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Set-Membership Binormalized Data-Reusing
LMS Algorithms

Paulo S. R. DinizFellow, IEEE,and Stefan WerneMember, IEEE

Abstract—This paper presents and analyzes novel data selec-problem. Consequently, many of the existing optimal bounding

tive normalized adaptive filtering algorithms with two data reuses.  ellipsoid (OBE) algorithms [5], [10]-[13] can be applied to the
The algorithms [the set-membership binormalized LMS (SM-BN- SMF framework.

DRLMS) algorithms] are derived using the concept of set-mem- . .
bership filtering (SMF). These algorithms can be regarded as gen- Most, if not all, of the SMF algorithms feature reduced

eralizations of the recently proposed set-membership NLMS (SM- Computational complexity primarily due to (sparsigta-se-
NLMS) algorithm. They include two constraint setsin orderto con-  lectiveupdates. Implementation of those algorithms essentially
struct a space of feasible solutions for the coefficient updates. The jnvolves two steps: 1) information evaluation (innovation
algorithms include data-dependent step sizes that provide fast con- check) and 2) update of parameter estimate. If the update does

vergence and low-excess mean-squared error (MSE). Convergence ot oceur freauently and the information evaluation does not
analyzes in the mean squared sense are presented, and closed-fornﬁ1 u quently ! : valuall

expressions are given for both white and colored input signals. Sim- involve much computational complexity, the overall complexity
ulation results show good performance of the algorithms in terms is usually much less than that of their RLS counterparts. It

of convergence speed, final misadjustment, and reduced computa-was shown in [9] that the class of adaptive solutions, called

tional complexity. set-membership adaptive recursive techniq(®SIART), in-
Index Terms—Adaptive filter, data-selective, normalized data- clude a particularly attractive OBE algorithm, which is referred
reusing algorithms, set-membership filtering. to as the quasi-OBE algorithm or the bounding ellipsoidal

adaptive constrained least-squares (BEACON) algorithm [13],
[14], with a complexity of O(N) for the innovation check.
In addition, in [9], an algorithm with recursions similar to
T HE least mean square (LMS) algorithm has gaingflpse of the NLMS algorithm with an adaptive step size was
popularity due to its robustness and low computationgkyrived. The algorithm known as the set-membership NLMS
complexity. The main drawback of the LMS algorithm_is tha{SM-NLMS) algorithm, which is further studied in [4], was
the convergence speed depends strongly on the eigenvajggwn to achieve both fast convergence and low misadjustment.
spread of the input-signal correlation matrix [1]. To overcomgpplications of SMF include adaptive equalization, where
this problem, a more complex recursive least squares (RLhllows the sharing of hardware resources in multichannel
type of algorithm can be used. However, the faster convelsmmunications systems [14], adaptive multiuser detection in
gence of the RLS algorithm does not imply a better trackingpma systems [15], [16], and in filtering with deterministic
capability in a time-varying environment [1]. An alternative.gnstraints on the output-error sequence [17].
to speed up the convergence at the expense of low additionafhe SM-NLMS algorithm only uses the current input-desired
complexity is to use the binormalized data-reusing LMSignals in its update. Following the same pattern as the conven-
(BNDRLMS) algorithm [2], [3]. The BNDRLMS algorithm, tional NLMS algorithm, the convergence of SM-NLMS algo-
which uses consecutive data pairs in each update, has sheifin will slow down when the input signal is colored. In order
fast convergence for correlated input signals. However, the fgshyvercome this problem, this paper proposes two versions of an
convergence comes at the expense of higher misadjustm@gbrithm that uses data pairs from two successive time instants
because the algorithm utilizes the data even if it does notimply order to construct a set of feasible solutions for the update.
innovation. In order to combat the conflicting requirements 6fhe new algorithms are also data-selective algorithms, leading
fast convergence and low misadjustment, the objective functighg |ow computational complexity per update. In addition, for
of the adaptive algorithm needs to be changed. Set-membersfiprelated input signals, they retain the fast convergence of the
filtering (SMF) [4] specifies a bound on the magnitude of thNDRLMS algorithms related to the smart reuse of input-de-
estimation error. The SMF uses the framework of set-membgfreq data pairs. The low misadjustment is obtained due to the
ship identification (SMI) [5]-{8] to include a general filtering gata-selective updating utilized by the new algorithms. The idea
of data reuse was also exploited in the context of OBE algo-
rithms in [12].
_Manuscript received December 6, 2000; revised August 23, 2002. The assoThe grganization of the paper is as follows. Section Il reviews
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Il. SMF b
In SMF, the filterw is designed to achieve a specified boun: _
on the magnitude of the output error. Assuming a sequence d —whx, = —y
input vectors{xy }72 ; and a desired signal sequerek }32 ;,
we can write the sequence of estimation erass} >, as

W1

€L = dk - WTxk (1) dy — WTX;‘. =4y

wherex; andw € R™ with d, ande;, € R. For a properly He
chosen bound on the estimation error, there are several vali
estimates ofw.
Let S denote the set of all possible input-desired data pairs
(x, d) of interest. Next, le® denote the set of all possible vec- Fig. 1. SM-NLMS algorithm.
tors w that result in an output error bounded Hywhenever
(x,d) € S. The se®, which is referred to as thieasibility sef estimatew,.; will lie on the closest boundary 64, at a min-

is given by imum distance, i.e., the SM-NLMS minimizéisv;.+1 — wg||?
subject towy; € Hp. This is obtained by an orthogonal
0= () {weRV:|d-w"x| <~} (2) projection of the previous estimate onto the closest boundary of
(x,d)€S ‘Hi.. A graphical visualization of the updating procedure of the

SM-NLMS can be found in Fig. 1. Straightforward calculation

Assume that the adaptive filter is trained witimput-desired leads to the following recursions fevy:

data pairgx;, d; }*_, . Let H;, denote the set containing all vec-

torsw for which the associated output error at time instars Wit = W, + a5k (5)
upper bounded in magnitude by In other words [|xx[?
with

Hi = {w e RY : |dp, — wTxp| <7} (3)

i i . . (S :dk — szk
The setH,, is referred to as theonstraint setand its boundaries i e >

hyperpl Finally, define th bershi a = el " IR 6)

are hyperplanes. Finally, define tegact membership séj. to =30 otherwise

be the intersection of the constraint sets over the time instants
1=1,...,k, e, wheree;, anday, denote thea priori error and the time-depen-
dent step-size, respectively. The update (5) and (6) resemble
k those of the conventional NLMS algorithm, except for the time-
Vi = ﬂH7 @ varying step-sizex.
=t Note that since the conventional NLMS algorithm minimizes
It can be seen that tHeasibility se® is a subset of thexact ||Wx+1 — w||* subject to the constraint that], ;x = dy, itis
membership set;, at any given time instant. THeasibility set a particular case of the above algorithm by choosing the bound
is also thdimiting setof theexact membership séte., the two v = 0. Furthermore, using a step-sizg = 1in the SM-NLMS
set will be equal if the training signal traverses all signal paitghenevemw, ¢ H; would result in a valid update because the
belonging toS. hyperplane with zera posteriorierror lies inHy,; however, the
The idea of SMART is to adaptively find an estimate thaesulting algorithm does not minimize the Euclidean distance.
belongs to the feasibility set. One approach is to apply one of
the many OBE algorithms, which tries to approximate the exact [ll. SET-MEMBERSHIPBINORMALIZED DATA-REUSING
membership sap;, with ellipsoids. Another adaptive approach LMS ALGORITHMS

is to compute a point estimate through projections using, forrne sM-NLMS algorithm in the previous subsection only
example, the information provided by the constraint B&{  considered the constraint <&, in its update. The SM-NLMS
like in the set-membership NLMS (SM-NLMS) algorithm conyqqrithm has a low computational complexity per update, but
sidered in the following subsection. It was also shown in [4{5'convergence speed appears to follow the trend of the normal-
that tht_a SM—NLM_S algorithm can be associated with an optimglaq | mMs algorithm, which depends on the eigenvalue spread
bounding spheroid (OBS). of the input-signal correlation matrix. The exact membership
. . . setyy, defined in (4) suggests the use of more than one con-
A. Set-Membership Normalized LMS (SM-NLMS) Algorithmgyaint set. In this subsection, two algorithms are derived, re-
The set-membership NLMS (SM-NLMS) algorithm derivedjuiring that the solution belongs to the constraint sets at time
in [4] is similar to the conventional NLMS algorithm in form.instantsk andk —1,i.e.,wx1 € HrNHy_1. The recursions of
However, the philosophy behind the SM-NLMS algorithnthe algorithms are similar to the conventional BNDRLMS algo-
derivation differs from that of the NLMS algorithm. The basicithm [2]. The set-membership binormalized data-reusing LMS
idea behind the algorithm is that if the previous estimatdies (SM-BNDRLMS) algorithms can be seen as extensions of the
outside the constraint séty, i.e., |d, — w{xk| > ~, the new SM-NLMS algorithm that use two consecutive constraint sets
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" B
dj—y —wixp 1 = —y dy—1 =W Xp_1 = —7
W

T _
W di-1 —wrxp_1 = +v dy—1 =W X1 = +7

Wit dy = w'x, = —y W wy, Ok wix, ==y
Hi He
dy — wak; =+ dy — WTxk =+

Hi—1 Hi—1

(a) ®)
Fig. 2. SM-BNDRLMS-I algorithm. (a) Orthogonal projection onto the nearest boundaty,dies within H,._, i.e.,wj € H,_1. No further update. (b)
Orthogonal projection onto the nearest boundar§if wj, lies outside},_, . Final solution at the nearest intersectiorfof and?._; .

for each update. The first algorithm presented in Section IlI-A In summary, the recursive algorithm fer; is given by
is a two-step approach minimizing the Euclidean distance be-

tween the old filter coefficients and the new update subjected to W), =wj, + o CrXk
the constraints that the new update lies in both constraint sets [l |2
‘Hr andH 1. The second algorithm presented in Section 111-B Whil =W + A1Xg + AoXp 1 (20)

reduces the computational complexity per update, as compared
with the first algorithm by choosing a different update strategwhere

A. Algorithm | er =dp — Wi Xp,

The first set-membership binormalized data-reusing LMS al-
gorithm (SM-BNDRLMS-I) performs an initial normalized step
according to the SM-NLMS algorithm. If the solution to the first _ Brel_1Xh_ Xk
step belongs to both constraint séts and_,, no further 1= 1%k |12 |lxk=1]1? = [xE_;xx]?
update is required. If the initial step moves the solution out of

/ T
ek71 :dkfl - Wk Xk—1

2

‘Hi_1, a second step is taken such that the solution is at the in- Ay = Brer 1%kl
tersection ofH,, andH;,_; at a minimum distance fronw;. 1%k |12 [|xk—1]1% — [xF_ xx]?
Fig. 2 depicts the update procedure. The SM-BNDRLMS-I al- 1 if

. e _ 2 . . . — m, | |ek| > Y
gorithm minimizeq|wy.11 — wy||* subject to the constraint that a = .
Wig1 € Hip N Hi_1. 0, otherwise

The splut_ion can be obtained by first performing_ an (_)rthog- — ﬁ if |ex| > v and|e)_,| > v
onal projection ofwv;, onto the nearest boundary s, , just like Br = k=t _ (11)
0 otherwise.

in the SM-NLMS algorithm

Remark 1: If the constraint set${;, andH;_, are parallel,
(7) the denominator term of th&;s in (11) will be zero. In this
particular case, the second step of (10) is not performed to avoid
whereay, andey, are defined in (6). Ifw), € Hy_1,i.e.,|dx_1 — division by zero. - _ o .
w/Tx),_1| < v, thenwy,,; = w,. Otherwise, a second step is Itis easy to verlfy that if the bound of the estimation error is
taken such that the solution lies at the intersectiofttpfand Cchosen to be zero, i.ey,= 0, the update equations will be those

H,,_1 at a minimum distance. The second step in the algorithﬂfw the conventional BNDRLMS algorithm with unity step-size
will be in the direction ofx;-, which is orthogonal to the first [2]-

(7.4
W;C = Wi + ak—“)’;kﬁ;

step, i.e.,
P B. Algorithm I
Wiel = W + B Ch1Xi ®) Th_e SM-BNDRLMS_—I algorithm in th_e p_revious subsection
[|x- |2 requires the intermediate check, that iswif € Hy, to de-
termine if a second step is needed. This check will add extra
where computational complexity. The algorithm proposed below (the
- SM-BNDRLMS-II) does not require this additional check to as-
xi- :(I _ ﬂ)xk_l sure thatwy 1 € Hp N Hi_1. LetSp_iy1 (i = 1,2) denote
[lx[? the hyperplanes that contain all vectevssuch thatd_;+1 —
e 1 =dp 1 — Wi Xp 1 wlxy_ ;11 = gr_it1, Whereg,_;, 1 are extra variables chosen
B =1 — Y . ) such that the bound constraints are valid. That ig.if;;; are

lef 1l chosen such thdy, ;11| < v, thenSg ;11 € Hi—it1-



DINIZ AND WERNER: SET-MEMBERSHIP BINORMALIZED DATA-REUSING LMS ALGORITHMS 127

dp1 — W xpo1 = gp1 di—1 — W Xpo1 = gr
. wi o
W1 / .
/‘ dk—Wle=gk
——————————————————————————— dy — W X = g ///
Hk} /Hk //
Hi-1 ’
Fig. 3. General algorithm update. Fig. 4. SM-BNDRLMS-II algorithm.
Consider the following optimization criterion whenever TABLE |
. COMPUTATIONAL COMPLEXITY PER UPDATE.
wi & Hi N Hy—1:
ALG. MULT. ADD. DIV.
min ||[wyy1 — wi||* subject to SM-NLMS 3N+1 3N 2
T SM-BNDRLMS-I (1 step) 4N +1 4N 2
di; = X3, W41 =gk SM-BNDRLMS-I (2 steps) 7TN+8 7N+3 4
- - N N 2
dp_q — XZ_1Wk+1 — (12) SM-BNDRLMS-II SN+7 5N+3

The pair g, gx—1) specifies the point i, N H,_1 where The above choices lead to the SM-BNDRLMS-II algorithm,
the final update will lie; see Fig. 3. In order to evaluate if aQyhere the new estimate ., will lie at the nearest boundary
update according to (12) is required, we need to first checkdf 77, such that thea posteriorierror at iteratiork — 1, €j,_1

wi € HiMHy—1. Duetothe concept of data reuse together witl ept constant. A graphical illustration of the update proce-

the constrainfgy 41| < v, this check reduces ). € H;. 1N dyre is shown in Fig. 4. The update equations for the SM-BN-
what follows, we first solve for the general update and thereaftgR| Ms-I| algorithm are given by

consider a specific choice of the paif:(gx—1), leading to a

. . g !/ /\l
simplified form. o . Wiyl = Wi + x4+ Zxpg (17)
To solve the optimization problem in (12), we can apply the 2 2
method of Lagrange multipliers leading to the following objeGyhere
tive function: , 5
A agerl[xe—1|
SWig1) = [[Wigr — Wil + M [di — x{ Wig1 — gi] 2 |IxnlPlxe-l1? = x5y xx]?
+A2[di—1 — X4 Wiyt — gr—1]. (13) Ay ReRXp_ Xk
i i i 2 Il lxr—a 12 = i xa)?
After setting the gradient of (13) to zero and solving for the ] k=1
Lagrange multipliers, we get ap = 1- ﬁ if lex| > v (18)
\ \ 0, otherwise.
Wi + 2 X + 22X if ler| >
Wit = {Wz 2R 2R ot|hgr|wisg (14)  As with the SM-BNDRLMS-I algorithm in the previous sub-
' section, the problem with parallel constraint sets is avoided by
where using the SM-NLMS update of (5) whenever the denominator
. .
A [ex — g k1|2 = [er—1 — gr—1] X751 1) in the )} is zero.
- 2
2 Ikl lxn—1[|% = [, %] C. Computational Complexity

A2 len—1 = gr—al Ixill* — [ex — gr] X3 Xk (16) _ The computational complexity per update in terms of the
2 w2 ll5n_1]12 — [X;‘f_lxk]Q numper of additions, mgltiplications, and divisions for the three
algorithms are shown in Table I. For the SM-BNDRLMS-I,
inwhichey, = di, — wkT,xk ande,_; = dj_1 —WkT.Xk_1 are the the two possible update complexities are listed where the first
a priori error at iteratiork and thea posteriorierror at iteration corresponds to the total complexity when only the first step is
k — 1, respectively. necessary, i.e., whew, € H,_1, and the second corresponds
Sincew;, always belongs t@{;_, before a possible update,to the total complexity when a full update is needed. Applying
we havee,_; < 4. Therefore, choosing,_1 = ¢, Satisfies the SM-BNDRLMS algorithms slightly increases the compu-
lgk—1] < 7. In the same way as in the SM-NLMS and SM-BN+tational complexity as compared with that of the SM-NLMS
DRLMS-I algorithms, it is sufficient to choosg, such that the algorithm. However, the SM-BNDRLMS algorithms have a
update lies on the closest boundary)f, i.e.,gr, = ysign(er). reduced number of updates and an increased convergence rate
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as compared to the SM-NLMS algorithm, as verified througivhere
simulations in Section V. Comparing the complexities of the
SM-BNDRLMS-| and SM-BNDRLMS-II algorithms, we note _
that the difference in the overall complexity depends on the Ixe]|?||xe—-11|% — (x;{xk_l)2
frequency the second step is required in Algorithm 1. In the op-
eration counts, the value )k, _ || at iterationk was assumed and
unknown. However, oncxy||? or ||x,_1]|? is known, one can
compute the other using only two additional multiplications, b =nia
e.g.||xk-1/|?> = ||Ixxl|?> — 2 + 22_. The relation between c =va. (25)
lxx—1||* and ||xx||> has been used in the operation counts
of the SM-BNDRLMS algorithms. If update occurs at two In the analysis, we utilize the following initial assumptions.
successive time instantfx,_1||> andx} ;x,_» are known  AS1) The filter is updated with the probability’, , =
from a previous update, and as a consequence, the numbePpé;| > +], andP[ex > 7] = Plex < —9].
multiplications and additions in such updates can be furtherNote that the probabilityP. ; will be time-varying be-
reduced by approximately for the SM-NLMS algorithm and cause the variance of the output errgr depends on the
2N for the SM-BNDRLMS algorithms. Finally, note that if mean of the squared coefficient-error vector norm, and for
we continuously estimatéx,||* and xix;_1, regardless of Gaussian noise with zero mean and varian¢e we get
whether an update is required or not, the SM-BNDRLMS-#2? = o2 + E [Aw}RAw;]. Since we are interested in
algorithm will always be more efficient than SM-BNDRLMS-I.the excess MSE and not the initial transient the following
These computational savings are crucial in applications wheresumption is made.
the filter order is high and computational resources are limited. AS2)The filter has reached the steady-state value.

From (23), we can now write the coefficient error as

Xp—1X4_ XX}, — |[xp—1]]?x %]

(24)

IV. SECOND-ORDER STATISTICAL ANALYSIS

This section addresses the steady-state analysis of the AWit1 = AWk + P (AAW +b). (26)

SM-BNDRLMS algorithms.
B. Input-Signal Model

In this subsection, we investigate the convergence behavioro*n the evaluguon O_f the excess MSE we use a S'mF_’"f'ed
the coefficient vectowy. Itis assumed that an unknown FwR, Model for the input-signal vectak,.. The model uses a sim-
is identified with an adaptive filtew . of the same ordeN — 1 plified distribution for the input-signal vector by employing

using the SM-BNDRLMS-II algorithm. The desired response (;d_uced and cquntable_ angula_r orientations for the excitation,
given by which are consistent with the first- and second-order statistics

of the actual input-signal vector. The model was used for
dr = X W, + i (19) analyzing the NLMS algorithm, [18] as well as the BNDRLMS
algorithm [2], and was shown to yield good results.
wheren,, is measurement noise, which is assumed here to beThe input signal vector for the model is
Gaussian with zero mean and varian¢e We study the evolu-
tion of the coefficient erroAw;, = wj;, — w,. The output error Xy = SpTEVE 27)
can now be written as

A. Coefficient-Error Vector

e TA (20) where _ _ -
k=T = Xj AW * sy is &1 with probability 1/2
« 72 has the same probability distribution (e ||2, and in

The update equations for the adaptive filter coefficients are the case of white Gaussian input signal, it is a sample of

given by an independent process withsquare distribution withv
Wi, if |ex| < degrees of freedom, with [r?] = No2
Wil =< Wi+ (ex —7)a, ifep >+ (21) * v, Is one of the N orthonormal eigenvectors
wk-l—(ek—l—’y)a? if e, < —v RZE[XkaT]:SaYWi,i=17-~-N}-
where For a white Gaussian input signal, it is assumed thais uni-

formly distributed such that

lxeealPx = (XE_ g Xk) Xk
— =

(22) .
2t |2 — (xFxps

P (Vk = VL) = N (28)

As a consequence, the coefficient error at time instant 1

becomes C. Excess MSE for White Input Signals
Awy, if lex| <~ In this subsection, we investigate the excess MSE in the
Awgi1 =< I+ A]JAw,+b—c, ifep>+y (23) SM-BNDRLMS algorithms. In order to achieve this goal, we

I+ A]Awr+b+c, ifep>—y have to consider a simple model for the input signal vector that
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assumes a discrete set of angular orientations. The excess M8#&vergence of (35) holds sinée< P, , < 1.Ifweletk — oo,

is given by [1] the excess MSE becomes
2
gewc = lim fk - gm’in (29) — N . PeO'n
hmoo Seve = Ny 10, 2-D, (36)
where . ) .
Assuming the filter has converged to its steady-state value, the
¢ =E[?] =E [(nk — fowk)Z] (30) probability of update for white Gaussian input signals is given
by

is the MSE at iteratioik, and¢,,;,, is the minimum MSE. With
these equations, we have that P, =20 gl 37)
Vi + 2B [[[Awe|?]

A =E [ (ni = xF AWL)°] = €in = B [AWI RAW]
—tr {Rcov][Aw,]} . (31) whereQ@ (-) is the complementary Gaussian cumulative distri-
bution function given by
For the input-signal model presented in the previous subsec- o »
tion, A¢,41 can be written as Q(z) = / ety (38)
« V2m

Akt1 = Abpralxyfxey ¥ P [Xl[xe—1]

and E [||Aw.||?] is the mean of the squared norm of the
+A£k+l|x;\,J_xk71 X Plxplxp_1]. (32) [“ “ ] q

coefficient error after convergence. To be able to calculate
i the expression in (36), we nedd, which in turn depends on

9 9 : .
to vi = vi_i andv, # vi_1, respectively, because; ozE [||Awoo|| ] Therefore, consider the following two cases

and vi,_; can only be parallel or orthogonal to each otheP! @PProximation.
P [xi||xr—1] denotes the probability thaky|x_;, and AP1) The variance of the error is lower bounded by the noise

Conditionsxy||xx—1 andx; Lx, 1 in the model are equivalen

P [xxLx;_1] denotes the probability thaty, Lx;_;. For the variance, i.e.0? = o + o;E [[[Aw|?’] > of.
casexi||xx_1, the SM-BNDRLMS algorithm will behave like Therefore, a simple lower bound is given By >
the SM-NLMS algorithm, which has the excess MSE (see 2Q(v/om)
Appendix A) AP2) We can rewrite the variance of the errorgs =
\ o2 + E [é7], whereé;, = ej, — e, denotes the dis-
Aty ] —[(1— 2P ) = P2y, A¢ tance between the error/eh iteration and the optimal
Fp I e N r error. Assuming no update, we havg| < ~, and with
2 o2, = op, We geto?, < 202 + ~%. Therefore, an
+P§kﬁ (33) upper bound of the probability of update is given by

47047 vari o P =2Q (v/0.) < 2Q (v/v/207 +77)
wherev, = B[z /03] varies from 1 for binary distribution, to e approximations of, together with (36) are used in the

3 for Gaussian distribution, teo for a Cauchy distribution [3], gimylations to estimate the excess MSE for different thresholds
[18]. For the cas&; Lx;_1, the expression for the coefficient

error vector also reduces to the same as that of the SM-NLMS

algorithm (see Appendix B), giving D. Excess MSE for Colored Input Signals
2P, — P2, When extending the analysis to colored input signals, we may
Aktilxpix, s = | 1= — N | A% still use the input-signal model in (27). The angular distribu-
tions ofx;, will change, i.e., the probabilitieB [x,||xx—1] and

ip ; (34) P [x) Lx;_1] will be different from those for white input sig-

2 In

AN+ 11—, nals. However, as with the case of white input signals, these
probabilities will not have effect on the final results; see (35).
In order to get an expression for the probability of updBte

A1 =D&kt |xp s X P [Xk|[xr-1] for colored input signals, we assume that the input is correlated

4 Al oy X P xeLlxe 1] according to

= (P [xp[x—1] + P [xrLxs_1]) AE ok =g+ (1 =)o (39)
= (P [xp||xr_1] + P [xpLxp_1]) A&

Combining, we have

whereuvy, is a white noise process with zero mean and variance

2
= <1 — M) A& + P2, Tn o2. Straightforward calculations give the autocorrelation matrix
N SN 4+1—v,
1 T r2 oorNL
(35) R 9 r 1 T R A 40
Recall assumptioAS2) where the filter is in steady-state such e : : : : (40)

that the probabilityP, , — P. is constant. The stability and TN.*l TN-*2 TNI*?) 1
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Fig. 5. Learning curves of the SM-BNDRLMS-I, the SM-BNDRLMS-II, theFig. 6. Learning curves of the SM-BNDRLMS-I, the SM-BNDRLMS-II, the
SM-NLMS, the BNDRLMS, and the NLMS algonthms Condition number 0fSM-NLMS, the BNDRLMS, and the NLMS algorithms. Condition number of

the input-signal correlation matrix 100, SNR= 80 dB, andy = /30.,. the input-signal correlation matrix 100, SNR= 20 dB, andy = v/50,..
where . . L
of the BNDRLMS algorithm with the low misadjustment of
o2 = 1- "52 — bo2. (41) the SM-NLMS algorithm. In an ensemble of 500 experiments
S B v of 1000 iterations, the average number of updates per exper-

Assuming the filter has converged to its steady state, the vdWe”t for the SM-BNDRLMS-I, SM-BNDRLMS-I, and the
ance of the output error can now be computed as SM-NLMS algorithms were, 185, 180, and 436, respectively.

For the SM-BNDRLMS-I, an average of 108 updates were full

0?2 =02 + E[AwL RAw,] updates.
, o2 5 Fig. 6 shows the learning curve results for an SNB) dB.
<o, + S EllAwe 7], (42) ' The parameters used in the algorithms were the same as in the

first example. As can be seen from the figure, the SM-BN-

The probability of update is now given by DRLMS algorithms still have higher convergence speeds than

the SM-NLMS algorithm
P.<Q ( = = 72 = ) . (43) In 1000 iterations, the average number of updates per ex-
Vol + b 1o2E[[Awe 7] periment for the SM-BNDRLMS-1, SM-BNDRLMS-II, and the
SM-NLMS algorithms were, 100, 95, and 129, respectively. For

To be able to evaluate the probability of upd@te the same
approximation is made as in AP2) for the case of whitg'ei SM-BNDRLMS-I, an average of 15 updates were full up-
ates.

input signals, i.e.o2E[[|Aw.|*] < o5 + ~°. An upper
bound for the case of colored input signals is now given by !N the two examples above, the NLMS and the BNDRLMS

B o< 20 N GO b_1'72)- The lower bound algorlthms were unable_ to reaph the same low steady-state value
. . ; o . . as their set-membership versions, and a trade-off between con-
given in AP1) in the previous section is still valid.

vergence speed and final MSE was observed.

For the two examples above, we also plotted the overall
complexity versus the total number of iterations for the
In this section, the new algorithms are applied to a syste&®M-NLMS and the SM-BNDRLMS algorithms. The curves
identification problem. The order of the plantwass N —1 = are normalized with respect to the number of filter coefficients
10 and the input signal was colored noise with condition numbéf. To minimize the computational complexity for all the

100. The signal-to-noise ratio (SNR) was set to 80 and 20 dBaigorithms, we recursively estimatdfk, > and x} x;_; at
two different examples. each iteration. Figs. 7 and 8 show the results based on the above
Fig. 5 shows the learning curves averaged over 500 singimulations. For the case of high SNR, we see from Fig. 7
lations for the SM-BNDRLMS-I, the SM-BNDRLMS-II, the that the overall complexity of the SM-BNDRLMS algorithms
SM-NLMS, the BNDRLMS, and the NLMS algorithms for anare initially higher than the SM-NLMS algorithm. As time
SNR = 80 dB. The upper bound on the estimation error wasroceeds, the overall complexity of the SM-BNDRLMS-II
settoy = /50, and the step sizes used in the BNDRLMS analgorithm becomes similar to that of the SM-NLMS algorithm.
the NLMS algorithms were set to unity in order to obtain th&he SM-BNDRLMS-I, with its extra innovation check, tends
fastest convergence. to a slightly higher value. For a low SNR, the SM-NLMS
Fig. 5 clearly shows how the SM-BNDRLMS-I and thealgorithm will have a slightly lower overall complexity, as
SM-BNDRLMS-II algorithms combine the fast convergenceompared with the SM-BNDRLMS algorithms.

V. NUMERICAL EXAMPLES
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points in the simulation for SNR 80 dB.
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) ) ) ) Fig. 10. MSE forN = 10 as function ofy? /o2 for white input signals.
Fig. 8. Overall complexity normalized witth versus the number of data

points in the simulation for SNR 20 dB.
Finally, experiments were conducted to validate the theoret-

TABLE I ical results obtained in the MSE analysis. The MSE was mea-
EXCESSMEAN-SQUARE ERROR IN NONSTATIONARY ENVIRONMENTS. sured for different values of (y varied fromo,, to v/100,,). The
order of the plantwa®/ — 1 = 10, and the SNR was chosen to
AL & (4] sods. " "
NLMS -40.8 a .
BNDRLMS -43.5 Fig. 9 shows the MSE versug’ /a2 for a modeled input
Slls\ngIﬁl}fE/IS : -ig-i signal, where the input vectors were chosen such+haind
SSI\%I-BNDRLMS-_II 435 vi—1 were parallel or orthogonal with probabilitidg N and

N — 1/N, respectively. As can be seen from the figure, the the-
oretical curves can predict the behavior of the simulation for the
In order to test the algorithms in a time-varying environmenassumed model. Figs. 10 and 11 show the results for white and
the system coefficients were changed according to the modelored input signals, respectively. In the case of colored input,
Wopt,k = Wopt k—1 + U, Whereu, is a random vector with the condition number of the input-signal correlation matrix was
elements of zero mean and variamée= 10™°. In the simula- equal to 100. It was shown in [4] that the output errpis upper
tions, the additive noise was set to zero, and the bound on timunded byy after convergence has taken place. Therefore, we
estimation error was set tp = \/50,,. The results in terms of can conclude that the MSE is upper boundedybyHowever,
the excess MSE in decibels can be found in Table Il. As can frem the figures, it can be seen that the theoretical formulas for
noticed, the new proposed algorithms present tracking perftlhe MSE can provide a much tighter bound than simply consid-
mance comparable with the BNDRLMS algorithm. eringa? = ~2. If we use this upper bound in AP1) together with
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T T I U ! !
-57 —— Simulation

— - Approx. Pe = Q(v/on)

— - Approx

1 tion, as well as the usual performance criteria utilized for adap-
tive filtering algorithms, which include convergence speed and
excess MSE in stationary and nonstationary environments. The
results presented here indicate that the set-membership binor-
malized data-reusing algorithms represent a family of adaptive

. Pe = Q(v/4/(A +b"1)o2 +b-147)

-57.5

2 filtering algorithms that can provide favorable results in terms
z of the above-mentioned performance criteria, unlike the most
Z-585 widely used algorithms, such LMS and NLMS, where a tradeoff

between convergence speed and excess MSE has to be made.

APPENDIX A

595 For the special case in whicky||x;x_1, the recursions
~< of the SM-BNDRLMS algorithm will be equal to those of
Tl the SM-NLMS algorithm. In the derivations below; is
: : replaced bysirivy, and the second-order approximation
E[1/r?] ~ 1/0%(N + 1 — v,) introduced in [18] is used. The
coefficient error at time instarit + 1 expressed in terms of the
probability P, ,, can be easily derived in the same manner as

(36), the difference for the white input case will be between Z\ég;th the SM-BNDRLMS algorithms in Section IV and is given

and 10 dB fory? /o2 in the range 2-10.

Fig. 11. MSE forN = 10 as function ofy? /a2 for colored input signals.

X NeX
VI. CONCLUSIONS AWpi1 = {I — P 5 B Xk ] Awy + P, p—k (44)

[Ixx[? [k |2
This paper derived two novel adaptation algorithms based
on the concept of set-membership filtering. The algorithms uffor the white input signal, we ha®e = o71. The expression
lize consecutive data pairs in order to construct a space of fé@ Alx+1 is given by (45), shown at the bottom of the page,
sible solutions for the updates. The new algorithms were afghere we have (46), also shown at the bottom of the page, with
plied to a system identification problem in order to verify the

2 T
good performance of the algorithm when compared with the  ~1 =0, (E [AWkAWk]) = A&k (47)
SM-NLMS algorithm in terms of high convergence speed, low Awi AwT x5
misadjustment, and reduced number of updates. Analysis for  py = — 62 P, xtr <E { b "2 Mk D
the mean-squared error was carried out for both white and col- ¢l
ored input signals, and closed-form expression for the excess —— 02P€7ktr (E [Akaw,kavf])
MSE was provided. By no means did the algorithms presented )
form a complete fgmily of SM algorithms Wi'th data regsin.g. A __ %Pe,ktr (E [Akawf]) _ P, A&y
number of alternative algorithms can be derived, considering is- N N
sues such as computational complexity, hardware implementa- =p3
h ional lexity, hard impl 48
Aépq1 =02tr (COV[Awygy1]) = (72tl’( [Awii1Aw,,,])
T
—o2r (E { [I Pyt Xk ] AwpAwT [ - Pe7kxk—xk2} })
1| Il
’rL2kaT
S A Ul [ DR e S B o (45)
[l %]

— <E { {I — Pk
llxk |2

o2t (B {Aw,Aw]}) — 02Pitr <E [

T T
_o2P (E [MD o P (E

=p1+p2+p3+pa

X .XT
} AwpAw [ = P ||>]§k|f2] }>

AwrAw] XXy ] )

xkaAkawkax?;])
[l (127
(46)
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where the last equality is true sincé AB) = tr (BA). which is the same as in (44) for the case of the SM-NLMS al-
gorithm. Consequently, we get

ps =02 P2, tr (B [AAw,Aw] A]) 2P\ — P2,

p [mod Awidwh] Abertbasn, = (1= —F— | A&

( [l[2] o2
( +P2 4". (55)

Awk xkxk xkxk T Awy, ek N+ 1 —
[l[2]

[Awk XX Awk] )
1%k |2

E

f(
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