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Abstract—Set-membership identification (SMI) theory is ex-
tended to the more general problem of linear-in-parameters
filtering by defining a set-membershipspecification, as opposed
to a bounded noiseassumption. This sets the framework for
several important filtering problems that are not modeled by a
“true” unknown system with bounded noise, such as adaptive
equalization, to exploit the unique advantages of SMI algorithms.
A recursive solution for set membership filtering is derived that
resembles a variable step size normalized least mean squares
(NLMS) algorithm. Interesting properties of the algorithm, such
as asymptotic cessation of updates and monotonically nonincreas-
ing parameter error, are established. Simulations show significant
performance improvement in varied environments with a greatly
reduced number of updates.

I. INTRODUCTION

SET-MEMBERSHIP identification (SMI) and a popular
class of recursive SMI algorithms known asoptimal

bounding ellipsoids(OBE) algorithms (see, e.g., [1], [2],
[4]) are well-established paradigms in the area of system
identification that exploit the assumption of a bounded noise
process added to a linear-in-parameter model. The OBE al-
gorithms compute ellipsoidal approximations to regions in
the parameter space that are consistent with the observed
data and model assumptions. Several investigations (see, e.g.,
[1]–[4], [6], [7]) have shown the attractive features offered by
the OBE algorithms and their advantages over conventional
adaptive techniques. Formulations for the OBE recursions look
strikingly similar to those of the recursive least-squares (RLS)
algorithm. In fact, the OBE algorithms essentially execute
weighted least-squares recursions with anoptimizedadaptive
weighting sequence (see Delleret al. [6]). Furthermore, the
OBE algorithms offer significant advantages over the RLS
algorithms in several respects. First, they provide region esti-
mates in addition to point estimates. Second, they exhibit better
convergence and tracking properties due to the optimization
of the weighting sequence (see [3], [6], and [10]). Most OBE
algorithms have proven convergence [1], [2], [5]. Third, the
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OBE algorithms feature a unique selective update criterion that
requires parameter updates to be computed for only a small
fraction of the data (typically less than 20%). This feature can
be exploited to obtain significant computational reduction by
time-sharing schemes [8], [9].

However, the theory of SMI has so far been limited to
system identification, which excludes several important fil-
tering problems like inverse filtering, channel equalization,
echo cancellation, interference suppression, and beamforming
that are not modeled by a “true” linear-in-parameter system
with additive bounded noise. The extension of set-membership
theory to the general filtering problem is therefore of immense
academic and practical interest. This paper proposes a frame-
work for set-membership filtering (SMF) that encompasses,
but is not limited to, system identification. The problem is
formulated on the basis of a bounded-errorspecificationas
opposed to a bounded-noiseassumption. The class of adaptive
solutions to this problem, referred to here asset-membership
adaptive recursive techniques(SMART), are seen to include
the OBE algorithms. A novel algorithm in SMART is derived
whose recursions are identical to those of the normalized least
mean-squares (NLMS) algorithm with an “optimized” adaptive
step size. This establishes a set-membership equivalent of the
stochastic gradient algorithm in much the same way as the
OBE algorithms are equivalents of the deterministic least-
squares algorithms. This new algorithm, referred to here as
SM-NLMS, is derived from two distinct approaches: the op-
timal bounding spheroids (OBS) approach and the projection-
based approach. The new algorithm offers automatic selection
of the step-size that is very useful in unknown or time-
varying environments and a proof of convergence in terms
of guaranteed cessation of updates. Some other interesting
properties of the algorithm are also established.

The letter is organized as follows. Section II defines the
problem formulation for set-membership filtering and suggests
adaptive solutions by SMART. The set-membership NLMS
algorithm, a linear complexity NLMS-like recursive algorithm
in SMART is derived in Section III.

II. SET-MEMBERSHIP FILTERING

Consider a general linear-in-parameter filter in which
C and complex scalar are, respectively, the input

and desired output. The output of the filter is ,
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where C is the parameter vector. The filter error is
defined as . The class of filters modeled
by the above includes finite impulse response (FIR) and
infinite impulse response (IIR) filters that are commonly used
in signal processing and communication systems as well
as several nonlinear systems. Specifically,may contain
nonlinear functions of past filter outputs, as is the case in
decision feedback equalization.

Conventional filtering schemes estimate the parameter vec-
tor so as to minimize a cost function which is usually a
direct function of the estimation error. Examples of such cost
functions are the time-average of (weighted least-squares),
or the ensemble average of(MSE). In contrast, the objective
of SMF is to achieve a specifiedboundon the magnitude of
the estimation error over a model space of interest. We start
by defining a model space comprising input vector-desired
output pairs over which we wish to impose the bounded error
criterion. Any parameter estimate that results in the error being
less than the specified boundfor all data pairs from is
an acceptable solution. Therefore, the solution to the SMF
problem is aset in the parameter space rather than a point
estimate. The SMF criterion is to findthat satisfies

for all (1)

The desired region estimate, called thefeasibility set , is
the set of parameter vectors that satisfy (1). In other words

C (2)

If the bound on the error is properly chosen, then the
feasibility set is nonempty and any point in it is a valid
estimate. If the specification is too stringent, however, the
feasibility set may be empty for a given model space of
interest. It is assumed in the remainder of this paper that the
feasibility set is nonempty.

It is important to emphasize that the inequality (1) is a
specificationon the adaptive filter, as opposed to an assumed
bound on the additive disturbance, as is the case in set-
membership identification (SMI). SMI can be seen to be a
special case of the above problem when are the input,
output pair of the plant to be identified. If it is known that the
additive noise to this plant is bounded by, then is clearly
nonempty for .

The feasibility set or a point in it can be estimated off-
line if the model space is known a priori (see, e.g., [9]).
However, there is no closed-form solution for the feasibility
set given an arbitrary model space, and solutions for particular
cases may be too complex. Also, in practice, the model space
is not completely known and/or is time-varying, as is always
the case in SMI and in channel equalization. There is thus
a necessity for developingadaptivealgorithms that estimate
the feasibility set or one of its members. We shall call such
techniquesSMART(defined above).

It is assumed that a sequence of data sets is
available for “training.” At time , the constraint set is
defined as the set of all parameter vectors that are consistent
with the specification (1) and the observation at time instant

as follows:

C (3)

The constraint set is the region enclosed by the set of parallel
hyperplanes described by .

The minimal set estimate for at time is themembership
set . Clearly, the membership set is a superset of
the feasibility set. However, exact membership sets are convex
polytopes in the parameter space that are analytically and
computationally intractable. Adaptive solutions for the SMF
problem can be derived from two separate approaches: i) by
forming a sequence of parameter estimates that (hopefully)
converges into the feasibility set (point-wise approach), or ii)
by forming a sequence of sets thattightly outer-bound the
membership sets (set bounding approach). The OBE algo-
rithms can be easily verified to belong to the latter.

III. SET-MEMBERSHIP NLMS ALGORITHM

The SM-NLMS algorithm, as a SMART, can be derived
from both approaches mentioned above. The point-wise ap-
proach is to take projections of the previous estimate on the
constraint set at each time.

Formulation 1—Point-Wise Approach:Find so as to
minimize the Euclidean norm of the change in the estimate
given by , subject to the constraint that .

In other words, the goal is to move into the constraint set
at time by traversing the minimum possible distance in the
parameter space, in accordance withthe principle of minimum
disturbance, [11]. When , this corresponds to
choosing the foot of the perpendicular from to the
nearest bounding hyperplane of the constraint set, as shown
in Fig. 1(a). If , however, Formulation 1 implies

, i.e., no update of the parameter estimate is
necessary.

The set-bounding approach is to compute outer approxima-
tions of the membership set by minimal volume spheroids. A
spheroid, , in the -dimensional complex parameter space
is described by

C (4)

where is the center of the spheroid and is its radius. Then,
the criterion for update is as follows.

Formulation 2—Optimal Bounding Spheroids Approach:
Compute a smallest spheroid that contains the intersection of
the spheroidal set estimate and the constraint set .

Theorem 1: The solutions to both Formulations 1 and 2
are unique and identical. They are given by the following
recursions:

(5)

(6)

where the prediction error and the gain are given by

if

otherwise.
(7)
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(a) (b)

Fig. 1. Derivation of the SM-NLMS algorithm. (a) Point-wise approach. (b) Optimal bounding spheroids approach.

(a) (b)

Fig. 2. Mean square error performance of the SM-NLMS algorithm compared with the NLMS algorithm. (a) Eigenvalue spread of the input vectors=

100 and SNR= 20 dB. (b) Eigenvalue spread= 1 and SNR= 0 dB.

Sketch of Proof:The solution to Formulation 1 can be
derived geometrically using Fig. 1(a). In the solution for
Formulation 2, is the smallest spheroid containing

. Therefore the “diameter” of is the nearest bounding
hyperplane of bounded by . The center and radius

can be derived from Fig. 1(b). Extension to multidimen-
sional complex vectors is straightforward.

It may be observed that the SM-NLMS recursion, although
derived from a completely different philosophy, is identical to
the recursion in the conventional NLMS algorithm, except for
the assignment to the gain term . The gain is a constant
in conventional NLMS, whereas it is adaptive in SM-NLMS,
reflecting the information provided by the current data set. The
variable step size isoptimal in the sense of Formulations 1 or
2, as shown above. Furthermore, the SM-NLMS algorithm
guarantees nonincreasing parameter error, as described by the
following theorem.

Theorem 2: The magnitude of the parameter error
, where is any point in the feasibility set and is

given by (5), is a monotonically nonincreasing sequence.
Sketch of Proof:In Fig. 1(a), let the extension of the

line connecting and intersect the hyperplane

at . Then, using , we
have

(8)

At every instant of time, the above theorem implies that
eachpoint in the feasibility set is closer to the new estimate
than the previous estimate. If the feasibility set is time-varying,
the point estimate always moves closer to each point in the
presentfeasibility set, indicating good tracking capability in a
time-varying environment. In terms of set estimates, Theorem
1 implies that the SM-NLMS algorithm provides a sequence of
set error with monotonically nonincreasing volumes.

Convergence of the algorithm in terms of the learning-
rate converging to zero is established by the following
theorem. Note that this requires no conditions on the data
except that for all . In particular, no persistence
of excitation conditions are necessary.

Theorem 3: The magnitude of parameter updates and the
sequence of step-sizes of SM-NLMS converge to zero,
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i.e.,

(9)

and the magnitude of prediction error is asymptotically smaller
than , i.e.,

(10)

Proof: Let the time index denote just the updating
instants, since , otherwise. For all

, , since the spheroid is nonempty (it contains
the feasibility set). And since is monotone decreasing,
the sequence is convergent. From (6), this implies

. It follows from (5) that
. Assuming is bounded and using

in updating instants, it also follows that .
Using (7), this implies that in the updating instants
and otherwise, resulting in the required result (10).

The performance gain of the proposed algorithm over the
NLMS algorithm is shown via simulations in Fig. 2. The
figure shows MSE curves for the identification of a fifth-
order plant with additive white truncated Gaussian noise,
truncated to , where is the variance of the Gaussian
distribution. The error bound is also chosen to be .
Note the drastic reduction in the number of updates needed.
The proposed algorithm combines the convergence speed of a
high step-size NLMS and the low steady-state MSE of a low
step-size NLMS algorithm. It also obviatesa priori knowledge
of input statistics that are necessary in the case of NLMS to
heuristically set the step size.

IV. CONCLUSION

This letter introduced the notion of set-membership filter-
ing, a novel formulation of the linear-in-parameter filtering
problem that involves estimation of a feasible set of filter
parameters to meet a specified bound on estimation error. A
toolbox of adaptive algorithms for set-membership filtering,
called SMART, was presented. Optimal bounding ellipsoids al-
gorithms, originally developed for system identification, were
shown to be viable algorithms in SMART. An algorithm for

SMART was derived in the set-membership filtering frame-
work that has the same recursions as the normalized LMS
algorithm, except that the new algorithm provides optimal
data-dependent gain term that obviates the need for heuristics
for its choice. The SM-NLMS algorithm guarantees nonin-
creasing magnitude of parameter error and also offers set
estimates of nonincreasing size in the parameter space. A proof
of cessation of updates is established. Further convergence
analysis of the algorithms in SMART in general and the
SM-NLMS algorithm in particular will be presented in a
forthcoming work.
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