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Abstract—Set-membership identification (SMI) theory is ex- OBE algorithms feature a unique selective update criterion that
tended to the more general problem of linear-in-parameters requires parameter updates to be computed for only a small
filtering by defining a set-membership specification as opposed action of the data (typically less than 20%). This feature can

to a bounded noiseassumption This sets the framework for b loited to obtain sianificant tati | reduction b
several important filtering problems that are not modeled by a € exploited to obtain signiicant computational reduction by

“true” unknown system with bounded noise, such as adaptive time-sharing schemes [8], [9].

equalization, to exploit the unique advantages of SMI algorithms. However, the theory of SMI has so far been limited to
A recursive solution for set membership filtering is derived that system identification, which excludes several important fil-
resembles a variable step size normalized least mean squaresgring proplems like inverse filtering, channel equalization,

(NLMS) algorithm. Interesting properties of the algorithm, such h llati interf . db f .
as asymptotic cessation of updates and monotonically nonincreas- €CNO canceliation, interierence suppression, and beamforming

ing parameter error, are established. Simulations show significant that are not modeled by a “true” linear-in-parameter system
performance improvement in varied environments with a greatly ~with additive bounded noise. The extension of set-membership

reduced number of updates. theory to the general filtering problem is therefore of immense
academic and practical interest. This paper proposes a frame-
I. INTRODUCTION work for set-membership filtering (SMF) that encompasses,

but is not limited to, system identification. The problem is
lass of recursive SMI alaorithms Known timal formulated on the basis of a bounded-erspecificationas
9 ap opposed to a bounded-noiassumptionThe class of adaptive

bounding eII|p50|ds_(OBE) algor.|thms. (see, e.g. [1], [Zl’solutions to this problem, referred to here set-membership
[4]) are well-established paradigms in the area of SySter;r{?japtive recursive techniqudSMART), are seen to include
identification that exploit the assumption of a bounded noi% '

process added to a linear-in-parameter model. The OBE aEa OBE algorithms. A novel algorithm in SMART is derived

) L o . whose recursions are identical to those of the normalized least
gorithms compute ellipsoidal approximations to regions in . . P .
) : mean-squares (NLMS) algorithm with an “optimized” adaptive
the parameter space that are consistent with the observ ; : . . .
. : N Step size. This establishes a set-membership equivalent of the
data and model assumptions. Several investigations (see, €.d.

[1]-[4], [6], [7]) have shown the attractive features offered bsl%éhasﬂc gradient algorithm in much the same way as the

. . . E algorithms ar ivalen f th rministic | -
the OBE algorithms and their advantages over convenUonaF algorit ns are equivale ts o .t € dete stic least
uares algorithms. This new algorithm, referred to here as

. : . . S
adaptive technigues. Formulations for the OBE recursions IO%n-NLMS, is derived from two distinct approaches: the op-
|

strikingly similar to those of the recursive least-squares (RL . . o
algorithm. In fact, the OBE algorithms essentially executg al bounding spheroids (OBS) approach and the projection

. . . o : ased approach. The new algorithm offers automatic selection
weighted least-squares recursions withagtimizedadaptive pp 9

S of the step-size that is very useful in unknown or time-
weighting sequence (see Dellet al. [6]). Furthermore, the rying environments and a proof of convergence in terms
OBE algorithms offer significant advantages over the RLQ

algorithms in several respects. First, they provide region esti- guar_anteed cessatl_O n of updates. Some other interesting
, " . . ) roperties of the algorithm are also established.
mates in addition to point estimates. Second, they exhibit bette : . . )
he letter is organized as follows. Section Il defines the

convergence and tracking properties due to the optimizatign

L roblem formulation for set-membership filtering and suggests
of the weighting sequence (see [3], [6], and [10]). Most OBEdaptive solutions by SMART. The set-membership NLMS

algorithms have proven convergence [1], [2], [5]. Third, the, . : . ; : :
9 P 9 (41, [2], [5] algorithm, a linear complexity NLMS-like recursive algorithm
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where§ € CV is the parameter vector. The filter error is: as follows:

defined ase(#) = d — y(8). The class of filters modeled _ N. T

by the aboS/e) includes (fir)1ite impulse response (FIR) and Hn =16 € T2 |dn = 07xa] < 7} 3

infinite impulse response (IIR) filters that are commonly usethe constraint set is the region enclosed by the set of parallel

in signal processing and communication systems as weyperplanes described Wy, — 6%x,| = ~.

as several nonlinear systems. Specificaty,may contain ~ The minimal set estimate f& at timen is themembership

nonlinear functions of past filter outputs, as is the case $etiy, = Nj_,H;. Clearly, the membership set is a superset of

decision feedback equalization. the feasibility set. However, exact membership sets are convex
Conventional filtering schemes estimate the parameter v@elytopes in the parameter space that are analytically and

tor § so as to minimize a cost function which is usually &omputationally intractable. Adaptive solutions for the SMF

direct function of the estimation errer Examples of such cost problem can be derived from two separate approaches: i) by

functions are the time-average @t (weighted least-squares),forming a sequence of parameter estimates that (hopefully)

or the ensemble averagedf(MSE). In contrast, the objective converges into the feasibility set (point-wise approach), or ii)

of SMF is to achieve a specifidibundon the magnitude of by forming a sequence of sets thaghtly outer-bound the

the estimation errog over a model space of interest. We stammembership sets (set bounding approach). The OBE algo-

by defining a model spac§ comprising input vector-desired rithms can be easily verified to belong to the latter.

output pairs over which we wish to impose the bounded error

criterion. Any parameter estimate that results in the error being [ll. SET-MEMBERSHIP NLMS ALGORITHM

less than the specified boundfor all data pairs fromsS is The SM-NLMS algorithm, as a SMART, can be derived
an acceptable solution. Therefore, the solution to the SMfgm both approaches mentioned above. The point-wise ap-
problem is asetin the parameter space rather than a poipfoach is to take projections of the previous estimate on the
estimate. The SMF criterion is to finflithat satisfies constraint set at each time.

Formulation 1—Point-Wise ApproachFind 6, so as to
minimize the Euclidean norm of the change in the estimate

The desired region estimate, called fleasibility set®, is  9IVen by |6, — 6,1 ||, subject to the constraint théf, € 7,..

the set of parameter vectors that satisfy (1). In other words N other words, the goal is to move into the constraint set
at timen by traversing the minimum possible distance in the

o2 ﬂ {6 C: |d—6Tx]? <42} (2) Parameter space, in accordance vifta principle of minimum
disturbance [11]. When 8,,_; ¢ H,, this corresponds to

choosing the foot of the perpendicular frofp_1 to the

If the bound on the errory is properly chosen, then thenearest bounding hyperplane of the constraint set, as shown

feasibility set is nonempty and any point in it is a validn Fig. 1(a). If 6,,_; € H,,, however, Formulation 1 implies

estimate. If the specification is too stringent, however, the, = 4,_,, i.e., no update of the parameter estimate is

feasibility set may be empty for a given model space @fecessary.

interest. It is assumed in the remainder of this paper that theThe set-bounding approach is to compute outer approxima-

feasibility set is nonempty. tions of the membership set by minimal volume spheroids. A
It is important to emphasize that the inequality (1) is gpheroid,S,,, in the N-dimensional complex parameter space

specificationon the adaptive filter, as opposed to an assumggd described by

bound on the additive disturbance, as is the case in set- r A

membership identification (SMI). SMI can be seen to be a Sn={0 € c: 16 = 6a]l” < o7} )

special case of the above problem wHen d) are the input, whered is the center of the spheroid ang is its radius. Then,

output pair of the plant to be identified. If it is known that thehe criterion for update is as follows.

additive noise to this plant is bounded by, then® is clearly Formulation 2—Optimal Bounding Spheroids Approach:

nonempty fory > «,. Compute a smallest spheroid that contains the intersection of
The feasibility set or a point in it can be estimated offthe spheroidal set estimafs,_, and the constraint sé,,.

line if the model spaceS is known a priori (see, e.g., [9]). Theorem 1:The solutions to both Formulations 1 and 2

However, there is no closed-form solution for the feasibilityre unique and identical. They are given by the following

set given an arbitrary model space, and solutions for particutatursions:

le(@))2<+2  forall (x,d) €S. (1)

(x,d)ES

cases may be too complex. Also, in practice, the model space . . S X

is not completely known and/or is time-varying, as is always On =Op—1 + xHx, ®)

the case in SMI and in channel equalization. There is thus |g 2

a necessity for developingdaptivealgorithms that estimate on=00_)—ah —r (6)

the feasibility set or one of its members. We shall call such Xn Xn

techniquesSMART (defined above). where the prediction erraf,, and the gainy,, are given by
It_is assumed Fh_at a sequence of data $ex§ d,) €S ?s 5, =d, — é;‘f_lxn

available for “training.” At timen, the constraint setH, is ~y _

defined as the set of all parameter vectors that are consistent a4y, = { 1- 8. if 6n] > @)

with the specification (1) and the observation at time instant , otherwise.
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(b)
Fig. 1. Derivation of the SM-NLMS algorithm. (a) Point-wise approach. (b) Optimal bounding spheroids approach.

5 T T T T T T T T T 5 T T T T T T ] T T
: : : : : I | JI : v I ‘I d :" : TLMS et 0 il !
=0. + ¢ ! ) 3
0 M“‘IW-MNMM%--:MN S's'te -ocﬁbw-*rknwm.- 414 {(&‘ N 'mﬂ’bﬂ
Ly d & IV u‘ | f
i 1 ! I I I ) I tih 1y \ ) "
Vool eyl I I I i i I | i I I I I I
A_5p__l__l__‘_‘r“_'»wf__l___l___t__!___l__. — alibibilte ! s poodper ||
) (R ] | -..L“’ NLMS, steb=0.00sk | 3 °} N #'f' } Wy ’p\
5 L I I NV I | 5 B (LA i DL 1 it N
G |1 Vs sepoor2) 1 T e, L s A L A T R I L B
§ | -T——r——:——-r——ml ~or] 5-;2 ——t—— o m = o — —
< I | I ! I | s
2 4==F=—t--r-1 3
| P NiMS, steh=0.2685 |
v-.'-M:H-IIMM.-Mu‘-wl'r‘l*-rwlh‘-u'
T T ar ) r L
| | | SM-NLMS | |
i I I } | I
] ] | | P
400 500 600 700 800 900 1000

@)

Fig. 2. Mean square error performance of the SM-NLMS algorithm compared with the NLMS algorithm. (a) Eigenvalue spread of the inputvectors
100 and SNR= 20 dB. (b) Eigenvalue spreagt 1 and SNR= 0 dB.

Sketch of Proof:The solution to Formulation 1 can bef,)¥x, = 0 at,. Then, using(én_l —6,) L (6, —0,), we
derived geometrically using Fig. 1(a). In the solution fohave
Formulation 2,5, is the smallest spheroid containirig, N 162 = Bull? = 162 — 6o + [|60 — B0
Sn—_1. Therefore the “diameter” of,, is the nearest bounding '"* nib e ° ° &

hyperplane of,, bounded byS,,_;. The centeb,, and radius <16 = Ooll? + 1160 = Or—s||I* = 1|64 = Bry ||*.
o, can be derived from Fig. 1(b). Extension to multidimen- (8)
sional complex vectors is straightforward. O .

It may be observed that the SM-NLMS recursion, although ) ) o
derived from a completely different philosophy, is identical to At €very instant of time, the above theorem implies that
the recursion in the conventional NLMS algorithm, except fd achpoint in the feasibility set is closer to the new estimate
the assignment to the gain team,. The gaina,, is a ,constant than the previous estimate. If the feasibility set is time-varying,
i1 conventional NLMS. whereas it is adaptiCe N SM-NLMSthe point estimate always moves closer to each point in the

. . . A resentfeasibility set, indicating good tracking capability in a
reflecting the information provided by the current data set. T e-varying environment. In terms of set estimates, Theorem

variable step size isptimalin the sense of Formulations 1 orq implies that the SM-NLMS algorithm provides a sequence of
2, as shown above. Furthermore, the SM-NLMS algorith@hy error {S,,\©} with monotonically nonincreasing volumes.
guarantees nonincreasing parameter error, as described by the&ynvergence of the algorithm in terms of the learning-
following theorem. rate o, converging to zero is established by the following
_ Theorem 2: The magnitude of the parameter erfft, — theorem. Note that this requires no conditions on the data
0x||, wheref, is any point in the feasibility se® andf,, is except thatx,, d,,) € S for all n. In particular, no persistence
given by (5), is a monotonically nonincreasing sequence. of excitation conditions are necessary.

Sketch of Proof:In Fig. 1(a), let the extension of the Theorem 3:The magnitude of parameter updates and the
line connectingf,,—; and 8,, intersect the hyperplan® — sequence of step-sizds,, } of SM-NLMS converge to zero,
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ie., SMART was derived in the set-membership filtering frame-
. b _ 0 _ —0 9 work that has the same recursions as the normalized LMS
oy 16 = O]l = el O = ©) algorithm, except that the new algorithm provides optimal

and the magnitude of prediction error is asymptotically Sma”?lata-dependent gain term that obviates the need for heuristics

or its choice. The SM-NLMS algorithm guarantees nonin-

than ~, i.e., : :
creasing magnitude of parameter error and also offers set
lim sup |6,| < 7. (10) estimates of nonincreasing size in the parameter space. A proof
n—ee of cessation of updates is established. Further convergence
Proof: Let the time indexn denote just the updating analysis of the algorithms in SMART in general and the
instants, sincd|f,, — f,_1|| = @, = 0, otherwise. For all SM-NLMS algorithm in particular will be presented in a

n, o2 > 0, since the spheroid,, is nonempty (it contains forthcoming work.
the feasibility set). And sincer? is monotone decreasing,

the sequence{c2} is convergent. From (6), this implies

a2 [6,]2/|1%n|? — 0. It follows from (5) that||6, — 6,,_1|| =

an|6n|/]|%xn]] — 0. Assuming||x,|| is bounded and using [1] E. Fogel and Y. F. Huang, “On the value of information in system
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