driving corridor ~Dego
safe,

where Γ(ζ) corresponds to the centerline (cf. Fig. 2a and 5).

Thus, we rewrite the state vector as s(t) = [ζ(t), vζ(t)]
T and

the safe distance in front of the ego vehicle (see Fig. 5) as

ζsafe([t]) := ζego(t) + ℓego/2 + dsafe([t]), (9)

where ζego(t) is obtained from vego(t). However, a vehicle

can merge in front of the ego vehicle while maintaining the

safe distance at

tmerge := min
({

t ≥ t0
∣

∣ ζ(t)− ℓ/2 ≥ ζsafe(t)
})

, (10)

where ζ(t) is obtained by transforming

projξ

(

R(t;Mlong, t0)
)

to Γ(ζ) of ~Dego
safe (see Fig. 5).

Proposition 4 (Safe distance in front of the ego vehicle):

The under-approximative safe distance in front of the ego

vehicle (see Fig. 5) is

ζsafe,front([t]) :=










ζsafe([t]) if t < tmerge

ζsafe(tmerge) + dbrake(t− tmerge) if tmerge ≤ t < tstandstill

ζsafe(tmerge) + dbrake(tstandstill − tmerge) otherwise,

where dbrake(t) := −1/2 · amax · t2 + vmerge · t,
vmerge := max(projvξ(R(tmerge;Mlong, t0)), 0), and

tstandstill := vmerge/amax + t0. �

Proof: For t < tmerge, (9) holds (cf. Lemma 3). At tmerge,

the other vehicle can legally merge into ~Dego
safe and can brake

with −amax. Thus, for tmerge ≤ t < tstandstill, the minimum

distance between the ego vehicle and the other vehicle is

ζsafe(tmerge) plus its braking distance dbrake(t − tmerge). For

t ≥ tstandstill, the safe distance is no longer increasing, since

the other vehicle could have come to a standstill. �

For the case that the other vehicle remains behind the ego

vehicle, the safe distance is the initial position of the ego

vehicle (see Fig. 5):

ζsafe,rear := ζego
0

− ℓego/2, (11)

since this over-approximates a legally allowed emergency

braking maneuver by the ego vehicle.

Finally, the safe distance occupancy Osafe([t]; t0) is ob-

tained by transforming [ζsafe,rear, ζsafe,front([t])] to the Carte-

sian coordinate frame and limiting the lateral positions to

occ( ~Dego
safe), as shown in Fig. 5.

D. Abstraction for kinematic constraints (Mturn)

So far, we have only covered dynamic constraints that do

not consider the nonholonomic constraints of vehicles. In

particular, we are interested in the minimum turning radius

(Cturn):

Definition 14 (Turning radius abstraction Mturn):

Derived from the kinematic single-track model [97, Sec. 2.2],

abstraction Mturn removes the maximum area a vehicle does

not penetrate when turning with positive velocity and steering

angle up to δmax, as shown in Fig. 6:

SMturn
:= R

4 \ (Cturn,left ∪ Cturn,right),

where

Cturn,left := C
(

R(ψ) · [xturn, Rturn]
T + [x, y]T , rturn

)

,

Cturn,right := C
(

R(ψ) · [xturn,−Rturn]
T + [x, y]T , rturn

)

,

with xturn := −ℓ/2 + ℓovr, Rturn := ℓwb · tan(π/2 − δmax),
and rturn := Rturn − w/2. The rear overhang ℓovr and the

wheelbase ℓwb are vehicle parameters.

Note that the turning radius is often referred to as the radius

of the path the outside front wheel is describing during turning.

In contrast, our definition of rturn describes the smaller radius

of the path of the inside rear wheel (cf. Fig. 6). Moreover, since

it is possible to enter the turning circle Cturn when performing

a full turn, constraint Cturn assumes that vehicles do not turn

within lanes (cf. Tab. I and [89, 14§2]).

Given a set of initial states and uncertain vehicle parameters,

we under-approximate the minimum turning radius:

Proposition 5 (Non-reachable occupancy of Mturn): As

illustrated in Fig. 6, the time-independent area not reachable

due to Mturn for any [t] ≥ t0 is

Oturn = Oturn,left ∪ Oturn,right,

where Oturn,left =
⋂

[x0,y0,ψ0,xturn]T ∈ S

C
(

R(ψ0)·[xturn, Rturn]
T+ [x0, y0]

T , rturn
)

,

with S :=
{

{x0, x0}×{y
0
, y0}×{ψ

0
, ψ0}×{xturn, xturn}

}

,

xturn = −ℓ/2 + ℓovr, xturn = min(−ℓ/2 + ℓovr, 0),
Rturn=ℓwb·tan(π/2−δmax), and rturn=max(|Rturn|−w/2, 0).
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ℓovr
ℓwb

ℓ

w/2
ψ

[x, y]T

δmax

Oturn,left

rturn

Rturn
π
2
− δmax

x

y xturn

ψ

Fig. 6. Oturn is constructed by intersecting the minimum turning circles of
the kinematic single-track vehicle model for all initial states and uncertain
vehicle parameters. For the sake of clarity, we only show the vehicle traces
and turning circles for ±ψ (black and blue).

Oturn,right is constructed analogous as Oturn,left except that

Rturn is multiplied by −1. �

Proof: To under-approximate Def. 14 for all intervals [x0],
[y0], [ψ0], [ℓ], [w], [ℓovr], and [ℓwb], we would require infinitely

many intersections of all possible combinations with all inter-

val values. However, we can reduce the solution to a finite

amount of intersections. The intersection of the solution using

x0 and the one using x0 contains the solution for all [x0], since

x0 only linearly translates the solution over a closed interval.

In addition, [x0] has no influence on the other variables. Both

properties also apply to [y0] as well as [ℓ] and [ℓovr]. We

only need to consider the upper bound of [w], since w is

minimizing rturn and all intersections of arbitrary circles with

the same center always contain the circle with the minimum

radius. Due to the same reason, the lower bound of [ℓwb]
suffices. The centers (see crosses in Fig. 6) of the turning

circles with ψ0 ∈ [ψ
0
, ψ0] lie on a circular arc with radius

‖[xturn, Rturn]
T ‖2. Since rturn ≤ ‖[xturn, Rturn]

T ‖2 for all

possible xturn and Rturn, the intersection of the solution using

ψ
0

and the one using ψ0 contains the solution for all [ψ0]. By

intersecting the solution of all possible combinations of the

remaining extreme values given in S, we obtain the result. �

In summary, abstraction Mturn especially reduces the over-

approximation in the prediction for low initial velocities and

small initial heading intervals. For high measurement uncer-

tainties, however, Oturn can also be empty.

E. Abstraction based on priority traffic rules (Mprio)

The only constraint we have not yet considered is Cprio.

Definition 15 (Priority-based abstraction Mprio): Based

on priority traffic rules, abstraction Mprio restricts the

occupancy to Wprio(t), which is provided by the environment

model (cf. Def. 3), without constraining the dynamics.

The occupancy of Mprio for [t] ≥ t0 is Oprio([t]; t0) =
⋃

t∈[t] Wprio(t). Since pedestrians often do not observe the pri-

ority of vehicular traffic, e. g., by jaywalking, Oped
prio(t; t0) can

be extended to a more sophisticated prediction of pedestrians

stepping on the road and potentially crossing it as described

in [70, Sec. III-B].

F. Summary of abstractions

After introducing all abstractions and the computation of

their reachable set and occupancy, we summarize the predic-

tion for each type of traffic participant for a time interval

[t] ≥ t0 in accordance with Lemma 1 and such that all

applicable constraints of Tab. I are considered (cf. Tab. II).

For vehicles, the reachable occupancy is

Oveh([t]; t0) := occ
(

R([t];Macc, t0),A
)

∩ O∁
turn

∩ occ
(

R([t];Mlong, t0),A
)

∩ O∁
safe([t]; t0) ∩ Oprio([t]; t0),

(12)

where O∁ denotes the complement of O. For pedestrians, the

reachable occupancy is

Oped([t]; t0) := occ
(

R([t];Macc, t0),A
)

(13)

∩ occ
(

R([t];Mvel, t0),A
)

∩ Oprio([t]; t0),

since the other abstractions are only applicable to vehicles.

VI. CONSTRAINT MANAGEMENT

Our assumptions can become violated, if other traffic partic-

ipants misbehave, i. e., perform an unacceptable behavior, or

if measurement uncertainties are very high. To enable the ego

vehicle to react to these violations, we validate the constraint

parameters Qp of each traffic participant based on the current

environment model Ω0 and, if available, on the environment

model Ωc−1 of the previous planning cycle.

We adjust the constraint parameters in case of violations

such that observed but unacceptable behavior gets no longer

excluded from our prediction, as described in Tab. III, which

extends [14, Tab. III]. Numerical parameters are updated to

the measured state plus a threshold, where we use thresholds

∆amax
,∆vmax

,∆fspeed
,∆vmin

to prevent an updated constraint

from directly being violated again, and threshold ∆vreverse to

prevent noisy velocity measurements slightly below 0 from

being considered as reversing. Boolean parameters are updated

to false so that violated constraints get disabled. Cengine and

Cturn also get disabled in case of a violation by setting their

parameter to the maximum value (cf. Tab. III).

Our default set of parameters Q is provided in Tab. IV.

Note that these values are suggestions to over-approximate

the real and legal motions of traffic participants in accordance

with Mreal, but that they can be adjusted to user preferences.

Especially, the parameters for Cturn to under-approximate

the turning radius should be adapted to the applicable legal

regulations of the target country (cf. [89, 30§4–5]). The default

values for Clane forbid vehicles to overtake in a lane not



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, 2020 12

TABLE III
CONSTRAINT MANAGEMENT.

Constraint

of Tab. I

If formalization of Tab. I evaluates to false
for t = t0, update parameters as

Camax amax ← a0 +∆amax

Cvmax vmax ← max
(

|v0|, |v0|
)

+∆vmax

CspeedLim fspeed ←
v0

vspeedLim
+∆fspeed

Cengine vS ←∞

Creverse if v0 < ∆vreverse : breverse ← false

Cvmin
vmin ← v0 −∆vmin

Cturn δmax ← π/2

Croad broad ← false

Cprio bprio ← false

Clane if blane1 = noLat : blane1 ← lat

else if blane2 = drivDir : blane2 ← anyDir

else: broad ← false

TABLE IV
DEFAULT PARAMETERS.

Constraint

of Tab. I

Parameter and its default value

Camax avehmax 8.0m/s2 apedmax 1.0m/s2 acycmax 3.5m/s2

∆amax 0.5m/s2

Cvmax vvehmax 70.0m/s vpedmax 2.0m/s vcycmax 12.0m/s

∆veh
vmax

0.5m/s

CspeedLim fspeed 1.2 ∆fspeed
0.1

Cengine vvehS 7.0m/s vcyc
S

∞

Creverse breverse true ∆vreverse −1.0m/s

Cvmin
vmin −10.0m/s ∆vmin

1.0m/s

Cturn ℓcarwb 1.8m ℓmotcyc
wb 1.1m ℓcycwb 0.8m

ℓtruckwb 3.0m ℓbuswb 3.0m

δmax 1.0 rad ℓovr 0

ℓ
car
ovr 3.7m ℓ

motcyc
ovr 1.0m ℓ

cyc
ovr 1.0m

ℓ
truck
ovr 3.7m ℓ

bus
ovr 4.9m

Croad broad true

Cprio bprio true

Clane blane1 lat blane2 drivDir

Csafe T ego 1.0 s aegocomfort 1.0m/s2

Aphantom w 0 ℓ 0.5m r 0.25m

appropriate to the direction of traffic, since such a behavior is

only allowed if not endangering or interfering with oncoming

traffic [88, 11§2(c)], and thus it is forbidden in the vicinity of

the ego vehicle.

VII. EXPERIMENTAL RESULTS

For a prediction that claims to be over-approximative (cf.

our problem statement in Sec. II-E), it is crucial to demonstrate

this property. In our previous work, we have already shown

conformance of the prediction on recorded data of 1074 vehi-

cles in [67, Sec. V-C] and of 400 pedestrians in [70, Sec. IV-

A], and we have evaluated how conservative the prediction

is against a high-fidelity vehicle model in [67, Sec. V-B].

These results demonstrate that the ground-truth trajectories

were always contained in the prediction and that the over-

approximation was not unreasonably conservative.

In this paper, we want to demonstrate that our prediction

works on complicated, real-world scenarios and, despite being

over-approximative, allows the ego vehicle to obtain collision-

free trajectories. Therefore, we simulate an urban intersection

with occlusions in Sec. VII-A, and, for the first time, we

present real-world experiments with test vehicles in Sec. VII-B

and VII-C. The video attachment of this paper3 contains

further results. For all experiments, we used the parameters of

Tab. IV if not noted otherwise and implemented Alg. 1 without

considering interaction, i. e., we omitted the optional line 13.

Initial positions are over-approximated either by rectangles

aligned with the mean heading of the traffic participant or by

circles to ease the consideration of the traffic participant’s size.

As representation for the predicted set, we choose polygons

for the position domain and intervals for the other states. Thus,

the states are not coupled with each other to allow for efficient

computations despite some over-approximations.

A. Intersection with occlusions and priorities

Fig. 7 presents an urban intersection with different detected

traffic participants. The road network is provided with one

layer for vehicles and one for bicycles, and the speed limit

of all lanes is vspeedLim = 13.89m/s. Due to occlusions and

a limited sensor range with radius of 33m, the field of view

F0 is restricted. To capture this risk, our approach creates 3

phantom vehicles, 2 phantoms cyclists, and 24 static phantom

obstacles. The prediction result is shown for a time horizon

of 1.0 s with a time step size of 0.1 s. The oncoming phantom

vehicle (from the top) is forbidden to make a left turn, since

the ego vehicle has the right of way, which is modeled by

Wprio(t). Based on the predicted occupancies, the ego vehicle

can decide when to safely proceed into the intersection.

3The video attachment is also available at http://go.tum.de/812843.

Fig. 7. Urban intersection (CommonRoad ID: S=DEU Muc-30 1 S-1:2018b
[98]): the ego vehicle (black) has to yield to crossing traffic. Since two vehicles
(blue) and one cyclist (blue) cause occlusions, we create phantom traffic
participants (dynamic: green, static: grey) at the boundary of the field of
view (black). (background image: Google, GeoBasis-DE/BKG)

http://go.tum.de/812843
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(a) (b)

Fig. 8. Online verification of parking maneuvers for the ego vehicle (black)
considering a pedestrian (blue). The predicted occupancy of the pedestrian
(light blue) and the occupancy of the verified maneuver of the ego vehi-
cle including safety margins (red) are both shown for two time intervals,
t ∈ [0 s, 0.8 s] and [0.8 s, 1.6 s]. (a) The ego vehicle executed a verified
braking maneuver such that it definitely will come to a stop in front of the
pedestrian. The recorded stopping position of the ego vehicle 1.6 s later is
shown transparently. (b) Since the occupancies did not intersect anymore, a
new maneuver for the ego vehicle has been verified as safe. A video of this
real-world experiment is attached to this paper3.

B. Online verification considering pedestrians

We have performed online verification of maneuvers in the

presence of pedestrians. Online verification ensures that the

ego vehicle only executes trajectories that have been verified as

safe [3], [8]. For our experiments, we want to achieve passive

safety, i. e., a trajectory is verified as safe if the maneuver

is collision-free against all acceptable future behaviors of

surrounding traffic participants and brings the ego vehicle to

a standstill. In particular, our self-driving BMW 5 series test

vehicle has to avoid collisions with pedestrians in a parking

lot, i. e., an unstructured environment. The ego vehicle receives

trajectories that are following a predefined path with constant

velocity vegodes = 2.0m/s for a planning horizon of th = 1.6 s
(with constant time offset to be robust against processing

time delays). These intended trajectories are not aware of

pedestrians. Thus, we append a path-consistent braking profile

to the given intended trajectory such that the ego vehicle

comes to a stop within th, and we predict the pedestrians

using apedmax = 2.0m/s2. If the new trajectory does not intersect

with the predicted occupancies, the ego vehicle will execute it;

otherwise, it will keep executing the trajectory that has been

verified in the previous planning cycle.

This online verification has been executed on our test

vehicle on November 09, 2018, and Fig. 8 shows recordings

of these real-world experiments. Since the pedestrian was

blocking the path of the ego vehicle, the ego vehicle eventually

could not verify a new trajectory and, by executing the

previously verified trajectory, came to a stop (see Fig. 8a).

A few seconds later, the pedestrian walked away and a new

trajectory has been verified as safe (see Fig. 8b).

C. Online experiments on public roads

We have executed our prediction online in a test vehicle

on public roads. Therefore, we implemented our approach in

C++ on a BMW 7 series test vehicle. The environment model

provides the initial states of surrounding traffic participants

based on [33] and the rectangular field of view without

occlusions that extends 100m in longitudinal and 60m in

lateral direction of the current pose of the ego vehicle. We use

the planner of [15] to obtain trajectories for the ego vehicle

that are collision-free against all predicted occupancies and

bring the ego vehicle to a standstill; for the few cases the

initial velocity is too high to come to a standstill within the

planning horizon, we constrain the final state to comply with

safe distances to predicted traffic participants. The prediction

and planning horizon is 3.0 s with a time step size of 0.25 s.
We conducted four test drives in Germany from 1.30 p.m.

to 5 p.m. on Wednesday, March 13, 2019. Each test drive was

along the 17 km long route between the BMW Autonomous

Driving Campus in Unterschleißheim and the BMW Research

and Innovation Center in Munich and contains both urban

and rural multi-lane roads with speed limits ranging from

8.3m/s to 27.8m/s. While we have performed the prediction

online, we did not perform the trajectory planning closed-

loop but offline in a postprecessing step, since approval by

authorities has not yet been given. In all test drives combined,

we have predicted 163, 715 detected and 211, 863 phantom

traffic participants (dynamic and static) in 29, 818 replanning

steps. Fig. 1 and 9 show exemplary results. Predicted occu-

pancies and planned trajectories are shown for the full time

horizon. The visualization of the ego vehicle, its trajectory, and

other traffic participants can have a slight time offset to each

other due to the asynchronous updates. Overall, the results

demonstrate that the prediction performs well in arbitrary

road networks and with vast numbers of traffic participants.

Even in crowded environments, the prediction incorporates the

interaction with the ego vehicle and allows to obtain collision-

free trajectories, while containing all acceptable behaviors of

other traffic participants. Only in a few situations, a new

safe trajectory for the ego vehicle could not be obtained, as

shown in Fig. 10; since the prediction was not provided with

Wprio(t), it could not consider the right of way for the ego

vehicle.

During the real-world experiments, our legal specification

has been violated a few times by the recorded traffic partici-

pants. Tab. V evaluates how often the constraint management

had to update the values of the constraints according to

Tab. III, when using as initial values the ones of Tab. IV

except for vmin. For each parameter, we present its relative

number of updates for all detected, dynamic traffic participants

in our test drives (i. e., for 90, 779 motorized vehicles, 15, 650
pedestrians, and 4, 770 cyclists), the maximum value it has

been updated to, and the mean value of all updated values.

Note that the maximum and mean values are the measured

values plus our thresholds (cf. Tab. III). In most cases, the vi-

olations were caused by high measurement uncertainties or an

incomplete environment model, e. g., when no driving corridor

was provided for a traffic participant (see Fig. 10). In other

cases, a traffic participant indeed violated our specification.

Since the mean values of all violations are only slightly above

the initial values, the initial parameterization seems reasonable,

but can be adjusted to user preferences. To reduce the influence

of violated constraints on the safety of motion plans, we

refer to [11]. Legal safety can be ensured despite constraint

violations by planning fail-safe trajectories [15] and switching

to a reactive mode for collision mitigation in case of inevitable

collisions.
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(a) Even on multi-lane roads, the ego vehicle has enough free space, since the safe distance forbids
passing vehicles from merging directly in front of the ego vehicle.

(b) The pedestrian is predicted to cross the road per-
pendicular plus a deviation depending on its heading.

(c) While overtaking a truck, a vehicle ahead is merg-
ing into the lane of the ego vehicle.

Fig. 9. Set-based prediction of various traffic participants (car: green, truck/bus: red, cyclist: turquoise, motorcyclist: blue, pedestrian: magenta, static: grey
box, phantom: grey area) in different urban and rural scenarios of our real-world experiments. Based on the predicted occupancies, we successfully obtained
collision-free trajectories (red) for the ego vehicle (silver-colored vehicle). Videos of further real-world experiments are attached3.

Let us finally evaluate the required computation times for

the prediction, i. e., for the loop over all traffic participants

in Alg. 1. The test vehicle is equipped with an Intel i7

6900K processor and 64 GB memory; the frequency of the

processor is underclocked from 3.2 GHz to 1.2 GHz to

improve the energy consumption and heat management. The

mean computation time for one planning cycle was 9.86ms
with a standard deviation of 12.02ms for a prediction horizon

of 2.0 s. Note that the outliers mostly occurred due to high

computational load caused by other software modules. Further

TABLE V
EVALUATION OF THE CONSTRAINT MANAGEMENT.

Constraint

of Tab. I

Para-

meter

Initial

value

Mean value

of updates

Max. value

of updates

Num. of

updates

Camax avehmax 8.0m/s2 9.50m/s2 15.14m/s2 0.03%

apedmax 1.0m/s2 2.18m/s2 7.41m/s2 6.91%

acycmax 3.5m/s2 4.57m/s2 7.89m/s2 0.59%

Cvmax vvehmax 70.0m/s n/a n/a 0.00%

vpedmax 2.0m/s 3.39m/s 6.78m/s 5.83%

vcycmax 12.0m/s 12.92m/s 13.48m/s 0.27%

CspeedLim fvehs 1.2 1.43 3.36 0.21%

Cengine vvehs 7.0m/s n/a ∞ 0.83%

Creverse bvehreverse true n/a n/a 2.01%

bcycreverse true n/a n/a 0.27%

Cvmin
vvehmin −1.0m/s −1.64m/s −10.93m/s 2.01%

vcycmin −1.0m/s −2.10m/s −5.84m/s 0.27%

Clane/ Croad bvehroad true n/a n/a 2.27%

bcycroad true n/a n/a 31.07%

experiments showed that the computation time is linear with

the prediction horizon.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a set-based prediction for provably safe

motion planning based on legal safety. Our prediction is

guaranteed to contain all acceptable behaviors in accordance

with a legal specification. This is achieved by rigorous com-

putations in a formal manner, nondeterministic models that

over-approximate the dynamics of the traffic participants, and

conservative parameterization. As prediction features, we use

longitudinal and lateral dynamics, the motion history, and the

types of traffic participants in combination with contextual

information and the field of view.

For the first time, we have validated our prediction in test

vehicles. These real-world experiments demonstrate that our

Fig. 10. Situation of our real-world experiments (cf. Fig. 9) in which a safe
trajectory could not be obtained. Since the environment model did not restrict
the priority-based positions Wprio(t) for the oncoming vehicle (ID 1515),
the prediction allows this vehicle to traverse the lane of the ego vehicle.
In addition, since the environment model did not provide a driving corridor
for the cyclist (ID 1498) next to the ego vehicle, the constraint management
updated broad ← false and the prediction of this cyclist can only use Macc.
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prediction runs online in arbitrary traffic scenarios and that

motion planners are able to obtain collision-free trajectories

despite the over-approximative prediction and even in con-

gested environments. In addition, our constraint management

successfully dealt with traffic participants that violate traffic

rules, high measurement uncertainties, and incomplete envi-

ronment models.

For a good performance of the prediction, we require a

detailed and precise environment model with strictly bounded

measurement uncertainties. Future work includes more restric-

tive bounds on the admissible velocity by considering the

curvature of the road and on the admissible lateral acceleration

(e. g., based on [99]) while remaining over-approximative. It

also seems interesting to use our proposed set-based prediction

as propagation model for object tracking.
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