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Set-Class Similarity, Voice Leading,  

and the Fourier Transform

Dmitri Tymoczko

Abstract In this article, I consider two ways to model distance (or inverse similarity) between chord types, one 

based on voice leading and the other on shared interval content. My goal is to provide a contrapuntal reinterpre-

tation of Ian Quinn’s work, which uses the Fourier transform to quantify similarity of interval content. The first 

section of the article shows how to find the minimal voice leading between chord types or set-classes. The second 

uses voice leading to approximate the results of Quinn’s Fourier-based method. The third section explains how 

this is possible, while the fourth argues that voice leading is somewhat more flexible than the Fourier transform. 

I conclude with a few thoughts about realism and relativism in music theory.

twentieth-century music often moves flexibly between contrasting 

harmonic regions: in the music of Stravinsky, Messiaen, Shostakovich, Ligeti, 

Crumb, and John Adams, we find diatonic passages alternating with moments 

of intense chromaticism, sometimes mediated by nondiatonic scales such as 

the whole-tone and octatonic. In some cases, the music moves continuously 

from one world to another, making it hard to identify precise bound aries 

between them. Yet we may still have the sense that a particular passage, melody, 

or scale is, for instance, fairly diatonic, more-or-less octatonic, or less diatonic 

than whole-tone. A challenge for music theory is to formalize these intuitions 

by proposing quantitative methods for locating musical objects along the spec-

trum of contemporary harmonic possibilities.

One approach to this problem uses voice leading: from this point of 

view, to say that two set-classes are similar is to say that any set of the first type 

can be transformed into one of the second without moving its notes very far. 

Thus, the acoustic scale is similar to the diatonic because we can transform 

one into the other by a single-semitone shift; for example, the acoustic scale 

{C, D, E, F≥, G, A, B≤} can be made diatonic by the single-semitone displace-

ment F≥ → F or B≤ → B. Similarly, when we judge the minor seventh chord 

Thanks to Rachel Hall, Justin Hoffman, Ian Quinn, Joe Straus, and in particular Clifton Callender, whose 

investigations into continuous Fourier transforms deeply influenced my thinking. Callender pursued his 

approach despite strenuous objections on my part, for which I am both appropriately grateful and duly 

chastened.
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to be very similar to the dominant seventh, we are saying that we can relate 

them by a single-semitone shift. This conception of similarity dates back to 

John roeder’s work in the mid-1980s (1984, 1987) and has been developed 

more recently by Thomas robinson (2006), Joe Straus (2007), and Clifton 

Callender, Ian Quinn, and myself (2008). The approach is consistent with the 

thought that composers, sitting at a piano keyboard, would judge chords to be 

similar when they can be linked by small physical motions.

Another approach uses intervallic content: from this point of view, to say 

that set-classes are similar is to say that they contain similar collections of inter-

vals. (That the two methods are different is shown by “Z-related” or “nontrivi-

ally homometric” sets, which contain the same intervals but are nonidentical 

according to voice leading.) In a fascinating pair of papers, Quinn has dem-

onstrated that the Fourier transform can be used to quantify this approach.1 

Essentially, for any number n from 1 to 6, and every pitch class p in a chord, the 

Fourier transform assigns a two-dimensional vector whose components are

Vp,n 5 (cos 2ppn/12, sin 2ppn/12). (1)

Adding these vectors together, for one particular n and all the pitch classes p in 

the chord, produces a composite vector representing the chord as a whole—

its “nth Fourier component.” The length (or “magnitude”) of this vector, 

Quinn astutely observes, reveals something about the chord’s harmonic char-

acter: in particular, chords saturated with (12/n)-semitone intervals, or inter-

vals approximately equal to 12/n, tend to score highly on this index of chord 

quality.2 The Fourier transform thus seems to capture the intuitive sense that 

chords can be more or less diminished-seventh-like, perfect-fifthy, or whole-

tonish. It also seems to offer a distinctive approach to set-class similarity: from 

this point of view, two set-classes can be considered “similar” when their Fou-

rier magnitudes are approximately equal—a situation that obtains when the 

chords have approximately the same intervals.

The interesting question is how these two conceptions relate. In recent 

years, a number of theorists have tried to reinterpret Quinn’s Fourier magni-

tudes using voice-leading distances. robinson (2006), for example, pointed 

out that there is a strong anticorrelation between the magnitude of a chord’s 

first Fourier component and the size of the minimal voice leading to the 

nearest chromatic cluster. (See also Straus 2007, which echoes robinson’s 

point.) however, neither robinson nor Straus found an analogous interpre-

tation of the other Fourier components. In an interesting article in this issue 

(see pages 219–49), Justin hoffman extends this work, interpreting Fourier 

components in light of unusual “voice-leading lattices” in which voices move 

by distances other than one semitone. But despite this intriguing idea, the  

1 See Quinn 2006 and 2007. Quinn’s use of the Fourier 

transform develops ideas in Lewin 1959 and 2001 and Vuza 

1993.

2 These magnitudes are the same for transpositionally or 

inversionally related chords, so it is reasonable to speak of a 

set-class’s Fourier magnitudes.
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relation between Fourier analysis and more traditional conceptions of voice 

leading remains obscure.

The purpose of this article is to describe a general connection between 

the two approaches: it turns out that the magnitude of a chord’s nth Fourier 

component is approximately inversely related to the size of the minimal voice 

leading to the nearest subset of any perfectly even n-note chord.3 For instance, a 

chord’s first Fourier component is approximately inversely related to the size 

of the minimal voice leading to any transposition of {0}; the second Fourier 

component is approximately inversely related to the size of the minimal voice 

leading to any transposition of either {0} or {0, 6}; the third component is 

approximately inversely related to the size of the minimal voice leading to any 

transposition of either {0}, {0, 4}, or {0, 4, 8}, and so on. Interestingly, however, 

we can see this connection clearly only when we model chords as multisets 

in continuous pitch-class space, following the approach of Callender, Quinn, 

and Tymoczko (2008). (This in fact may be one reason why previous theorists 

did not notice the relationship.) When we do adopt this perspective, we see 

that there is a deep relationship between two seemingly very different con-

ceptions of set-class similarity, one grounded in voice leading, the other in 

interval content. Furthermore, this realization allows us to generalize some of 

the features of Quinn’s approach, using related methods that transcend some 

of the limitations of the Fourier transform proper.

I. Voice leading and set-class similarity

Let me begin by describing the voice-leading approach to set-class similarity 

(or inverse distance), reviewing along the way some basic definitions. Much of 

what follows is drawn from (or implicit in) earlier essays, including Tymoczko 

2006 and 2008 and Callender, Quinn, and Tymoczko 2008; readers who want 

to explore these ideas further are hereby referred to these more in-depth 

discussions.

We can label pitch classes using real numbers (not just integers) in the 

range [0, 12), with C as 0.4 here the octave has size 12, and familiar twelve-

tone equal-tempered semitones have size 1. This system provides labels for 

every conceivable pitch class and does not limit us to any particular scale; thus, 

the number 4.5 refers to “E quarter-tone sharp,” halfway between the twelve-

tone equal-tempered pitch classes E and F.

A voice leading between pitch-class sets corresponds to a phrase like “the  

C major triad moves to E major by moving C down to B, holding E fixed, and 

shifting G up by semitone to G≥.” We can notate this more efficiently by writing 

3 By “perfectly even n-note chord” I mean the chord that 

exactly divides the octave into n equally sized pieces, not 

necessarily lying in any familiar scale. For example, the per-

fectly even eight-note chord is {0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5}.

4 The notation [x, y) indicates a range that includes the lower 

bound x but not the upper bound y. Similarly (x, y) includes 

neither upper nor lower bounds, while [x, y] includes both.
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(C, E, G) 
1, 0, 1

 (B, E, G≥), indicating that C moves to B by one descending 

semitone, E moves to E by zero semitones, and G moves to G≥ by one ascend-

ing semitone. The order in which voices are listed is not important; thus, (C, 

E, G) 
1, 0, 1

 (B, E, G≥) is the same as (E, G, C) 0, 1, 1
 (E, G≥, B). The numbers 

above the arrows represent paths in pitch-class space, or directed distances 

such as “up two semitones,” “down seven semitones,” “up thirteen semitones,” 

and so on. When the paths all lie in the range (–6, 6] I eliminate them; thus, a 

notation like (C, E, G) → (B, E, G≥) indicates that each voice moves to its des-

tination along the shortest possible route, with the arbitrary convention being 

that tritones ascend. Formally, voice leadings between pitch-class sets can be 

modeled as multisets of ordered pairs, in which the first element is a pitch 

class and the second a real number representing a path in pitch-class space.

Voice leadings are bijective when they associate each element of one 

chord with precisely one element of the other. however, it matters whether we 

represent chords as sets (containing no duplications) or multisets (which may 

contain multiple copies of pitch classes). For example, the voice leading (C, 

C, E, G) → (A, C, F, F) is simultaneously a nonbijective voice leading between 

the sets {C, E, G} and {F, A, C} and also a bijective voice leading between the 

multisets {C, C, E, G} and {F, F, A, C}. For the purposes of this article, it is con-

venient to represent chords as multisets and to consider only bijective voice 

leadings between them. however, in other contexts, it can be useful to con-

sider sets and nonbijective voice leadings.5 It turns out to be a nontrivial task to 

devise an algorithm for measuring set-class similarity when nonbijective voice 

leadings are permitted. Fortunately, this complication is irrelevant here.

We measure the size of a voice leading using some function of (or partial 

order on) the nondirected distances moved by the individual voices. (These are 

the absolute values of the numbers above the arrows in the voice leading.) In 

principle, there are many different measures of voice-leading size but no com-

pelling reason to choose one over another (Tymoczko 2006; hall and Tymoc-

zko 2007). In this article, however, it is convenient to use the Euclidean metric, 

according to which the size of a collection of real numbers x1, x2, . . . , xn is 

฀฀x
1

2 ฀x
2

2 
 
.
 
.
 
.
 
฀x

n

2.

The reasons for this choice are that the Euclidean metric (1) provides a rea-

sonable approximation to a range of voice-leading measures (hall and Tymoc-

zko 2007), (2) is computationally tractable, and (3) is particularly well suited 

to the task of investigating the Fourier transform. The latter two points are 

clarified shortly.

We can define the distance between two set-classes as the size of the minimal 

voice leading between any of their transpositions or inversions. The term any 

5 For example, one might consider the distance between C 

and E major seventh chords to be determined by the nonbi-

jective voice leading (C, E, E, G, B) } (B, D≥, E, G≥, B), which 

is in fact smaller than the smallest four-voice voice leading 

between them. See Callender, Quinn, and Tymoczko 2008, 

supplementary section 7.
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here means “any of their forms in continuous pitch-class space”; thus, when mea-

suring distances between set-classes we cannot necessarily confine ourselves 

within any particular scale. For example, according to the Euclidean metric, 

the distance between the perfect fourth and major third is given not by the 

voice leading (C, F) → (D≤, F), with size 1, but by (C, F) → (C , E ) (or C 

“quarter-tone sharp,” E “quarter-tone sharp”) with size

฀ ฀฀฀฀฀฀ ฀฀฀1      0.707.฀฀2
1 2

2฀ 1 2

2฀
Though this may initially seem counterintuitive, it has on reflection a certain 

logic: if we are really interested in intrinsic relations between set-classes, then 

there is no reason to think that we can limit our attention to those that happen 

to appear in any one scale.

now the Euclidean metric is particularly convenient for the following 

reason: if we are looking for the minimal voice leading between any two trans-

positions of any two chords, we need only consider those whose pitch classes 

sum to the same value modulo 12. (This in turn follows from basic facts of 

Cartesian geometry.)6 For example, suppose we are trying to find the minimal 

Euclidean voice leading from the C augmented triad to any diminished triad. 

The pitch classes {C, E, G≥} are represented by the numbers {0, 4, 8}, which sum 

to 0 1 4 1 8 5 12 [ 0 (mod 12). To find the nearest diminished triad, we need 

only consider those whose pitch classes sum to 0 (mod 12): {0, 3, 9}, {1, 4, 7}, 

and {5, 8, 11}. Observe that there are three, all related by major-third transpo-

sition. In general, we can always transpose an n-note chord by 12/n semitones 

without changing its sum (mod 12), and we can repeat this procedure n times 

before the initial chord reappears; thus, there will in general be n different 

transpositions of each n-note chord summing to the same number.7 note also 

that when searching for minimal voice leadings, we will frequently need to 

consider fractional pitch classes; for example, to find the nearest minor triad 

to {0, 4, 7}, we need to look at those summing to 11. These are

1
{0   , 3 , 7 },

3

1

3

1

3

1
{4   , 7 , 11 },

3

1

3

1

3

1
{3   , 8 , 11 }

3

1

3

1

3

(or, in other words, the familiar C minor, E minor, and A≤ minor triads, trans-

posed up by one-third of a semitone). These chords, of course, do not reside 

on the ordinary piano keyboard.

Finally, suppose that we have two chords (x1, x2, . . . , xn) and (y1, y2, . . . , yn)  

with each chord’s pitch classes listed in ascending numerical order (when  

6 An ordered set can be modeled as a point in Rn. Transpo-

sition corresponds to motion along the “unit diagonal” that 

contains both the origin and (1, 1, . . . , 1). Transpositional 

set-classes can thus be represented by lines parallel to the 

unit diagonal. The shortest vector between any two of these 

lines will (according to the Euclidean metric) be perpendicu-

lar to both. This means that the vector’s dot product with  

(1, 1, . . . , 1) will be equal to zero, which in turn implies that 

the sum of its components is zero. Hence, the coordinates 

of its endpoints sum to the same value.

7 The qualification “in general” is needed because of sym-

metrical chords: when we transpose {0, 4, 8} by four semi-

tones, we get the same chord again.
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considered as real numbers). To find the minimal voice leading between 

them, we need to consider n different circular permutations

(x1, x2, . . . , xn) → (y1, y2, . . . , yn),

(x1, x2, . . . , xn) → (y2, y3, . . . , yn, y1),

  .

  .

  .

(x1, x2, . . . , xn) → (yn, y1, y2, . . . , yn21).

(These voice leadings have been described as the n “interscalar transposi-

tions” between the chords; that they are the only possibilities follows from 

the fact that voice crossings always increase the Euclidean size of a voice lead-

ing [Tymoczko 2006].) For example, to identify the minimal voice leading 

between {0, 3, 9} and {3, 10, 11}, we need to consider the three voice leadings

(0, 3, 9) 3, 5, 2
 (3, 10, 11),

(0, 3, 9) 2, 4, 6
 (10, 11, 3),

(0, 3, 9) 1, 0, 1
 (11, 3, 10).

Clearly, the third is the smallest, with a total size of ฀฀2 . It may again seem 

strange that we have to consider all these possibilities: roughly speaking, the 

reason is that there is no way to determine the destination of any particular 

pitch class without calculating the size of each and every one of these voice 

leadings. In particular, we have no assurance that a maximally efficient voice 

leading always associates a pitch class in one chord with its nearest neighbor 

in the other.

Putting it all together, then, we can use the following procedure to find 

the minimal Euclidean voice leading between two n-note multiset-classes A 

and B:

(1) Choose a representative of A and calculate the sum of its pitch 

classes.

(2) Find the n transpositions of B that sum to this same value.

(3) For each of these, calculate the (Euclidean) size of the n “intersca-

lar transpositions” described in the previous paragraph.

(4) repeat steps 2 and 3 for the inversion of B.

(5) The minimum of these 2n2 numbers is the Euclidean distance 

between the multiset-classes.

Though it would be somewhat laborious to follow this algorithm by hand, it 

is easy to program a computer to do it. The result is a single number repre-

senting the Euclidean distance between set-classes. Equivalently, this number 

can be taken to represent the voice-leading distance from any particular set  
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(e.g., the C augmented chord) to the nearest transposition or inversion belong-

ing to some other set-class (e.g., any diminished triad in continuous space).

II. Voice-leading distances and Fourier magnitudes

To explore the connection between voice leading and the Fourier transform, 

it is useful to begin with the “set-class spaces” described by Callender, Quinn, 

and myself. These are n-dimensional geometrical spaces containing all the 

multiset-classes of size n, where distances are as described in the preceding 

section.8 Figure 1 shows the location, in three-note set-class space, of the  

multiset-classes that can be constructed using the pitches of some perfectly 

even n-note chord, for n ranging from 1 to 6.9 (Terminological note: I refer to 

these as the “doubled subsets of the perfectly even n-note set-class.”)10 Associ-

ated to each graph is one of the six Fourier components. For any three-note 

set-class, the magnitude of its nth Fourier component is a decreasing function 

of the distance to the nearest of these marked points; for instance, the magni-

tude of the third Fourier component (FC3) decreases the farther one is from 

the nearest of {0, 0, 0}, {0, 0, 4}, and {0, 4, 8}. Thus, set-classes in the shaded 

region of Figure 2 will tend to have a relatively large FC3, while those in the 

unshaded region will have a smaller FC3.

Figure 3 presents three-dimensional graphs in which the x,y-plane rep-

resents triangular set-class space, as in Figures 1 and 2, and where the z-axis 

represents the magnitude of the relevant Fourier component.11 The graphs 

show a series of peaks precisely at the doubled subsets of the perfectly even 

n-note set-class, with valleys at the points most distant from these peaks. It is 

clear from the graphs that there is a decreasing relationship between height 

(nth Fourier magnitude) and distance to the nearest peak (doubled subset of 

the perfectly even n-note set-class). Furthermore, the contour lines, showing 

set-classes of equal Fourier magnitude, are roughly circular. This means that 

the relevant measure of voice-leading size is the Euclidean metric, as this is 

the metric for which a circle’s points are equidistant from the center.12 This is 

quite fortunate, since Euclidean distance is also particularly easy to work with, 

for the reasons discussed above.

8 See Callender 2004; Tymoczko 2006; Callender, Quinn, 

and Tymoczko 2008. Mathematically, these spaces are the 

quotients of tori both by central inversion and by cyclical 

permutations of their barycentric coordinates.

9 Cliff Callender, in a personal communication, points out 

that the marked points in Figure 1 depict portions of a regu-

lar lattice and that they differ only by a multiplicative factor.

10 These are not “submultisets” since they may introduce 

additional duplications: {0, 0, 4} is not a submultiset of {0, 4, 

8}, since the former contains two copies of the “0” while 

the latter contains only one. However, the latter chord can 

be constructed by introducing doublings into a subset of the 

perfectly even chord, hence the term “doubled subsets.”

11 Thanks to Cliff Callender for programming assistance. A 

very similar graph appears in Callender 2007, which explores 

the Fourier transform in continuous space.

12 There are many reasonable ways to measure voice lead-

ing, as emphasized in both Tymoczko 2006 and Hall and 

Tymoczko 2007. Each produces a different set of points 

equidistant from a given location: for the “taxicab” metric, 

this set is a diamond; for the Euclidean metric, a circle; and 

for the “largest distance” metric, a square. See Hall and 

Tymoczko 2007 for further discussion.
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FC
1
, subsets of {0}

FC
3
, subsets of {0, 4, 8}

FC
5
, subsets of {0, 2.4, 4.8, 7.2, 9.6}

FC
2
, subsets of {0, 6}

FC
4
, subsets of {0, 3, 6, 9}

FC
6
, subsets of {0, 2, 4, 6, 8, 10}

Figure 1. The magnitude of a set-class’s nth Fourier component is approximately inversely 

proportional to the distance to the nearest doubled subset of the perfectly even n-note set-class, 

shown here as dark spheres. Each graph corresponds to one Fourier component and one 

collection of doubled subsets.

Figure 3 provides intuitive evidence that there is a connection between 

the nth Fourier magnitude and distance to the nearest doubled subset of the 

perfectly even n-note set-class. The next task is to quantify and to explain this 

relationship. I begin with a brute-force calculation that relates the two quanti-

ties for every twelve-tone equal-tempered multiset-class. (Other temperaments 

are considered below.) The first part of the calculation is easy, requiring only 
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Figure 2. Set-classes in the shaded region will have a large third Fourier component, since they 

are near doubled subsets of {0, 4, 8}. Those in the unshaded region will have a smaller third 

Fourier component.

Equation 1, above (Figure 4). The second is a little more difficult: in principle, 

we need to repeat the algorithm in Section I for each doubled subset of the 

perfectly even n-note set-class.13 however, Section III describes a shortcut that 

simplifies the calculation considerably.

Once we determine both the nth Fourier component and the minimal 

voice leading to the nearest doubled subset of the n-note set-class, we can plot 

these two numbers for every (twelve-tone equal-tempered) multiset-class of a 

given cardinality. Figure 5 shows, for trichordal multiset-classes, both the FC3 

magnitude and the size of the minimal voice leading to the nearest doubled 

subset of {0, 4, 8}. It is clear that there is a very nearly linear relation between 

these two quantities, illustrated by the gray line:

FC3 5 21.38VL 1 3.16. (2)

Using this equation, one can estimate a trichord’s third Fourier component 

(FC3) on the basis of the minimal voice leading to the nearest doubled sub-

set of any augmented triad (VL), and vice versa. The Pearson correlation 

coefficient is a standard statistical measure that quantifies the “degree of fit” 

between the points and the line. here, the value –0.97 indicates that there is 

a very nearly linear relation between the values.14

Table 1 correlates voice-leading distances and Fourier components, for 

twelve-tone equal-tempered multiset-classes of other cardinalities. The values  

in the table are determined by carrying out the computations in Figure 4 for 

every equal-tempered multiset-class of size 2–10, and every Fourier component 

from 1 to 6. (Appendix 1S, which appears as supplemental material [online 

only] with this article at http://dx.doi.org/10.1215/00222909-2009-019, pre-

sents the raw data necessary to reconstruct Table 1.) The strong anticorrelations 

indicate that one variable predicts the other with a high degree of accuracy.

13 If we are considering a k-element set-class, we need 

to construct all of those doubled subsets with k elements. 

Thus, for the third Fourier component and three note chords, 

we need {0, 0, 0}, {0, 0, 4}, and {0, 4, 8}.

14 A correlation of –1 indicates a perfect decreasing linear 

relation; a correlation of 11, a perfect increasing linear rela-

tion; and a correlation of 0, no linear relationship at all.
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15 The reduced octave also appears in Cohn 1991.

16 Some equal temperaments will not contain both p and 

p 1 12/n. (E.g., twelve-tone equal temperament does not 

contain p and p 1 2.4.) However, we can always embed 

an equal temperament into a more finely grained equal  

temperament containing p and p 1 12/n. For the purposes 

of conceptualizing the Fourier transform, it is often useful to 

work in this more finely quantized space, or in continuous 

unquantized space.

III. Understanding the correlations

We now explore this relationship in a more rigorous way. It follows from Equa-

tion 1 that the nth Fourier component represents pitch classes as unit vectors 

in a “reduced” pitch-class space whose octave is only 12/n semitones large. 

(The factor 2πn/12 maps pitch classes in the range [0, 12/n) to the circum-

ference of the unit circle; larger pitch-class numbers are reduced modulo 

12/n.)15 Since all pitch classes p and p 1 12/n will be represented by identi-

cal vectors, we can move any note by 12/n semitones without changing the 

nth Fourier component (see Figure 5; see also hoffman 2008).16 This is illus-

trated geometrically in Figure 6. As long as pitch-class space is quantized finely 

Figure 3. Here the x,y-plane represents triangular set-class space, while the z-axis represents 

Fourier magnitudes. The peaks are located at the doubled subsets of the perfectly even n-note 

set-classes.
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enough, moving any note by chromatic step will cause only a minimal change 

to the Fourier components.17 To determine the magnitude of a chord’s nth 

Fourier component, we add the vectors representing the all notes in the chord 

and calculate the length of the result.

Figure 4. Calculating the size of the third Fourier component of {0, 2, 5} and the minimal voice 

leading from {0, 2, 5} to any doubled subset of {0, 4, 8}

m
a
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h
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3
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minimal voice leading

Figure 5. For trichords, the equation FC3 = –1.38VL + 3.16 relates the third Fourier component to 

the Euclidean size of the minimal voice leading to the nearest doubled subset of {0, 4, 8}.

17 When pitch-class space is not finely quantized, this will 

not always be the case. For instance, consider the fifth 

Fourier component in twelve-tone equal temperament. The 

pitch classes 0, 2.4, 4.8, 7.2, and 9.6 are assigned the same 

vectors in the reduced pitch-class space of length 2.4. Mov-

ing 0.2 of a semitone on the reduced circle leads to a point 

Following the procedure  

in Section I, we learn that  

(0, 2, 5) → (1, 1, 5) is the mini-

mal voice leading, moving two 

voices by one semitone each, 

and with a Euclidean size of 

฀฀12฀฀12    1.41

a) Calculating the third Fourier component (FC3) of {0, 2, 5}.

Step 1: assign the vector (cos 2πpn/12, sin 2πpn/12) to each pitch class p.

0 → (cos(2π(0 3 3)/12), sin(2π(0 3 3)/12)) 5 (1, 0)

2 → (cos(2π(2 3 3)/12), sin(2π(2 3 3)/12)) 5 (21, 0)

5 → (cos(2π(5 3 3)/12), sin(2π(5 3 3)/12)) 5 (0, 1)

Step 2: add these vectors: (1, 0) 1 (21, 0) 1 (0, 1) 5 (0, 1)

Step 3: determine the length of this sum: ฀฀02฀฀12    1   (0, 1)฀
b) Determining the distance to the nearest doubled subset of {0, 4, 8}.



262 J O U r n A L  o f  M U S I C  T h E O r Y

By contrast, when thinking about voice leading, we represent pitch 

classes not as vectors but rather points on the pitch-class circle. Typically, we take 

the circumference of the circle to be one octave. Suppose, however, that we 

would like to find the minimal voice leading from some chord to the near-

est doubled subset of a perfectly even n-note chord. Figure 7 shows that this 

problem is closely related to the problem of finding a voice leading from the 

image of this pitch-class set, in a reduced pitch-class circle of circumference 

representing pitch classes 0.2, 2.6, 5, 7.4, and 9.8. Thus the 

perfect fourth appears to be smaller than the semitone—

indeed, it is the smallest twelve-tone equal-tempered inter-

val. (Hoffman 2008 exploits this fact to draw voice-leading 

lattices in which notes move by perfect fifth.) When we 

quantize more finely, however, motion by 0.2 of a semitone 

is seen to be just as small as motion by five semitones, and 

motion by 0.1 of a semitone is smaller still.

Table 1. Correlations between voice-leading distances and Fourier magnitudes

 Fourier Component 

Chord Size FC1 FC2 FC3 FC4 FC5 FC6

Dyads –0.97 –0.96 –0.97 –1 –0.97 –1*

Trichords –0.98 –0.97 –0.97 –0.98 –0.98 –1*

Tetrachords –0.96 –0.96 –0.95 –0.98 –0.96 –1*

Pentachords –0.96 –0.96 –0.95 –0.98 –0.96 –1*

hexachords –0.96 –0.96 –0.95 –0.96 –0.96 –1*

Septachords –0.96 –0.96 –0.96 –0.97 –0.96 –1*

Octachords –0.96 –0.96 –0.95 –0.98 –0.96 –1*

nonachords –0.96 –0.96 –0.96 –0.98 –0.96 –1*

Decachords –0.96 –0.96 –0.96 –0.98 –0.96 –1*

*Voice leading calculated using L1 (taxicab) distance rather than L2 

(Euclidean)

Figure 6. The nth component of the Fourier transform imposes a smaller periodicity on the  

pitch-class circle, representing pitches p and p + 12i/n by the same vector, for all integers i.  

To determine the chord’s nth Fourier component, we add all the vectors corresponding to the 

notes in the chord.
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12/n, to some transposition of the unison {0, . . . , 0}: any voice leading from 

a set S to a doubled subset of the perfectly even n-note chord determines a 

unique voice leading from the image of S to a unison in the reduced pitch-class 

space.18 Thus, we need only look for voice leadings to doubled unisons in the 

reduced pitch-class circle of length 12/n. This allows us to improve our algo-

rithm for identifying minimal voice leadings to the nearest doubled subset of a  

perfectly even n -note chord.19

The reduced pitch-class circle of length 12/n therefore arises both 

in determining the nth Fourier component and in identifying the minimal 

voice leading to the nearest doubled subset of any perfectly even n-note 

chord. The next task is to understand the relationship quantitatively. Figure 8  

shows that a collection of vectors will yield the largest sum when they are all 

pointing in the same direction or, in other words, when the chord they rep-

resent is a doubled subset of the perfectly even n-note chord. The vectors will 

yield the smallest sum when they point in directions that are evenly distrib-

uted around the reduced pitch-class circle and hence cancel each other out. 

Figure 7. In searching for the minimal voice leading from any chord to the nearest doubled subset 

of any transposition of the perfectly even n-note chord, it is sufficient to represent the initial 

chord on a reduced pitch-class circle of size 12/n. The figure on the left represents the minimal 

voice leading from {0, 5, 7} to any subset of {0, 6}, which is (0, 5, 7) → (0, 6, 6). The figure on the 

right shows that this corresponds to the voice leading (0, 1, 5) → (0, 0, 0) in the reduced 

pitch-class space of size 6.

18 In more mathematical terms: any voice leading in the 

larger pitch-class space, from a set S to any subset of the 

perfectly even n-note chord, will project to an equally sized 

voice leading in the reduced pitch-class space, from the 

image of set S to a unison; conversely, any voice leading in 

the reduced space, from any set to a unison, can be lifted 

to a collection of equally sized voice leadings in the larger  

space. These voice leadings link the preimage of the set S to 

a doubled subset of some perfectly even n-note chord.

19 We begin by representing the chord modulo 12/n; we 

then consider the unisons whose pitch classes sum to the 

same value (mod 12/n) as those in the original chord. Thus, 

if {x1, x2, . . . , xm} is our chord (mod 12/n), with x1 1 x2 1 . . . 

1 xm [ s (mod 12/n), we need only consider voice leadings 

to the unison (s/m, s/m, . . . , s/m) and its transpositions by 

12/nm semitones.
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Conversely, the size of the minimal voice leading to the nearest unison will be 

zero when the vectors point in the same direction and will be maximally large 

when the vectors are evenly distributed around the circle. Thus, there should 

be a decreasing relation between the magnitude of the nth Fourier compo-

nent and the minimal voice leading to the nearest subset of the perfectly even 

n-note chord.

Figure 8. (Left) Doubled subsets of a perfectly even n-note chord will have a large nth Fourier 

component, since they will be represented by vectors pointing in the same direction. No voice 

leading is necessary to transform these chords into doubled subsets of the perfectly even n-note 

chord. (Right) Chords whose vectors are evenly distributed around the reduced pitch-class circle 

will have an nth Fourier component of zero, since their vectors cancel out. It takes a large voice 

leading to move these chords to a unison in the reduced pitch-class circle.

Importantly, however, the relation is only approximate. This is because 

the Fourier transform represents pitch classes as vectors while the voice-leading 

model represents them as points on the circle. Mathematically these are very 

different, and there is no reason to expect the calculations to correspond 

precisely. In fact, there exist chords that have the same nth Fourier compo-

nent but are not equidistant from the nearest doubled subset. Figure 9, for 

example, shows two collections of vectors summing to zero: if we assemble a 

chord by choosing one of the pitch classes at the head of each vector, it will 

have a zero FC3 component; however, chords constructed using the circle on 

the right will be slightly closer to the nearest doubled subset of the nearest 

augmented triad. (See the tables in the online supplement to this article.) 

Thus, the best we can hope for is an approximate correspondence between 

Fourier magnitudes and voice-leading distances.

Indeed, this can be seen directly from Figure 3: the “hills” are not per-

fect cones, which implies that the relation between voice-leading distance and 

Fourier magnitude is not perfectly linear. Furthermore, though it is less appar-

ent from the graph, the contour lines are not exactly circles, which means that 

there is no function that will calculate Fourier magnitudes solely on the basis 

of Euclidean voice-leading distances. This is shown more clearly in Figure 10,  

which plots the magnitude of the first Fourier component against voice-

leading distance from the nearest tripled unison ({0, 0, 0}), for all trichordal 

multiset-classes in 192-tone equal temperament. (This graph is the analogue 
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Figure 9. For each circle, one can assemble a number of different multisets by choosing one pitch 

class at the head of each arrow. All of these will have a vanishing third Fourier component. 

However, those produced by the rightmost circle will have a slightly smaller voice leading to the 

nearest subset of the nearest augmented triad.

of Figure 5 for this very finely quantized chromatic universe.) For chords close 

to the triple unison, there is basically a one-to-one correspondence between 

Fourier magnitude and voice-leading distance, as can be seen from the fact 

that the upper-left portion of the graph is very thin. (note that the slight  

curvature indicates that the relationship is not quite linear.) The “bulge” 

on the lower right shows that the relation becomes more approximate with 

increasing distance: here, multiset-classes can have a range of Fourier magni-

tudes, even if they are equidistant from the triple unison. The graph tapers 

again for chords maximally distant from {0, 0, 0}, indicating that the relation 

between voice leading and Fourier magnitudes becomes more precise at large 

distances. Figure 10 thus clearly shows both that voice-leading distance is a 

reasonable predictor of the Fourier magnitude and that the relationship is 

necessarily somewhat approximate. We cannot perfect our predictions simply 

by using another familiar measure of voice leading, or even a simple func-

tion thereof: since there is essentially a one-to-one relationship near the triple 

unison, any equation relating Fourier magnitudes to these voice-leading dis-

tances must reduce to the Euclidean metric at short range. however, because 

of the bulge in Figure 10, we know that at larger distances anything resem-

bling the Euclidean metric will provide only an approximate predictor of the 

magnitude of the first Fourier component.

Figure 11 contains analogous graphs relating Fourier magnitudes to 

voice-leading distances for tetrachordal, pentachordal, and hexachordal 

multiset-classes in 48-tone equal temperament. The graphs are all reasonably 

similar in shape. Unlike Figure 10, they do not “taper” at the point of maxi-

mal distance from the perfect unison.20 The graphs are increasingly dense for 

20 This is because there is only one way (within transposi-

tion) to arrange three unit vectors so that they sum to zero, 

whereas there are several ways of doing it for four or more 

vectors. Note that the graphs for a k-note chord have a  

pronounced inflection point at Fourier magnitude k 2 2. This 

may reflect the fact that there are a large number of ways to 

combine k 2 2 vectors pointing in the same direction with 

two other vectors pointing opposite one another.
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larger chords, reflecting the fact that the number of multiset-classes grows 

very quickly with cardinality. (Indeed, there are about a quarter-million hexa-

chordal multiset-classes in 48-tone equal temperament, and even more for 

higher cardinalities—which is why it is difficult to produce analogous graphs 

for larger multisets.) Table 2 calculates the correlation between voice leading 

and Fourier magnitudes for three- to six-note chords in 48-tone equal tem-

perament. The strong anticorrelations show that relationship continues to 

hold in very finely quantized pitch-class space. (In fact, 48-tone equal tempera-

ment is dense enough that these values approximate those for unquantized, 

continuous pitch-class space.)21 Furthermore, in continuous space, the graphs 

of all the Fourier components will be essentially identical, since in each case 

vectors can point in any direction on the relevant reduced pitch-class circle. 

Thus, the graphs in Figures 10 and 11, as well as the correlations in Table 2, 

can be taken to represent not just the first Fourier component but the other 

components, as well.

In my view, we should not be disappointed that there is only an approxi-

mate relation between voice-leading distance and Fourier magnitude. Both 

the Fourier transform and the Euclidean voice-leading metric are very pre-

cise tools for modeling inherently vague musical intuitions, and we should 

not become too invested in their fine quantitative structure; indeed, there is 

little reason to think that very small differences in either Fourier magnitude 

or Euclidean voice-leading distance correspond to anything psychologically 

real for composers or listeners. What is more interesting, to my mind, is that 

both the Fourier transform and voice leading provide similar, and intuitively  

21 It would be possible, though beyond the scope of this 

article, to calculate this correlation analytically. It is also pos-

sible to use statistical methods for higher-cardinality chords. 

A sequence of a large number of randomly generated 24- 

and 100-tone chords in continuous space produced correla-

tions of 0.95 and 0.94, respectively. (Thanks to Rachel Hall 

for performing these calculations.)

Figure 10. Fourier magnitudes and voice-leading distance for trichords in 192-tone equal 

temperament. The correlation between the two values is –0.99.
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minimal voice leading
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Figure 11. Fourier magnitudes and voice-leading distance for tetrachords (a), pentachords (b), and 

hexachords (c) in 48-tone equal temperament
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plausible, ways of modeling the sense that chords can be very “major thirdy” 

(or “whole-tonish”) without being exactly so. here it is important that 

there is a particularly strong resemblance for chords very close to doubled  

subsets of perfectly even n -note chords. Thus, the two models will agree about 

which chords are especially “fifthy,” “whole-tony,” and so forth—even if they 

disagree somewhat about chords that are only mildly so.

readers will have noticed that there is one circumstance in which Fou-

rier facts precisely mirror voice-leading facts: for twelve-tone equal-tempered 

chords, the FC6 magnitude records the absolute value of the difference 

between the number of its notes in one whole-tone scale and the number of 

its notes in the other (Figure 12). (Mathematically, this is a scalar rather than 

vector quantity.) One can obviously voice lead such chords to a doubled subset 

of a whole-tone scale simply by moving all of the notes in the less populous 

whole-tone set by semitone. It follows that the FC6 values will be perfectly 

anticorrelated with the voice-leading distances obtained using the “taxicab” 

(rather than Euclidean) metric. In fact, for k-note chords, the equation  

FC6 5 k 2 2VL exactly determines the sixth Fourier component on the basis of 

voice leading, where VL is the taxicab distance to the nearest doubled subset 

of any whole-tone scale.

{C, D, E, Fs, Gs, Bf}

{Df, Ef, F, G, A, B}

+1

- 1

Figure 12. The sixth Fourier component assigns the value +1 for notes in one whole-tone scale 

and –1 for those in the other. The absolute value of the result represents the difference between 

the number of notes in the more and less populous whole-tone scales. This Fourier component is 

perfectly anticorrelated with the size of the voice leading to the nearest doubled subset of the 

nearest whole-tone scale—as long as we measure voice-leading distance using the “taxicab” 

metric.

Table 2. Correlations between voice-leading  

distances and Fourier magnitudes in 48-tone equal  

temperament. These numbers are approximately  

valid for any Fourier component in continuous  

pitch-class space.

Chord Size FC1

Trichords –0.99

Tetrachords –0.97

Pentachords –0.97

hexachords –0.96
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22 This is not to suggest that we should abandon Fourier 

analysis in favor of approaches based on voice leading: Fou-

rier analysis provides an indispensable tool for investigat-

ing questions involving the interval vector, as suggested in 

Lewin 1959 and 2001.

IV. Discussion

Let’s return to the thought that the Fourier transform models the way chords 

can be more or less saturated with particular intervals—that is, more or less 

chromatic, whole-tonish, or perfect fifthy. On one level, this seems accurate: 

chords such as {0, 2, 4} and {0, 0, 2} have a high sixth Fourier component, and 

they are indeed saturated with major seconds. But when we think more care-

fully, we notice that the simple statement is not quite right: {0, 4, 8} also has a 

very large sixth Fourier component, even though it contains no major seconds 

at all! Furthermore, the Fourier components of the tripled unison {0, 0, 0} are 

all maximally large, even though the multiset contains no nonzero intervals. 

(By the continuity of the Fourier transform, something similar is true of such 

chords as {0, e, 2e } for very small e.) Even the interpretation of the fifth Fourier 

component, as representing the “perfect fifthiness,” needs to be qualified: in 

very finely quantized equal temperaments, chords such as {0, 2.4, 4.8, 7.2, 9.6}, 

which have no perfect fifths, have a larger fifth Fourier component than the 

pentatonic scale.

These examples suggest that we might sometimes want to depart from 

Fourier analysis in favor of an approach based on voice leading. The Fourier 

transform requires us to measure a chord’s “harmonic quality” in terms of 

its distance from all the doubled subsets of the perfectly even set-classes. But 

we might sometimes wish to choose a different set of harmonic prototypes. 

For instance, Figure 13 uses distance from the augmented triad to measure 

trichordal set-classes’ “augmentedness.” Unlike Fourier analysis, this purely 

voice-leading–based method does not consider the triple unison or doubled 

major third to be particularly “augmented-like”; hence, set-classes like {0, 1, 4} 

do not score particularly highly on this index of “augmentedness.” Similarly, 

we might sometimes wish to use a justly tuned diatonic scale as a harmonic 

prototype, rather than accepting the fifth Fourier component as a proxy for 

“diatonicness.” (Suppose we are investigating the acoustic purity of the inter-

vals in various temperaments’ best diatonic scales; here, voice leading will 

produce much better results than the Fourier transform.) An approach based 

on voice leading leaves us free to choose the harmonic prototypes we want, 

rather than meekly accepting those the Fourier transform imposes on us.22

One way to put the point is that the Fourier transform is something 

of a black box: we put a chord in, and get some numbers out. (In fact, it 

can be quite hard to provide an intuitive characterization of what the  

Fourier transform actually does—particularly if one makes no reference to 

voice leading.) It is interesting that Quinn developed his Fourier-based tech-

nique under the influence of an avowedly “Platonist” conception of music the-

ory, according to which “chord quality” is a fundamentally objective feature  
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that is (as it were) “out there in the world.” By contrast, the voice-leading 

approach is consonant with a more relativist conception according to which 

we choose the musical properties that are important to us. A Platonist (e.g., the 

youthful Quinn) might well be attracted to the “black box” quality of the Fou-

rier transform precisely because of its inflexibility—which could be taken to sug-

gest an idealized world of unalterable musical relationships. And conversely, 

the very flexibility of the voice-leading approach might signal a (disturbing to 

some, attractive to others) role for arbitrary human preferences and choice.

Beyond measuring the intervallic saturation of single set-classes, we can 

of course use the Fourier transform to measure similarity between set-classes: 

from this point of view, set-classes are similar when their six Fourier magni-

tudes are all similar. At first blush, this strategy seems to contrast dramati-

cally with the voice-leading approach: certainly, Fourier analysis uses very dif-

ferent mathematics, and produces results—such as the identity of Z-related 

chords—that can be difficult to interpret in contrapuntal terms.23 We have 

seen, however, that there is a close relationship between the two techniques: 

at the most fundamental level, each individual Fourier component measures 

something like a voice-leading distance. Thus what is distinctive about the 

Fourier approach to chord similarity is not the conception of distance per se, 

but rather the role of “harmonic prototypes”: the Fourier transform measures 

the similarity of set-classes not by their distance from one another but by their 

respective distances from the nearest doubled subsets of the perfectly even 

n-note chords. This is why Z-related chords are judged to be identical, even 

while being far apart in the set-class spaces such as Figure 1.24

From my point of view, the most interesting result is that a single concep-

tion of musical distance—voice-leading distance—turns out to underlie both 

approaches. It is, I think, quite surprising that voice leading should play any 

23 See Quinn 2006 and 2007. Quinn’s approach is inspired 

by earlier writers who emphasize shared subset content and 

the interval vector. See Quinn 2001 for more discussion.

24 Even from a voice-leading perspective, two Z-related 

chords will be approximately equidistant from the nearest 

doubled subsets of perfectly even n-note chords.

Figure 13. The mathematics of the Fourier transform requires that we conceive of “chord quality” 

in terms of the distance to any doubled subset of some perfectly even set-class (left). If we use 

voice leading, however, we can choose our harmonic prototypes freely. Thus, we can use voice 

leading to model a set-class’s “augmentedness” in terms of its distance from the augmented 

triad (right), but not the tripled unison {0, 0, 0} or the doubled major third {0, 0, 4}.
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role whatsoever in the Fourier transform, with its vectors, trigonometric func-

tions, and sensitivity to chords’ interval content. That we can reinterpret its 

results contrapuntally says something about the power of an approach that puts 

voice leading front and center. In fact, one might even take it to suggest that 

Quinn’s early Platonism was not entirely misplaced: perhaps Quinn was right 

to think that there is a realm of objective musical relationships that influence 

us even when we are not directly aware of them. (Certainly, not everything in 

music theory can be a matter of arbitrary personal preference!) If so, then I 

would argue that voice leading—rather than the Fourier transform—has the 

best claim to Platonic primacy. Perhaps it is spaces like Figure 1 that offer the 

best glimpse of the entities casting shadows on the walls of our musical cave.

Appendix

The raw data from which Table 1 was constructed appears as supplemental 

material (online only) with this article at http://dx.doi.org/10.1215/00222909-

2009-019. Appendix 1S shows the Fourier magnitudes and corresponding 

minimal voice leadings for all twelve-tone equal-tempered multiset-classes. 

Appendix 2S contains the data for twelve-tone equal-tempered set-classes.

An individual table is provided for set-classes and multiset-classes of each 

cardinality: the first column identifies the (multi)set-class; the second shows 

the first Fourier magnitude; the third, the size of the minimal voice leading 

to the nearest doubled unison; the fourth, the second Fourier magnitude; the 

fifth, the size of the minimal voice leading to the nearest doubled subset of 

{0, 6}; and so on. Euclidean voice-leading distance is used for Fourier compo-

nents 1–5; the “taxicab” metric is used for Fourier component 6. In all cases, 

voice-leading distances are calculated in continuous, unquantized pitch-class 

space, as described in Section I and footnote 19.
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