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SET CONVERGENCES. AN ATTEMPT OF CLASSIFICATION

YVES SONNTAG AND CONSTANTIN ZÄLINESCU

Abstract. We endow families of nonempty closed subsets of a metric space
with uniformities defined by semimetrics. Such structure is completely deter-
mined by a class (which is a family of closed sets) and a type (which is a semi-
metric). Two types are sufficient to define (and classify) almost all convergences
known till now. These two types offer the possibility of defining other set con-
vergences.

1. INTRODUCTION

The present paper develops the text of the conference [SoZ2]. Our aim is to
find an adequate approach that permits

(1) to classify the notions of set convergence of closed subsets of a metric
space,

(2) to search for new convergences which may satisfy certain requirements.
The second point is illustrated by two examples.
Mosco convergence, M, for sequences of closed convex subsets of a reflexive

Banach space has excellent properties which fail to hold in general vector spaces
(n.v.s.) [Be5, BBo]; is it possible to find a convergence which is similar to M
(in a sense that must be specified) and has good properties in n.v.s.?

The /?-Hausdorff (or Attouch-Wets) convergence, Hp or A W, has very good
properties (see [AW1, 2, 3, ALW, Be5],... ), but it is very strong. For instance
the increasing sequence (A„) in I2, An = {x = (x<.)| ||x|| < 1, x¿ = 0 for
k > n) is not //^-convergent. Is it possible to find a coarser convergence which
retains the good properties of Hp ?

We believe that our aim is achieved by considering on 9~(E)—the class of
nonempty closed subsets of the metric space (E, d)—two types p and q , which
define on S^(E) uniformities generated by families of semimetrics. These types
were suggested to us by the papers [Be2, 3, BLLN, and SoZl] for p, and [Co]
and the papers on /7-Hausdorff convergence (loc. cit.) for q.

To be more specific, one gives 0/ïc &(E)—which will be called class of
the uniformity—and defines semimetrics
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200 YVES SONNTAG AND CONSTANTIN ZÀLINESCU

of type/?:    px(A, B) = \d(A, X) - d(B, X)\, XeX,
of type q:    qx(A, B) = sxxo\d(x, A) - d(x, B)\,       X £3L.

xex
We get in this way for 0 ^ s/ c ZFiE) the uniformities (si ,X, p) (defined

by ÍPx)xex) and (& , X, q) (defined by (qx)xex) • These uniformities induce
topologies on sé and convergence notions, denoted 3£(p), Xiq) for nets of sé .

It is astonishing that only these two types and natural classes axe sufficient to
obtain and classify most part of known set convergences.

So, we shall see that the convergence W of Wijsman [Wi] is defined by both
types p and q and the class ZfZ'iE) of singletons or the class of compact subsets
JfiE), while in n.v.s. by p and the class of closed balls, too. The Hausdorff
convergence 77 and /J-Hausdorff convergence are of type q and classes {E}
and 3§iE) (bounded sets), respectively. The convergence Z in the sense of
Fisher [Fil] is of type p and class Z^iE).

If E is a n.v.s. the scalar convergence S and the linear convergence L (in-
troduced independently by Beer [Be3] and Hess [He]) are of type p and classes
of hyperplanes, Z%?iE), and convex sets, &ÍE), respectively. The convergence
Zp, introduced recently in [Sh, SP, AAB, BLu] is of type p and class ^(/i).

When E is a reflexive Banach space, the Mosco convergence is (on sé =
^iE)) of type p and has as class the weak-compact sets [Be2] (or weak-compact
and convex sets [BP]), etc.

The convergence in the sense of Kuratowski [Kur] does not enter in our
classification, nor does a convergence from [LSW, Lu2]. But we are led naturally
to consider new notions of convergence, particularly of type p , which seem to
be interesting (classes of weak-closed subsets, weak-closed and bounded subsets,
affine closed manifolds). So we can propose three possible substitutes for M
and two for Hp .

The type q is related to classical results (see [Bou3]), but p is new except
for the class S^iE) [LeL].

We study different problems throughout this paper: induced topology, com-
pleteness, continuity properties of operations.

Although only two types are sufficient to describe most classical convergences,
it would be interesting to introduce new types to obtain other convergences or
classical topologies whose corresponding convergences were not studied, like
Vietoris topology. The papers [BLLN, BLu] are, mutatis mutandis, source of
interesting uniformities.

The approach presented here, by the aid of semimetrics, has some advantages
(i) comparing convergences (except for M) is done by comparing the corre-

sponding classes;
(ii) the topologies associated to the convergences are always completely regu-

lar (772 separation being natural); the semimetric structure gives the possibility
of considering completion;

(iii) all the convergences obtained by this approach are adequate for obtaining
estimations (quantitative aspect) due to semimetrics;

(iv) the theoretical role—which does not correspond, necessarily, to the prac-
tical role—of some convergences is made evident by the extremality of the cor-
responding classes (see the figure in §10).

Note that this article does not suppose the knowledge of the classical notions
of convergence discussed here; they are defined when first met. Moreover the
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reader may consult the following books [Kur, At, Ma, KT], the papers [BaP,
BLLN, FLL, SaW], and monograph in preparation [So2].
Acknowledgments. The paper was completed while the second author was visit-
ing the Department of Mathematics of the University of Provence. Typing of
the manuscript was assumed by C.N.R.S. (France) Laboratory U.R.A. 225.

2. Terminology and notations
Let E be a nonempty set and 0 f= sé c 2E. By convergence on sé we

mean that a structure of ffZ* -space is given on sé in the sense of [Kur, Ber].
We say that a convergence on sé is topological if it satisfies the Moore-Smith
axioms (see [Ke, p. 74]). There is a 1-1 correspondence between topological
convergences and topologies on sé [Ke].

We write (x,),6jt c (A¡)i€¡ when K c I and x, £ A¡ for i e K and
(x,),e/ C A when x, £ A for i £ I.

Let now (E, d) be a metric space. The class of nonempty closed subsets
of E is denoted by 9~(E), while 3&ÍE) (3t(E), &f(E), &(E)) denotes the
class of those elements of Z?(E) which are bounded (compact, finite, single-
ton). When there is no danger of confusion, we write simply ZF, 3ê, Z% , etc.
For 0 ¿ X, Y c E, u £ E, d(u,X) = inf{d(u, x)|x e X}, d(X, Y) =
inf{d(x, Y)\x £ X), e(X, Y) = sup{úf(x, F)|x_e X}. Also for 0 ± X c E
and p > 0, B(X, p) = {u e E\d(u, X) < p}, B(X, p) = {u £ E\d(u, X) <
p}, S(X, p) = {u_£ E\d(u, X) = p} and for u £ E, B(u, p) = B({u}, p)
and similarly for B(u, p) and S(u, p). Moreover, for 0 ^ X c ZF(E), u £ E
and/<>0  XU,R = {X £X\XcB(u,R)}.

Suppose now that (E, ||-||) is a real normed vector space (abbreviated n.v.s:).
For u, v £ E, the segment [u, v] is {Xu + (l -X)v\X £[0, 1]} , while for 0 ^
A , B c E and X £ R^ A+B = {a+b\a £A,b£B),XA = {Xa\a £ A) . In this
case one takes U = B(0, 1) and Xr = Xq,r. Also, for 0 ^ A c E, conv(^)
(conv(^4), span(^)) denotes the convex hull (closed convex hull, linear hull) of
A.

The class of nonempty closed convex subsets of E is denoted by 'S'(E) while
T(E) denotes the class of affine closed subsets of E ; Tf(E) (TC(E), ßf(E))
denotes the class of those elements of ^(E) of finite dimension (finite codi-
mension, codimension 1).

The topological dual of (E, || • ||) is denoted (E', \\ • \\'), where || • ||' is the
corresponding dual norm. For tp £ E', (u, <p) = tp(u). The weak topology of
E  (w* topology of E') is denoted by o(E, E')   (a(E', E)).

So Z?„(E)  (%Za(E)) is the class of o(E, E'ficlosed (-compact) subsets of E.
Also, for 0/ic£ and tp £ E', sA(tp) = s\ip{tp(a)\a £ A} (i.e. sA is the

support function of A).
In E = I2, en = (0, ... ,0,1,0,...), where 1 is at nth place, E„ =

span{fc"i, ... ,e„) and Pn is the orthogonal projection of E onto E„ . The
notations en, E„ are the same for lp  (1 < p < oo).

3. Classes and types. Elementary properties
Let (E, d) be a metric space and 0 ^ sé c &(E). We intend to endow sé

with a uniformity. Typically sé is &(E), âS(E), %Z(E) or -9~(E)U,R, while
for E a n.v.s. sé may be also f(£), W(E)nâB{E), ^(E), etc.
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202 YVES SONNTAG AND CONSTANTIN ZÁLINESCU

Let 0 9¿ X c &(E) be another family. X is called the class of the uni-
formity or of the convergence. This family will represent the index set for the
semimetrics on sé which will define the uniformity. Let us note that we do
not need to have X c sé or sé c X.

The type p . Let sé and X be given. For X e X we may consider the function
fix : sé —> R, fix(A) = d(A, X). The coarser uniformity on sé for which
every fix, X £ X is uniformly continuous may be defined by the semimetrics
(see [Bou2, §1, no. 2]):

px(A , B) = \fx(A) - fx(B)\ = \d(A,X)-d(B,X)\,        X £ X.
So sé is endowed with a uniformity characterized by the class X and the

type p corresponding to the semimetrics (px)x^x ■ We denote by (sé , X, p)
this uniformity abbreviated X(p) when sé is already specified. The topology
determined by (sé , X, p) is the initial (weak) topology on sé (see [Boul, §2,
no. 3]) defined by the family (fx)xex ', it is the coarsest topology on sé for
which fx is continuous for all X £ X.

Let / be a directed set (see [Kö, Ke]), (A,)i€¡ asé a net and A £ sé . The
convergence associated to X(p) is defined by

A = X(p)-lim(Ai)   iff   limd(A,,X) = d(A,X)   for all X 6 X.

The type q. Let C(E, R) be the class of continuous functions from (E, d)
to R and let 0 ^ X C &(E). We may consider on C(E, R) the uniformity
called the uniformity of the uniform convergence on every X £ X (see [Bou3]
for a detailed study of this uniformity). This uniformity may be defined by the
semimetrics (taking also the value oo)

dx(f,g) = sxix}\f(x)-gix)\,        X£X.
x€X

One may also consider (see [Co]) the map j: sé —> C(£, R) with JiA) :£-»R,
JiA)iu) = d(u, A). This map is injective (because d(u, A) = d(u, B) for all
u £ E iff cl(A) = cl(B) iff A = B because sé c ^(E)). Let A(sé) =
{j(A)\A £ sé} c C(E, R). It is natural to consider on A(sé) the trace of
the above uniformity of C(E, R). In this way, we obtain a uniformity on sé
determined by the semimetrics

qx(A , B) = dx(j(A), j(B)) = sup \d(x,A)-d(x,B)\,        X G X.
xex

So sé is endowed with a uniformity, denoted (sé ,X,q) or simply X(q),
characterized by the class X and the type q corresponding to the family of
semimetrics (qx)Xex ■

Thus the topology determined by (sé , X, q) on sé is the topology of uni-
form convergence on X, X £ X, of the functions d( • , A), A £ sé .

Let (A¡)j£¡ c sé be a net and A £sé . The convergence associated to X(q)
is defined by

A = X(q)-lim(Ai)   iff   lim (sup \d(x, A¡) - d(x, A)\ ) = 0   forallXeX.

Remark. The notations A = X(p)-lim(A¡) and A = X(q)-lim(A¡) presuppose
unicity for A . If there is no unicity, = must be replaced by £ .
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Remark. In the literature there are convergences defined only for small (enough)
families, like W(E). For types p and q we always may extend them to ZF(E).

Remark. The types p and q may also be defined in semimetric space (E¡,
(di)i€¡). Taking the families {px,i\X £ X, i £ 1} and {qx,i\X £ X, i £ 1}
respectively, where px,, is px corresponding to d¡. In this case one may also
take

px(A, B) = sup \di(A, X) - dt(B ,X)\, X£X,
i€l

qx(A, B) = supsup \di(x, A) - d¡(x, B)\,       X £X.
i€l x€X

For instance if (E, d) is a metric space {(d¡)¡ £ 1} may be the set of all metrics
on E defining the same topology (or the same uniformity, or the same bounded
sets, etc.) as d. See [BLLN, BLu] for potential applications.

3. Elementary properties
1. It is easy to show that px(A, B) < qx(A, B) for all A, B, X £ 9~(E). So

for sé and X fixed the uniformity (sé , X, q) (and the corresponding topology
and convergence) is finer than the uniformity (sé , X, p).

2. If X and y are such that ÎD^/z one has that (sé , X, p) is finer
than (sé , ff, p) (and (sé , X, q) is finer than (sé , ff, q)).

3. If X, ff t¿ 0 and for each Y £ ff there exists X £ X such that Y c X
then (sé , X, q) is finer than (sé , ff, q).

4. If X D SP(E) then (sé , X, p) is (Ti-) separated. Indeed, if px(A, B) =
0 for all X £ X then d(x, A) = d(x, B) for all x £ E and so A = B. So, in
this case we have the uniqueness of the limit (when it exists). An example of
nonseparated uniformity is (sé , {E}, p).

5. If UKI* £X} = E then (sé , X, q) is separated.
The condition U{^l^ e £} = E is verified by each family introduced in

§2, while the condition X D S"(E) is verified by each family introduced in §2,
excepting %Z(E) for dim(£) > 2 and T~C(E) for dim(E) = oo.

Concerning these classes we have

Proposition 3.1. Let E be a n.v.s. Then (W,X,p) is separated for ï d /(£),
Proof. It is sufficient to show that (^, %?, p) is separated because (W, X, p)
is finer. Suppose that A, B £W and A ± B. We may suppose that A <£_ B.
Then there exists a £ A , a £ B. By a separation theorem there exists tp £ E',
\\tp\\' = 1 such that tp(a) > sxxo{tp(b)\b £ B} . Let us take 77 = {u £ E\tp(u) =
tp(a)}. Then d(A,H) = 0 while

diB, H) = inf{dib, H)\b e B) = infijo) - tp(a)\ \b £ B)
= tpia) - sxip{tpib)\b £ B) >0.

Therefore pHiA, B) > 0.   D

We utilised Ascoli's formula

d(b,{x\tp(x) = y)) = \tp(b)-y\/\\tp\\'.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



204 YVES SONNTAG AND CONSTANTIN ZÄLINESCU

We recall the definition of Kuratowski convergence [Kur, Ber, At, So2]. We
define liminf(^;) and limsup(Ai) for a net (Ai)ie¡ c2E\{0}:

lim inf(Aj) = {x £ E\ lim d(x, A,■) = 0},
lim sup(^,) = {x £ E\ lim inf d(x, A¡) = 0} .

Generally, when liminf(^,) = limsup(/l,) = A we say that (A¡) converges
in the sense of Kuratowski to A and denote it by A = K - lim(^,).

Let us note that we always have [Ber, At],

cl ( U H AJ I c liminf(4) C limsup(^i) = fl cl I (J Aj ) .
\i€ij>i    J iei    \j>i    J

From the above formula we have that lim sup(A¡) is closed. The same is true
for liminf(^,) = A. Indeed if x e clL4) and e > 0 then there exists x e A
such that d(x, x) < e/2; as x e liminfL4/) there exists it such that for all
i > ie we have d(x, A¡) < e/2 and so d(x, A¡) < d(x, A¡) + d(x, x) < e;
therefore lim<i(x, A¡) = 0 which shows that x £ A .

Also, from the above formula it follows that for (A¡) c 3~(E) increasing,
i.e. Ai c Aj for i < j,

liminf(^4,) = limsup^,) = cl ( (J A¡ \ ,

and for (A¡) c &(E) decreasing, i.e. A¡ D Aj for i > j ,

liminf(/4,) = limsup(^,) = C\A¡■.
l€l

The next result is surely known but it seems that is not given explicitly else-
where.

Lemma 3.2. Let (A¡)i€l be a net in &~(E). Then m e liminf(y4,-) iff there exists
(«i)ie/ c (Ai)¡e¡ such that lim(w,) = u.
Proof. Suppose that u £ liminf(/l,). Since A¡ is closed, there exists u¡ £ A¡
such that d(u,Ui) < 2d(u,A¡), i £ I. Therefore (u¡)¡€[ c (^i)ie/ and
lim(w,) = u . Conversely, if there exists (w,)/e/ c (Aí)í€¡ such that lim(u¡) = u
then d(u, A¡) < d(u, u¡) and so u £ liminf(y4;).   D

The next result will be important for the sequel (see [FrLL] for (1) <=» (3)).

Theorem 3.3. Let (Ai)ieI c &(E) be a net and A £ Z?(E). The following
assertions are equivalent:

(1) ^c lim inf04,),
(2) d(A, X) > lim sup d(A,, X) for all X 6 F(E),
(3) d(u, A) > lim sup d(u, A¡) for all u £ E,
(4) p(f, A) > limsupp(f, A¡) for every upper semicontinuous function

f'.E^R,
(5) p(f, A) > limsxipp(f, A¡) for every lipschitzian function f:E^R,

where p(f, A) = inf{/(x)|x e A} .
Proof. (1) => (4). Indeed, let /: E —> R be upper semicontinuous (u.s.c.) and
u £ A . Then there exists, by Lemma 3.2, (w,),e/ C (A¡)i€¡ such that lim(w;) =
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u. As / is u.s.c. we have lim sup pif, A¡) < lim sup/(m,-) < /(m). As u £ A is
arbitrary, it follows that lim sup pif, A¡) < pif, A). (4) =*• (5) is obvious. To
obtain (5) =» (2) take X G .?"(£) and / = d( • , X). The conclusion follows
from the well-known inequality \d(x, X) - d(y, X)| < d(x, y) foxx,y£E.
Taking X = {«}, we obtain (2) => (3), while (3) => (1) is immediate (take
u£ A).   a

Proposition 3.4. Let (At)iei C 9~(E), A e .?"(£) ,and0¿Xc &(E).
(1) If A, c A for all i £ I and A c liminf(^,) then A = X(p) - lim(A¡).
(2) If Ai c Aj for i < j then X(p) - lim(A) = cl(U/€/ A¡).
(3) If SZ'iE) CX and A = X(p) - lim(A¡) then A = K- lim(^,).

Proof. (1) By using Theorem 3.3, from A c liminf(^,) we get d(A, X) >
limsvtpd(A¡, X) for all X e X. As A D A,, d(A,X) < d(A¡,X) for all i
and for all X £ X, and so d(A, X) < lim inf d(A¡, X). Therefore d(A, X) =
limd(Ai, X) for all X £X and so A = X(p) - lim(Ai).

(2) Let A = cl(U/€/ A¡) : A D A¡ for i £ I. We saw above that in this case
A equals liminf(^,). Thus, by (1), X(p) - lim(^,) = A .

(3) As A = X(p)-lim(Ai) and S"(E) c X we have d(u,A) = limd(u, A¡)
for all u £ E. Hence, for u £ A, limd(u, A¡) = d(u,A) = 0 and so
u £ liminf(y4,). On the other hand, for u £ limsup(^4,), liminfú?(«, A¡) =
limd(u, Aj) = 0 = d(u, A) and so u £ A. Thus we get A = liminf(^,) =
limsup(v4,), i.e. A = K - lim(^,).   D

Remark. Let (A¡)i€¡ c sé be increasing and S?(E) C X. Then (A¡)¡e¡ is
j£(/7)-convergent iff cl(\Ji€¡A¡) £ sé .

Indeed, on the one hand, if the limit exists then it is unique. On the other
hand, if the limit exists in (.sé , X, p) then it exists in (Z?(E) ,X,p) and is
cl(U(€/^).

4. Convergences related to type q

Wijsman convergence, W.   Let (E, d) be a metric space.

Definition 4.1. The net (A¡)¡ej c &~(E) converges to A £ ZZF(E) in the sense
of Wijsman, denoted A = W — lim(^,), if

limd(u, Aj) = d(u, A)   fox all u £ E.

We mention some references related to W : [Wi, BaP, FrLL, LeL, So2,
BLLN, Be6].

From the definition we see that A = W — lim(A¡) iff A = 5^(p) - lim(^4,) iff
A=^(q)-lim(Ai).

Using eventually Theorem 3.3, we have that A = K - lim(y4,-) if A = W -
lim(^,), and therefore A = n,-g/cKrij>i Aj) when A = W - lim(^,).

The next result shows that Wijsman convergence is closer to type q .

Proposition 4.2. The uniformities (Z?(E), S', q), (Z?~(E), X, p) and (ZF(E),
X, q) are equivalent for every X such that S? = S?(E) cïc Z%Z(E).
Proof. As for y c Ï C J we have (F(E), S", q) = (9'(E), &', p) C
(9~(E) ,X,p)c i&iE) ,X,q)c (&(E), 3ZZ, q), it is sufficient to show that
i&(E),Sr, q) is finer than (¿9'(E), 3ZZ, q).  For this aim let X £ 3¡Z and
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206 YVES SONNTAG AND CONSTANTIN ZÀLINESCU

e > 0. We must show that there exist xi, x2, ... , x„ £ E and e' > 0 such
that {(A, B)\ \d(x¡, A) - d(Xi ,B)\<e', 1 < i < n} C {(A, B)\qx(A, B) < e} .

Indeed, as X is compact, there exist X\, x2,..., x„ £ X such that X c
(j"=xB(x,,e/3). Let (A, B) e 7(£)x7(£) suchthat \d(x¡, A)-d(x¡, B)\ <
e/3 = e' for all i, 1 < i < n. Let us consider x e X ; then there exists i
such that x £ B(x¡, e'). Thus, \d(x, A) - d(x, B)\ < \d(x, A) - d(x¡, A)\ +
\d(x¡, A)-d(Xi, B)\ + \d(Xi, B)-d(x, B)\ < d(x, Xi) + e' + d(x¡, x) < 3e' = e .
Therefore, qx(A, B) = max^ex \d(x, A) - d(x, B)\ < e .   D

The use of the semimetrics P{u] = Q{u}, u £ E, for defining W is not new:
see [Co, LeL] and others.

A natural question is: may W be described by X(p) when X contains
noncompact sets. The answer is affirmative, at least when E is a normed space
as we shall see later on.

Hausdorff convergence, 77.   For X, Y £^(E) let

h(X, F) = max{e(X, 7), e(Y, X)} £ R.

It is known that h is an extended real valued metric.

Definition 4.3. The net (Aj)j€¡ c ^(E) converges to A £ SF(E) in the sense
of Hausdorff, denoted A = H - Hm(A¡), if: lim«(^,, A) = 0.

We mention some references related to H : [Kur, Ma, KT, So2] etc. It is
known, for a long time (see [Kur, Co]), that

h(A, B) = sup\d(u,A)-d(u,B)\.
ueE

This shows that in Z?(E), for all X c ZF(E) such that E £ X, we have:
A = H- lim(Ai) iff A = X(q) - lim(Ai).

Thus, if E is a n.v.s. then the classes W, "V, %, !%, define on Z^iE) the
same uniformity for type q , the corresponding convergence being 7/.

Note that A = H - lim(/í,) iff the net of functions (i/( • , Ai)),€l converges
uniformly to i/(- , A) on E while A = PF-lim^;) iff the same net of functions
converges pointwise to d( • , A). Thus it is reasonable to consider intermedi-
ate convergences. Strangely enough, the first such convergence was explicitly
considered in 1987.

/^-Hausdorff or Attouch-Wets convergence, 77^ or A W.   Let us fix ü £ E and
for p > 0 let us denote Ap = A n B(û, p). For A, B £ !¥(E) let us take
ep(A, B) = e(Ap, B) and hp(A, B) = max^^, B), ep(B, A)} . Because Ap
may be empty we consider that e(0, X) = 0 for all X c E.

Definition 4.4. The net (/f,),e/ C ¡^(E) converges to A £ £F(E) in the sense
/?-Hausdorff or Attouch-Wets if for all p > 0, lim hp(A¡, A) = 0.

Although this convergence is so young the references concerning it are nu-
merous: [Mol, So2, Be4, 5, AW1, 2, 3, ALW, AZI, 2, API, 2, Pe2, Lui, 2, SP,
Sh], etc.

Note that hp is not a semimetric (it does not verify the triangle inequality).
Remark also that the convergence Hp does not depend on « (see [Azl]).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SET CONVERGENCES 207

Just recently [Be4, Azi, AW2, 3, AP2, CoP] it was observed that in ZF(E),
Hp - lim(A¡) = A if and only if

lim(sup\d(x, A,) - d(x, A)\) =0   for all X £ 38(E),

i.e. in F(E),

A = Hp-lim(Al)    iff   A = âg(q)-lim(Ai).

Note that the uniformity (IF ,3§,q) is obtained also replacing Z3ë by X =
(B(U, p)\p > 0} or X = (B(u, p)\u £ E, p > 0}, while for E a n.v.s. the
same uniformity is obtained for X = W n 3S and X = F„ n ¿% .

Remark. G. Salinetti and R. Wets in [SaW] have introduced a different type of
convergence:

A = Hpp-X\m(Ai)   iff3/>o>0, V/> > p0: limh((Ai)p, Ap) = 0.
For E a n.v.s., on ^(E) this convergence coincides with Hp (see [Azl and

AW3]).
The convergence Hpp is not included in our classification. One must proba-

bly introduce new types such as px,Y(A, B) =px(AC\Y, BnY), qx>Y(A, B) =
qx(A n Y, B n Y), with X £ X, Y £ ff .

While on this subject, in [SaW] it is conjectured: Suppose that An, n £ N,
are nonempty closed connected subsets of E (a finite dimensional space). Then
A = K - lim(^4„) iff there exists <t0 > 0 such that for o > oo ,

lim h((A„)p, Ap) = 0.
n—>oo r        r
pla

The answer of this conjecture is negative.

Example 4.5. Let E = R2 be endowed with the Euclidean norm and consider

AP = (({2P} U {2" + ¿|* > «}) x [2? + 1, oo))

U({2p + ¿|1 <Ä:<«}x[0,oo)),

An = {JApnö {(x, 2x)\x > 0}   for n > 1,
p=x

A" = ({2"}xj{2p + j¿\k>l})x[0,oo),
oo

A=\jA"ö{(x, 2x)|x>0}.
p=X

We have that An is connected and closed for every n , A = K - lim(^f„), but
for every p £N, p > 2,

lim e(As,(An)s)¿0.n—*oo
sl2*>

Indeed, for p £ N\{0, 1} there exists e = \ such that

Vr5>0,        V<?eN*, 3s£(2p,2p + S),        3n > q: As çl (A„)s + B(0, e).
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Let S > 0 and q £ N be fixed and take n = q+l, 2P < s < min{<5, ■n^x-} + 2p <
2p + ¿r < 2' + l. Then (A„)s = [(AxnDA2nU--■L)Ap-x)nBiO, s)]U[{(x^2x)|x >
0} n 77(0, s)]. It is obvious that (2" ,0)e^, but (2P, 0) i (An)s + B(0, e).

In a general n.v.s. E, we have

(F, 3!Z<, nW, q) C (F, 3%,, q) c (F, Fa n<% , q) =
CÍF,Wn^,q) = iF,^,q).

Using the theorem of Krein (or Krein-Smulian) (see [DS, p. 434]) for K £ 3ia
we have côïïv(K) El0nf. So, by property 3 of §3, (ZF, ^, q) = (F, 3¡Z0 n
fé ,q). Note that in a reflexive Banach space all the above five uniformities
coincide.

When E is a nonreflexive Banach space the topology defined by (ZF ,Z38,q)
may be strictly finer than that defined by (ZF ,3ZZa,q).
Example 4.6. Let E = lx, A„ = [0, en] for n £ N* and A = {0}. Then
3ZZa(q) - \\m(An) = %Z(q) - \\m(An) = W - lim(An) but 3B(q) - X\m(An) does
not exist.

Indeed d(u,A) = \\u\\ and for u = (Ç\,..., ÇH,...), d(u,A„) =
infAe[o,i] II" - ^»11 = IN - KR| + infero, i] 16, - X\ = \\u\\ - |{„| +
max{-<^„ , 0} for n > no  (lim(<^„) = 0).

Therefore W - lim(yin) = A. As 3F = 5Ta in Z1 (see [Kö, p. 281]), by
Proposition 4.2, we have 3ÍZa - lim(^„) = A. Let us take X = 5(0, 1) e Z% ;
then sup-çg^ \d(x, A„) - d(x, A)\ > \d(e„ , A) - d(e„ , A„)\ = 1 and so (A„) is
not ^(^r)-convergent.

The convergence 3fa(q) is new; coinciding with Hp in reflexive Banach
spaces and with W in /' , it seems to be not very interesting.

5. Description of IF by a class of noncompact sets

We saw in Proposition 4.2 that Wijsman convergence may be defined by
types p and q, taking X such that ZF(E) c X c Z%Z(E). A natural question
is whether W may be obtained by type p and a class containing noncompact
sets. The answer is positive when E is a n.v.s. We shall see that we may take
X = {B(u, p)\u £ E, p > 0} . The next example shows that this statement is
not true in metric spaces.

Example 5.1. Let E = I2, A = {(I + -\)ep\p £ N*}, An = A U {-en}, F =
A U {-e„\n £ N*} U {0} and d the metric on F inherited from I2. Then,
W - lim(y4„) = A in I2, hence in F , but (/!„) does not converge to A with
respect to X(p), X = {B(u, p)\u £ F, p > 0}.

Indeed, for u £ E,
d(u, An) = min{d(u, A), ||M + e„||} = min{d(u, A), (\\u\\2 + 2(u\en) + 1)1/2};

hence lim d(u, A„) = min{d(u, A), (\\u\\2 + l)1^2} . But

d(u, A) <   u- (l + -)ep

(2\ '/2
||M||2 -2(1 + -^ (u\ep) + f1 + -)  )        for p e N*.
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For p -> oo we get d(u, A) < (\\u\\2 + l)x>2. Hence A = W - lim(A„) in I2
and therefore in (F, d).

On the other hand BF(0, 1) = {0}U{-e>„|h £ N*} and d(An,BF(0, 1)) = 0
for every n.

d(A,BF(0, I)) = min{inf{l + x-\p £ N*}, inf{||e„ + (1 + x-)ep\\ \n,pe N*}}

= min{l, inf{(l + 2(1 + i)(eH\ep) + (I + x-)2)x'2\n, p £ N*}}

= min{l, \/2}= 1.
Therefore (A„) does not X(p)-convexge to A .   D

In the rest of this section E is a n.v.s. We shall need the following elementary
result (probably known, but without reference):

Lemma 5.2. Let (E, d) be a metric space, A, X be in F(E) and e > 0. Then

d(A, B(X, e)) < d(A, X) < d(A, B(X,e)) + e.
Moreover, if E is a n.v.s. then

d(A, B(X, e)) = max{c/(^, X) - e, 0}.
Proof. As X c B(X, e), d(A,B(X, e)) < d(A,X). Let now a £ A, x' £
B(X, e). Then for every n £ N* there exists x„ e X such that d(x', x„) < e +
l/n . Letting first n to tend to infinity, then taking the infimum for a £ A , x' £
B(X, e) we get d(A, B(X, e)) > d(A, X) -e . It follows that d(A, B(X, e)) >
max{d(A,X)-e,0}.

Now let E be a n.v.s. and S > 0. If d(A, X) < e then A n B(X, e) # 0
and so d(A, B(X, e)) = 0 = max{d(A, X) - e, 0} . Let now d(A, X) > e
and ö > 0 ; there exist x £ X and a £ A such that d(A, X) > \\a - x\\ — Ô.
As d(A, X) > e, ||a - x|| > e. There exists A e [0, 1] such that for y =
(l-X)a+Xx we have ||y-x|| = e, i.e. y £ B(X, e), and ||a-y|| = ||a-x||-e .
Therefore d(A, X) > \\a - x|| - S = \\a - y\\ + e - S for all ô > 0, and so
d(A,X)>d(A,B(X,e)) + e.   u
Proposition 5.3. Let (E, d) be a metric space, 0 ^ X c F(E) and Xq =
{7J(X,e)|Xe3t\ £>0}. Then (ZF, X, p) c (F, X0, p) ■ Moreover, if E isa
n.v.s. then (F, X, p) = (F, X0, p).
Proof. Let first (E, d) be a metric space. To show that (F, X, p) c (F, Xo, p),
it is sufficient to show that for X £ X, r > 0 and S e]0, r[ we have

{(A,B)\p1(XS)(A,B)<r-ö}c{(A,B)\px(A,B)<r}.

Indeed, let A, B £ ZF(E) such that Pg,x S)(A, B) < r - ô . Then, by Lemma
5.2, we have

d(A, X) - d(B, X) < d(A, B(X ,S)) + S- d(B, B(X, Ô))
<PB{x,S)(A>B) + S<r-

Changing A and B in the above relation we get px(A, B) < r.
Let now £ be a n.v.s., X £ X and e > 0. Then, by using Lemma 5.2 and

the elementary inequality | max{a, 0} - max{/?, 0}\ < \a - ß\, we have
Pg{X E)(A,B) = \max{d(A, X) - e, 0} - max{d(B, X) - e, 0}|

<Px(A,B)
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for all A, B £ F(E). Therefore we have also (F, X, p) d (F, X0, p) in this
case.   D

Corollary 5.4. Let E be a n.v.s. and (Ai)ieI c FiE), A £ ZFiE). Then
A = W - XxmiAi) iff for all u £ E, p>0,

diA ,B(u,p))= lim d(A¡ ,B(u,p)).

In other words, W is defined by (F, X, p) with X = {B(u, p)\u £ E, p > 0}.
Corollary 5.5. Let E be a n.v.s., and X c FiE) be such that for X £ X and
£ > 0, B(X,e) £ X. Then (F,X,p) = (F,ff, p), where ff = {X e X\
int(X) ,É 0}.

The families X = F(E), 3S(E), W(E), W(E) n 3S(E) have the property
from Corollary 5.5. If E is a reflexive Banach space, then Z%Za(E) has the same
property.

6. Topologies defined by type p

Let (E, d) be a metric space and sé, X c F(E). The topology X(p)
generated by the uniformity (sé , X, p) is the weakest for which the functions
A —> d(A, X) are continuous for all X £ X. Writing the condition for these
functions to be lower semicontinuous and upper semicontinuous we get

Proposition 6.1. The topology X(p) on sé is generated by the following two
families of set

3S(X, e) = {A £Sé\d(A, X) < e}
= {A£sé\AnB(X,e)¿0},

W(X, e) = {A £ sé\d(A, X) > £}
= {A £Sé\3a > 0: AnB(X, e + a) = 0} ,

when X £ X and e > 0.
When E is a n.v.s., by using Lemma 5.2, it is obvious that %(X, e) =

{A£Sé\d(A,B(X,e))>0}.
Such generators are specific for uhit and miss" topologies as the classical

Vietoris and Fell topologies (see [Mi, Fe, Ef, Mrl, 2, KT, Ma]). For the topolo-
gies corresponding to M, L, Z (which will be defined later), we indicate the
papers of G. Beer [Bel, 2, 3 and BLLN]; for S see [SoZl].

When SZ'(E) c X the topology generated by {2¡(X, e)\X £X, e > 0} may
be described only by the topology of E.   □

Proposition 6.2. If X D S?(E) then the topology generated by {3¡(X ,e)\XeX,
e > 0} equals that generated by {{A esé\AnU ^ 0}\U c E, U open}.
Proof. As B(X, e) is open, it is sufficient to show that for U c E, U open,
{A £ sé\AnU -f 0} = U~ is in the topology F generated by {21 (X, e)|X e X,
£ > 0}. For u £ U there exists eu > 0 such that B(u,eu) c U. Thus
U = {Ju&uB(u, eu) and so U~ = {A £ sé\A n U f= 0} = {A £ sé\3u £ U,
ADB(u,eu)f0} = [ju€U2({u},eu)£F.   D

These very simple generators (U~, U open) are found in the topologies of
Vietoris, Fell, Mosco, L, Z, ... .  But for X = Z%f(E)  (when E is a n.v.s.),
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dim(E) > 2 (see [SoZl]) the adequate generators are {A £ sé\A n D(tp, a) ¿
0} , where D(tp , a) = {u £ E\tp(u) < a} , tp £ E'\{0) , a £ R.

7. Convergences of type p for classes
X = F(E) and X = Fa(E)

Fisher convergence,  Z .     This convergence was introduced recently in [Fi 1,
DaK] and studied in [Fi2, BaP, So2, BLLN, SP, Sh].

Let (E, d) be a metric space.

Definition 7.1. The net L4/)/e/ C F(E) converges to A £ F(E) in the sense
of Fisher, denoted A = Z - Xxm(A¡), if

(£1)  ¿chminfL4/),
(£2)  lime(Ai, A) = 0 «• Vfi > 0, 3ie, Vz > i£: A¡ C B(A, e).

Note that between Hp and Z there are, generally, no implications. For
instance, in E = I2, An = En , B„ = U n En: E = Z - lim(An) and U =
Z - lim(B„) but (An) and (B„) axe not 77^-convergent, while in E = R2,
A„ = {(s, -\s)\s£R), ^ = {(5,0)|5€R},wehave A = Hp-lim(An) but (A„)
is not Z-convergent.

In the next result we show that Z is exactly F(p) ; this gives an interesting
theoretical status to Z as the finest convergence of type p . On the other hand,
Z is a possible substitute for Hp , as the examples in I2 above show.

Let us denote by U(Tí, R) the class of uniformly continuous functions /:
E^R.

Theorem 7.2. Let the net (/f,),e/ C F(E) and A e F(E). The following
statements are equivalent:

(1) Z-lim(Ai) = A,
(2) limp(f,Ai) = p(f,A) for all fi £ U(E,R) (where p(fi, B) =

inf{/(x)|x 6 B),
(3) F(p)-lim(Ai) = A,
(4) lime(A¡, X) = e(A , X) for all X e F(E).

Proof. (1) => (2) Suppose that A = Z-lim(^,) and take / G 77(/± , R). From
(Ç1), by using Theorem 3.3, we have limsup//(/, A¡) < pif, A). Suppose
that liminf/^/, A¡) < I < pif, A). Then J = {i £ I\pif', A¡) < 1} is cofinal.
For each i £ J there exists u¡ £ A¡ such that f(uf) < I.

Consider 0 < e < p(f, A) - I. As / is uniformly continuous, there exists
ö > 0 such that \f(u) - f(v)\ < e for u, v £ E^d(u, v) < ô. By (£2),
there exists z'o such that for / > z'o we have ^< C B(A, 8/2) c B(A ,8). As
7 is cofinal, there exists i £ J, i > io- For this i we get a, £ A such that
d(Uj, ai) < 8 and therefore p(f, A) < f(a¡) < f(u¡) + e < I + e < p(f, A), a
contradiction. Therefore, p(f, A) < liminf1u(/, A¡).   D

(2)^(3). Let X£F(E). As d(- ,X)eU(E,R) we have that limd(A¿,X)
= d(A, X), i.e. F(p) - lim(A,) = A.   D

(3) =» (1). Once again by Theorem 3.3, we have that (£1) holds. Suppose
that (£2) is not true. Then there exists e0 > 0 such that J = {i £ I\A¡ <f
BiA, eo)} is cofinal. Thus, for every i £ J, there exists a¡ £ A¡ such that
dia¡, A) > en.   Consider X = cl{a,-jz £ J} £ FiE).  Then limd{A¡, X) =
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d(A, X). As for i £ J, diA¿, X) = 0, it follows that d{A,X) = 0, a
contradiction, because diA, X) = inf{^(a,, A)\i e 7} > £n > 0.   D

(2)=>(4). For X£F(E),-d(- ,x)£U(E,R) and therefore lime(Ai,X)
= - lim(inf{-i/(x, X)|x £ A,}) = - inf{-d(x, X)\x £ A} = e(A, X).   D

(4) => (1). Taking X = A , we get that lime(Ai, A) = 0, i.e. (£2) holds. Let
now a £ A . We may suppose that E ^ {a} and let 0 < e < sup{c/(x, y)|y e
E} (> 0). Consider X = {x e E\d(x, a) > e} f 0 . Then for B £ F(E) we
have e(B, X) = sx\ox(zBd(x, X) = s\ipx€BnB{a,e)d(x, X). As lime(A¡, X) =
lim(supx€A.nB(a^d(x,X)) = e(A,X) > e, there exists ie such that A, n
B(a, fi) ^ 0 for i > ie, i.e. d(a, A¡) < e for i > ie. This shows that a £
liminf(^,).   D

Remark. The implication (1) =» (3) of Theorem 7.2 is proven in [BaP]; the
equivalence (1) <& (3) appears in [BLLN] in a topological framework, as well
as (3) <=> (4) in [BLu]. The result concerning optimization is new as well as the
proof of the theorem.

Let u £ E and Y £ &(E). We take p(u, Y) = s\xp{d(u, v)\v £ Y}
and for X £ F(E), p(X, Y) = inf{p(u, Y)\u £ X} (i.e. the Chebyshev ra-
dius of Y with respect to X); also for X £ Z%!(E) we consider t(X, Y) =
sup{p(u, Y)\u £ X} (the common diameter of X and Y).

Corollary 7.3. Let (Ai)i€l c F(E) be a net and A £ F(E). Suppose that A =
Z - lim(Ai). Then lim p(A¡, X) = p(A, X) for every X e ¡38(E). Moreover,
if (Ai)ie¡ c 38(E) and A £ 3B(E) then lirnr^,, X) = x(A,X) for all X £
3§(E).
Proof. It is sufficient to observe that for Y bounded we have \p(u, Y) -
P(v, Y)\ < d(u, v) for all u, v £ E, and apply Theorem 7.2 for p(- , X)
and -pi • , X).    D

Convergence Fa(p). When E is a n.v.s. it is natural to consider also the class
X = FaiE). We shall see later (in this section) that Z = Fip) and Fa(p) are
different convergences.

The next result establishes a relation between Fa(p) and Mosco convergence,
M. Let us remind that the sequence (v4„)w€n of nonempty subsets of the n.v.s.
E Mosco converges to A £ 2£\{0} , denoted A = M - lim(An) if:

o(E, E') -limsxxo(A„) c Ac liminf(^„),

where o(E, E') - limsup(^„) = {x £ E\ there exists (xfc)fc€A: c (An)n€N, K
infinite, x = a(E, E') - lim(x^)} .

Proposition 7.4. Let E be a reflexive Banach space and (An)„exs c Fr(E) ,
A £ F(E) for some R>0. If A = M - lim(An) then A = Fa(p) - lim(An).
Proof. Let X £ Fa . As A c liminf(yi„), by using Theorem 3.3, we have that
lim sup d(A„ , X) < d(A, X). Suppose that liminfc/(^„ , X) < I < d(A, X).
Then K = {n £ W\d(An, X) < 1} is infinite. For every n £ K there exist
a„ £ An and x„ £ X such that \\a„ - x„\\ < I. From the hypothesis we have
that (a„) c B(0, R). As X is reflexive, taking a subsequence if necessary,
there exists a £ E such that a = o(E, E') - lim„eJf(a„). As (a„) is bounded,
also ix„)n(zK is bounded and ct(/í , E') - lim„€/i(x„) = x £ E. It follows that
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a £ A and x £ X. On the other hand, from the weak lower semicontinuity of
the norm, we have \\a - x\\ < I, i.e. diA, X) < /, a contradiction. Therefore
limd(A„,X) = d(A,X).   D

We shall see in §9 that the converse implication is valid even without bound-
edness of (An), but with A £ Fa(E), for general n.v.s.

The next example shows that in general the convergences F(p) and Fa(p)
are distinct.

Example 7.5. Let E = I2, An = [0,e„], A = {0}. Then A = M - lim(^„)
and so A = F„ip) - lim(/l„), but iAn) is not ¿?~(/?)-convergent.

Indeed, it is simple to see that A = M - lim(^„), and so, by Proposition
7.4, A = Faip) - limiAn). But for X = S(0, 1) £ F, d(A„,X) = 0 while
d(A,X) = l.   D

In Proposition 3.4, we showed that every increasing net is convergent for
X(p), but for a decreasing net (A¡) we showed only that, in the case ZF c X,
if it is convergent its limit is f]i€l ^' •

The next result establishes a sufficient condition for the convergence of a
decreasing net.

Proposition 7.6. Let E be a reflexive Banach space and (^,),e/ c Fa(E) be a
decreasing net. If there exists z'o suchthat A¡0 is bounded then A = f]ieIAi is
nonempty and A = Faip) - X\m(Ai).
Proof. Because (A¡)i€¡ is decreasing, A = [\i>i A¡. As Aio is a(E, E') com-
pact (being bounded and a(E, E') closed), it follows that A f. 0. From
Ac Ai, it follows that

d(A,X) >d(Ai,X)
and therefore d(A, X) > limsupd(A,-, X) for every 0 / X c E. Suppose
that for some X £ Fa(E) we have liminfd(At, X) < I < d(A,X). Let
J = {i £ I\i > io, d(Aj, X) < 1} ; J is cofinal. For every i £ J there exist
a¡ £ A and x, e X such that ||x, - íz,-|| < /. As (a¡)¡ej c Aio, (a,)i€j has
a o(E, E')-convergent subnet, i.e. there exist a directed set K and tp: K —> 7
such that for every i £ J there exists /c, e K with tp(k) > i for k > k¡ and
a = o(E, E') - lim(ap(jt)). Because (a¡)¡€[ is bounded, it follows that (x,),e/
is bounded, too. We may suppose that there exists x = o(E, E') - lim(x?(¿)).
Therefore x e X. Let us note that a £ A .

Indeed, let i £ I. As 7 is cofinal, there exists j £ J such that j > i. From
the definition of tp, there exists k¡ such that tp(k) > j > i for all k > k¡.
Therefore a9^) £ A¡ for all k > kj and so a = lim(ai,(fc)) £ A¡. Hence a £ A .
By the lower semicontinuity of the norm we get d(A, X) < \\a - x|| < /, a
contradiction.   D

A similar result one can obtain for (A¡)i€l c F(E) a decreasing net, where
(E, d) is a metric space, for F(p), if we suppose that the closed balls of E
are compact.

The convergence Fa(p), which is strictly weaker than Z , is new. Its restric-
tion to sé = Fa(E) may be interesting for the convergence of nets of nonconvex
subsets of E.
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8. Convergences of type p for classes
OF CLOSED AFFINE SUBSETS

Throughout this section £ isa n.v.s. Before introducing the convergences
announced in the title of the section we remind two convergences.

Scalar convergence, S.

Definition 8.1. The net (^,),6/ c fê(E) scalar converges to A e &ÍE), denoted
A = S - lim(/4;), if

for all tp £ E': sAiq>) = limsAftp) (in R), or equivalently:
for all <p£S'iO, 1): sAitp) = limsAjiv),

where sAi<p) = sxivtpiA), i.e. sA is the support function of A .

We mention the references concerning 5 : [Wi, SaW, DBM, He, So2, Be3,
SoZl, FiL].

We restricted to ^(£) because sx = s==^^ .

Linear convergence, L. This notion was introduced by G. Beer in [Be3] and,
independently, by C. Hess in his thesis [He].

Definition 8.2. The net (A¡)¡e¡ C ^(E) L-converges to A £ 'ë'(E), denoted
A = L - lim(A,), if

A = W - lim(Ai)   and   A = S - lim(/l;).

Next we introduce on sé =W(E) the uniformities corresponding to type p and
class X, X being W(E) and classes of closed affine subsets as "V(E), "Vf(E),
%(E), ZF(E), ßf(E). We may also consider classes of linear subspaces ^°,
2^°, 2^°, Xo . We have the following inclusions:

i^, ^, p) c iW ,^c, p) c iW ,T-, p) c i9 ,W, p) c (^, Fa , p),
(&,S,p)c(%',Tf,p)c(%,T\p)c(%,<%,p).

The next result was proven in [SoZl]. We give here another proof.

Theorem 8.3. Let (Ai)iel c %(E) be a net and A £ W(E). Then

A = S- lim(Ai) ■& A = ß?ip) - limiAi).
Proof. Every H £ Z%f can be written as H = {x £ E\tpix) = a) with tp £
S'(0, I) and a £ R. As for X 6 ^(E), tpiX) c R is an interval, we easily get
that

d(X, H) = inf{d(x, H)\x £ X} = inf{\tp(x) - a\ \x £ X} = d(a, f(X)) ■
Thus

A = ¿Tip) - lim(Ai) »V/7eZ: lim ¿(,4,, 77) = d(A, H)
&V<p£S', VaeR: limd(a, tp(A¡)) = d(a, tp(A))
o Vç» £ S' : ïpJÂj) = K- lim(tp{ÂÎ))    (see [SaW])
<* S - lim(A¡) = A   (see [SoZl, Corollary 2]).    D

Remark. The convergence -S is also defined by another uniformity (see [SoZl])
nonequivalent to (W, ß?, p), defined by
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pv(A,B) = \(fosA)(tp)-(fosB)(tp)\,        tp£S',
where f(t) = -^ , t £ R = ±1 for t = ±00 .

We may also consider the uniformity i¡F ,%f,p) to extend S to FiE),
but this uniformity is not separated.

In [Be3, Theorem 3.7], G Beer showed that the topology corresponding to L
is the weakest on W(E) for which the function % x g7 3 (A, B) -» d(A, B) £ R
is continuous. We show here that L is W(p) on W(E), which is weaker than
the above mentioned result.

Theorem 8.4 (G Beer). Let (At)i€l C W(E) be a net and A £ &(E). Then
A = L-lim(A¡)   iff A = %(p)-lim(Ai).

Proof. As ZF cW and ßf c & the implication "<=" is obvious. Let us show
the converse implication. As A = W - lim(^4,) we have that A c liminf(y4,),
and therefore, by Theorem 3.3, d(A, X) > lim sup 6/(^4,, X) for X e W . Let
X £& suchthat 0 < 8 = d(A, X) = d(0, X-A) ; therefore B(0, a)n(X-A) =
0 . Using a separation theorem (see [Ho]), there exists tp £ S' such that

8=    sup    tp(u) < inf{tpix - a)\x £ X, a £ A} = inf tpix) - sAi<p).
u€B{0,o) x€X

Let / < 8 . Then sAitp) < infxe^- tp(x) - 8 < mfxçjr <p(x) - I.
As limsA¡(tp) = sA(tp), we get z'o such that for z > z'o we have sAi(tp) <

infxeXtp(x) -/«•/< inf{tp(x - a)\x £ X, a £ A¡) for all z > z'o hence
/ < ||x - a\\ for all x 6 X, a £ A¡, i > z'o , hence / < d(A¡, X) for z > z'o .

Therefore, d(A, X) < liminfi/(^,, X). As the case d(A, X) = 0 is obvi-
ous, we have that A = W(p) - lim(^().   D

Corollary 8.5. On W(E) the convergences L, (<F U ßf)(p), T(p), W(p)
coincide.

It is remarkable that the conjunction of ZF(p), corresponding to closed affine
subsets (c.a.s.) of dimension 0, and ß?(p), corresponding to c.a.s. of codimen-
sion 1, implies the convergences W(p) and ^(p). Simple examples show that
convergence corresponding to c.a.s. of dimension n (codimension «-1) does
not imply the convergence corresponding to c.a.s. of dimension n + 1 (codi-
mension n).

It is interesting to study the convergence Sp defined similarly as Hp : the net
(A¡) c fê(E) »^-converges to A £ W(E) if there exists Po > 0 such that for
all p > po, limsA¡npu(q>) = sa npu(<P) f°r ah tp £ E' (see Remark following
Definition 4.4).

Concerning the convergences 7f(p) and %(p) we give three examples:

Example 8.6. Let E = I2, A„ = span{e„}, A = {0}. (A„) does not S-converge
but some computations show that Wf(p)- lim(,4„) = A .

Example 8.7. Let E = I2, An = {en}, A = {0} . (A„) does not W-converge
but A = %(p)-lim(An).

Example 8.8. Let E = I2, An = [ex, en], A = [0,e{], B = {ex}. Then
<S - lim(^„) = A, K - lim(^4„) = B and W - lim(^„) does not exist.

The convergences ^/(p) and %(p) seem to be new for dim(E) = oc, while
for dim(£) < 00 we have ^(p) = %}(p) = Tcip) = L.
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9. Convergences of type p for classes
of bounded sets

In this section we are interested by the uniformity (ZF , 38, p) when E
is a metric space and by uniformities (W, 38, p), ifêZ, 38 n Fa , p), (f, g7 n
33, p), (W, 3?a , p), (&, 5?a r\W, p) when E is a n.v.s.

First let us consider a metric space (E, d). In this case we consider the
uniformity (F ,38, p). We shall show that the corresponding convergence
38(p) is just the convergence introduced by P. Shunmugaraj [Sh] in his thesis
and then in [ShP] (for n.v.s.). The corresponding topology appears in the paper
of H. Attouch, D. Azé, and G. Beer [AAB]. See also [BLu].

Definition 9.1. Let (E,d) be a metric space. The net (Ai)ieI c F(E)
Z^-converges to A £ F(E), denoted A = ZP- lim(yl,), if

(i,l) ^Climinf(^),
iCp2)       VX £ 38'(E), Ve > 0,  3ie e I, Vz > z'e : A¡ílX c BiA, e).
In the initial definition in [Sh, ShP], considered in n.v.s. for sequences, the
condition (£¿,2) was given in the form

3po>0, yp>Po, Ve>0,  3«o, Vn > n0: A„npU c~B~iA, e),

which is equivalent to (£¿,2) in this context.
Let us note that condition (Çp2) is equivalent to

(£/)2)bis for each bounded net(a,)i6/ c (Aj)i€¡, limd(a¡, A) = 0.

Also note that Zp is for Z as Hp for H, which explains the notation (in
[SoZ2] we denoted by SP this convergence).

Let us denote by V(E, R) the class of uniformly continuous functions /:
E —> R which are infi-bounded, i.e.  {x £ E\f(x) < a} is bounded for every
a e R, and by W(E, R) the class of functions /: E —* R which are uniformly
continuous on bounded subsets and inf-bounded.

Theorem 9.2. Let (Aj)i€l c F(E) be a net and A £ F(E). Then the following
statements are equivalent:

(1) Zp-lim(Ai) = A,
(2) limp(f, Ai) = p(f. A) for every f£\V(E,R),
(3) limp(fi, A,) = p(f, A) for every fi £ V(E, R),
(4) 38(p) - lim(Ai) = A .

Proof. (1) => (2). Let / £ W(E,R). From (£„1), by using Theorem 3.3,
we have limsxipp(f, A¡) < p(f, A). Suppose that liminfp(f, A¡) < I <
p(f, A). Then 7 = {i £ I\p(f, A¡) < 1} is cofinal. For every z £ J there
exists at £ Ai such that f(a¡) < I. Let X = {u £ E\f(u) < I) ; X £ 38(E).
Consider 0 < e < p(fi, A) - I. As F is uniformly continuous on B(X, 1) :

3n£(0, 1), V«, v£B(X, l):d(u,v)<n^\f(u)-fi(v)\<e/2.

From (£,,2) there exists z'o such that for i > z'o we have XílA, c B(A, n/2)
C B(A, n), and so there exists a £ A such that d(a, a¡) < n < 1. Moreover
a£B(X, I). Hence
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Pif, A) < fia) < fia¡) + e<l + e<pif,A),
a contradiction.   G

The implication (2) =>• (3) is obvious.   D

(3) =► (4). Let X £ 38ÍE) and take / = d(-, X). Then fi £ V(E,R).
Hence limd(A,, X) = d(A, X).   D

(4) => (1). Taking X = {u} we get that A = W - lim(A¡) and therefore
(Cpl) holds. Suppose that (£¿,2) is false. Then there exist X e ^(7i) and
£o > 0 such that J = {i £ I\X n ^, <f BiA, e0)} is cofinal. For every i e /
let x, e y4,• n X such that i/(x,, ,4) > eo and consider Y = cl{x,|z £ J} £
38(E). It follows that e0 < diA, Y) = limd(A¡, Y) = timinfd(A¡, Y) = 0, a
contradiction.   D

Remark. The equivalence (1) => (4) is established independently in [BLu].

Corollary 9.3. Let the net (A¡)i€¡ c ^"(7J) Zp-converges to A £ ZF(E). Then
lim p(A¡, X) = p(A, X) for every X £ 38(X).
Proof. Apply Theorem 9.2 to f = p(> , X) € WiE, R).   D
Corollary 9.4. The convergence Zp is weaker than Z and Hp but finer than
W.

This result is known (see [Sh, ShP]).
The convergence Zp seems to be, in our opinion, very interesting in the case

of metric spaces, being much finer than W and much weaker than Hp . In the
case of n.v.s. there are also other substitutes for Hp as we shall see in the sequel.
The results of [Sh and ShP] show its utility in optimization. Let us consider
now the case of a n.v.s. E and denote by Z(E, R) the class of continuous
functions fi: E ^ R which are o(E, /s')-inf-compact, i.e. {x £ E\f(x) < a)
is a(E, E')-compact for all a £ R.
Proposition 9.5. Let (Ai)i€¡ c F(E) be a net and A £ ZF(E).

(1) // 5fa - lim(Ai) = A £ Fa then limp(f, A¡) = p(f, A) for all fi £
Z(E,R).

(2) If E is a reflexive Banach space and limp(f, A¡) = p(f, A) for every
fi £ Z(E, R) then A=Sf(!- X\m(A{) .
Proof. (1) Let f £ Z(E,R); as A = 5fa - ]im(A¡), A = W - lim(Ai) and
so lim sup p(f, Ai) < p(f, A). Suppose that liminf/i(/, A¡) < I < p(f, A).
Then J = {i £ I\p(f, A¡) < I) is cofinal. The set X = {x e E\fi(x) <l}£%ra.
As d(A¡, X) = 0 for z e 7, it follows that 0 = d(A, X) = d(0, X - A). But
in our hypothesis X - A e ZF„ c F so that 0 £ X - A i.e. A n X ¿ 0, a
contradiction. Therefore, p(f, A) = lim p(f, A¡).   D

(2) Let X £ 3Ta. Then d( • , X) e Z(E, R). Thus we get A = FZa-
lim Ai.    D

Another result of the same type is

Proposition 9.6. Let (An)neN C F(E) and A £ F(E). If A = M - lim(An)
then p(f, A) = limp(f, A„) for every fi e Z(E, R).
Proof. As above we get p(f, A) > lim sup p(f, A„). With the notations in the
proof of Proposition 9.5, 7 is infinite and X 6 Jfa . Let an £ A„ be such that
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f(an) < l for n £ J . Taking a subsequence if necessary, we may suppose that
there exists a = a(E, E') - limnej(an). Then a £ A n X, a contradiction.   D

Corollary 9.7. Let E be a reflexive Banach space, (An)ne^ c F(E) and A £
F(E). If A = M - lim(An) then A=FZa- lim(An).
Proof. Take in Proposition 9.6 / = d( • , X) £ Z(E, R) for X £ 3ZZa .   D

Remarks. (1) One can find Proposition 9.6, with a different proof, in [Sh], while
Corollary 9.7 can be found in [So2, Proposition 70; Be2, Theorem 3.3]. The
implication M => W when E is reflexive is proved in [Sol].

(2) Corollary 9.7 is false for FZa replaced by 38 (see Example 7.5) or by
Fa . Indeed, take E = I2, An = [0, nen], A = {0} ; A = M - lim(A„) [Sol,
So2], but for X = {u£ E\ £fc>, \uk = I) £ Fa we have d(A„, X) = 0 and
d(A,X) = V6/n¿0.

(3) Corollary 9.7 is also false for E nonreflexive because M does not gen-
erally imply W (see [BoFi, Theorem 2.2(b)], and examples in [BaP, So2]).

The next result states sufficient conditions for Mosco-convergence of a se-
quence.

Proposition 9.8. Let (A„)n€N C^(E) and A £F(E). Consider the following
hypothesis:

(a) Ka(p) - HmiA„) = A and A£Fa,
(b) (<à'r\33)(p)-lim(An) = A and A is convex,
(c) (Ka nfê)(p) - lim(^„) = A, A is convex and E is a Banach space.
If (a) or (b) or (c) holds then A = M - lim(A„). In particular 38(p), i.e. Zp,

and (38z\Fa)(p) imply M.
Proof. In each of the three cases we have A = W - lim(An) and so A c
liminf(^„). So we must only show that A D o(E, E') - lixxxs\xo(An). So let
a = a(E, E') - limneP(an), where P c N is infinite and an £ A„ for n £ P.
Consider first the case (a). If Q = {n £ P\an £ A) is infinite then a £ A.
In the contrary case we may suppose that Q = 0. Let X = {a, a„\n £ P] ;
X e 3tZa . As d(A„ , X) = 0 for n £ P, it follows that d(A, X) = 0. As in the
proof of Proposition 9.5, we get A n X f=- 0 , whence a £ A .   D

Suppose now that (b) holds and a $ A . By a separation theorem, there exists
tp £ S'(0, 1) such that tp(a) > I > sup{ç?(x)|x £ A). As limn€P tp(a„) = tp(a)
we may suppose that tp(an) > / for every n £ P. Taking now Y = cönv(X),
X from (a), Y e f V\38 . As above we get d(A, Y) = 0. As Y c {x\tp(x) > 1}
and A{x\tp(x) < sxxotp(A)) we get also that d(A, Y) > I - sup<p(A) > 0, a
contradiction.   D

In the case (c), the set Y is even a(E, .E')-compact by the Krein Theorem
(see [DS, p. 434], for instance). The rest of the proof is as in case (b).   D

Remark, (a) => M and (c) => M are already known in reflexive setting with
An , A convex sets [Be2, BP].

The above results give the following:

Corollary 9.9 (G. Beer and D. Pai). Let E be a reflexive Banach space and
A,An£W(E), n£N. Then: A = M-lim(An) iff A = X(p) - lim(An) where
X = 3?a or X = 3far\ff.
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The convergence 38„(p) = (38 n Ff)(p), being between Zp and M, could
be interesting. 38a(p) is for Fa as 38(jp), i.e. Zp , for F(p), i.e. Z .

Remark. It is not difficult to prove (cf. Theorem 9.2) that for A, A, £ F we
have

i%Z\33)ip)-XxmiAi) = A   iff   limp(f, A,) = p(f, A)
for all /: £ —> R convex, inf-bounded, and uniformly continuous on bounded
subsets.

A similar result holds for L and / convex and uniformly continuous.
The next examples point out the differences between some convergences.
Let E be a nonreflexive Banach space. In [BoFi] is constructed a sequence

(A„) c ?nl, uniformly bounded, and A £ W n Jf such that A = M -
X\m(An), but (An) is not IF-convergent (and not S-convergent, [SoZl]). That
example shows that even on sé = (& nZ%Z)(E) the convergence M is different
from the convergences studied here as 38a(p), (W n 38)(p), 3¡Za(p), (Jta n
W)(p).

Earlier we had the sequence (A„) with An = [0, en] and A = {0} in I2.
In this case A = X(p) - lim(An) for X = S", ltnf, 3ZZa ,38a,% <T\33,
convergences that are equivalent to M on I2 (which has Kadec property, see
[BoFi]), and also for X = Fa, but (An) is not Zp = 38(p)-convergent and
therefore it is not Z or //^-convergent.

Even in a reflexive Banach space W does not imply M (see [Be4 and BoFi]).
Hence W does not imply (f V\38)(p), FZ„ip), i%Za n %)ip) which are finer
than M .

Let E = lx, A„ = [0, e„], A = {0} as in Example 4.5. Consider X =
coïïv{é>i , ... , e„ , ...} £ 9? n 38 . Then d(A„ , X) = 0 but d(A,X)=l. Thus
(An) is not (eZn33)(p)-convergent. But (An) IF-converges to A (Proposition
4.2), for 3¡Z(jp) = Z%Z„(p), and therefore converges for (Xa n f )(p). In fact in
/' the convergences ZF, ^ n ^ , and ,FZa are equivalent. On the other hand
in /' M and K axe equivalent for sequences and therefore sup(IF, M) does
not imply (Wn&)(p).

We have no example to show that Z%Za(p) and (S?n^a)(p) are not equivalent.

10. Recapitulation
First let (E, d) be a metric space and sé = F(E). In this case, we dispose

of the following convergences H = F(q) = {E}(q) that is finer than Hp =
Zf8(q), which is finer than Zp = 38(p), which is finer, as its turn, than W =
&>(p) = Jf(p) = jfig) ; at last Z = F(p) is finer than Zp .

The relations between them are obtained trivially by comparing their classes
or using the inequality p < q .

Let now E be a n.v.s. On sé = fêiE) one has the implications mentioned
in the next figure. Except those concerning M all the implications are trivial
and obtained by comparing their classes or the inequality p < q . We remember
that S = ß?ip) and L = sup(!F, S) = &(p) = T(p). The convergences ^}(p)
and IZfip) do not appear in this figure. The implications concerning M refer
to sequences, while "<-—" signifies that E must be complete.

When E is a reflexive Banach space and its dual has Kadec property, we
have IF^Mon &ÍE) and so W <=> M (see [BoFi]).
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When dim(Tí) < oo , on ^(JE), we have Hp «• Zp «■ W •*=>• A" and so only
five different convergences remain 77, Z , IF, S, L.

When E = R all the convergences, excepting H iA„ = [-n, n]), coincide.
The former assertion is proved by the following examples in E = R2.

Example 10.1.

An = Us,^-)   s£r\,    A = {is,0)\s£R},    A = Hp-lim(An),

but does not converge for S, H (and so for Z, L).

Example 10.2.

An = {(s,t)\s<0,t>n(s+l)},    A = {(s,t)\s<0},    B = {(s, t)\s <-1}

(see [Wi, SaW]). We have A = S - lim(A„) and B = W - lim(^„). So S does
not imply L or Z .

11. Completeness for types p and q

The problem of the completeness of (sé , X, q ) is solved, using general re-
sults from [Bou3], where the problem of metrisability of the induced topology
is also solved. For Hp see [ALW, Lui, Be5].

The semimetric spaces (sé , X, p) axe not, generally, complete, as we shall
see in the sequel. We consider only the case ZF c X when the limit is unique
if it exists, and only the sequential completeness.

Note that the sequence (A„) c sé is Cauchy iff (d(An, X)) is convergent
in R for every X £ X. Thus (sé , X, p) is sequentially complete iff for every
sequence (An) c sé such that (d(A„ , X)) is convergent in R for every X e X
there exists A £ sé such that limd(An , X) = d(A, X) for every X £ X.

The next example shows that (sé , X, p) is not complete for «5* c sé and

Example 11.1. E = I2 , An = {e„} . For every u £ E, d(u, An) = \\u - e„\\ =
(\\u\\2 - 2(u\e„) + 1)1/2 -> (||w||2 + If'2, but (An) is not ^(p)-convergent.

Note that W can be described by a complete uniformity (in fact Polish)
when (E, d) is a Polish space (see [LeL, Be6]).

An interesting problem concerning the convergences X(p) is to find com-
plete uniformities, whose convergence be X(p), when (E, d) is complete. The
answer is known for W (loc. cit.) and for S (see [DBM, SoZl]).
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In order to show that (sé , X, p) is not complete it is sufficient to construct
an increasing sequence iA„) c sé such that cl((J„eNA) is not in sé or a
decreasing sequence iA„) c sé such that Ç]„€NAn ¿ 0 ana" (^«) does not
converge to A . The following examples use these criteria.
Example 11.2. Let E be a n.v.s., A„ = {0} U {x| ||x|| > n}. iA„) is decreasing
with n„6N An = {0} = A, but taking X0 = {Xy \X > 1}, y ¿ 0, diAn, X0) = 0,
diA, X) = ||y|| ^ 0. Thus (sé, X,p) is not complete for sé = F(E) and
XbX0.
Example 11.3. Let E = R, An = [-n, n]. (A„) is increasing and \Jn&NAn =
R.   Thus (sé , X, p) is not complete for sé d 3? n ^ with R i sé and
ycï.
Example 11.4. Let E = I2, An= cönv{^ , en+x, ...} . (A„) is decreasing and
n„6N^" = {0) = A, but d(An ,S) = 0 while d(A,S) = 1. Thus (sé, X,p)
is not complete fox sé D X nff, S = S(0, 1) £ X  O <F).
Example 11.5. Let E = I2, A„ = E„ . (An) is decreasing and Onexs^n =
{0} = A . For X c /2 ,

d(A,X)= inf 11*11,    </(¿„,X)= inf ||x - (x - .P„(x))|| = inf ||^,(jc)|| .
x€X x£X x€X

Then for X = {«e„|« > 1} € Fa we have d(A, X) = 1, while </(/f„, X) <
\\P„((n + l)e„+i)|| = 0.  Thus (sé, X,p) is not complete for sé d "Vc and

If E is a finite-dimensional n.v.s. there are only five distinct convergences:
H, Z, W, S, L, the last two referring to convex sets. There are known results
concerning the completeness of 77, W (loc. cit.) and S, L [DBM, SoZl]. The
next result refers to the convergence Z .
Theorem 11.1. Let E be a finite-dimensional n.v.s. and (An) c 38(E) besuch
that (d(An, X)) is convergent fior every X £ F(E). Then there exists A £
F(E) such that A = Z - lim(^„).
Proof. Taking X = {0} we get that (d(0, A„)) is convergent and therefore
bounded. For every n take a„ £ An suchthat ||zzn|| = d(0,An). As (a„) is
bounded, it has a convergent subsequence. Therefore A = limsup(^„) ^ 0.
Let a £ A, then (d(a, A„)) is convergent and liminf<7(a, A„) = 0, whence
limdia, A„) = 0 and so A c liminf(^4„). Hence A = K - lim(/4„). Suppose
that (An) does not Z-converge to A, i.e. (£2) does not hold. Then there
exists e > 0 and P c N infinite such that A„\B(A, 2e) ^ 0 for n £ P.
Let us take D„ = A„\B(A, e) for n £ P. Our aim is to construct X £ F
such that (d(A„ , X)) is not convergent. Let a„ = inf{||zz|| \u £ Dn) and ßn =
sup{\\u\\\u £ Dn). As A„ is bounded, ßn < oo. We have that lim(a„) =
oo ; otherwise (a„ ) contains a bounded subsequence, and consequently there
exists (un)n€Q c (Dn) (Q c P, Q infinite) such that (u„)n(EQ is bounded. As
dim(E) < oo we may suppose that there exists u = limneQ(u„). It follows that
u £ A, contradicting the fact that d(u„, A) > e for every n £ Q. Taking a
subsequence if necessary, we may suppose that for every n e N we have

An\B(A,2e)f0,    Dn = An\BiA,E)   and   a„+1 > ß„ + 1.
It follows that ßn-x < ßn-x + I < oí„ < ßn < an+l - 1 < cxn+l i.e. (q„)
and iß„) are (strictly) increasing sequences.   For every n £ N there exists
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un £ An\B(A, 2e).   Let us take X = cl{u2, w4, ... , u2n ,...}£ F.   Thus
d(A2k, X) = 0 for every k e N and d(A2k+l, X) = inî{d(u2n , A2k+x)\n > 1}.

But A2k+x = (A2k+l n B(A, £)) U D2k+l , whence

d(u2n , A2k+x) > min{d(u2n, B(A, e)), d(u2n , D2k+l)}
> min{e, d(u2n , D2k+X)} > min{e, 1}.

Indeed, a2n < \\u2n\\ < ß2„ and for u £ D2k+X , a2k+i < \\u\\ < ß2k+x , whence
for 2« > 2k + I, \\u2n - u\\ > \\u2n\\ - \\u\\ > a2n - ß2k+x > 1, while for
2n <2k+ I, \\u2n - u\\ > \\u\\ - \\u2n\\ > a2k+x - ßin > 1 •

Therefore (d(An , X)) is not convergent, a contradiction. Hence Z-lim(^„)
= A.   D

Note that the above result does not state that (38, F, p) is sequentially
complete (see Example 11.3).

12.  SEMICONTINUITY AND CONTINUITY OF
SOME OPERATIONS WITH SUBSETS

For sé c F(E) and X C F(E) one can be interested in continuity prop-
erties of operations like (A, B) h-> All B , (A, B) *-> An B , A >-> A n C,
A h-> Q>(A) (where O: E —> F is continuous), and for E a n.v.s., A i-> conv(^4),
(A,B)^A + B, (X,A)^XA.

In Theorem 3.3 we obtained that if A c liminf^,) then lim sup d(A¡, X) <
d(A, X) for all X £ F(E). Let us call this property Z+ upper semicontinuity
(u.s.c). We have the following simple implications:

(1) If <ï>: E -* F is continuous, with E,F metric spaces and A,-,
A £ F(E), A c lim inf(4) then ®(Äj c lim inf {9{A¡)).

(2) If Tí is a n.v.s. and A¡, A, Bit B £ F(E) such that A c liminf(^¿)>
B c liminf(5,) then cl(A + B) c liminf cl(^/ + B¡).

(3) If £ is a n.v.s. and A,■■, A e F(E), X,-, X £ R such that A c liminf(^,)
and lim(Xj) = X then XA c liminf^vl,).

(4) If E is a n.v.s. and A,■■, A £ F(E) such that A c liminf(yi;) then
conv(y4) c liminf(conv(y4,)).

(5) If E is a n.v.s. and C, A¡, A £ ZF(E) are such that A c liminf(^,) and
A n int(C) ^ 0 then A n int(C) c liminf(y4¡ n C). Moreover, if A and C are
convex we have Af)C c lim inf(^, n C).

In proving the above statements one must take into account that lim inf(A¡)
is always closed and it is convex when A¡ axe convex. Moreover for (5) one can
use that for A and C closed convex sets such that A n int(C) ^ 0 we have
AnC = cl(Anint(C)).

We give two proper continuity results.

Proposition 12.1. Let E be a metric space. Then the map (A, B) t-> AuB from
(F(E) ,X,p)x (F(E),X,p) to (F(E) ,X,p) is continuous.
Proof. Let (A¡), (B¡) c F(E) be X(p)-convergent to A, B £ F(E), respec-
tively, and X £ X. Then

\\vo.d(Ai U B,, X) = lim(min{ii(^,, X), d{B¡, X)})
= min{limdiAi, X), limdiBi, X)}
= min{d(A, X), d(B, X)} = d(AUB,X).
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Proposition 12.2. Let E be a n.v.s. and the family X such that ZF(E) c X c
38(E) and XX £ X for every X > 0, and X £ X. Then the map (X,A)^ XA
from (0, oo) x (F(E), X, p) to (F(E), X, p) is continuous.
Proof. Let (A,) c F(E) X(p)-comex%es to A £ F(E) and (Xf) c (0, oo),
lim(A¿) = X £ (0, oo). As ZF c X we have that A c liminf^,) and so
XA c X\minf(XiAi), which implies that limsupfi(A,^4,, X) < d(XA,X) for
every X £ X. Let now X e X be fixed, x £ X and a¡ £ A¡. Then

Xjd(Aj , X) - \X - A/I SUP ||x|| < A,'||£Z; - x|| -\X- X¡\ ||x||
xex

< \\X¡ai - XjX - Xx + XjX\\ = \\Xiuj - Xx\\,
whence

X¡d(A¡, X) - \X - X¡\ sup ||x|| < d(XjA¡, XX).
xex

Therefore Xd(A, X) < lim inf d(X,At, XX). As Xd(A, X) = d(XA, XX) and
XX £ X we obtain that d(XA, X) < liminfd(XiAi, X) for every X £ X.
Therefore X(p) - lim(A,^4,) = XA .

See [Be3] for a result concerning L.
The above result shows that the map (X, A) h-+ XA is Z^-continuous. This

statement is not true for Z .
Example 12.1. Let E = R2, A = {(s, t)\t > s2} and Xn = 1 + -\: (XnA) does
not Z-converge to IA = A .

Indeed, for X > 1, e(XA, A) = oo .   D

13. Concluding remarks
Throughout the paper we considered only two types, p and q , and various

classes X. We showed that a rich family of set convergences can be obtained
in this way, the most part of known convergences being among them.

To the natural quantities in the metric space (E, d) : d(x, Y), d(X, Y),
e(X, Y),h(X, Y),p(x, Y),p(X, Y),x(X, Y) and

k(X, Y) = max{p(X, Y), p(Y, X)}       (x £ E, X, Y £F(E)),
besides px(A, B) and qx(A, B) we can also consider for (A, B) £ sé x sé ,
X£X,

q'x(A, B) = sup \p(x, A) - p(x, B)\
xex

rx(A,B) = \p(A,X)-p(B,X)\
r'x(A,B) = \p(X,A)-p(X,B)\
sx(A,B) = \e(A,X)-e(B,X)\
s'x(A,B) = \e(X,A)-e(X,B)\
tx(A,B) = \x(A,X)-x(B,X)\

Using the well-known inequalities \d(x, X) - d

c 38, X c F)

c,
c.
c.

\p(x,X)-p(y,X)\<d(x,y)  (X e
triangle inequality, we get

XC
XcF).
XcF),

cF ,Xc
c38 ,Xc

y,X)\<d(x,y)  (X£F),
which are direct consequences of the

Px<qx<h,     r'x<q'x<h,     sx < h       (X £ F),
rX<h,     s'x<qx,     tx<q'x       (X £.
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As for p and q , corresponding to types q', r, r', s, s', t we obtain uniformi-
ties and set convergences. We remark that Hausdorff convergence is the finest
among them. As in §3, for ZF(E) c X we get that X(r) and X(s') axe finer
than W and so they are separated. If sé c X then (sé, X, s) is separated,
too. Note that, generally, (sé , X, r'), (sé , X, t), isé , X, q') axe not sepa-
rated, even for E = R2, sé = 5f(E) n &(E), S"(E) c X, as the following
example (due to B. Le Gac) shows: take ||(£, r\)\\ = \£\ + \n\, A = B(0, 1),
5 = [(-1,0), (1, 0)];then p(u, A) = p(u, B)  V« 6 R2.

Remark that the distal topology, introduced in [BP] for E a n.v.s. and sé =
W(E), X = 38(E), is induced by (sé ,X,r). We also note that [38(s') and
38(s)\ o 77 on sé = 38(E), Z => 38(r) on F(E) (see Corollary 7.3.),
Z =* 38(f) on 38(E) (Corollary 7.3), Z «► F(s) on 38(E) (Theorem 7.2),
Zp => 38(r) on F(E) (Corollary 9.3), Hp => 38(s') on F(E), and if A =
38is') - limiAi) then epiA, A¡) = 0.

We hope that some of these types will be useful in the study of set conver-
gences. After the paper was submitted, several interesting results were obtained
for the convergence induced by (^ V\38)(p) on W by G. Beer in [Be7, 8]. He
calls it the slice convergence. Being equivalent to Mosco convergence in reflex-
ive Banach spaces, it seems that it is the most appropriate substitute for Mosco
convergence in general normed spaces.
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