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Abstract—This paper considers the problems of channel es-
timation and adaptive equalization in the novel framework of
set-membership parameter estimation.Channel estimation using
a class of set-membership identification algorithms known as
optimal bounding ellipsoid (OBE) algorithms and their extension
to track time-varying channels are described. Simulation results
show that the OBE channel estimators outperform the least-
mean-square (LMS) algorithm and perform comparably with the
RLS and the Kalman filter. The concept of set-membership equal-
ization is introduced along with the notion of a feasible equalizer.
Necessary and sufficient conditions are derived for the existence
of feasible equalizers in the case of linear equalization for a linear
FIR additive noise channel. An adaptive OBE algorithm is shown
to provide a set of estimated feasible equalizers. The selective
update feature of the OBE algorithms is exploited to devise
an updator-shared scheme in a multiple channel environment,
referred to as updator-shared parallel adaptive equalization (U-
SHAPE). U-SHAPE is shown to reduce hardware complexity
significantly. Procedures to compute the minimum number of
updating processors required for a specified quality of service
are presented.

I. INTRODUCTION

CHANNEL equalization is a common signal processing
technique that compensates for channel-induced signal

impairment and the resulting intersymbol interference (ISI) in
a digital communication system [1], [2]. Insufficienta priori
information about the channel and, especially in the case
of wireless channels, the time-varying nature of the channel
response, necessitate adaptive equalization. Linear transversal
equalizers and decision feedback equalizers (DFE’s) have been
used for many decades in conjunction with deterministic or
statistical least-squares (LS) algorithms, like the least-mean-
square (LMS) algorithm [1], [3], the Kalman filter [4], [5], and
the recursive least-squares (RLS) algorithm [6], [7], to adjust
the equalizer coefficients. Parameter estimators can either be
employed to directly adapt the equalizer taps or to estimate
the impulse response of an FIR channel model, which in turn
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is used to compute anoptimal equalizer, usually in the sense
of MMSE.

In this paper, channel estimation and equalization prob-
lems are addressed in the framework of a novel system-
identification paradigm, viz., set-membership identification
(SMI). The SMI approach assumes set-theoretic (instantaneous
and deterministic) as opposed to statistical information about
the model to compute sets of parameter estimates in the
parameter space, called membership sets, that are consistent
with the model assumptions and observations. Typical set-
theoretic assumptions on the noise are those of bounded
magnitude or membership in an ellipsoid.

Among many SMI algorithms, the more popular ones are
a set of algorithms termed optimal bounding ellipsoid (OBE)
algorithms [8]–[11]. The OBE algorithms provide ellipsoids
in the parameter space that outer bound the membership set
and incorporateoptimizationof the size of the ellipsoids in
some meaningful sense. Despite the fundamental difference
in their approaches, the OBE recursions are strikingly similar
to those of RLS. Moreover, the centers of the ellipsoids in
the OBE algorithms are known to be certain weighted LS
estimates [11]. The resemblance of the OBE algorithms to
the least-squares algorithms, both in terms of the estimates
and the implementation of recursions, makes the former an
attractive practical estimation tool since LS techniques are
used widely, and a large body of work exists on their efficient
implementations. Systolic array implementations of the OBE
algorithms are discussed in [12].

The OBE algorithms offer a number of advantages over
LS techniques. First, they provide an ellipsoidal bound as
an “overlay” over the weighted LS estimate. Second, in the
context of adaptive tracking of time-varying parameters, the
OBE algorithms offer, in a natural way, an indication of loss
of tracking. Such information can be invaluable in preventing
runaway errors by restarting the algorithm when tracking
is lost. Third, earlier studies [9], [11], [13] on the OBE
algorithms have shown that they exhibit superior tracking
and convergence properties compared with the LS algorithms.
Fourth, one of the most attractive features of the OBE algo-
rithms, which also forms a basis for the updator-shared scheme
to be presented in this paper, is the novel data-dependent
weighting approach, which results in adiscerning update
strategy for the parameter estimates. Unlike the LS estimation
schemes that require continual updating regardless of the bene-

1053–587X/98$10.00 1998 IEEE



GOLLAMUDI et al.: SET-MEMBERSHIP ADAPTIVE EQUALIZATION 2373

fit provided by the data, the OBE algorithms can “intelligently”
evaluate incoming data for their potential to improve the
quality of the estimate and weight the data accordingly. It is
common for the algorithms to discard 70–95% of the data
while exhibiting performance very similar to, if not better
than, the LS estimators. The large idle times of the parameter
updators in OBE-trained equalizers are exploited in Section V
to devise an updator-shared scheme, which is referred to as
updator-shared parallel adaptive equalization (U-SHAPE), for
a number of parallel channel estimators/equalizers.

The notion ofset-membership (SM) equalizationis intro-
duced in this paper. An SM equalizer constrains the error
(i.e., the Euclidean distance between the transmitted and
equalized symbols) to lie within a specified quantity for all data
consistent with the assumed set-theoretic assumptions. This is
fundamentally different from conventional minimum mean-
squares and LS equalizers [1] in the approach to minimizing
ISI. The objective of OBE algorithms for SM equalization
is to estimate a set offeasible equalizersthat achieve this
deterministic specification on the symbol error.

The discerning update feature of SM equalization is ex-
ploited in this paper to reduce the hardware complexity of
a multiple-channel communications system. The proposed
scheme is applicable to any system that involves independent
adaptive filters running simultaneously at the same location,
such as a bank of equalizers at the base station of a time-
division/frequency-division multiple access cellular system or
a receiver employing diversity channels. Infrequent updating
facilitates sharing a small number of updating processors
among a larger number of channels via U-SHAPE [14]–[16].
Such sharing of processors is not possible with conventional
recursive schemes (such as RLS/LMS) since they entail up-
dating at every instant.

Section II gives a summary of the SMI method and a
generalized OBE algorithm. Channel estimation based on the
SM framework and an extension to time-varying channels
are presented in Section III. SM equalization is defined in
Section IV, and an OBE solution is proposed. The existence
of a feasible equalizer set and its properties are also discussed
in this section. The design of an updator sharing scheme via
U-SHAPE is described in Section V. Concluding remarks are
made in Section VI.

II. SET-MEMBERSHIP IDENTIFICATION

AND THE OBE ALGORITHM

In the set-membership framework, the linear-in-parameter
model

(1)

is considered, where is the underlying complex-valued
parameter vector to be estimated, andis the measurable -
dimensional input vector to the system. Note that the class of
systems modeled by (1) includes the ARX model in which
is the regressor vector of the input and output sequences and
several nonlinear systems of practical importance. Specifically,

may contain nonlinear functions of past outputs, as is
the case in decision feedback equalization. The noiseis

assumed to be bounded in magnitude with a known bound,
i.e.,

(2)

It is pertinent to note that system identification with bounded
noise has been treated in the LS framework by imposing a dead
zone to the update recursions [17]. Moreover, LS estimation
under a bounded-disturbance assumption has also been studied
in [18].

Combining (1) and (2) yields theobservation-induced set,
which is defined as the set of all parameter vectors that are
consistent with the assumed model and the observation at time
instant

(3)

where is the -dimensional complex Euclidean space.
The membership set is defined as

(4)

Clearly, if is time invariant, then for all .
The membership sets as defined in (4) are convex polytopes

in the parameter space that are not easily tracked. OBE
algorithms seek ellipsoidal outer approximations of the mem-
bership sets. The seminal paper in the development of OBE
algorithms was by Fogel and Huang [8]. An OBE algorithm
featuring a simplified (linear complexity) information checking
procedure was developed by Dasgupta and Huang (D–H/OBE
algorithm) in [9]. Other contributions to the development of
OBE algorithms include the works of Delleret al. [10]–[12],
[19], Nortonet al. [20], [21], and Walteret al. [22]. To present
a general OBE algorithm, we adopt the formulation given by
Deller et al. [10]. Assume that at time instant , the exact
membership set is outer bounded by the ellipsoid
described by1

(5)
where

positive definite matrix that describes the shape,
orientation, and size of the ;
positive number that, together with , defines the
size of ;
geometric center of the ellipsoid.

An ellipsoid that contains the intersection of and
is given by a linear combination of (3) and (5) [9]

(6)

where and are parameters to be chosen to
optimize a measure of the size of . Different optimality
criteria lead to different OBE algorithms. It is straightforward
to show that describes an ellipsoid, and

(7)
1Throughout this paper,x�, xT , xH , andkxk denote the complex conju-

gate, transpose, complex conjugate transpose, and the two-norm, respectively,
of the vectorx.
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where is positive definite, and is the geometric center
of . The D–H/OBE algorithm uses

where and defines , which is the optimal value
of , as the one that minimizes . It has been shown in
[9] and [23] that is an upper bound on a constant multiple
of the estimation error, assuming a persistency of excitation
condition. An update is not required if the optimal values of

and are , and . The equivalent condition
in the case of D–H/OBE is . The condition that
checks if an update is required or not is called theinformation
evaluation criterion. D–H/OBE is particularly attractive for
the updator sharing scheme (U-SHAPE, see Section V) since
its information evaluation criterion is of linear computational
complexity. In contrast, most other OBE algorithms require
quadratic computational complexity and thereby do not derive
any significant computational advantage via updator sharing.
However, approximate tests for information evaluation that
reduce the computational complexity exist in the literature
[11]. The update equations for the D–H/OBE algorithm for real
data are given in [9]. By extending those results to complex
data, we obtain the update equations at time instant:
if , where , then

and

(8)

else

where it is shown in (9) at the bottom of the page, and where
is a design parameter. The above algorithm, like

all other OBE algorithms, assumes knowledge of a noise bound
. If reliable noise bounds are not available or if the noise

bound is time varying, we can employ bound-tuning strategies
like the ones proposed in [20] and [24]. Further, previous
studies have shown that the OBE algorithms are quite robust
with respect to occasional noise bound violations, although

theoretically, the OBE algorithms can diverge because of
bound violations. The case of Gaussian noise is considered
in the following section.

III. CHANNEL ESTIMATION USING OBE ALGORITHMS

Consider a discrete-time complex baseband equivalent
model of a digital communication channel with two-
dimensional (2-D) signaling (e.g., -QAM, -PSK for
any ) comprised of everything from the input of the
transmitting filter to the output of the sampler at the receiver.
As shown in Fig. 1, the transmitted sequence is denoted by

, channel impulse response by ,
additive noise sequence by , and channel
output sequence by . The equalizer will be
considered in the next section. In this section, we describe the
application of OBE algorithms to the estimation of . The
channel is described by an FIR model with additive noise

(10)

In vector notation, the above relation can be rewritten as

(11)

where , and . Note
that an IIR filter formulation also leads to (11), where
contains past outputs. Since (11) is in the same form as the SMI
model (1), OBE algorithms find direct application in estimating
the channel vector .

Additive noise in a communications system is usually
modeled as a Gaussian process. Bounded noise is theoretically
essential for the OBE algorithms, and even a single violation
of the bound can potentially make the membership set empty.
However, as discussed below, this does not pose a serious
practical problem.

Assume that is an ergodic zero-mean Gaussian process
with variance . The probability that the noise violates the
assumed bound is , where is the function.2

For instance, if , model violations occur less than
0.3% of the time. It is theoretically possible for the true
parameter to fall out of the ellipsoidal estimate due to these vi-
olations; however, repeated experiments by several researchers

2TheQ function is defined asQ(x)
�
= 1

x (1=
p
2�)e�z =2 dz:

if

if

if

if

(9)
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Fig. 1. Discrete-time model of a communication system with equalization.

have shown that the OBE algorithms do not diverge in the
presence of infrequent model violations (e.g., when ).
Moreover, infrequent model violations have been shown not to
deteriorate the performance of these algorithms significantly in
numerous simulations [9], [13], [24]. Such robustness may be
attributed to the redundant region around the true membership
set provided by ellipsoidalouter approximation involved in
each updating instant. In the unlikely event that the ellipsoids
lose track of the true parameter, an indication of loss of
tracking, though not necessarily immediate, is provided by
the sign of . Such an indication may be used to perform a
simple rescue procedure to recapture the true parameter [13].
Further, once the ellipsoid has converged to the steady state,
the corresponding point estimate will produce an output error
whose magnitude is at most whenever the true noise is
smaller than (since data consistent with the assumed model
do not result in an update in the steady state). In the above
example, the steady-state estimate will produce an output error
smaller than the noise bound more than 99.7% of the time.

In the case of a time-varying channel, a state-space model
can be used to represent the dynamics of the channel vector
and the observation model (11) as

(12)

(13)

where is a known sequence of matrices, and is a
disturbance known to belong to the ellipsoidal bound

(14)

In many cases, the only available set-theoretic knowledge on
the channel dynamics could be an upper boundon the
magnitude of the channel vector jump at each time. In such
cases, we can make the identity matrix (or , where

) and let so that

(15)

To estimate the channel vector using an OBE algorithm,
let be a known ellipsoid such that . We need to
compute the set of all vectors that result from transforming
each point in according to (12) for all satisfying (14).
This set, which is given by

(16)

clearly contains and is not an ellipsoid in general.
Techniques have been proposed in [25]–[27] to outer bound
the above set by ana priori (i.e., before using the observation

at time ) ellipsoid . The result proposed in [27]
that optimizes a positive definite matrix added to is

(17)

where is the identity matrix of size . A summary
of techniques for state bounding by ellipsoidal algorithms is
found in [28].

Since belongs to the set in (16), which is, by con-
struction, a subset of , the true channel vector
belongs to the ellipsoid . Since also belongs to the
observation-induced set at time , , the SMI update
equations can be used to find the newa posteriori ellipsoid

that outer bounds . A point estimate of
the channel vector at timeis taken to be the geometric center

of the a posteriori ellipsoid .
Simulation Results:In this section, we examine the per-

formance of an OBE channel estimatorvis-á-vis those using
conventional techniques. For the time-invariant case, RLS
(with an exponential weighting factor ) and LMS
(with a step-size ) algorithms are used for com-
parison, whereas a Kalman filter (KF) is used in the case of
time-varying channels. The complex form of the D–H/OBE
algorithm, which is described in Section II, is used for the
OBE estimator. Extension to time-varying channel estimation
is incorporated in the second example.

A randomly generated time-invariant complex-valued chan-
nel vector of length five and an output SNR of 15 dB is
considered first. The additive noise is a realization of an
AWGN process. The noise bound is chosen to be ,
where is the standard deviation of the noise. The mean-
square error performances of D–H/OBE, RLS, and LMS
estimators averaged over 1000 independent runs are illustrated
in Fig. 2. The plots show comparable performances of the
D–H/OBE and RLS algorithms, whereas LMS is much slower
in convergence.

A time-varying mobile channel is simulated with the tap
coefficients as the outputs of two-pole Butterworth lowpass
filters with white noise inputs. The cut-off frequencies of the
filters are taken to be the Doppler frequency shift in the mobile
communication environment. We simulate the channel with a
Doppler frequency of 100 Hz and a symbol rate of 25 000
symbols/s. Fig. 3 shows the tracking behavior of D–H/OBE
and the Kalman filter algorithm for an SNR of 10 dB. For
illustration, the figure shows just the real part of the second
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Fig. 2. MSE performance in the estimation of a time-invariant channel.

Fig. 3. Tracking of a mobile channel using D–H/OBE and RLS algorithms.

tap coefficient. Table I shows the mean-square prediction
errors produced by the D–H/OBE algorithm and the KF for
various values of SNR. The D–H/OBE performance is seen
to be comparable with that of the KF, which is considered a
benchmark for its fast convergence and tracking characteristics
[3]. Moreover, as seen from the percentage of updates, this
performance is achieved in spite of the infrequent updating by
D–H/OBE.

IV. CHANNEL EQUALIZATION IN

THE SET-MEMBERSHIP FRAMEWORK

A. Set-Membership Equalization

A novel concept of adaptive equalization in the SM frame-
work is proposed here. The approach incorporates set-theoretic
knowledge of the additive noise, which includes interference
and thermal noise. This approach to equalizer design guaran-
tees a specified upper bound on the Euclidean distance between
the transmitted and equalized symbols for all inputs belonging
to a certain set.

TABLE I
MEAN-SQUARE ERROR IN TRACKING A MOBILE

CHANNEL WITH D–H/OBE AND KF ALGORITHMS

Assume a one-dimensional (1-D) or 2-D signal constellation
(e.g., BPSK, QPSK, QAM). Consider a linear-in-parameter
equalizer with tap weights , whose output is given
by

(18)

where is the parameter vector, and is
the input vector to the equalizer. In general, is a function
of the sequence of received samplesand the past outputs
of the decoder , which, in turn, are functions of

and . Therefore, the input vector to a linear-in-parameter
equalizer is a function of the transmitted symbol sequence and
the noise sequence. This category of equalizers includes linear
and DFE’s, with either fractionally spaced or symbol-spaced
taps.

Let the transmitted symbols come from a 2-D constellation
. In addition, assume that we want to design an equalizer

that performs according to the desired specification whenever
the additive noise belongs to a set . No performance
requirement is specified for the equalizer when the noise is
not from . For instance, could be the set of noise samples
of magnitude less than some . Let the set of input-noise
pairs for which the performance specification is defined be
denoted as thedesign space

(19)

If the probability that is high, then an equalizer
that achieves the desired specification whenever
will achieve the specification with a correspondingly high
probability.

The output of the equalizer is a function of the input and
noise sequences and is parameterized byas

(20)

The objective of SM equalization is to ensure that the max-
imum Euclidean distance between the transmitted and equal-
ized symbols is less than a specified value whenever
the input-noise pairs come from the design space, i.e.,

for all (21)

This is an instantaneous specification on the equalizer perfor-
mance depending on the input.

If the probability that the input belongs to the design space
is , then this formulation ensures that the probability of
meeting the specification is lower bounded by. In terms of
Fig. 1, the SM equalizer constrains the errorto be upper
bounded in magnitude by for all inputs from . This is in
contrast with the minimum mean-squares and LS equalizers,
which are specified to minimize an ensemble or time-average
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Fig. 4. Set-membership equalization criterion for a QPSK system. The
equalized symbol is constrained to lie in a circle of radius centered at
the transmitted symbol.

of the squared error . Condition (21) requires that the
equalized symbol remain in a circle of radius centered
at the transmitted symbol, as shown in Fig. 4 for QPSK
signaling. Note that (21) is independent of the time index
since the inequality must hold for all possible data and noise
sequences in . If the minimum Euclidean distance between
any two symbols in the signal constellationis , then
the specification forerror-free equalization(i.e., no decision
errors whenever the inputs are from the design space) is made
by choosing .

For a given specification of, define the set of all equalizer
weight vectors of length that satisfies (21) as the
feasible equalizer set

(22)

where is the design space, as defined in (19).
The following observations on the feasible equalizer set

can be made.

1) is a convex set. This follows from the fact that
for each , describes
a convex hyperstrip in the space.

2) SM equalization involves estimation of a member of
the set . Any point in the set yields a valid
SM equalizer. Later in this section, we shall derive a
procedure to estimate that results in the same
recursions as SMI algorithms.

3) may be an empty set for a given. This means
that there exists no SM equalizer as defined above.
In general, however, for a given signal constellation,
channel, and noise model, it may be possible to find a
nonempty for a larger value of since

for all . Theorem 1 below provides a
sufficient condition and a necessary condition for
to be nonempty in the case of linear equalization of FIR
channels.

4) It follows trivially from (22) that
for any . Therefore, the possibility of being
nonempty increases with.

A linear equalizeris a linear-in-parameters equalizer where
the input vector is simply the regressor vector of the channel
outputs. Continuing with the notation from Fig. 1, this implies
that

(23)

When the linear equalizer is considered in conjunction with
the FIR channel model (10), we have

(24)

where

and the channel convolution matrix is

...
...

...
. . .

. . .
. . .

. . .
...

. . .
. . .

...

The output of the equalizer is, therefore, given by

(25)

Since the desired output of the equalizer can be expressed as
, where is the unit vector of dimension

with a “1” in the th position, the SM equalization
criterion (21) can be rewritten as

(26)

where the design space [space of the signal vector and noise
vector pairs of interest] is denoted

(27)

Note that the change in notation for the design space from
is due to the switch from infinite sequencesand to finite
dimensional vectors and .

Consequently, the feasible equalizer set is given by

(28)

Conditions for the existence of a nonempty parameter set
, assuming an FIR channel and a linear equalizer, are

stated in the following theorem.
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Theorem 1—Existence of the Feasible Equalizer Set:
Consider a linear channel model (10) and a linear equalizer
as described above. If and is
as defined in (28), then the following hold.

1) is nonempty if the channel satisfies

(29)

where , is the maximum amplitude
in the constellation , and

. If (29) is satisfied, then
.

2) If is nonempty, then

(30)

where is the minimum amplitude in the constellation

, and3 ,
, and

.

Proof: See Appendix A.
Remarks:

1) To gain intuition about the theorem, note that any
belongs to the feasible set if and only if ,
where is a cost function as defined in Appendix A
[ is the supremum of (54) over ]. In the theorem,

is the minimum of a function that upper bounds
, and is the minimum of a function that lower

bounds .
2) Besides providing conditions for the existence of feasi-

ble equalizers, Theorem 1 provides a method to compute
an SM equalizer nonrecursively when a channel estimate
is available. When (29) is satisfied, is a closed-
form solution for an SM equalizer since it belongs to
the feasible set.

B. Illustrative Example

Consider a discrete-time additive noise FIR channel with
coefficients [2, 1, 1] and a noise bound . The
transmitted symbols are QPSK modulated with unit magnitude,
i.e., , and . The square of the LHS of
the sufficient condition (29) (dash–dot line), the LHS of the
necessary condition (30) (dashed line), and (solid
line) are shown in Fig. 5 for equalizer lengths . For

, the sufficient (necessary) condition is satisfied if
the plot corresponding to the sufficient (necessary) condition
is below the line. Fig. 5 shows thaterror-free linear
equalization is possible for this channel if the number of
equalizer taps is seven or more. Simulations with the worst-
case input and noise sequences have shown thatdoes
indeed produce no bit errors when the sufficient condition is
met. The necessary condition is satisfied for linear equalizers
of all lengths.

3The angle�(a1; a2) between two complex numbersa1 and a2 is the
solution ofej� = a�

1
a2=ja1jja2j; with � 2 (��; �].

Fig. 5. Necessary and sufficient conditions for the existence of a feasible
linear equalizer set for the channel [2,�1, 1] and� = 0:2.

Remark: The intent of this simulation example is to illus-
trate the principle of SM equalization and may not correspond
to a realistic channel. It shows clearly that SM equalizers
can be designed nonadaptively (without the need for OBE
algorithms) witha priori knowledge of the channel. In such a
case, the resulting SM equalizer will achieve the error-bound
specification for all input pairs from , and therefore, the
probability that the output error is less than the specified bound
is at least equal to the probability that the input pair belongs
to .

C. A Recursive OBE Solution

We now show that SM recursions can be used to outer bound
the feasible equalizer set . Note that the restriction
to linear channel and equalizer models are not required in
the sequel. An arbitrary channel and a linear-in-parameter
equalizer are assumed. Further, assume that

and that all training data come from. Any data that do
not are considered model violations, and they are expected
to occur with a small probability (see the discussion on
unbounded noise in Section III). Following the notation of SM
theory, define theobservation-induced setat time

(31)

where is the transmitted symbol at time. is the set
of all equalizer weights that equalize the channel output at
time , according to the SM equalization criterion. Analogous
to the definition in Section II, we definemembership set
as the set of equalizer weights that equalize all the channel
outputs until time

(32)

If the transmitted symbol sequence and the noise sequence
satisfy the assumed set-theoretic model, then it follows from
(21) and (31) that contains for every , and,
consequently,

(33)

Since SM techniques estimate the membership setwith
outer bounding approximations, we can use an OBE algorithm
to compute ellipsoids such that

(34)
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A few qualitative remarks about the above procedure are
given below. They provide intuitive justification for the pro-
posed scheme and are stated without proof.

Remarks:

1) SM equalization does not require the noise to be
bounded but only that the data for which the bounded-
error specification must be met come from bounded
noise. The off-line procedure for the design of an SM
equalizer therefore poses no theoretical problems in
handling Gaussian noise. However, OBE adaptation
requires all the training data to come from the design
space, and model violations can potentially result in loss
of tracking. Please refer to the discussion following (11)
for possible solutions.

2) From (22), (31), and (32), we can see that the feasible
equalizer set is an ensemble intersection, and the
membership set is a time intersection of the same sets
over the transmitted symbols and noise. Therefore, if the
transmitted symbols and noise samples are “persistently
exciting,” we can expect the time intersection to
approach the ensemble intersection in some
meaningful sense. This provides a qualitative assurance
that the optimal bounding ellipsoids are “tight” since
they tightly outer bound the membership set.

3) The geometric center of the bounding ellipsoid is taken
to be the point estimate for the purpose of equalization.
If the bounding ellipsoid isasymptotically tight, then the
convexity of the desired parameter set makes it likely
for the geometric center to asymptotically lie inside the
feasible equalizer set.

4) The proposed algorithm inherits the discerning update
feature of the OBE method and, therefore, allows sharing
of the updating processors, as described in the following
section.

Simulation Results:To test the performance of the
OBE adaptive equalizer, a raised cosine ISI channel [3,
p. 414] is considered. The channel impulse response is

. A DFE with nine forward and one
feedback taps is used. The OBE equalizer uses , and
RLS uses exponential weighting factor 0.99. Fig. 6 shows
the bit error rate (BER) performance of both the equalizers
after 500 bits of training.

V. UPDATOR-SHARED ADAPTIVE

PARALLEL EQUALIZATION (U-SHAPE)

Consider the problem of simultaneously equalizingchan-
nels. If the probability that more than a certain number
of channels request an update at the same time is small,
fewer than updating units (processors) can be shared
among the channels. We shall refer to such a sharing
scheme U-SHAPE. Fig. 7 shows a schematic of the proposed
system when decision feedback equalizers are employed. Note
that all results in this section are valid whenever several
independent systems are to be identified using OBE techniques
in parallel, including the case of multiple-channel estimation
and linear equalization. In the implementation of U-SHAPE, if
the number of simultaneous update requests is larger than the

Fig. 6. BER of OBE and RLS equalizers for the channel [0.75, 1.0, 0.75].

number of updating units, some criterion must be established
to decide which of them to service. A straightforward
decision strategy is to choose thewinningchannels randomly
(with equal probability) from the contending channels, but it
will be shown in the following that this is not the best approach
when the probabilities of update requests on all the channels
are unequal. The design problem in U-SHAPE is twofold:
to determine the “optimal” number of updating processors
required to meet certain specifications and to devise a scheme
for contention resolution that would provide uniform quality of
service to all users. This section addresses these design issues
for U-SHAPE based on the results in [15] and [16].

Assume the channel update requests are stationary, memo-
ryless, independent random processes. At any sample instant,
define a binary random variable to be 1 when the th

channel requests an update and 0 otherwise. Let ,
which is the probability that theth channel requests an update.
Define another binary random variable to be 1 when an
update is performed on theth channel and 0 otherwise. Let

denote the total number of update requests at any time
so that

(35)

Quality of service provided to theth user (channel) can be
measured in terms ofrejection rate , which is defined as
the probability of not updating the channel given an update
request, i.e.,

(36)

A. Solution for Equal Update Request Probabilities

Consider the case of equal probabilities of update requests
on all channels, i.e., . In addition,
if , assume that update requests are rejected
at random with equal probabilities of rejection. This results in

, and we have the following theorem.
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Fig. 7. Updator-shared parallel adaptive equalization (U-SHAPE) scheme using decision feedback equalizers.

Fig. 8. Number of updators whenp = 0:3 and�0 = 0:1.

Theorem 2: Under the assumptions above, the optimum
number of updating processors that results in for
every is the smallest number of processors that satisfies

for any (37)

Proof: See Appendix B.
Since we know that , the minimum value of

that satisfies (37) can be found by searching in .
The relation between and when and
is shown in Fig. 8. Simulation results have shown that the
variation of from 0 to 0.1 has an insignificant effect on
the BER. It is clear that this scheme provides a significant
reduction in the number of updating processors required.

The contention resolution scheme used above is to admit
out of the update requests with equal probability of admit-
ting (or, equivalently, rejecting) any of the requesting channels.
This scheme is referred to here as therandom rejection scheme.
Although such a scheme lends itself to a simple mathematical

formulation, it fails when the probabilities of update requests
are not the same on all the channels. To illustrate this, consider
a two-channel case with one updating processor. Using the
random rejection scheme, either channel will be admitted with
a probability whenever there is a tie. Then

(38)

Similarly, . Thus, if is close to 1 and is
close to 0, then channel 1 would be admitted almost every
time it requests an update, whereas almost half of channel 2’s
requests would be rejected. The case of an arbitrary update
request distribution is considered in the next subsection.

B. Solution for General Update Request Probabilities

In this section, we remove the constraint that all’s are
equal. Define a binary random variable for each channel
to indicate an update request rejection, i.e.,

if and
otherwise.

(39)

Let denote the number of rejected requests at any time.
Then

(40)

In order to remove the dependence of the solution on
any particular contention resolution scheme, the performance
constraint is modified from a bound on the rejection rates to a
bound on the ratio of the average number of rejected channels
to the average number of update requests, i.e., define

(41)

where and , and specify

(42)
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Note that if there exists a contention resolution scheme that
achieves , then for
every . Therefore, the above specification reduces to ,
which is identical to the specification in the previous section.
Contention resolution schemes are studied in Section V-D.
The following theorem provides the solution for the optimum
number of updators when the update request probabilities are
not (necessarily) equal.

Theorem 3: The optimum number of updating processors
required to guarantee (42) is the minimum value ofthat
satisfies

(43)

where

The rejection ratio is given by

(44)

Proof: See Appendix C.
The minimum value of that satisfies (43) can be deter-

mined as before by an off-line search in . It
can be easily verified that (43) coincides with (37) under the
assumption of equal update request probabilities.

C. Design of U-SHAPE Using a Queuing Model

The preceding design procedure assumes time-invariant
probabilities of update requests and a fixed number of active
users. However, in practice, the number of active users varies.
Further, SM equalizers usually require more frequent updating
at the beginning of a call. Consequently, the probability of
update request on any channel is large at the beginning of
a call and then decays to a steady-state value. Since the
number of updating processors is fixed, these variations result
in a stochastic rejection rate. Computation of the number of
updating processors must be altered to satisfy a statistical
specification on the rejection rate. Instead of an upper bound
on the rejection rate, the design criterion can be a confidence
interval, i.e., for given and , the design specification is

(45)

Computation of as a function of requires
a model for the time variations of the number of active
users and the ’s. We employ a queuing model for
the telephone network and model the decay of’s by an
exponential function. The telephone network is modeled as

an -server loss queuing system [29]. In this model, the
customer population is assumed to be infinite, and the number
of available telephone channels (i.e., the number of servers) is
denoted by . The average rate of incoming calls iscalls
per second, and the average service rate for any call iscalls
per second. Any call that arrives when all channels are busy
is rejected. The call interarrival time and the service time for
each call are exponentially distributed with parametersand

, respectively. Note that and , as used here, are different
from the notation in the discussion on OBE algorithms in
Section II. For this system, the probability of active users
is given by

(46)

The average number of active users is

(47)

If the number of updating processorsis computed using
and in (37) or (43), then, neglecting the

effect of variations in ’s, we get

(48)

and

(49)

where is the rejection rate when the number of active
users is .

Variation in the probabilities of update requests is modeled
as an exponential decay with an initial value of to
a steady-state probability , i.e.,

where time is normalized by the symbol interval, andis
in number of symbols.

A worst-case estimate of the set of parameters for the
queuing system and the exponential model for’s is

s

(50)

Observation of the transient behavior of the D–H/OBE algo-
rithm in nonstationary environments has shown that the above
choice of and represents a worst-case scenario. Even
if we assume a symbol rate as small as 2400 symbols/s, the
average interarrival time for incoming calls is approximately
equal to symbols. Since is insignificant compared
with this number, we can expect the variation in’s to have
little impact on the effective rejection rate. This conjecture is
supported by simulation results with the system parameters as
in (50), and . From (37), we get . Using
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Fig. 9. Number of updators whenp = 0:3 and�0 = 0:1, using the queuing
model.

(49), , whereas the observed . Since
(49) is derived without considering the effect of variations in

’s, it is clear that the exponential decay of the update request
probabilities does not significantly affect the overall rejection
rate. Therefore, can be computed assuming steady-state
update request probabilities without loss of accuracy.

Given and in (45), the number of updating processors
is computed as follows.

1) Using (48), find , which is the minimum value of
that satisfies (45).

2) Compute using and in (37) or (43).

Example: For , , and the above system
parameters, the design procedure yields and .
The simulation included 50 runs, each for more than
symbols, with a symbol rate of 2400 symbols/s. Each run
was initialized with the ending network status (number of
active calls, call-lengths, etc.) of the previous run. The average
rejection rate was observed to be

The fraction of times that was

Simulations show very good agreement with the theoretical
predictions made after neglecting the effect of varying update-
request probabilities. Moreover, simulation results have shown
that small variations in the rejection rate do not adversely affect
the final BER of the equalizers. This example shows that a
system with 100 channels needs just 17 updating processors
to perform with negligible deterioration.

Fig. 9 shows the relation between the number of updating
processors and the number of channels when the expected
number of active calls , with all other parameters as
above. The plot clearly shows that the above design procedure
results in a significant reduction in hardware complexity.

D. Contention Resolution Schemes

As we have seen earlier, therandom rejection scheme, in
which all requesting channels have equal probability of being

rejected, is suboptimal, except in the special case when the
probabilities of update requests are equal on all the channels.
In the general case, we need to determine whichof the
requesting channels require updates more urgently than the
others. This would result in apriority rejection schemein
which some measure of priority would be used to determine
the priority of each channel so that a higher priority channel
is serviced in case of a tie.

In the D–H/OBE algorithm, the quantity
is used as a measure of the information content in the

received data set. In particular, an update is requested if and
only if . Therefore, is an intuitively satisfying
measure for thepriority rejection scheme.

The rejection ratios of all the channels can be made equal if
the priority of each channel is measured in terms of estimates
of their rejection rates. To do this, definerejection fraction
of the th channel as the fraction of its update requests that

have been rejected until that time, i.e., ,
where denotes time average until time. Assuming ergod-
icity, equals the rejection ratio in the limit as .
A channel with a higher rejection fraction would win in a tie
to bring the rejection fractions closer. Estimates of and

can be obtained as

(51)

(52)

where is a forgetting factor. Then,
. Therefore, each channel can be prioritized by the

fraction . Additional time-dependent terms could be added
in the equations to assign higher priority to equalizers that have
started operating more recently.

VI. SUMMARY AND CONCLUSIONS

The excellent convergence and tracking characteristics of
SM algorithms and the computational advantage provided by
their discerning update feature have inspired the development
of SM equalization in this paper. The close resemblance of
the OBE update equations to those of LS estimators make
them attractive practical tools. SM algorithms and schemes
that utilize their selective updating feature can be very useful
in applications to adaptive filtering in communications, where
the requirement is for high performance algorithms with low
computational complexity.

SMI methodology has been applied to channel identifica-
tion, showing comparable convergence performance and better
tracking performancevis-á-vis the LS techniques at a fraction
of the computational burden. The notion of SM equalization
has been introduced, and the issues of the existence and
design of SM equalizers have been addressed. OBE algorithms
have been shown to be attractive tools for adaptive SM
equalization. An updator-shared implementation of parallel
OBE equalizers/channel estimators called U-SHAPE has been
proposed to exploit the selective updating feature of OBE
algorithms. Solutions have been derived for the minimization
of the number of updating processors subject to a specified
bounds on quality of service to all users. U-SHAPE has been
shown to offer a large reduction in the number of updating
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processors. For instance, a 100-channel system only needs 17
updating processors to operate with negligible deterioration
in performance. Different strategies have been suggested to
handle update contentions.

APPENDIX A
PROOF OF THEOREM 1

Proof: From the definition of the feasible equalizer set
(22), a necessary and sufficient condition for to be
nonempty is

(53)

where

(54)

The filtered noise magnitude is maximized when
and , for any angle .

Given any and , is maximized when is chosen
such that . Therefore, in (53)

(55)

Defining , we also have

(56)

where . Combining this with (53) and (55) yields

(57)
Therefore, is nonempty if there exists a such

that

(58)

where .
Since

(59)

choose to be the LS solution of the RHS of the above
inequality to obtain the sufficient condition (29).

For a necessary condition, we need to lower bound
. Letting , we have

(60)

Choose each to minimize the angular distance of each term
in the RHS above to the real axis, i.e., let

(61)

Defining

(62)

(63)

the choice (61) results in

(64)

Equations (53), (55), and (64) imply

(65)

where , and
. The necessary condition (30)

follows from the above.

APPENDIX B
PROOF OF THEOREM 2

Proof: The probability mass function of , which is
denoted by , follows a binomial distribution given by

(66)

and

(67)

Therefore,

(68)

If requests are rejected at random with equal probabil-
ity, the probability that theth channel is one of the rejected
channels is

(69)

Putting (69) in (68) and bounding ’s by a specified ,
the desired result follows.
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APPENDIX C
PROOF OF THEOREM 3

Proof: The probability mass function of is given by

(70)

Therefore, the expected number of rejections is

(71)

or

(72)

From (35), we also have

(73)

or

(74)

Now, putting (74) in (43), we obtain

(75)

Since if and 0 otherwise, the
expected number of rejected requests can be expressed in terms
of as

(76)

The required inequality follows from (75) and (76).
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