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Set Correlation and Contingency Tables
Jacob Cohen

New York University

Set correlation is a realization of the general multi-
variate linear model, can be viewed as a multivariate

generalization of multiple correlation analysis, and
may be employed in the analysis of multivariate data
in any form. Set correlation supplements the four
methods for analyzing two-way contingency tables de-
scribed by Zwick and Cramer (1986), and its applica-
tion to their example is illustrated. It gives the same
results for the overall association, and in addition, by
the use of nominal scale coding and partialling, it as-

sesses specific hypotheses about the details of the as-
sociation. Set correlation includes measures of strength
of association (including correlations and proportions
of variance), significance tests and estimation, power
analysis, and computer programs to implement the
calculations. Index terms: canonical analysis, con-
tingency table analysis, correspondence analysis, gen-
eral multivariate linear model, multivariate analysis of
variance, Pearson chi-square, set correlation.

Zwick and Cramer (1986) showed how the analysis of two-way contingency tables may be accom-
plished by four methods stemming from different traditions: conventional Pearson chi-square, multivariate

analysis of variance (MANOVA), canonical analysis, and correspondence analysis. They explicated the
relationship among the methods and showed that they produce equivalent results. The purpose of the

present article is to offer set correlation as yet another option for such analyses and to show that its

generality results in greater flexibility and information yield, so that it may often be preferred to other
methods.

Set Correlation

Set correlation (sc) is a realization of the general multivariate linear model and thus a natural

generalization of simple and multiple correlation (Cohen, 1982; reprinted as Appendix 4 of Cohen &
Cohen, 1983). In its fixed-model form, it generalizes univariate simple and multiple regression to their
multivariate analogues. sc is a multivariate generalization of multiple regression/correlation (MRc) and a

general data-analytic method (Cohen & Cohen, 1983; Pedhazur, 1982). It is therefore a general scheme
for studying the relationship between two sets of variables, X and Y, containing any number of variables

‘~ ~X s &reg;~Y~ °
MRC applications have shown that any information can be represented by a suitable choice of a set

of variables; the generality of sc, and its applicability to contingency tables, thus becomes clear, sc also
offers various measures of association between sets as well as significance tests and power analysis of
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hypotheses (Cohen, 1988, chap. 10). Unbiased estimates of its major measures of association have been
provided (Cohen & Nee, 1984), and computer programs are available for both mainframe computer
(Cohen & Nee, 1983) and IBM and compatible microcomputers (Eber & Cohen, 1987).

As is the case for MRC, partialling (residualization) plays an important role in sc. When a set A is
partialled from a set B, the 1~B variables in the resulting set B-A have zero correlations with all the kA
variables in set A. This device is employed in MRC to achieve statistical control (as in the analysis of
covariance and the more general analysis of partial variance), to represent conditional relationships
(interactions) and curvilinear components, and, with appropriate coding of nominal (categorical) scales,
to implement desired contrast functions among groups. It is the last of these that will be exploited in the
analysis of contingency tables.

Major of SC

Among the many available measures of multivariate association (Cramer & Nicewander, 1979),
multivariate R 2, Y, is demonstrably a natural generalization of multiple R2., (van den Burg & Lewis, 1988),
and thus may be interpreted as a proportion of (generalized) variance. Using determinants of correlation
matrices,

where R~ is the full correlation matrix of the Y and X variables,
is the matrix of correlations among the variables of set Y, and

Rx is the matrix of correlations among the variables of set X.
This equation also holds for matrices scaled in terms of variance/covariance or sums of squares/products.

R 2, y x may also be written as a function of the q squared canonical correlations (CR 2) where q =
rr~in(kY9kx)9 the number of variables in the smaller of the two sets:

In simple applications, the product of the complements of the CR2s is the familiar Wilks’ (1932) A, so
RY,x = 1 - A. More generally, A is the ratio of the determinant of the error matrix to the determinant of
the sum of the hypothesis and error matrices, however scaled (as in Equation 1).

Sets Y and X are generic, that is, set X may be an unpartialled set of independent variables B or a

partialled set B-A; similarly, set Y may be an unpartialled set of dependent variables D or a partialled set
D°C. Depending on whether and by what a set is partialled, the type of X,Y relationship may be &dquo;whole,&dquo; 

°

&dquo; Y- semipartial, &dquo; &dquo;~-semipartial,’ ~ or &dquo; bipartial, &dquo; and wher~ L7°C is related to R’C, the type of relationships
is &dquo;partial&dquo; (as in bivariate correlation). Matrix formulas for computing and A for these five types
of association are given in Cohen (1982, Tables 1 and 2).

When kY (or kx) = 1, multivariate R§ x specializes to multiple Ry.x (or ~.y).
Rao (1975) provided an F test for A: e

where
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and

except that when k2,k2, = 4, s = ~ . When set C‘ or set s4 does not exist, its k = 0.
The Rao F test specializes to the standard null-hypothesis F test for the multiple R2 (i.e., q = 1).

For this case, and when q = 2, the test is exact; otherwise, it provides a good approximation. Its Type
II error (power) validity has also been demonstrated (Cohen & Nee, 1987).

to Tables

An I x J contingency table represents the relationship between two categorical (nominal scale)
variables according to their joint frequencies. As MRC has made familiar, such group-membership variables

may be coded in a variety of ways and subjected to correlational analysis (Cohen & Cohen, 1983). For
a scale of C levels, each of these coding methods results in C - 1 &dquo;score&dquo; vectors, which, when used
as a set, are equivalent and fully describe group membership. For example, for any given dataset, they
will produce the same multiple ~2 when used as a set of independent variables. The utility of these
different coding methods lies in the fact that each provides, through partialling, a set of contrast function
of group membership, as will be illustrated.

The contingency table used illustratively by Zwick and Cramer (1986) came from a fictitious survey
presented by Marascuilo and Levin (1983) as the responses of 500 men to the question &dquo;Does a woman

have the right to decide whether an unwanted birth can be terminated in the first three months of

pregnancy?&dquo; Table 1 gives the 3 x 4 (response alternative x religion) contingency table.
To approach this problem by means of sc, it is necessary to express the categorical variables in a

form suitable for correlation. There is literally an infinitude of different codings of the C levels of a

categorical scale into C - 1 score vectors (Cohen & Cohen, 1983, chap. 5), all of which, when treated
as sets, fully represent the group-membership information. Several of these C - 1 vectors have the

following property: When the remaining C - 2 vectors are partialled from each of these G - 1 vectors,
the resulting variable implements a specific comparison (contrast) among the C groups. Three such useful
coding methods, illustrated in Table 2 for Religion and Abortion Response, are dummy variable coding,
effects coding, and contrast coding.

Dummy variable coding. The coding for Religion provides a good example. Each vector, unpar-
tialled, is a binary (dichotomous) variable that distinguishes one of the religious groups from the other
three, thus C-0 distinguishes Catholics from the pooled remaining groups. However, when partialled by
the other two vectors, it implements the distinction between the group in question and the group coded
0, 0, 0, the Other group in this example. Thus, C-0 partialling I’-&reg; and J-0 (in the conventional notation,

Table 1

Responses of 500 Men to Abortion Survey

Note. From Marascuilo and Levin (1983, p. 452).
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Table 2

Coding Diagrams for Religion and Abortion

Responses, and Combined Contrast Coding

C-0-P-0,J-0) represents a two-group comparison between Catholics and Others, and analogously for
the other two partialled variables, P-0-C-0,J-0 and J-0-C-0,P-0. Dummy coding of the Abortion

Response categories produces Y-1~°l~-~, a comparison of Yes respondents and No Opinion (Don’t know,
&reg;r ~7) respondents, and lJ-17°~’-I~, a comparison of No respondents and No Opinion respondents. Dummy
variable coding is optimally used when one of the groups is a reference or control group with which the
other C’ - 1 groups are to be compared. The &dquo;indicators’’’ variables employed by Zwick and Cramer
(1986) to represent Religion and Abortion Response in their MANOVA and canonical analyses are dummy
variables, but these methods do not exploit the interpretive meaning of partialled variables.

Effects coding. As can be seen in Tables 2a and 2b, the pattern of effects coding is the same as
for dummy coding except that the group coded with a string of Os is now coded with a string of - Is.
If the Protestant &dquo;effect&dquo; in Table 2a were to be used in a regression analysis (where partialling produces
f-C.J), it would yield as its regression coefficient the F mean of the Protestant sample minus the equally-
weighted (6 ‘u~w~i~hted&dquo;) mean of the means of the four groups, the quantity which is defined as an
effect in ANOVA. In sc and correlation analysis generally, when partialled by the other effects-coded
variables of the set, it produces a comparison of the group coded 1 with an equally-weighted combination
of all the other groups.
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Thus, P°~’,°I produces a comparison of the Protestants with equally-weighted Catholics, Jews, and
Others. Analogously, the partialled effects-coded Abortion Resp&reg;~sc Y°~1 in Table 2b compares Yes

respondents with an equally-weighted combination of the No and No Opinion groups. Effects coding is

optimally used when C - 1 groups are to be treated on an equal basis, each to be compared with all the
others. One of the groups is inevitably left out; if its effect must be explicitly assessed, the analysis may
be repeated with the coding changed to include it.

Contrast coding. This form of coding for various contrast functions among the groups
other than those provided by dummy and effects coding. For example, for four groups, three contrasts

may be coded to represent two binary variables and their interaction, as in a 2 x 2 factorial design. The

particular contrasts chosen for religion in Table la, whcn partialled, are those of a simple nested design:
114-A#°C-P,J-O contrasts the equally-weighted combination of the Protestants and Catholics (the Majority
religions) with that of the Jews and Others (the Minority religions). C-P°M-M,J-<9 compares the Catholic

and Protestant groups (ignoring the other groups), and J-0-M-M,C-P compares the Jewish and Other

groups (again ignoring the other groups). The contrast coding for the Abortion Response in Table 2b

yields Y-l~°~-17, the comparison of the Yes and No respondents ignoring the No group, and
K-D.Y-N, a comparison of the equally-weighted combination of the Yes and No groups with the No

Opinion group.
Note that because sc is correlational, its results will be invariant over linear transformations of the

coding values in Table 2. Thus, if in Table 2a, P were to be coded 3, 6, 3, 0, or in Table 2b9 ~-D 3,
3, 0, none of the sc results using these sets would be affected.

The choice of coding method for each variable is dictated by the substantive issues or hypotheses
of interest. Assume that in the present problem, the religious comparisons of the nested design are of
interest, and they are to be implemented for the Yes-No contrast and for the contrast of having a Yes or
No response versus not having an opinion. Thus, the best choice for both variables would be the contrast

coding given in Tables 2a and 2b.

Contrast of Religion

Each of the 500 respondents falls in one of the 12 cells of Table 1, and each cell has its distinctive
set of &dquo;scores&dquo; on the three Religion variables and the two Abortion Response variables. Table 2c
combines the selected coding to show the &dquo;scores&dquo; on the five variables for each cell. for example,
the Protestants responding &dquo;no&dquo; are represented by the values 1, - 1, 0, - 1, 1. A full score matrix
would include 82 such sets of values to represent the 82 cases in that cell. A complete data matrix would
contain a row for each of the 500 respondents, each with five scores representing Religion and Abortion

Response. With computer packages such as SYSTAT (Will~ir~s~n9 1986), it is unnecessary to physically
represent all 500 rows; the 12 rows plus the cell IVs employed as weights are sufficient.

The sc analysis proceeds with the correlation matrix among the five variables for the 500 cases,
given in Table 3. Note that these are simple product-moment correlation coefficients-no partialling has
taken place. Note also that although the contrast coefficients for Religion given in Table 2 are mutually
orthogonal, because the lVs for the four religions are not equal, the correlations among ~-1~9 C-P, and
J-0 for the 500 cases are not 0. The same holds for Y-N and K-D. Because the correlations are for

unpartialled variables, their interpretation is at best unclear; in any case, they do not carry the contrasts
intended by the hypotheses.

The analytic strategy recommended for sc is to first examine the relationship between the sets made

up of multiple variables, and then to pursue those involving their constituents, that is, to determine the
source guided by specific a priori hypotheses. To minimize the experimentwise Type I error, when the
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relationship involving a set is not significant, its constituent variables are not further analyzed. This is
an adaptation of Fisher’s method of &dquo;protected&dquo; t tests, and is the same strategy recommended for MRC

(Cohen & Cohen, 1983, pp. 172-176). When applied to contingency tables, the constituent variables are

partialled variables that carry the contrasts defined by the hypotheses.

Results

First, the relationship between the set X for Religion (REL) and the set Y for Abortion Response
ways examined. The determinants for the total matrix in Table 3, and the Y and X submatrices
thereof, were substituted in Equation 1 to find RY.x = 1 - [.8494/(.9951)(.9280)] = .080. For the con-
stituents of the Rao F of Equation 3, ky = 2 and kx = 3 (and both kc and kA are 0). Therefore, Equation
4 gives numerator df (u) = 2(3) = 6, and because the s of Equation 6 works out to 2, Equation 5 gives
denominator = 2[500 - 0 - (2 + 3 + 3)/2] + 1 - 6/2 = 990. For R 2 , between whole sets, Wilks’
A = 1 - Ry.x = 1 - .080 = .920, so Equation 3 gives F = (.920- 1/2 - 1)(990/6) = 7.03, which with 6
and 990 df is highly significant. (These and the computations that follow were performed using SETCORAN,
a computer program for IBM and compatible microcomputers, which provides more detailed output than
is presented here, including individual regression analyses on all the variables; see Eber & Cohen, 1987.)

Table 4 displays these results in line 1 and those of the follow-up tests in logical order, using the

protection strategy. The unsquared correlations are also included because they give the direction of the
differences when single (albeit partialled) variables are correlated. Line 1 shows that there is a modest

but significant degree of association overall between REL and ABO, that is, the religious groups differ in
their response to the survey question (R 2, Y, = .080). However, lines 2 and 3 indicate that although the

religious difference with regard to the Yes-No contrast is both material (R 2’, y = .073) and significant, it

is neither for the Opinion-No Opinion distinction (l2y,x = .008). Note that each of these RY.xs is a multiple
the special case where one of the sets has a single (albeit partialled) variable. However, such constituent

are not, in general, additive. (T2y,,, another measure of multivariate association, does have additive
properties; see Cohen, 1982; van den Burg & Lewis, 1988.)

Because the religious groups show no significant difference in regard to the Opinion-No Opinion
contrast, following the protection principle, its relationships with the individual contrasts in REL were not

pursued (they were, in this instance, all tiny and nonsignificant). Line 4 shows that Majority-Minority
contrast accounts materially (R Y, 2, = .066) and significantly for (generalized) variance in the ABO set.
When this is followed up by testing the Majority-Minority contrast for the Yes-No contrast in line 5, it,
too, is found to account significantly for variance in the latter, also with R 2, Y, = .066. Note that this is a
simple bipartial relationship, that is, a relationship between two single variables that are differently

Table 3

Correlations Among Abortion Response and

Religion Variables, Both Contrast-Coded
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Table 4

SC Analysis of Religion Versus
Abortion Response, Both Contrast-Coded

Note. ABO = Contrast-coded Abortion Response set: Y-Tl, K-D.

REL = Contrast-coded Religion set: M-M, C-P, J-0.

partialled. Thus, Ry,x = r°~YN.~_D»n~-r~~c-P,~-o> - .258; the negative sign is meaningful and indicates that
the majority religions gave more No (relative to Yes) responses than the minority religions. Finally, lines
6 and 7 show that the other two nested religious contrasts do not relate significantly to the ABO set.

In summary, the sc analysis has not only assessed the overall relationship between religion and
abortion response, but has identified its only demonstrable source to be the greater rate of No (compared
to Yes) responses of the majority religions compared with the minority religions.

Effects Coding for Religion

What if other specific hypotheses, hence other coding, had been chosen for the nominal scales being
related? It would have been quite reasonable to use effects coding for REL (Table 2a), thus contrasting
individually three of the religious groups with an equally-weighted combination of the others. On the
other hand, no alternative to the contrast coding used for ABO seems sensible. For illustrative purposes,
the analysis was repeated with REL effects-coded, leaving the ABO contrast coding unchanged. The resulting
correlation matrix is given as Table 5.

The change in coding has resulted in changes in all the correlation coefficients except that between
Y-N and K-D, for which the coding did not change. As was the case in Table 3, because the correlations
are for unpartialled variables, their meaning is unclear and, in any case, they do not carry the intended

comparisons.
This matrix was subjected to the same analysis as was that of Table 3; the results are summarized

in Table 6. It is instructive to compare Table 6 with the summary of the previous analysis summarized
in Table 4. Note first (line 1) that the overall relationship between REL, now effects-coded, and ABO is

exactly as before. This illustrates the fact that the information carried by a set treated as a whole is
invariant over changes in coding. (Nor would line 1 have changed had ABO been differently coded.) For
the same reason, lines 2 and 3 are also unchanged from Table 4. As before, there is no evidence that
the religions differ with regard to the Opinion-No Opinion contrast (line 3), and that line of follow-up
analysis is not pursued further.

Changes begin to occur with line 4, where the analysis follows up the &dquo;effects&dquo; of REL rather than

the contrasts that were its previous constituents. It is found that each of the religions coded has a significant
effect on the ABO set (lines 4, 6, and 8), and more particularly, each has an effect with regard to the
Yes-No contrast component of the ABO set. The bipartial correlations for C ( - .192)9 ~ ( - .1C0), and J
(.108) show the degree and direction of the effect. Thus, Catholics’ tendency to respond Yes rather than
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Table 5

Correlations Among Abortion Response (Contrast-
Coded) and Religion (Effects-Coded) Variables

No is significantly less than that of the equally-weighted combination of the remaining groups, and the
same is true for Protestants, whereas for Jews it is significantly more; for each group the tendency is to
the degree indicated by their bipartial correlations. In summary, from this analysis it would have been

learned that each religion departs significantly from the aggregate of the others in regard specifically to
the Yes-No response.

&reg;rdinarily9 it would not be advisable to run alternative coding methods on the same problem, except
for purely data-exploration purposes. Coding methods embody specific hypotheses, and pursuing many
possibilities invites a rapid escalation of the risk of &dquo;finding&dquo; things that are not there (i.e., of the
researchwise Type I error). This was done above for illustrative purposes, not to set a bad example. This
risk can be controlled by a Bonferroni reduction of the significance criterion, but this is, of course,

accompanied by what may be a fatal loss of statistical power (Cohen, 1988, chap. 10).

Discussion

sc generally provides a unified framework within which to systematically study relationships among
phenomena, unconstrained by level of measurement, It proceeds systematically to analyze these rela-

tionships in terms of specific a priori hypotheses. sc offers correlation coefficients and proportions of
variance as measures of association, and a formal basis for hypothesis testing, estimation, and power
analysis. These features are brought to bear in the sc analysis of contingency tables, where the use of
different coding schemes for nominal scales, together with partialling, provide the desired specificity of

analysis, as was illustrated above.
Zwick and Cramer (1986) showed that Pearson chi-square analysis, MANOVA, canonical analysis,

and a form of correspondence analysis all yield equivalent results when applied to an 7 x J contingency
table, using Table 1 for illustration. To implement their analyses, I and J were expressed respectively as
1 - 1 and J - 1 &dquo;indicator&dquo; (specifically, dummy) variables, and the correlation matrix among these
variables was determined. They showed that the matrix equation whose solution yields the squared
canonical correlations between the two sets is readily transformed into a form whose trace is the Pillai-
Bartlett statistic used in MANOVA and other multivariate methods. Another version of the canonical analysis
yields the same function computed for the conventional Pearson chi-square. Finally, they showed how
the solution of this version of the canonical analysis may be converted to the solution of a first-order

correspondence analysis.
The results of the four methods are equivalent in the sense that they produce the same significance

test results for the overall association between I and J. The Pillai-Bartlett statistic is the sum of the squared
canonical correlations, which, when multiplied by N, is approximately chi-square distributed with
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df = kk,,; given the demonstrated equivalence, all the methods produce the same chi-square value for
the same df. (For the example = 40.17, ~=6, and p = .000.) Equation 2 shows that and
therefore Wilks’ A, is also a function of the squared canonical correlations. The Rao F test applied to

jR~ is another of several multivariate test statistics that are somewhat more accurate than the Pillai-l3artl~tt

chi-square procedure, although for large samples the tests are virtually interchangeable. (The Rao test is

preferred primarily because, as noted, it is a direct generalization of the conventional F test on multiple
and because evidence exists of its robustness in power estimation; see below.)

It was therefore inevitable that the sc analysis would show exactly the same highly significant overall
association between Religion and Abortion Response (line 1 in Tables 4 and 6) as was found by the other
methods. Following this first step, the sc analyst proceeds systematically to analyze the association in
terms of specific a priori hyp&reg;theses9 each with measures of the strength of association and a significance
test.

sc does not do everything. Correspondence analysis is a form of metric multidimensional scaling
(&dquo;dual scaling&dquo;; Tenenhaus & Young, 1985) primarily employed to generate optimal scale values for
the categories of nominal scales. The scale values are optimal in the sense that a variable so scaled will
yield a maximum F ratio as the dependent variable in an ANOVA with the other categorical variable’s

groups. The utility of the method lies in its ability to represent the rows and columns as I + J points in
a q-dimensional space, of which the largest two dimensions are often sufficient for representation. By
portraying such characteristics as religions and abortion responses as points on a graph, affinities and

disparities can be observed both within and between religions and responses. It is easy to see the virtues
of correspondence analysis as an exploratory tool. Note, however, that the scale values for I and J, having
been generated to be optimal relative to each other, have no necessary meaning when either is related to
some third variable.

Zwick and Cramer showed, moreover, that the solution of the matrix equation of the canonical

analysis also produces the optimal weights; it follows that the MANOVA analysis does as well. Thus, except
for the Pearson chi-square test, all of the methods they described may be employed to obtain this useful

portrait of the two-way contingency table. Correspondence analysis also generalizes to multi-way fre-

quency tables.

sc may also be used in the analysis of contingency tables of higher order. Assume that in the above

example, data were available for the region in which the respondent lives. These data could be coded

(say, using effects coding) and partialled from REL and ABO to assess their relationship &dquo;controlling&dquo; 
9

Table 6

SC Analysis of Effects-Coded Religion
Versus Contrast-Coded Abortion Response

Note. ABO = Contrast-coded Abortion Response set: Y-N, K-D.

REL = Effects-coded Religion set: C, P, J.
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for region (i.e., their pooled within-region associations). The rest of the analysis would be as before,
except that region would additionally be partialled in the X and Y sets throughout. Also, as a condition
for pooling, or as an issue in its own right, the analyst might wish to assess the interaction of religion
by region (i.e., the homogeneity of the REL vs. ABO association over regions). Because sc is a multivariate

generalization Of MRC, this can be accomplished exactly as in MRC, using as the X set the REL x ABO

product set from which REL and ABO have both been partialled, and using the Y set as before.
Indeed, other variables to be included in the analysis need not be coded as nominal scales. Quantitative

variables, such as years of education and/or annual income, can be treated as was region, either as single
variables or as sets (Cohen & Cohen, 1983, chap. 6, 8).

A problem posed by all of the standard multivariate significance tests is their assumption of multi-
variate normality for the dependent variable set, which is patently not met by contingency tables. Some
monte carlo work Hearing completion provides some reassurance of the robustness of the Rao F test. For
five null-association 3 x 4 contingency tables with marginals of varying degrees of skewness and for
l~ = 60, 120, and 240, actual Type I error rates were determined for the nominal .01 and .05 levels

using 2,000 replications for each of these 15 combinations of conditions. The actual rates overall were
.012 and .050, respectively. (Results for N = 30 were poorer: .023 and .056.) Also, for five 3 x 4 tables
of varying degrees of association, power values computed using the noncentral F distribution hardly
differed from the monte carlo results (overall mean difference = + .004).
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