
124 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 1, JANUARY 2003

Set-Membership Binormalized Data-Reusing
LMS Algorithms
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Abstract—This paper presents and analyzes novel data selec-
tive normalized adaptive filtering algorithms with two data reuses.
The algorithms [the set-membership binormalized LMS (SM-BN-
DRLMS) algorithms] are derived using the concept of set-mem-
bership filtering (SMF). These algorithms can be regarded as gen-
eralizations of the recently proposed set-membership NLMS (SM-
NLMS) algorithm. They include two constraint sets in order to con-
struct a space of feasible solutions for the coefficient updates. The
algorithms include data-dependent step sizes that provide fast con-
vergence and low-excess mean-squared error (MSE). Convergence
analyzes in the mean squared sense are presented, and closed-form
expressions are given for both white and colored input signals. Sim-
ulation results show good performance of the algorithms in terms
of convergence speed, final misadjustment, and reduced computa-
tional complexity.

Index Terms—Adaptive filter, data-selective, normalized data-
reusing algorithms, set-membership filtering.

I. INTRODUCTION

T HE least mean square (LMS) algorithm has gained
popularity due to its robustness and low computational

complexity. The main drawback of the LMS algorithm is that
the convergence speed depends strongly on the eigenvalue
spread of the input-signal correlation matrix [1]. To overcome
this problem, a more complex recursive least squares (RLS)
type of algorithm can be used. However, the faster conver-
gence of the RLS algorithm does not imply a better tracking
capability in a time-varying environment [1]. An alternative
to speed up the convergence at the expense of low additional
complexity is to use the binormalized data-reusing LMS
(BNDRLMS) algorithm [2], [3]. The BNDRLMS algorithm,
which uses consecutive data pairs in each update, has shown
fast convergence for correlated input signals. However, the fast
convergence comes at the expense of higher misadjustment
because the algorithm utilizes the data even if it does not imply
innovation. In order to combat the conflicting requirements of
fast convergence and low misadjustment, the objective function
of the adaptive algorithm needs to be changed. Set-membership
filtering (SMF) [4] specifies a bound on the magnitude of the
estimation error. The SMF uses the framework of set-member-
ship identification (SMI) [5]–[8] to include a general filtering
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problem. Consequently, many of the existing optimal bounding
ellipsoid (OBE) algorithms [5], [10]–[13] can be applied to the
SMF framework.

Most, if not all, of the SMF algorithms feature reduced
computational complexity primarily due to (sparse)data-se-
lectiveupdates. Implementation of those algorithms essentially
involves two steps: 1) information evaluation (innovation
check) and 2) update of parameter estimate. If the update does
not occur frequently and the information evaluation does not
involve much computational complexity, the overall complexity
is usually much less than that of their RLS counterparts. It
was shown in [9] that the class of adaptive solutions, called
set-membership adaptive recursive techniques(SMART), in-
clude a particularly attractive OBE algorithm, which is referred
to as the quasi-OBE algorithm or the bounding ellipsoidal
adaptive constrained least-squares (BEACON) algorithm [13],
[14], with a complexity of for the innovation check.
In addition, in [9], an algorithm with recursions similar to
those of the NLMS algorithm with an adaptive step size was
derived. The algorithm known as the set-membership NLMS
(SM-NLMS) algorithm, which is further studied in [4], was
shown to achieve both fast convergence and low misadjustment.
Applications of SMF include adaptive equalization, where
it allows the sharing of hardware resources in multichannel
communications systems [14], adaptive multiuser detection in
CDMA systems [15], [16], and in filtering with deterministic
constraints on the output-error sequence [17].

The SM-NLMS algorithm only uses the current input-desired
signals in its update. Following the same pattern as the conven-
tional NLMS algorithm, the convergence of SM-NLMS algo-
rithm will slow down when the input signal is colored. In order
to overcome this problem, this paper proposes two versions of an
algorithm that uses data pairs from two successive time instants
in order to construct a set of feasible solutions for the update.
The new algorithms are also data-selective algorithms, leading
to a low computational complexity per update. In addition, for
correlated input signals, they retain the fast convergence of the
BNDRLMS algorithms related to the smart reuse of input-de-
sired data pairs. The low misadjustment is obtained due to the
data-selective updating utilized by the new algorithms. The idea
of data reuse was also exploited in the context of OBE algo-
rithms in [12].

The organization of the paper is as follows. Section II reviews
the concept of SMF and the SM-NLMS algorithm of [4]. The
new algorithms are derived in Section III. Section IV contains
analysis of the algorithms in the mean-squared sense, followed
by simulations in Section V. Section VI contains the concluding
remarks.
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II. SMF

In SMF, the filter is designed to achieve a specified bound
on the magnitude of the output error. Assuming a sequence of
input vectors and a desired signal sequence ,
we can write the sequence of estimation errors as

(1)

where and with and . For a properly
chosen bound on the estimation error, there are several valid
estimates of .

Let denote the set of all possible input-desired data pairs
( ) of interest. Next, let denote the set of all possible vec-
tors that result in an output error bounded bywhenever

. The set , which is referred to as thefeasibility set,
is given by

(2)

Assume that the adaptive filter is trained withinput-desired
data pairs . Let denote the set containing all vec-
tors for which the associated output error at time instantis
upper bounded in magnitude by. In other words

(3)

The set is referred to as theconstraint set, and its boundaries
are hyperplanes. Finally, define theexact membership set to
be the intersection of the constraint sets over the time instants

, i.e.,

(4)

It can be seen that thefeasibility set is a subset of theexact
membership set at any given time instant. Thefeasibility set
is also thelimiting setof theexact membership set, i.e., the two
set will be equal if the training signal traverses all signal pairs
belonging to .

The idea of SMART is to adaptively find an estimate that
belongs to the feasibility set. One approach is to apply one of
the many OBE algorithms, which tries to approximate the exact
membership set with ellipsoids. Another adaptive approach
is to compute a point estimate through projections using, for
example, the information provided by the constraint set,
like in the set-membership NLMS (SM-NLMS) algorithm con-
sidered in the following subsection. It was also shown in [4]
that the SM-NLMS algorithm can be associated with an optimal
bounding spheroid (OBS).

A. Set-Membership Normalized LMS (SM-NLMS) Algorithm

The set-membership NLMS (SM-NLMS) algorithm derived
in [4] is similar to the conventional NLMS algorithm in form.
However, the philosophy behind the SM-NLMS algorithm
derivation differs from that of the NLMS algorithm. The basic
idea behind the algorithm is that if the previous estimatelies
outside the constraint set , i.e., , the new

Fig. 1. SM-NLMS algorithm.

estimate will lie on the closest boundary of at a min-
imum distance, i.e., the SM-NLMS minimizes
subject to . This is obtained by an orthogonal
projection of the previous estimate onto the closest boundary of

. A graphical visualization of the updating procedure of the
SM-NLMS can be found in Fig. 1. Straightforward calculation
leads to the following recursions for :

(5)

with

if
otherwise

(6)

where and denote thea priori error and the time-depen-
dent step-size, respectively. The update (5) and (6) resemble
those of the conventional NLMS algorithm, except for the time-
varying step-size .

Note that since the conventional NLMS algorithm minimizes
subject to the constraint that , it is

a particular case of the above algorithm by choosing the bound
. Furthermore, using a step-size in the SM-NLMS

whenever would result in a valid update because the
hyperplane with zeroa posteriorierror lies in ; however, the
resulting algorithm does not minimize the Euclidean distance.

III. SET-MEMBERSHIPBINORMALIZED DATA-REUSING

LMS ALGORITHMS

The SM-NLMS algorithm in the previous subsection only
considered the constraint set in its update. The SM-NLMS
algorithm has a low computational complexity per update, but
its convergence speed appears to follow the trend of the normal-
ized LMS algorithm, which depends on the eigenvalue spread
of the input-signal correlation matrix. The exact membership
set defined in (4) suggests the use of more than one con-
straint set. In this subsection, two algorithms are derived, re-
quiring that the solution belongs to the constraint sets at time
instants and , i.e., . The recursions of
the algorithms are similar to the conventional BNDRLMS algo-
rithm [2]. The set-membership binormalized data-reusing LMS
(SM-BNDRLMS) algorithms can be seen as extensions of the
SM-NLMS algorithm that use two consecutive constraint sets
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Fig. 2. SM-BNDRLMS-I algorithm. (a) Orthogonal projection onto the nearest boundary ofH lies withinH , i.e.,w 2 H . No further update. (b)
Orthogonal projection onto the nearest boundary ofH ,w lies outsideH . Final solution at the nearest intersection ofH andH .

for each update. The first algorithm presented in Section III-A
is a two-step approach minimizing the Euclidean distance be-
tween the old filter coefficients and the new update subjected to
the constraints that the new update lies in both constraint sets

and . The second algorithm presented in Section III-B
reduces the computational complexity per update, as compared
with the first algorithm by choosing a different update strategy.

A. Algorithm I

The first set-membership binormalized data-reusing LMS al-
gorithm (SM-BNDRLMS-I) performs an initial normalized step
according to the SM-NLMS algorithm. If the solution to the first
step belongs to both constraint sets and , no further
update is required. If the initial step moves the solution out of

, a second step is taken such that the solution is at the in-
tersection of and at a minimum distance from .
Fig. 2 depicts the update procedure. The SM-BNDRLMS-I al-
gorithm minimizes subject to the constraint that

.
The solution can be obtained by first performing an orthog-

onal projection of onto the nearest boundary of , just like
in the SM-NLMS algorithm

(7)

where and are defined in (6). If , i.e.,
, then . Otherwise, a second step is

taken such that the solution lies at the intersection ofand
at a minimum distance. The second step in the algorithm

will be in the direction of , which is orthogonal to the first
step, i.e.,

(8)

where

(9)

In summary, the recursive algorithm for is given by

(10)

where

if

otherwise

if and

otherwise.
(11)

Remark 1: If the constraint sets and are parallel,
the denominator term of the s in (11) will be zero. In this
particular case, the second step of (10) is not performed to avoid
division by zero.

It is easy to verify that if the bound of the estimation error is
chosen to be zero, i.e., , the update equations will be those
of the conventional BNDRLMS algorithm with unity step-size
[2].

B. Algorithm II

The SM-BNDRLMS-I algorithm in the previous subsection
requires the intermediate check, that is, if , to de-
termine if a second step is needed. This check will add extra
computational complexity. The algorithm proposed below (the
SM-BNDRLMS-II) does not require this additional check to as-
sure that . Let ( ) denote
the hyperplanes that contain all vectorssuch that

, where are extra variables chosen
such that the bound constraints are valid. That is, if are
chosen such that , then .
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Fig. 3. General algorithm update.

Consider the following optimization criterion whenever
:

subject to

(12)

The pair ( ) specifies the point in where
the final update will lie; see Fig. 3. In order to evaluate if an
update according to (12) is required, we need to first check if

. Due to the concept of data reuse together with
the constraint , this check reduces to . In
what follows, we first solve for the general update and thereafter
consider a specific choice of the pair ( ), leading to a
simplified form.

To solve the optimization problem in (12), we can apply the
method of Lagrange multipliers leading to the following objec-
tive function:

(13)

After setting the gradient of (13) to zero and solving for the
Lagrange multipliers, we get

if
otherwise

(14)

where

(15)

(16)

in which and are the
a priori error at iteration and thea posteriorierror at iteration

, respectively.
Since always belongs to before a possible update,

we have . Therefore, choosing satisfies
. In the same way as in the SM-NLMS and SM-BN-

DRLMS-I algorithms, it is sufficient to choose such that the
update lies on the closest boundary of, i.e., .

Fig. 4. SM-BNDRLMS-II algorithm.

TABLE I
COMPUTATIONAL COMPLEXITY PER UPDATE.

The above choices lead to the SM-BNDRLMS-II algorithm,
where the new estimate will lie at the nearest boundary
of such that thea posteriorierror at iteration ,
is kept constant. A graphical illustration of the update proce-
dure is shown in Fig. 4. The update equations for the SM-BN-
DRLMS-II algorithm are given by

(17)

where

if
otherwise.

(18)

As with the SM-BNDRLMS-I algorithm in the previous sub-
section, the problem with parallel constraint sets is avoided by
using the SM-NLMS update of (5) whenever the denominator
in the is zero.

C. Computational Complexity

The computational complexity per update in terms of the
number of additions, multiplications, and divisions for the three
algorithms are shown in Table I. For the SM-BNDRLMS-I,
the two possible update complexities are listed where the first
corresponds to the total complexity when only the first step is
necessary, i.e., when , and the second corresponds
to the total complexity when a full update is needed. Applying
the SM-BNDRLMS algorithms slightly increases the compu-
tational complexity as compared with that of the SM-NLMS
algorithm. However, the SM-BNDRLMS algorithms have a
reduced number of updates and an increased convergence rate
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as compared to the SM-NLMS algorithm, as verified through
simulations in Section V. Comparing the complexities of the
SM-BNDRLMS-I and SM-BNDRLMS-II algorithms, we note
that the difference in the overall complexity depends on the
frequency the second step is required in Algorithm I. In the op-
eration counts, the value of at iteration was assumed
unknown. However, once or is known, one can
compute the other using only two additional multiplications,
e.g., . The relation between

and has been used in the operation counts
of the SM-BNDRLMS algorithms. If update occurs at two
successive time instants, and are known
from a previous update, and as a consequence, the number of
multiplications and additions in such updates can be further
reduced by approximately for the SM-NLMS algorithm and
2 for the SM-BNDRLMS algorithms. Finally, note that if
we continuously estimate and , regardless of
whether an update is required or not, the SM-BNDRLMS-II
algorithm will always be more efficient than SM-BNDRLMS-I.
These computational savings are crucial in applications where
the filter order is high and computational resources are limited.

IV. SECOND-ORDER STATISTICAL ANALYSIS

This section addresses the steady-state analysis of the
SM-BNDRLMS algorithms.

A. Coefficient-Error Vector

In this subsection, we investigate the convergence behavior of
the coefficient vector . It is assumed that an unknown FIR
is identified with an adaptive filter of the same order
using the SM-BNDRLMS-II algorithm. The desired response is
given by

(19)

where is measurement noise, which is assumed here to be
Gaussian with zero mean and variance. We study the evolu-
tion of the coefficient error . The output error
can now be written as

(20)

The update equations for the adaptive filter coefficients are
given by

if
if
if

(21)

where

(22)

As a consequence, the coefficient error at time instant
becomes

if
if
if

(23)

where

(24)

and

(25)

In the analysis, we utilize the following initial assumptions.
AS1) The filter is updated with the probability

, and .
Note that the probability will be time-varying be-

cause the variance of the output error depends on the
mean of the squared coefficient-error vector norm, and for
Gaussian noise with zero mean and variance, we get

. Since we are interested in
the excess MSE and not the initial transient the following
assumption is made.

AS2)The filter has reached the steady-state value.
From (23), we can now write the coefficient error as

(26)

B. Input-Signal Model

In the evaluation of the excess MSE we use a simplified
model for the input-signal vector . The model uses a sim-
plified distribution for the input-signal vector by employing
reduced and countable angular orientations for the excitation,
which are consistent with the first- and second-order statistics
of the actual input-signal vector. The model was used for
analyzing the NLMS algorithm, [18] as well as the BNDRLMS
algorithm [2], and was shown to yield good results.

The input signal vector for the model is

(27)

where

• is 1 with probability 1/2
• has the same probability distribution as , and in

the case of white Gaussian input signal, it is a sample of
an independent process with-square distribution with
degrees of freedom, with

• is one of the orthonormal eigenvectors
, say { , }.

For a white Gaussian input signal, it is assumed thatis uni-
formly distributed such that

(28)

C. Excess MSE for White Input Signals

In this subsection, we investigate the excess MSE in the
SM-BNDRLMS algorithms. In order to achieve this goal, we
have to consider a simple model for the input signal vector that
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assumes a discrete set of angular orientations. The excess MSE
is given by [1]

(29)

where

(30)

is the MSE at iteration , and is the minimum MSE. With
these equations, we have that

tr cov (31)

For the input-signal model presented in the previous subsec-
tion, can be written as

(32)

Conditions and in the model are equivalent
to and , respectively, because
and can only be parallel or orthogonal to each other.

denotes the probability that , and
denotes the probability that . For the

case , the SM-BNDRLMS algorithm will behave like
the SM-NLMS algorithm, which has the excess MSE (see
Appendix A)

(33)

where varies from 1 for binary distribution, to
3 for Gaussian distribution, to for a Cauchy distribution [3],
[18]. For the case , the expression for the coefficient
error vector also reduces to the same as that of the SM-NLMS
algorithm (see Appendix B), giving

(34)

Combining, we have

(35)

Recall assumptionAS2), where the filter is in steady-state such
that the probability is constant. The stability and

convergence of (35) holds since . If we let ,
the excess MSE becomes

(36)

Assuming the filter has converged to its steady-state value, the
probability of update for white Gaussian input signals is given
by

(37)

where is the complementary Gaussian cumulative distri-
bution function given by

(38)

and is the mean of the squared norm of the
coefficient error after convergence. To be able to calculate
the expression in (36), we need, which in turn depends on

. Therefore, consider the following two cases
of approximation.

AP1) The variance of the error is lower bounded by the noise
variance, i.e., .
Therefore, a simple lower bound is given by

AP2) We can rewrite the variance of the error as
, where denotes the dis-

tance between the error atth iteration and the optimal
error. Assuming no update, we have , and with

, we get . Therefore, an
upper bound of the probability of update is given by

The approximations of together with (36) are used in the
simulations to estimate the excess MSE for different thresholds

.

D. Excess MSE for Colored Input Signals

When extending the analysis to colored input signals, we may
still use the input-signal model in (27). The angular distribu-
tions of will change, i.e., the probabilities and

will be different from those for white input sig-
nals. However, as with the case of white input signals, these
probabilities will not have effect on the final results; see (35).
In order to get an expression for the probability of update
for colored input signals, we assume that the input is correlated
according to

(39)

where is a white noise process with zero mean and variance
. Straightforward calculations give the autocorrelation matrix

...
...

...
. . .

...
(40)
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Fig. 5. Learning curves of the SM-BNDRLMS-I, the SM-BNDRLMS-II, the
SM-NLMS, the BNDRLMS, and the NLMS algorithms. Condition number of
the input-signal correlation matrix= 100, SNR= 80 dB, and
 =

p
5� .

where

(41)

Assuming the filter has converged to its steady state, the vari-
ance of the output error can now be computed as

(42)

The probability of update is now given by

(43)

To be able to evaluate the probability of update, the same
approximation is made as in AP2) for the case of white
input signals, i.e., . An upper
bound for the case of colored input signals is now given by

. The lower bound
given in AP1) in the previous section is still valid.

V. NUMERICAL EXAMPLES

In this section, the new algorithms are applied to a system
identification problem. The order of the plant was

and the input signal was colored noise with condition number
100. The signal-to-noise ratio (SNR) was set to 80 and 20 dB in
two different examples.

Fig. 5 shows the learning curves averaged over 500 simu-
lations for the SM-BNDRLMS-I, the SM-BNDRLMS-II, the
SM-NLMS, the BNDRLMS, and the NLMS algorithms for an

dB. The upper bound on the estimation error was
set to , and the step sizes used in the BNDRLMS and
the NLMS algorithms were set to unity in order to obtain the
fastest convergence.

Fig. 5 clearly shows how the SM-BNDRLMS-I and the
SM-BNDRLMS-II algorithms combine the fast convergence

Fig. 6. Learning curves of the SM-BNDRLMS-I, the SM-BNDRLMS-II, the
SM-NLMS, the BNDRLMS, and the NLMS algorithms. Condition number of
the input-signal correlation matrix= 100, SNR= 20 dB, and
 =

p
5� .

of the BNDRLMS algorithm with the low misadjustment of
the SM-NLMS algorithm. In an ensemble of 500 experiments
of 1000 iterations, the average number of updates per exper-
iment for the SM-BNDRLMS-I, SM-BNDRLMS-II, and the
SM-NLMS algorithms were, 185, 180, and 436, respectively.
For the SM-BNDRLMS-I, an average of 108 updates were full
updates.

Fig. 6 shows the learning curve results for an SNR dB.
The parameters used in the algorithms were the same as in the
first example. As can be seen from the figure, the SM-BN-
DRLMS algorithms still have higher convergence speeds than
the SM-NLMS algorithm.

In 1000 iterations, the average number of updates per ex-
periment for the SM-BNDRLMS-I, SM-BNDRLMS-II, and the
SM-NLMS algorithms were, 100, 95, and 129, respectively. For
the SM-BNDRLMS-I, an average of 15 updates were full up-
dates.

In the two examples above, the NLMS and the BNDRLMS
algorithms were unable to reach the same low steady-state value
as their set-membership versions, and a trade-off between con-
vergence speed and final MSE was observed.

For the two examples above, we also plotted the overall
complexity versus the total number of iterations for the
SM-NLMS and the SM-BNDRLMS algorithms. The curves
are normalized with respect to the number of filter coefficients

. To minimize the computational complexity for all the
algorithms, we recursively estimated and at
each iteration. Figs. 7 and 8 show the results based on the above
simulations. For the case of high SNR, we see from Fig. 7
that the overall complexity of the SM-BNDRLMS algorithms
are initially higher than the SM-NLMS algorithm. As time
proceeds, the overall complexity of the SM-BNDRLMS-II
algorithm becomes similar to that of the SM-NLMS algorithm.
The SM-BNDRLMS-I, with its extra innovation check, tends
to a slightly higher value. For a low SNR, the SM-NLMS
algorithm will have a slightly lower overall complexity, as
compared with the SM-BNDRLMS algorithms.
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Fig. 7. Overall complexity normalized withN versus the number of data
points in the simulation for SNR= 80 dB.

Fig. 8. Overall complexity normalized withN versus the number of data
points in the simulation for SNR= 20 dB.

TABLE II
EXCESSMEAN-SQUARE ERROR INNONSTATIONARY ENVIRONMENTS.

In order to test the algorithms in a time-varying environment,
the system coefficients were changed according to the model

, where is a random vector with
elements of zero mean and variance 10 . In the simula-
tions, the additive noise was set to zero, and the bound on the
estimation error was set to . The results in terms of
the excess MSE in decibels can be found in Table II. As can be
noticed, the new proposed algorithms present tracking perfor-
mance comparable with the BNDRLMS algorithm.

Fig. 9. MSE forN = 10 as function of
 =� for the input signals as
modeled.

Fig. 10. MSE forN = 10 as function of
 =� for white input signals.

Finally, experiments were conducted to validate the theoret-
ical results obtained in the MSE analysis. The MSE was mea-
sured for different values of( varied from to ). The
order of the plant was , and the SNR was chosen to
60 dB.

Fig. 9 shows the MSE versus for a modeled input
signal, where the input vectors were chosen such thatand

were parallel or orthogonal with probabilities and
, respectively. As can be seen from the figure, the the-

oretical curves can predict the behavior of the simulation for the
assumed model. Figs. 10 and 11 show the results for white and
colored input signals, respectively. In the case of colored input,
the condition number of the input-signal correlation matrix was
equal to 100. It was shown in [4] that the output erroris upper
bounded by after convergence has taken place. Therefore, we
can conclude that the MSE is upper bounded by. However,
from the figures, it can be seen that the theoretical formulas for
the MSE can provide a much tighter bound than simply consid-
ering . If we use this upper bound in AP1) together with
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Fig. 11. MSE forN = 10 as function of
 =� for colored input signals.

(36), the difference for the white input case will be between 2.5
and 10 dB for in the range 2–10.

VI. CONCLUSIONS

This paper derived two novel adaptation algorithms based
on the concept of set-membership filtering. The algorithms uti-
lize consecutive data pairs in order to construct a space of fea-
sible solutions for the updates. The new algorithms were ap-
plied to a system identification problem in order to verify the
good performance of the algorithm when compared with the
SM-NLMS algorithm in terms of high convergence speed, low
misadjustment, and reduced number of updates. Analysis for
the mean-squared error was carried out for both white and col-
ored input signals, and closed-form expression for the excess
MSE was provided. By no means did the algorithms presented
form a complete family of SM algorithms with data reusing. A
number of alternative algorithms can be derived, considering is-
sues such as computational complexity, hardware implementa-

tion, as well as the usual performance criteria utilized for adap-
tive filtering algorithms, which include convergence speed and
excess MSE in stationary and nonstationary environments. The
results presented here indicate that the set-membership binor-
malized data-reusing algorithms represent a family of adaptive
filtering algorithms that can provide favorable results in terms
of the above-mentioned performance criteria, unlike the most
widely used algorithms, such LMS and NLMS, where a tradeoff
between convergence speed and excess MSE has to be made.

APPENDIX A

For the special case in which , the recursions
of the SM-BNDRLMS algorithm will be equal to those of
the SM-NLMS algorithm. In the derivations below, is
replaced by , and the second-order approximation

introduced in [18] is used. The
coefficient error at time instant expressed in terms of the
probability can be easily derived in the same manner as
with the SM-BNDRLMS algorithms in Section IV and is given
by

(44)

For the white input signal, we have . The expression
for is given by (45), shown at the bottom of the page,
where we have (46), also shown at the bottom of the page, with

tr (47)

tr

tr

tr

(48)

tr cov tr

tr

tr (45)

tr

tr tr

tr tr

(46)
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where the last equality is true since tr tr .

tr

tr

tr

tr

tr

tr

(49)

tr

tr

(50)

Finally, we get

(51)

APPENDIX B

For the case , (24) and (25) reduce to

(52)

and

(53)

The coefficient error vector in (26) now reduces to

(54)

which is the same as in (44) for the case of the SM-NLMS al-
gorithm. Consequently, we get

(55)
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