
Set-Based Tests for the Gene–Environment Interaction in 
Longitudinal Studies

Zihuai He1, Min Zhang1, Seunggeun Lee1, Jennifer A. Smith2, Sharon L.R. Kardia2, Ana V. 
Diez Roux3, and Bhramar Mukherjee1

1Department of Biostatistics, University of Michigan

2Department of Epidemiology, University of Michigan

3Department of Epidemiology, Drexel University

Abstract

We propose a generalized score type test for set-based inference for gene-environment interaction 

with longitudinally measured quantitative traits. The test is robust to misspecification of within 

subject correlation structure and has enhanced power compared to existing alternatives. Unlike 

tests for marginal genetic association, set-based tests for gene-environment interaction face the 

challenges of a potentially misspecified and high-dimensional main effect model under the null 

hypothesis. We show that our proposed test is robust to main effect misspecification of 

environmental exposure and genetic factors under the gene-environment independence condition. 

When genetic and environmental factors are dependent, the method of sieves is further proposed to 

eliminate potential bias due to a misspecified main effect of a continuous environmental exposure. 

A weighted principal component analysis approach is developed to perform dimension reduction 

when the number of genetic variants in the set is large relative to the sample size. The methods are 

motivated by an example from the Multi-Ethnic Study of Atherosclerosis (MESA), investigating 

interaction between measures of neighborhood environment and genetic regions on longitudinal 

measures of blood pressure over a study period of about seven years with 4 exams.

Keywords

Gene-environment independence; Generalized score test; MESA neighborhood study; Model 
misspecification; Robustness

1 Introduction

Most complex traits have a multifactorial etiology involving the dynamic interplay of genes 

and environmental exposures over the life course. Studies of gene-environment interaction 

(GEI) often suffer from single one time measurement of exposure or a crude proxy thereof, 

without proper characterization of lifetime history of cumulative exposure. Longitudinal 

studies with time varying measures of outcome and exposure data help with characterizing 

the temporal features of exposure and outcomes, handling exposure measurement error and 

often enhance power when compared to a cross-sectional analysis. While environmental 

factors considered in an epidemiological analysis are often behavioral factors like diet, 

physical activity, use of tobacco or alcohol, in recent years, there has been an increasing 
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interest in measuring the neighborhood environment that the individual lives in. For 

example, the MESA neighborhood Study, an ancillary study to the Multi-Ethnic Study of 

Atherosclerosis (MESA), includes a set of novel time varying measures of healthy food 

availability and access to recreational facilities. Previous studies have shown that individuals 

living in neighborhoods with better food and physical activity environments are less likely to 

develop hypertension (Kaiser et al. (2015)). In the present analysis, we are primarily 

interested in investigating whether a set of single nucleotide polymorphisms (SNPs) 

measured in a genome-wide association study modifies the effect of neighborhood exposures 

on longitudinal measures of blood pressure.

Gene-environment interaction is often statistically assessed by fitting a regression model for 

the quantitative outcome (Y ) by including the main effects and a product between a genetic 

variant (G) and an environmental exposure (E), adjusting for covariates (X). A typical 

genome-wide interaction search repeats the test for interaction under this model for millions 

of SNPs, adjusting for multiple comparison. Although numerous single SNP based analyses 

for gene-environment interaction have been conducted, relatively few of the findings have 

been replicated because of various reasons such as: limited statistical power due to the 

burden of multiple comparison; measurement error and misclassification of exposure; 

detection of spurious interactions due to not properly adjusting for main effect of E and G 
(for example due to missing a non-linear terms in a continuous exposure E) (Thomas (2010); 

Tchetgen Tchetgen and Kraft (2011); Mukherjee et al. (2012); Cornelis et al. (2012); 

Boonstra et al. (2016)).

To improve power and to reduce the burden of multiple comparison, many genetic 

association studies have now considered an alternate or supplementary analytic approach 

towards jointly testing the effect of all SNPs in a biologically defined set, such as a gene, 

pathway or specific genomic region as opposed to a one-at-a-time single SNP analysis. 

Aggregation of SNPs is particularly critical for studies of rare variants (Derkach et al. 

(2014); Basu and Pan (2011)). A number of methods have gained popularity including 

kernel machine regression methods (Wu et al. (2011)), similarity regression (Tzeng et al. 

(2011)), sum of squared score test (Pan (2009)) and genetic random field model (He et al. 

(2014); He et al. (2015)). In the context of testing gene-gene/gene-environment interaction 

for cross-sectional studies, Tzeng et al. (2011), Li et al. (2012), Lin et al. (2013), Chen et al. 

(2014), Marceau et al. (2015) and Lin et al. (2016) extended the set-based tests for marginal 

associations to testing interactions. These papers demonstrated superior power of set-based 

tests for gene-environment interaction by aggregating signals across multiple SNPs. 

However, no set-based test for gene-environment interaction has been proposed for 

longitudinal studies where improved power regarding gene-environment interaction is 

possible by using longitudinally varying outcome and exposure trajectories.

Most GEI studies consider a linear main effect of E. A growing body of literature has shown 

that a misspecified main effect of E can lead to type I error inflation in tests for gene-

environment interaction, and gene-environment independence in the underlying population 

plays an important role in reducing the detection of spurious gene-environment interactions 

(Tchetgen Tchetgen and Kraft (2011); Voorman et al. (2011); Cornelis et al. (2012)). 

However, the theoretical justification for this result has not been established (VanderWeele et 
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al. (2013)). Also, there is no method proposed for handling misspecified E effect when G 
and E are dependent, particularly for set-based analysis. For the main effect of G, Lin et al. 

(2013) pointed out that single SNP analyses for gene-environment interaction can be biased 

due to ignoring SNPs in the same region that are in linkage disequilibrium (LD) with the 

tested SNP. Set-based analysis can serve as a potential remedy to this issue, but one practical 

challenge that is new to deriving set-based tests for GEI is that the null model contains main 

effects of multiple SNPs and fitting the null model could potentially be problematic when 

the number of SNPs in a region is large relative to the sample size. The tests can suffer from 

type I error inflation as the asymptotic distributional properties of the reference test statistic 

may not hold under such situations.

In this article, we propose a new statistical approach to test for gene-environment 

interactions with a set of genetic variants and longitudinally measured outcome and 

exposure data. The test is robust to misspecification of within subject correlation and is 

substantially more powerful than an analysis that uses subject-specific averages/summaries 

of outcome and exposure data. We show that the proposed test is robust to the 

misspecification of E and G main effects under the gene-environment independence 

condition. We further propose using the method of sieves to flexibly model the main effect 

of E for improved type I error control when the gene-environment independence condition 

does not hold, and for better power. We also proposed a weighted principal component 

analysis (PCA) to remedy the curse of dimensionality when the number of SNPs in the 

tested set is close to or larger than the sample size. We illustrate the proposed methods by 

both an analysis of targeted GEI (restricted to genetic regions defined around previous 

GWAS hits) and an agnostic genome-wide gene-based GEI search, with novel time-varying 

neighborhood features of the environment as exposure, and blood pressure as the 

longitudinally measured outcome in MESA. Extensive simulation studies, designed to 

mimic the data structure of MESA are conducted to assess the operating characteristics of 

the different methods.

2 Application: Multi-Ethnic Study of Atherosclerosis

MESA was initiated in the year 2000 with the goal of investigating the prevalence, correlates 

and progression of subclinical cardiovascular disease (Bild et al. (2002)). A total of 6360 

MESA subjects who consented to genetic analyses, including 2526 European Americans 

(EUR), 1611 African Americans (AFA), 1448 Hispanics (HIS) and 775 Asian of Chinese 

descent (CHN), were included in the current analysis. From 2000 to 2007, four examinations 

were conducted at approximately 1.5–2 year intervals for participants residing at six study 

sites: New York, New York; Baltimore, Maryland; Forsyth County, North Carolina; Chicago, 

Illinois; St Paul, Minnesota; and Los Angeles, California. Blood pressure measurements 

were available at each MESA exam. An ancillary study of MESA, the MESA neighborhood 

study, collected longitudinal information on neighborhood characteristics in the four 

examinations, including four time varying measures of healthy food availability and physical 

activity resources (Moore et al. (2008); Christine et al. (2015)). These neighborhood 

environments may influence individual diet and exercise levels, and therefore influence risk 

factors for chronic diseases, e.g. systolic/diastolic blood pressure (Mujahid et al. (2008)).
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The four neighborhood measures include two geographic information system (GIS) based 

measures and two survey based measures: 1. Density of favorable food stores (GIS-based); 

2. Density of recreational facilities (GIS-based); 3. Perceived healthy foods availability 

(survey-based); 4. Perceived walkability (survey-based). The GIS measures were constructed 

using the National Establishment Time Series (NETS) database from Wall and Associates 

for 2000 to 2007 on food stores and commercially-available recreational facilities for every 

ZIP code within a 5 miles radius of MESA participant households. The survey based 

measures of healthy food availability and walkability were obtained from questionnaires 

administered to MESA participants and supplementary sample of other community 

residents. The detailed description of these neighborhood features can be found in section 

4.1 the Supplementary Materials. A growing body of literature has suggested that altering 

these neighborhood environments may foster behavioral changes and may aid in prevention 

of chronic diseases (Papas et al. (2007); Sallis et al. (2012); Christine et al. (2015)). Our 

interest lies in understanding whether an individual’s genomic profile modifies the effect of 

neighborhood features on blood pressure.

We conducted both a targeted GEI analysis and a gene-based genome-wide GEI analysis. 

Our targeted GEI analysis studied 29 candidate genomic regions which were selected around 

29 index SNPs that are significantly associated with blood pressures (p-value < 10−9) by the 

International Consortium for Blood Pressure Genome-Wide Association Studies, ICBP 

(2011). The criteria of determining each genomic region is same as He et al. (2015): when 

the index SNP fell within a gene, we selected all SNPs within the gene +/− 5kb and adopted 

the gene’s name to label the region. When the index SNP fell outside of a gene, we selected 

the index SNP plus all SNPs +/− 50kb and name the region after the index SNP. Number of 

SNPs in these regions ranges from 10 to 840 SNPs. Our genome-wide gene-based analysis 

studied 24743 protein coding genes +/− 5kb defined by the UCSC genome browser 

(Karolchik et al. (2003)). The SNPs in the regions were directly genotyped using the 

Affymetrix Genome-Wide Human SNP Array 6.0 or imputed as per MESA protocol. 

Imputation was performed using the IMPUTE 2.1.0 program by Marchini et al. (2007) in 

conjunction with HapMap Phase I and II reference panels (CEU+YRI+CHB+JPT, release 22 

- NCBI Build 36 for African-, Chinese- and Hispanic-American participants; CEU, release 

24 - NCBI Build 36 for European Americans). All common and rare variants are included in 

our analysis without any minor allele frequency filters.

3 Model and Inference

Consider a study population with m independent subjects where the i-th subject has ni 

longitudinal observations, n = ∑i = 1
m ni. When ni = 1 for all 1 ≤ i ≤ m, this corresponds to a 

cross-sectional study. Let Yi,j be the quantitative outcome value, Xi, j = (Xi, j
1 , …, Xi, j

p )T be the 

p covariates which can include age, gender, education, etc., Ei,j be the environmental 

exposures for the j-th observations on the i-th subject measured at time ti,j ; Gi = (Gi
1, …, Gi

q)T

be the q time-invariant genetic variants in the target region, where Gi
k ∈ {0, 1, 2}. We define 

Yi = (Yi,1, …, Yi,ni)
T as a vector of all observations and Gi = (Ḡi, …, Ḡi)T as an ni×q matrix 

of genetic variants where Ḡi is repeated ni times; Xi, Ei are defined as the matrix forms of 
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covariates and environmental exposure similarly. We are interested in the statistical 

interaction between Ei,j and Ḡi on outcome Yi,j, adjusting for Xi,j in addition to the main 

effect of Ei,j and Ḡi. Ei,j can be a summary statistic of measures of environmental exposure 

prior or up to exam j if the investigators believe the outcome not only depends on the current 

values of exposure but also the previous exposure history. For example, Ei,j can be the 

cumulative average of repeated exposure measures up to exam j. The statistical interaction 

between the environmental exposure and the k-th genetic variant is characterized by Ei, jGi
k. 

We define Ei, j ∗ Gi = (Ei, jGi
1, …, Ei, jGi

q)T and its matrix form is denoted by Ei * Gi, an n × q 

matrix.

One popular approach for analyzing longitudinal genetic data is a single SNP analysis, 

repeated for each of the Gi
k separately, k = 1, …, q, based on a generalized estimating 

equation (GEE) approach,

E(Yi, j ∣ Xi, Ei, Gi
k) = Xi, j

T βX + Ei, jβE + Gi
kβG, k + Ei, jGi

kγk,

where βX = (βX,1, …, βX,p)T, βE and βG,k are the coefficients for covariates, main effect of 

exposure and the k-th SNP respectively; γk is the gene-environment interaction parameter of 

interest. Both the main effects (βX, βE, βG,k) and the interaction effect γk are modeled as 

fixed effects. The null hypothesis is H0 : γk = 0. To extend it to a set-based analysis, a 

natural multivariate model includes all SNPs in the same region simultaneously,

μi, j = E(Y i, j ∣ Xi, Ei, Gi) = Xi, j
T βX + Ei, jβE + Gi

T βG + (Ei, j ∗ Gi)
Tγ, (1)

where βG = (βG,1, …, βG,q)T; γ = (γ1, …, γq)T. The null hypothesis jointly tests the entire 

interaction vector of length q, namely, H0 : γ = 0. The working covariance matrix of Yi is 

denoted as Vi
−1(ζ), which is of size ni × ni and depends on a vector of parameters ζ. For 

cross-sectional studies, Lin et al. (2013) considered βG as fixed effects and assumed that 

each coefficient γk follows i.i.d N(0, τ2) and proposed a variance component score test for 

H0 : τ2 = 0. Instead of the mixed effect model, we propose a GEE approach based on the 

unified fixed effect model (1), where the parameters have a more natural interpretation.

The classical approach for testing H0 : γ = 0 is a q-degree of freedom likelihood ratio/wald/

score test. However, Goeman et al. (2006) showed the power of such tests tend to diminish 

rapidly when the dimensionality q is large, which is common when the region considered 

consists of hundreds of variants. To address this, we develop a generalized score type test 

that can exploit the LD among the SNPs to reduce the test degrees of freedom under model 

(1). The score vector from model (1) with respect to γ is:
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Sγ(β, ζ, γ) = ∑
i = 1

m
Sγ, i(β, ζ, γ) = ∑

i = 1

m
(Ei ∗ Gi)

TVi
−1(ζ)(Yi − μi),

where μi = (μi,1, …, μi,ni)
T. By M-estimation theory, the score statistic 1

m
Sγ(β, ζ , 0)

asymptotically follows a multivariate normal distribution with mean zero and covariance Σ 
under H0, where β̂ and ζ̂ are the estimators under H0 : γ = 0 obtained by using the usual 

GEE proposed by Liang and Zeger (1986). Each element 1
m

Sγ
k(β, ζ , 0) follows an asymptotic 

normal distribution with mean zero. The classical score test summarizes the vector 
1
m

Sγ(β, ζ , 0) into a scalar by considering 1
m

Sγ(β, ζ , 0)T∑−1Sγ(β, ζ , 0) where Σ̂ is an estimator 

of Σ. In this case, the test statistic follows a chi-square distribution with q degrees of 

freedom, i.e., a sum of q squared independent normal random variables. This approach 

involves the inversion of Σ̂, which is not stable when q is large relative to m, and cannot be 

applied to scenarios when q > m. To address this, we define a test statistic Q for testing H0 : 

γ = 0 by aggregating the score statistics in a different way,

Q = 1
mSγ

T(β, ζ , 0)Sγ(β, ζ , 0) = 1
m ∑

k = 1

q
{Sγ

k(β, ζ , 0)}2,

where Sγ
k(β, ζ , 0) corresponds to the k-th interaction term. The statistic can be understood as 

the overall deviation from 0 of all score statistics where each of them measures the strength 

of a specific interaction effect. Let Sβ(β, ζ, γ) denote the score vector with respect to β.

Result 3.1—Under model (1) and H0 : γ = 0, if q is fixed and m → ∞, Q is 

asymptotically distributed as

∑
k = 1

q
λk χk

2 (2)

where χk
2s are i.i.d. Chi-square distributions with degree of freedom one; λ1 ≥ … ≥ λq are 

the eigen-values of Σ and can be estimated by {λ̄
k}1≤k≤q,

max
1 ≤ k ≤ q

∣ λk − λk ∣ = op(1), m ∞ ;

λ̄
1 ≥ … ≥ λ̂

q are the ordered eigen-values of Σ̂. Specifically, Σ̂ = ÂD̂ÂT,
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A = {Iq, − [ ∑
i = 1

m
(Ei ∗ Gi)

TVi
−1(ζ )(Xi, Ei, Gi)][ ∑

i = 1

m
(Xi, Ei, Gi)

TVi
−1(ζ )(Xi, Ei, Gi)]

−1
},

D = 1
m − p − q − 1 ∑

i = 1

m
Si(β, ζ , 0)Si(β, ζ , 0)T , Si(β, ζ , 0) = [Sγ, i(β, ζ , 0)T , Sβ, i(β, ζ , 0)T]

T
.

Result 3.1 shows the asymptotic behavior of the test statistic Q as m goes to infinity. The 

proof is given in the supplemental materials. The variance component test proposed by Lin 

et al. (2013) also follows a similar weighted summation of chi-square distributions, but their 

weights are estimated using a model based inference. Instead, we estimate the weights using 

the “sandwich estimators”. The empirical estimated weights make the test robust against 

misspecification of within-subject correlation, which is a desirable property in longitudinal 

studies with repeated measurements. This sandwich estimation also plays a role in reducing 

spurious gene-environment interactions caused by potential main effect misspecification of 

E when G and E are independent, as observed by Voorman et al. (2011) and Cornelis et al. 

(2012). The rigorous result that explains these observations will be left to the next section.

The proposed test statistic belongs to the class of quadratic test statistics of the form Q = 

STAS as described in Derkach et al. (2014), where S is the score vector. Other examples of 

test statistics which belong to this class include the ones used in the methods rareGE (Chen 

et al. (2014)), iSKAT (Lin et al. (2013); Lin et al. (2016)) and the classical q d.f. score test. 

For our proposed test, rareGE and iSKAT, A equals I. For the classical score test, A equals Σ̂
−1 where Σ̂ is the estimated covariance matrix of S. We describe this comparison in detail in 

section 2 of the Supplementary Materials. Since SNPs in a region can be strongly correlated 

due to linkage disequilibrium, many eigen-values of Σ are close to 0, and the effective test 

degrees of freedom is less than q. Therefore the proposed test implicitly reduces the test 

degrees of freedom compared to the classical score test. It is worth noting that the power of a 

test not only depends on the test degrees of freedom, but also the non-centrality parameter. 

Since both the effective test degrees of freedom and non-centrality parameter may change 

across various scenarios, there is no theoretical result for a uniformly optimal choice for 

constructing a test statistic achieving the highest power in the class of quadratic test 

statistics. However, many empirical studies have demonstrated the tests with A = I, such as 

the proposed test, has superior power than classical score test in genetic association studies 

(Wu et al. (2010); Tzeng et al. (2011); He et al. (2014)). Basu and Pan (2011) also pointed 

out that these tests can be regarded as modified score test by ignoring the non-diagonal 

elements of A, which is known to be advantageous for high-dimensional data.

4 Main Effect Adjustment

So far, we have discussed inference under a correctly specified main effect model under H0. 

Unlike set-based tests for genetic association, set-based tests for gene-environment 

interaction face the unique challenge of having a potentially misspecified and high-

dimensional null model. In this section, we consider potential strategies when the main 

effect of E may be misspecified and the dimension of G, namely q, is large relative to m. A 
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key step for implementing the proposed generalized score type test is fitting the following 

main effect model under the null hypothesis

μi, j = EH0
(Yi, j ∣ Xi, Ei, Gi) = Xi, j

T βX + Ei, jβE + Gi
T βG .

There are two challenges with respect to this step. First, a misspecified main effect of Ei,j 

can lead to a biased score (EH0 [Sγ,i(β, ζ, 0)] ≠ 0) and severe type I error inflation. This may 

happen when the underlying main effect of the environmental exposure is nonlinear but a 

linear model is specified. Second, the dimension of Ḡi can be large relative to the sample 

size, such as the MECOM region in MESA which includes 821 SNPs but the Chinese 

Americans only have 775 subjects. The estimates of β = (βX
T , βE, βG

T )T are not consistent and 

the approximation to the asymptotic distribution of Q as presented in Result 3.1 does not 

hold anymore. To address these challenges, we first ensure the robustness of the proposed 

test to main effect misspecification by exploiting the gene-environment independence 

condition, then develop methods to handle the main effect misspecification of E and high-

dimensionality of G when the gene-environment independence condition does not hold.

4.1 Gene-environment independence condition

Gene-environment independence plays a crucial role in the main effect adjustment. We show 

in Result 4.1 that the test proposed in Section 3 will be robust to main effect mis-

specification under the gene-environment independence condition, by centering Ei and Gi 

using weighted average as described in section 1.2 of the Supplementary Materials.

Result 4.1—If the following two assumptions hold:

C1. Xi can be separated as ( Xi
E, Xi

G) where ( Xi
E,Ei) is independent of Gi and ( Xi

G,Gi) is 

independent of Ei,

C2. cov (Xi, l
G , Gi) is time invariant,

then the expectation of the score vector equals zero, i.e., EH0 [Sγ,i(β, ζ, 0)] = 0, regardless 

of the main effect model of E and G when Ei and Gi are centered appropriately.

Condition C1 can be seen as the more commonly used condition of gene-environment 

independence with additional requirement on the covariates Xi. For instance, time and age 

are likely to be correlated with the time varying environmental exposure but independent of 

the time invariant SNPs. It reduces to the gene-environment independence condition in the 

special case of no covariates. Condition C2 is specifically for longitudinal studies, and it 

always holds for cross-sectional studies. It is also satisfied in the special case when Xi
G is 

time invariant, which is common in a genetic study, e.g. when Xi
G consists of the leading 

principal components to control for population stratification. The weighted average used to 

center E and G are proposed to take into account of the within-subject correlation among 
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observations on the same subject (see section 1.2 of the Supplementary Materials). For 

cross-sectional studies, this approach reduces to simply centering E and G by the usual 

average.

Under C1 and C2, the proposed test is robust to a misspecified main effect model, if Σ is 

estimated using the sandwich covariance estimator and E and G are weighted and centered. 

This is because the score statistic 1
m

Sγ(β, ζ , 0) will asymptotically follow a mean zero 

multivariate normal distribution, whose covariance matrix is empirically estimated by 

sandwich estimators. Therefore the asymptotic distribution of Q, as a function of 
1
m

Sγ(β, ζ , 0), can be correctly estimated. Under C1 and C2, this result shows using a linear 

model for E is sufficient for controlling type I error rate regardless of the true functional 

form of the main effect of E. The problem of inconsistency due to high-dimensionality of G 
can be simply solved by excluding the main effects of all SNPs in the model. However, these 

strategies are not adequate, especially when C1 and C2 are violated. We further develop 

methods for main effect adjustment of E and G in the subsequent sections that are 

appropriate under violations of C1 and C2.

This result also explains the findings in Voorman et al. (2011) and Cornelis et al. (2012), 

where the authors showed that using sandwich estimators can reduce the detection of 

spurious gene-environment interactions in cross-sectional studies. Specifically, the 

simulation studies conducted by Voorman et al. (2011) did not observe any type I error 

inflation under misspecification of main effect of E when a sandwich estimator was used, 

because no association between G and E was simulated; The genome-wide analysis for 

gene-environment interactions conducted by Cornelis et al. (2012) used QQ-plots to show 

that using a sandwich estimator can reduce the type I error inflation. This is likely due to the 

fact that a vast majority of the SNPs are usually not correlated with the environmental 

exposure. Using sandwich estimators for variance will eliminate the inflation for these SNPs 

as gene-environment independence is effectively true in these situations.

4.2 Main effect misspecification of E

Most GEI studies consider a linear main effects model as described in (1). When C1 and C2 

do not hold, ignoring a nonlinear main effect can result in a biased score function and lead to 

severe type I error inflation. Even if C1 and C2 hold and type I error is not a concern, a 

misspecified main effect model for E can significantly reduce power for testing interaction. 

Examples include the cases when the main effect of E has a quadratic effect, or E is a log-

transformed exposure but the true effect is on the original scale. In this subsection, we make 

further effort to control the bias in the scores due to a misspecified main effect of E when C1 

and C2 do not hold, and improve the power. Since the true main effect hE(·) is unknown, we 

propose to approximate it non-parametrically by the method of “sieves”: expand hE(·) by a 

sequence of finite dimensional models ΦU (sieves), then allow the model complexity U to 

grow slowly with the sample size (Grenander (1981)). Numerous sieve estimators have been 

proposed such as the polynomial sieves and the spline sieves:

He et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ΦU
P = {hE, U :hE, U(x, βE) = ∑

u = 1

U
xuβE, u}; ΦU

S = {hE, U :hE, U(x, βE) = ∑
u = 1

U
Bu

U(x)βE, u},

where Bu
U( · ) is the u-th spline basis function. So the function hE(·) can be approximated by a 

series of sieves. The uniform convergence rate of hE,U(x, β̂E) as m→∞ depends on the 

smoothness of hE(x). The details of asymptotic results can be found in Newey (1997).

The main effect model based on the sieve representation can be written as

μi, j = EH0
(Y i, j ∣ Xi, Ei, Gi) = Xi, j

T βX + hE, U(Ei, j; βE) + Gi
T βG, (3)

where hE,U(·) is a finite dimensional model using spline/polynomial sieves. Result 4.2 shows 

that, under C1 and C2, a test for gene-environment interaction based on a main effect model 

(3) will be asymptotically equivalent to using the true model. Thus the test not only has 

correct type I error rate, but also is as powerful as using the true model.

Result 4.2—If C1 and C2 hold and hE,U(x; β̂E) uniformly converges to hE(x) for ∀ x as 

m→∞,

1
m

Sγ(β, ζ , 0) = 1
m ∑

i = 1

m
(Ei ∗ Gi)

TVi
−1(ζ)(Yi − μi

0) + op(1) .

where μi
0 is the stacked vector of conditional means in (3) with true main effect hE(·). This 

includes a scenario where U is larger than the underlying model complexity. For example, if 

the underlying main effect of E is linear but we model it using cubic-spline sieves with U > 
1, the test will be asymptotically equivalent to a linear model and will not be less powerful 

under C1 and C2. When C1 and C2 do not hold, introducing unnecessary model complexity 

can reduce the power. However, we note that the proportion of total variation of an exposure 

explained by a single genomic region is usually not expected to be very large. With this 

weak dependency, our simulation studies demonstrate that type I error inflation due to main 

effect misspecification of E can be severe, but the power loss due to using more complex 

model is negligible (Table 1). In summary, flexibly modeling the main effect of E does not 

substaintially hurt power for tests of gene-environment interaction, and greatly helps in 

controlling type I error rate. This is a very important observation for practice. However, we 

note that this is different from using more flexible models for the GEI terms in the 

alternative hypothesis, which certainly entail substantial loss of power.

Result 4.2 also helps to choose the model complexity U, which plays a crucial role in the 

method of sieves. The common criteria include cross-validation that minimizes the 

integrated mean square error, the Mallows criterion by Mallows (1973), the Akaike 

He et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information criterion described in Akaike (1998) and the Bayesian information criterion by 

Schwarz (1978). Although these methods are still reasonable, Result 4.2 indicates that the 

ideal criteria for main effect adjustment can be different, because the primary focus is to test 

another set of variables (the interactions terms). Based on Result 4.2, a larger U allowed by 

sample size is recommended for better controlling type I error rate and will not hurt power. 

In this paper, we specifically illustrate the proposed test with a sufficiently rich main effect 

model for E with U = m
1
2 . The choice of U is driven by existing results that ensure the 

asymptotic estimation of the coefficients by GEE is reliable. The detailed discussion can be 

found in Wang (2011).

4.3 High-dimensionality of G

When a large genomic region is considered in a set-based analysis, the number of 

parameters can be large relative to the sample size. The top panel in Supplementary Figure 1 

shows an example in MESA where region MECOM includes 821 SNPs but the Chinese 

Americans only have 775 subjects. When C1 and C2 do not hold, the main effect of G 
cannot be ignored because its confounding effect can lead to bias and type I error inflation. 

Lin et al. (2013) proposed to use ridge regression for handling the main effect of G, but their 

test is still based on the assumption that q is fixed and m→∞, same as the method presented 

in Section 3. These methods work well when the dimension of G is moderate, but suffer 

from severe type I error inflation when the number of SNPs is close to or larger than the 

sample size (Table 2; Supplementary Table 1). This is a curse of dimensionality and some 

form of dimension reduction in the G space is needed. In this subsection, we make further 

effort to deal with both the high-dimensionality and the confounding effect of G.

To deal with the high-dimensionality of G, one natural choice is taking advantage of the LD 

structure in genetic regions, and use some form of PCA. The first panel in Supplementary 

Figure 1 shows a typical genome region that contains several LD blocks and SNPs within 

each block are correlated. Therefore eigen-values corresponding to the principal components 

(PC) decrease to zero very quickly as a function of the leading number of components 

(Supplementary Figure 1). This enables us to use a small number of PCs to explain most 

variation in G. A standard PCA results in orthogonal components {Pi
s}1 ≤ s ≤ q

 ranked by the 

corresponding eigen-values κ1 ≥ … ≥ κq, E(Pi
s) = 0, var(Pi

s) = κs. Each component is a linear 

combination of {Gi
k}1 ≤ k ≤ q

. We usually fit the leading PCs:

μi, j = EH0
(Y i, j ∣ Xi, Ei, Gi) = Xi, j

T βX + Ei, jβE + ∑
s = 1

S
Pi

sβP, s, (4)

where 1 ≤ S ≤ q. The PCA approach with a well chosen S is a plausible remedy for the curse 

of dimensionality, but not ideal for adjusting the confounding effect of G because there can 

be low-rank PCs that has non-zero effect on the outcome. When C1 does not hold, it is 

subject to bias because the model ignores the missed set of q − S PCs so that, now, the main 
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effect of G is misspecified. Let Pi
s = (Pi

s, …, Pi
s)T be the stack of PCs corresponding to subject 

i. Result 4.3 explicitly gives the bias expression due to missing q − S PCs.

Result 4.3—The bias due to fitting model (4) is given by

EH0
[Sγ, i(β, ζ, 0)] = ∑

s = S + 1

q
{E[(Ei ∗ Gi)

TVi
−1(ζ)Pi

s − ϕs}βP, s
0 ,

where βP, s
0  is the coefficient in the full model where all PCs are included;

ϕs = E{(Ei ∗ Gi)
TVi

−1(ζ)[Xi, Ei, Pi
1, …, Pi

S]}A−1bs

A = E{[Xi, Ei, Pi
1, …, Pi

S]TVi
−1(ζ)[Xi, Ei, Pi

1, …, Pi
S]}

bs = E{[Xi, Ei, Pi
1, …, Pi

S]TVi
−1(ζ)Pi

s} .

The result shows that the bias due to a PC that was not included is proportional to its 

association with the outcome conditional on (Xi,Ei). This is also closely related to the 

definition of confounders discussed by VanderWeele and Shpitser (2013).

To reduce the bias due to the confounding effect of G, a better approach should consider the 

correlation between the outcome and the PCs in addition to the eigenvalues. A well-known 

method that takes this correlation into account is the partial least squares regression (PLS). 

PLS generates orthogonal components by sequentially optimizing their correlation with the 

outcome and correlation with G (Boulesteix and Strimmer (2007)). However, when the 

sample size is small and the region is large, PLS components are constructed by overfitting 

an outcome regression model, which makes the test for the interaction terms less powerful 

(Supplementary Table 2). Instead, we propose to use the components {Pi
s}1 ≤ s ≤ q

 from PCA 

but rank them by

corr(Yi, j, Pi
s ∣ Xi, Ei)

2
var(Pi

s) = Rs
2κs,

where Rs
2 stands for the variation of Yi,j explained by Pi

s conditional on (Xi,Ei). It is 

reasonable to assume Rs
2 is not likely to vary across visits j under model (1) because G is 

time invariant and we do not consider the situation that the association between G and Y 
may vary by visit j under the null hypothesis. This weighted PCA approach uses a criterion 

that is close to the objective function of PLS, but the selected PCA components are not 

constructed by fitting an outcome regression model. Similar approach of using correlation-

selected PCs was also successfully used in GWAS to find PCs for population stratification 

adjustment (Lee et al. (2011)). To adjust for the effect of the exposure and covariates, we 
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first regress Yi on (Xi,Ei), then use the residuals to estimate R2 for each principal component. 

To reduce the dimension of the fitted model (4), we again suggest to use S = m
1
2  in practice 

to have reliable asymptotic estimation of β and illustrate it using extensive simulation 

studies (Wang (2011)).

5 Numerical Studies

We evaluated type I error rate and power of the proposed test using simulation studies for 

both cross-sectional and longitudinal data, and compared our method with existing choices: 

1. set based tests for GEI using a single average or baseline outcome and exposure measure: 

iSKAT with ρ = 0 and rareGE assuming a random main effect of G (Lin et al. (2013); Lin et 

al. (2016); Chen et al. (2014)); 2. a single SNP based test for longitudinal outcomes and 

exposures: the minimum p-value test (MinP) using GEE. For each simulated dataset, we 

directly sampled SNPs from gene regions in MESA and then conditionally simulated the 

phenotype and environmental exposure. When there are repeated measurements, we first 

simulated the complete data, and then applied a missingness indicator with 4% fixed dropout 

rate at each exam assuming data missing completely at random. The coefficients in the 

simulation studies were chosen such that each variable explains a reasonable variation in the 

outcome as in real data scenarios. For example, the variation in the outcome explained by 

the main effect of E or G (a set of SNPs) ranges from 5% to 15% in the longitudinal settings. 

We simulated top four principal components as covariates directly from MESA genome-

wide data to retain its correlation with the target region, and their coefficients were elicited 

based on the analysis of the corresponding ethnic group. The simulation studies are 

structured into three scenarios where each part empirically evaluates both type I error and 

power based on 1000 replicates.

Scenario 1: Role of main effect specification of E

In the first simulation setting, we evaluated the proposed method when the main effect of E 
is linear/nonlinear in both cross-sectional and longitudinal settings. We focused on cubic-

spline sieves generated by knots at equally spaced quantiles of all observations. We used all 

SNPs from region indexed by rs10850411 (190 SNPs) in European Americans (2526 

subjects), and simulated one environmental exposure independent/dependent of the SNPs. 

To focus on the effect of E, this region was chosen such that the sample size is sufficiently 

large relative to the number of SNPs. The true model is of the form:

Ei, j = αE, 0ti, j + αE, 1Xi + ∑
k = 1

5
αE, 2Gi

k + bE, i + εE, i, j, j = 1, …, d,

Yi, j = ∑
s = 1

4
αPC, sPCi

s + α0ti, j + α1Xi + α2hM(Ei, j) + ∑
k = 1

5
α3Gi

k + α4Ei, j ∑
k = 1

5
Gi

k + bi + εi, j,

where d = 1 is for cross-sectional data and d = 4 is for longitudinal data; ti,j = j−1 (0, 1, 2, 3 

standing for visits); Xi ~ N(0, 1) is a time-invariant covariate; PCi
s is the s-th principal 

component of subject i directly from the MESA genome-wide data; five out of the 190 SNPs 
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(2.6%) are causal and Gi
k is the genotype of subject i for the k-th randomly selected causal 

SNP; (αPC,1, αPC,2, αPC,3, αPC,4) = (−4.7,−0.9, 13.1, 1.3); αE,0 = αE,1 = α0 = α1 = 1, α2 = 

0.5, α3 = 2; αE,2 measure the association between E and G. αE,2 = 0 when E is independent 

of G and αE,2 = 0.5 when E is dependent of G (e.g., ~ 3% variation in E is explained by G in 

the longitudinal setting); α4 = 0.10/0.05 for evaluating cross-sectional/longitudinal power 

and α4 = 0 for evaluating type I error rate; bE,i ~ N(0, 4), εE,i,j ~ N(0, 4), bi ~ N(0, 9), εi,j ~ 
N(0, 9) and they are all independent. hM is the main effect function specified as “E”, 

“0.3E2”, “E + 0.2E2” or “exp(0.4E)” for cross-sectional data, and “0.8E”, “0.2E2”, “0.5E 
+ 0.1E2” or “exp(0.3E)” for longitudinal data. The functions were scaled such that they 

explain similar variation of Yi,l as compared to the linear model (e.g., ~ 10% in the 

longitudinal setting). Table 1 presents the results.

Type I error rate—Even when C1 holds, iSKAT using a model based inference has 

inflated type I error rate (e.g., 0.172, 0.113 and 0.185 where the true models are E2, E+E2 

and exp(E) respectively, cross-sectional setting). rareGE has inflated type I error rate when 

the main effect of E is nonlinear, similar to iSKAT. However, the proposed method using the 

sandwich estimator is robust regardless of the main effect misspecification; When C1 does 

not hold, only assuming a linear main effect does have type I error inflation even if sandwich 

estimation is used (e.g., 0.906, 0.729 and 0.869 for E2, E + E2 and exp(E), longitudinal 

setting). However, the proposed method using the method of sieves still has robust type I 

error rate.

Power—When C1 holds, the proposed method using the method of sieves always has 

similar power as the method based on the true model, even if the true effect is linear and 

additional model complexity was assumed for the main effects (e.g., 0.786 vs. 0.789, 

longitudinal setting). When C1 is violated, the method of sieves results in slightly lower 

power than using the true model (e.g., 0.774 vs. 0.796, longitudinal setting), but the power 

difference is small. Moreover, the method of sieves often leads to improved power compared 

with the method assuming a linear main effect when the true effect is nonlinear (e.g., 0.786 

vs. 0.606 when the true main effect is E2, longitudinal setting).

Scenario 2: Role of main effect specification of G

In the second simulation setting, we evaluated the proposed method for the main effect 

adjustment of G in both cross-sectional and longitudinal settings. We varied the number of 

SNPs (400 – 700) simulated from genotype region MECOM (821 SNPs) in Chinese 

Americans (775 subjects), and simulated one environmental exposure independent/

dependent of the SNPs. The region was chosen to reflect a scenario where the number of 

SNPs is large relative to the sample size. The model is same as that in Scenario 1 with a 

linear main effect of E, so we omit the detailed equations and only present the parameters 

that are different from Scenario 1. In this scenario, five out of the 400/700 SNPs (1.3%/

0.7%) are causal; (αPC,1, αPC,2, αPC,3, αPC,4) = (−2.3,−24.9, 5.6,−13.3); αE,2 = 0 when E is 

independent of G and αE,2 = 2 when E is dependent of G (e.g., ~ 25% variation in E is 

explained by G in the longitudinal setting). We chose a large αE,2 to observe the type I error 

inflation due to main effect misspecification of G. α4 = 0.2/0.1 for evaluating cross-
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sectional/longitudinal power and α4 = 0 for evaluating type I error rate. The results are 

summarized in Table 2.

Type I error rate—The MinP test based on single SNP analyses has inflated type I error 

rate when C1 does not hold (e.g., 0.088/0.108 for 400/700 SNPs, longitudinal setting). This 

result is consistent with the results in Lin et al. (2013). iSKAT using a ridge regression has 

type I error inflation when the number of SNPs is large, especially when the number is close 

to the sample size (0.089 for 700 SNPs, cross-sectional setting). Supplementary Table 1 

further shows an example where iSKAT has type I error rate close to one when the number 

of SNPs exceed the sample size. rareGE has slightly inflated type I error rate when the 

number of SNPs is greater than the sample size (0.072 for 700 SNPs, cross-sectional setting, 

Supplementary Table 1). The proposed method has well controlled type I error rate for all 

scenarios considered in this stimulation setting. We further evaluated PCA, PLS and 

weighted PCA as other possible approaches to reduce dimension of G and summarized the 

results in Supplementary Table 2. When C1 holds and the number of adjusted components is 

five, type I error rates of PLS and weighted PCA are well controlled, but that of PCA is 

inflated (e.g., 0.033/0.057/0.094 for PLS/weighted PCA/PCA, 700 SNPs, longitudinal 

setting). When the number of components increases to m
1
2 , all three have well controlled 

type I error rate. The proposed methods tend to be slightly conservative due to the use of 

sandwich estimator as in regular GEE, even if a correct mean model is used.

Power—The proposed method has similar power as using the true model and it is more 

powerful than the MinP test (e.g., 0.588 vs. 0.472, 400 SNPs, longitudinal setting when E 
and G are independent). We also evaluated the proposed test using a model based inference 

for estimating Σ that is typically used for cross-sectional data. It has slightly higher power 

than using the sandwich estimation (e.g., 0.626 vs. 0.588, 400 SNPs, longitudinal setting 

when C1 holds). The power of rareGE is comparable to our proposed test using a model 

based inference in situations when there are no Type 1 error inflation (for example, in Table 

2, both are equal (0.561) when C1 holds and the number of SNPs is 700). Moreover, 

Supplementary Table 2 shows that PLS has lower power than the proposed method when the 

number of SNPs is close to the sample size (e.g., 0.381 vs. 0.483, 700 SNPs, cross-sectional 

setting when C1 holds), although its type I error rate is well controlled.

Scenario 3: Role of longitudinal data

In the third simulation setting, we aimed to illustrate that the proposed method is robust to 

misspecification of within-subject correlation when there are repeated measurements, and 

show the advantage of using full trajectory of the longitudinal outcome and exposure. When 

more than one repeated measures are involved, we compare our method with iSKAT using 

the average/baseline value of the repeated measurements on both Y and E. We used all SNPs 

from genotype region indexed by rs10850411 (190 SNPs) in European Americans (2526 

subjects), and simulated one environmental exposure independent of the SNPs. The model is 

same as the longitudinal setting in Scenario 1 with an linear main effect of E, so we omit the 

detailed equations and only present the parameters that are different from Scenario 1. In this 

scenario, α4 = 0.05 for evaluating power and α4 = 0 for evaluating type I error rate; bE,i ~ 
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N(0, 0.25), εE,i,j ~ N(0, 4), bi ~ N(0, 9/16), εi,j ~ N(0, 9) and they are all independent. We 

note that we simulated a large magnitude of within-subject variation to show the type I error 

inflation due to using the average value of repeated measures. The relative power difference 

remains the same when a smaller within-subject variation is simulated. Table 3 presents the 

results.

Type I error rate—The proposed method using the first order autoregressive correlation 

structure still has valid type I error rate, when the true correlation structure is compound 

symmetric. iSKAT and rareGE using the average value of repeated measurements has 

inflated type I error rate because of their model based inference and the heterogeneous 

variance due to unbalanced data structure (e.g., 0.092 for iSKAT and 0.078 for rareGE, d = 

4).

Power—The tests using the full trajectory of longitudinal outcome and exposure have much 

higher power than using the average values, as the number of repeated measurements 

increases (e.g., 0.805 vs. 0.414, d = 4). This is because averaging the environmental 

exposure reduces its variance and therefore decreases the power of testing gene-environment 

interaction. The results demonstrate the advantage of using the longitudinal information.

6 Data Analysis

We illustrate the proposed set-based test using data from the Multi-Ethnic Study of 

Atherosclerosis (MESA) to test the interaction between each neighborhood variable and 

each SNP set on blood pressure (systolic and diastolic blood pressure) for the four ethnic 

groups separately, followed by a meta-analysis. Supplementary Tables 3 – 8 present the 

summary statistics and the marginal association analysis of E/G in MESA. Density of 

favorable food stores, density of recreational facilities and perceived healthy foods 

availability are marginally significantly associated with systolic blood pressure (p-value = 

3.65×10−3, 4.69 × 10−4 and 8.74 × 10−7 respectively); Perceived healthy foods availability is 

also associated with diastolic blood pressure (p-value = 4.21 × 10−3). The marginal effects of 

the environmental exposures appear to be mostly linear. We conducted both a targeted GEI 

analysis for the 29 candidate regions and a set-based genome-wide GEI analysis as 

described in section 2. We adjusted for age, gender, body mass index (BMI), a 

socioeconomic status variable (SES) and top four ethnicity-specific principal components 

(PCs) to correct for potential within-ethnicity stratification. BMI was calculated from direct 

measurements of weight (kg) and height (meters) available for all MESA exams. The 

socioeconomic status variable was obtained by performing a principal component analysis 

on a set of housing, residential stability, education, employment, occupation and income 

variables. We adjusted for the first leading component which is more highly weighted on 

education, occupation and income. We adjusted the measured blood pressures for 

participants taking anti-hypertension medication using the standard procedure of adding 10 

mmHg to systolic blood pressure and 5 mmHg to diastolic blood pressure as in Cui et al. 

(2003). Based on the p-values of the ethnicity-stratified analysis, a meta-analysis was done 

by Fisher’s combined probability test (Fisher (1925)). The vast majority of SNPs in our 

dataset are common variants with MAF greater than 1%, therefore the genetic principal 
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components calculated for each region in the weighted PCA approach mostly capture the 

genetic variation in common variants.

Targeted GEI analysis

We conducted a set-based analysis for the 29 candidate genomic regions and compared our 

method with GEE-based MinP test and iSKAT using either the average or baseline value of 

repeated measurements. This set-based analysis led to 29 sets × 4 exposures = 116 tests. We 

also conducted a single SNP analysis for all SNPs in the 29 regions that led to 5622 SNPs × 
4 exposures = 22488 tests and present the results using the locus-zoom plots (Supplementary 

Figure 2) (Pruim et al. (2010)).

Set-based analysis—Table 4 presents the most significant region identified by the set-

based analysis. The proposed methods exhibit highly suggestive p-value (0.0005 using a 

linear main effect of E, 0.0009 using the natural cubic-spline) for the interaction between 

perceived healthy food availability and the region indexed by rs10850411 on systolic blood 

pressure in European Americans. These p-values are very close to the Bonferroni threshold 

(0.05/(4×29) = 0.00043). MinP test also results in a suggestive p-value (0.0047) but iSKAT 

and rareGE using average/baseline value fail to identify this interaction (p-value = 0.8205 

and 0.4331 for iSKAT, 0.7542 and 0.5336 for rareGE respectively). This interaction is also 

suggestive for its GIS counterpart (density of favorable food stores) by using the proposed 

method (p-value = 0.0427 using a linear main effect of E, 0.0570 using the natural cubic-

spline). The most significant SNP in this region is the index SNP rs10850411 (p-value = 

4.08 × 10−5). The locus-zoom plot (the left panel in Supplementary Figure 2) shows there 

are multiple other SNPs with small p-values uniformly distributed in the region and they are 

in linkage disequilibrium with the index SNP. We conducted sensitivity analysis additionally 

adjusting for site and present the results for this region in Supplementary Table 9. The 

results with and without adjusting for study site are qualitatively similar with some small 

numerical differences. We also conducted additional analyses to compare strategies using 

different forms of longitudinal exposures and present results in Supplementary Table 10. The 

results show that using repeated longitudinal measures appear to be a better strategy in 

general.

Single-SNP analysis—The most significant SNP identified by the single-SNP analysis is 

the interaction between density of recreational facilities and a SNP in region CACNB2, 

namely rs7085587, on systolic blood pressure in Hispanic Americans (p-value = 2.17 × 
10−6). This p-value is still significant after the Bonferroni correction (Bonferroni threshold: 

0.05/22488 = 2.22×10−6). The locus-zoom plot (the right panel in Supplementary Figure 2) 

shows the signals are concentrated in a small area around rs7085587. This is also a situation 

where the MinP test results in a smaller p-value (0.0012) than the proposed test (GE-linear 

p-value = 0.0753) in the corresponding set-based analysis of CACNB2 (Supplementary 

Table 11).

In summary, the set-based test performs better in the first example where the signals are 

dispersed across many SNPs in the region, while the single SNP based test performs better 

in the second example where the signals are concentrated. For the significant interactions 

He et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2018 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noted with systolic blood pressure as outcome in Table 4, we also observed suggestive p-

values (0.0844 using a linear main effect of E, 0.0537 using the natural cubic-spline for the 

main effect of E) for diastolic blood pressure (Supplementary Table 12). These interactions 

that appear to be noteworthy in the European Americans in the MESA analysis are ethnicity 

specific and are not significant in the other three ethnic groups. The present finding will 

require replication in other cohorts and need to be followed up in future studies. The genes 

nearest to rs10850411 are two members of the phylogenetically conserved T-box family of 

genes, TBX3 and TBX5. Proteins encoded by T-box family genes act as transcription 

factors, and have been shown to play a role in development of the heart and limbs 

(McKusick (1998); OMIM 601620, 601621). Genome-wide association studies have 

identified variants in the TBX3-TBX5 gene region that influence heart rate and cardiac 

electrical activity (Pfeufer et al. (2010); Sotoodehnia et al. (2010)). CACNB2 encodes the 

beta-2 subunit of a voltage-dependent calcium channel protein, and is expressed in the heart. 

Mutations in CACNB2 have been shown to cause Brugada syndrome, characterized by 

cardiac electrical abnormalities and sudden cardiac death (OMIM 600003, 611876). The 

detailed analysis of the top SNPs in these two identified regions can be found in section 4.7 

of the Supplementary Materials (Supplementary Figure 3).

Genome-wide GEI analysis

We applied the proposed test to 24743 genes (Section 2) for a set-based analysis and 

compared it with a single SNP analysis of 1011876 SNPs in these sets via GEE. 

Supplementary Figures 4 – 5 presents the QQ-plots summarizing the results of the set-based 

analysis using our proposed method. The set based analysis identified a highly suggestive 

interaction between region LOC100129138 and perceived walkability on systolic blood 

pressure (p-value = 2.04×10−6, Bonferroni threshold = 2.02× 10−6). However, the single 

SNP analysis did not identify any interaction between any SNP and perceived walkability. 

The smallest p-value equals 8.12 × 10−6 which is much higher than the Bonferroni threshold 

= 4.94 × 10−8. This illustrates the potential advantage of a genome-wide set-based GEI 

analysis compared to a genome-wide single SNP-based GEI analysis. In addition, we 

observed that iSKAT QQ plots are substantially inflated for a genome-wide analysis in 

MESA (Supplementary Figures 6 – 7), which is consistent with our simulation studies. This 

is because the CHN ethnic group only has 775 subjects, but there are many large regions in 

the genome-wide analysis. The performance of iSKAT with m < q is less than optimal.

7 Conclusion and Discussion

We have developed a statistical framework for set-based inference for testing gene-

environment interaction with quantitative traits in both cross-sectional and longitudinal 

studies. We showed that a generalized score test similar to the tests derived from more 

sophisticated approaches (e.g., kernel machine regression, similarity regression and genetic 

random field model) could be postulated using the most commonly used fixed effect model 

for multivariate regression. Instead of a hybrid model like iSKAT where the main effects are 

considered as fixed effects but the interactions are considered as random effects, the 

proposed fixed effect model presents a direct unified framework. We also demonstrated 
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improved properties of a set-based test compared to a single SNP analysis when multiple 

causal SNPs exist.

Although many set-based tests have been proposed for evaluating genetic association, our 

test is the first set-based test for GEI that is able to utilize the rich time varying outcome and 

exposure data. Our numerical studies show that substantial power gain can be achieved by 

using the proposed test, compared to methods only using a single outcome/exposure 

measure (e.g., average/baseline value). The test is also robust to misspecification of within-

subject correlation, which is a desirable property in studies with longitudinal measures.

We studied the role of gene-environment independence, and developed methods for main 

effect adjustment of E and G that permits more robust and powerful inference. Under the 

independence condition, we showed that the proposed test is robust to misspecification of 

main effect of E by simply using a sandwich estimator and weighted centered E and G. 

When the independence condition does not hold, we proposed the method of sieves to model 

the main effect of E correctly. An interesting finding is that flexibly modeling the main 

effect does not hurt power for tests of GEI significantly. To remedy the curse of 

dimensionality in the potentially high dimensional G space, we developed the weighted PCA 

approach for dimension reduction that allows us to apply the test to large regions where the 

number of SNPs is close to or larger than the sample size.

We illustrated the method by a targeted GEI analysis and a genome-wide GEI analysis of 

MESA neighborhood study, where both time varying outcome and exposure data are 

available. The application illustrates that the longitudinal approach utilizing the full 

trajectory of longitudinal outcome and exposure measures is substantially more powerful 

than the approach using a single measurement. It also shows the advantage of a genome-

wide set-based GEI analysis compared to a genome-wide single SNP-based GEI analysis. 

The application is novel in its rich longitudinal neighborhood data and the findings may aid 

in prevention of chronic diseases by modifying the built environment around us and creating 

new healthy food resources and recreational facilities and provide public health 

recommendations for susceptible genetic sub-groups in terms of their neighborhood choice. 

More importantly, neighborhood interventions or changes in the built environment can 

impact many people at the same time instead of recommending changes towards lifestyle 

factors of an individual.

The proposed generalized score test is computationally efficient, because it only fits the 

model under the null hypothesis. We developed an R package LGEWIS for its scalable 

implementation in future studies which is freely available at the Comprehensive R Archive 

Network (CRAN): https://cran.r-project.org/web/packages/LGEWIS/.

There are several limitations of the proposed method. First, the weighted PCA method is an 

ad-hoc method proposed for dimension reduction of G, only studied through simulation and 

data analyses. The optimality of this method has not been established in this paper. It will be 

desirable to develop an optimal method for the main effect adjustment of G in the future and 

establish its theoretical properties more rigorously. Second, we only considered linear GEI 

terms in this paper. Directly adding more flexible non-linear GEI terms will certainly lead to 
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loss of power, which is different from flexibly modeling the main effects. It will be 

interesting to investigate efficient strategies for modeling non-linear interaction terms. Third, 

the method was proposed for quantitative traits. Future extension to generalized linear 

models will be important to develop. Moreover, we note that our result is closely related to 

the work by Vansteelandt et al. (2008), where they proposed multiply robust inference for 

statistical interactions by not only modeling the main effect of E, but also the conditional 

distribution of E given X and G. Future work that develops a multiply robust set-based 

inference for GEI, boosted with dimension reduction in the G space will be of great interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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