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Abstract

We consider the problem of efficiently reconciling two similar sets
held by different hosts while minimizing the communication complex-
ity, which we call the set reconciliation problem. We describe an ap-
proach to set reconciliation based on a polynomial encoding of sets.
The resulting protocols exhibit tractable computational complexity
and nearly optimal communication complexity when the sets being
reconciled are sparse. Also, these protocols can be adapted to work
over a broadcast channel, allowing many clients to reconcile with one
host based on a single broadcast, even if each client is missing a differ-
ent subset.

1 Introduction

We consider the problem of reconciling two physically separated sets with a
minimum of communication. Set reconciliation is particularly useful in sys-
tems that make progress in the face of poor and/or unpredictable network
connectivity by temporarily sacrificing consistency. Such systems typically
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require some mechanism for repairing whatever inconsistencies are intro-
duced, and set reconciliation can be a useful tool for doing those repairs.
Examples of this kind of system arise in a variety of contexts, including
distributed databases and file systems [1, 2], mobile database synchroniza-
tion [3, 4], gossip protocols [5–7], and resource location systems [8, 9]. More
generally, set reconciliation can be useful in any system that needs to main-
tain the consistency of unordered, distributed data.

The problem of reconciling two hosts’ data sets can be formalized as
follows: given a pair of hosts A and B, each with a set of length b bitstrings,
how can both host determine the union of the two sets with a minimal
amount of communication—both with respect to the number of exchanges
between the two hosts and with respect to the number of bits of information
exchanged. We call this the set reconciliation problem.

This paper presents a surprisingly simple and efficient class of set rec-
onciliation protocols based on a representation of sets as polynomials. The
advantage of this approach is that some operations on sets, in particular set
difference, can be computed more efficiently from the polynomial encoding.
The communication complexity of these set reconciliation protocols is close
to the size of the symmetric difference of the two sets. Moreover, under
certain conditions, these protocols are one-way [10], meaning that no inter-
action between hosts is needed. Thus, a host A could broadcast an mb-bit
message, and every host Bi whose set differs from A’s set by at most m
bitstrings (each of length b) could recover the bitstrings it is missing. This
works even if each host Bi is missing a different set of bitstrings, so that
the total number of distinct bitstrings that can be recovered is much larger
than m.

We begin in Section 2 with a brief survey of the relevant literature.
Section 3 presents our set reconciliation algorithms and describes their per-
formance. Section 4 presents information-theoretic bounds on set reconcil-
iation, and shows that the communication complexity of our algorithms is
near optimal when the sets to be reconciled are sparse. Section 5 discusses
some of the connections between our work and Reed-Solomon decoding and
Section 6 presents our conclusions and directions for future research. The
appendix describes some of the computational intricacies of our protocols.

2 Related work

The general problem of efficiently reconciling similar data is one that has
been studied extensively in a number of different settings. An overview of

2



that research is given below.

2.1 Error correcting codes

Set reconciliation is closely related to the problem of error-correction over
a noisy channel, where noise corresponds to differences between sets. Thus,
one can represent a set S ⊂ U by a length |U | bitstring that has a 1 in
location i iff the i-th element of U , according to some arbitrary ordering, is
present in S. Differences between sets thus correspond to Hamming differ-
ences between their bitstring representations, and can be determined using
techniques described in Orlitsky’s PhD thesis [11] for linear codes, in [12] for
Reed-Solomon codes in particular, and in [13] for non-linear codes. Unfortu-
nately, the computational complexity of the standard encoding and decoding
algorithms for traditional error-correcting codes generally depends linearly
on code size, which is exponential in the representation size of an element
of S.

2.2 Communication complexity theory

There is a large body of work in what is typically called “communication
complexity theory” in which problems similar to set reconciliation have been
studied. The typical scenario for these works is that two discrete random
variables with a known joint distribution are given to two independent hosts;
each host desires to determine the other’s random variable with as little
communication as possible. Various results [10, 11, 14, 15] provide informa-
tion theoretic bounds on the amount of communication needed for such
random variable synchronization depending on the amount of interaction
(i.e., number of rounds of communication) permitted. These results show
that interaction can sometimes substantially reduce the amount of commu-
nication needed for synchronization. Extensions of these results show that
synchronizing with minimal communication is related to minimal coloring of
a corresponding characteristic graph [13, 16, 17]. The enormous size of this
graph makes direct exploitation of this correspondence unwieldy in practice.

2.3 Set Representation

Central to our approach to set reconciliation in this paper is the represen-
tation of sets by their characteristic polynomials. This representation is not
novel and was first proposed in [18] and later by Blum and Kannan [19] as
part of a probabilistic set equality test. That test is based on a probabilistic
equality test for polynomials proposed in [20], and we use essentially the
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same approach to test rational function equality in Section 3.3. Another
aspect of our approach is that polynomials are manipulated by their values
rather than their coefficients. A similar approach was proposed by Kaltofen
and Trager [21] as a way of efficiently computing with sparse polynomi-
als. They present algorithms for computing the GCD, factorization, and
separation of numerators and denominators of black-box rational functions.

Other data structures have been proposed for representing sets in a way
that makes various operations more efficient. One relevant example is that
of a Bloom filter [22], which is a terse representation of sets that allows
for membership queries with a bounded probability of false positives. Un-
fortunately, Bloom filters do not provide an effective solution to the set
reconciliation problem, since the size of a Bloom filter is linear in the size of
the set being represented and the probability of false positives can be fairly
high.

Another way of encoding a set is to write down the set as a string con-
sisting of the set’s elements in sorted order. Insertions and deletions from
a set then correspond to insertions and deletions from the corresponding
string. Correction of insertion and deletion errors in strings has been stud-
ied in the context of spurious error correction [23, 24] and the α-edits prob-
lem [15], and a number of algorithms for reconciling such errors have been
proposed [12, 25–28]. A great deal of work also been done on the problem of
efficiently computing the smallest possible set of edits separating two docu-
ments when both documents are available in their entirety (see [29] for an
overview.) Correcting insertions and deletion errors in a string appears to
be inherently more difficult than correction of insertion and deletion errors
in a set because of the ordered nature and unlimited length of the data. In
particular, correcting such errors in strings involves determining not only
the content of missing/added data, but also its location within a sequence.
As a result, set reconciliation algorithms based on this approach incur a
logarithmic dependency on the size of the sets being reconciled. Such a
dependency does not occur in our algorithms.

3 Set Reconciliation

Consider a pair of hosts A and B that each have a set of length b bitstrings,
denoted SA and SB respectively. Let the difference sets ∆A = SA \ SB and
∆B = SB \ SA have sizes mA and mB respectively. We denote the overall
number of differences between the two hosts by m = mA + mB .

There is one case of the set reconciliation problem that has a straight-
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forward solution—where mA = 1 and mB = 0. In this case, Protocol 1
reconciles the two sets with a single b-bit message. The key to Protocol 1
is that the elements in both SA and SB cancel each other out, leaving only
the parity sum of the difference set. Since |∆A| = 1, this parity sum is in
fact the missing bitstring.

Protocol 1 Subset Reconciliation when mA = 1

1. Host A computes parityA, the parity sum of its bitstrings, and sends
it to B

2. Host B computes parityB , the parity sum of its bitstrings.

3. Host B computes the parity sum of parityA and parityB .

3.1 Characteristic Polynomials

Protocol 1 is limited to the case where mA = 1 and mB = 0 by the fact that
the parity sum is only sufficient to recover the contents of a singleton set. To
generalize the approach of Protocol 1, we need a generalization of the parity
sum to the case of multiple differences. The generalization we will use is
based on the characteristic polynomial χ

S(Z) of a set S = {x1, x2, . . . , xn},
which we define to be the following univariate polynomial.

χ
S(Z) = (Z − x1)(Z − x2)(Z − x3) · · · (Z − xn) (1)

In order to use characteristic polynomials for set reconciliation, we need
to map length b bitstrings onto elements of some field Fq where q ≥ 2b.
Note that the zeros of χ

S(Z) are precisely the elements of S. Thus, the
elements of S can be recovered by factoring χ

S(Z). Also note that χ
S(Z)

is necessarily monic, i.e. its leading coefficient is 1.
The characteristic polynomial of a set is not a summary of a set in the

same way that the parity sum is, since a set’s characteristic polynomial
contains all of the information contained in that set. Thus, a host can not
transmit the characteristic polynomial of a set any more cheaply than it
could transmit the set itself. The characteristic polynomial does, however,
allow for the kind of canceling that was central to Protocol 1. In particular,
consider the ratio between the characteristic polynomials of SA and SB :

χ
SA

(Z)
χ

SB
(Z)

=
χ

SA ∩ SB
(Z) · χ∆A

(Z)
χ

SA ∩ SB
(Z) · χ∆B

(Z)
=

χ∆A
(Z)

χ∆B
(Z)

(2)
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All terms corresponding to elements that are in both SA and SB cancel out,
leaving only the characteristic polynomials of ∆A and ∆B respectively, from
which the difference sets themselves can be recovered.

The problem that remains is, how can A and B efficiently compute the
ratio of their characteristic polynomials? The key idea is two divide out
the values of the polynomials at a collection of evaluation points, rather
than dividing the polynomials directly. The results of these divisions can
then be used to interpolate the desired rational function. This approach
takes advantage of the fact that if ∆A and ∆B are small, then the rational
function to be interpolated will have low degree. As a result, the number of
evaluation points required will be small as well.

3.2 Reconciliation with a known bound on m.

We first consider how the above ideas can be applied to a context where an
upper bound m on m is known to all parties. Recall that m = mA + mB is
the number of elements that differ between SA and SB. The case where no
bound on m is known is discussed in Section 3.3.

Protocol 2 Set reconciliation

1. Hosts A and B evaluate χ
SA

(Z) and χ
SB

(Z) respectively at the same
m evaluation points, where m is greater than or equal to m.

2. The evaluations of χ
SA

(Z) and χ
SB

(Z) are combined to compute the
value of χ

SA
(Z)/χSB

(Z) at each of the evaluation points. These val-
ues are interpolated to recover the coefficients of the reduced rational
function χ∆A

(Z)/χ∆B
(Z).

3. By factoring χ∆A
(Z) and χ∆B

(Z), the elements of ∆A and ∆B are
recovered.

Protocol 2 outlines our approach to set reconciliation for the case that a
close bound m on m is known. A more in-depth discussion of the workings
of the algorithm is given below.

3.2.1 Evaluating the Characteristic Polynomial

Most of the calculations required for set reconciliation, including the inter-
polation and factoring, depend only on the size of the symmetric difference
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between the sets to be reconciled. Evaluating each host’s characteristic poly-
nomial at a given evaluation point, on the other hand, requires a linear scan
over each host’s data set, which may be quite large. If the evaluation points
are chosen in advance, however, the cost of the evaluations can be amortized
over updates to those data sets. Specifically, adding or deleting an element
x involves multiplying or dividing the value of the corresponding character-
istic polynomial by (Z − x) for each evaluation point Z. Thus, the cost per
insertion or deletion is 2m field operations.

If an evaluation point k is chosen that is an element of SA and/or SB ,
then the corresponding characteristic polynomial will vanish, complicating
the calculation of the ratio of A and B’s characteristic polynomials. These
anomalous evaluation points can be avoided by increasing the field size q to
at least 2b + m. This ensures there are at least m evaluation points that
are guaranteed not to coincide with data elements. At worst, this approach
require one extra bit per element.

3.2.2 Rational Function Interpolation

The problem of determining a rational function that takes on prescribed
values is called the rational interpolation problem. In general, given bounds
d1 and d2 on the degrees of the numerator P (Z) =

∑

i piZ
i and denominator

Q(Z) =
∑

i qiZ
i of the rational function to be recovered, and a support set

V consisting of d1 + d2 + 1 pairs (ki, fi) ∈ F
2, there is a unique rational

function f (up to equivalence) such that f(ki) = fi for each (ki, fi) ∈ V .
Each pair (ki, fi) in V implies a linear constraint on the coefficients of the
numerator and denominator of the rational function to be recovered:

kd1

i + pd1−1k
d1−1

i + · · · + p0

= fi · (k
d2

i + qd2−1k
d2−1

i + · · · + q0). (3)

Interpolation is achieved by solving the d1 + d2 + 1 simultaneous linear
equations implied by the elements of V [30].

Our problem in step 2 of Protocol 2 differs from the standard rational
interpolation problem in that we have a bound m on the total degree m =
mA+mB of the function, rather than individual numerator and denominator
bounds. Note, however, that mA−mB = |SA|−|SB|, and so can be computed
easily. Given δ = mA − mB and an upper bound m on m, we can compute
bounds on mA and mB as follows:

mA ≤ ⌊(m + δ)/2⌋
def
= mA

mB ≤ ⌊(m − δ)/2⌋
def
= mB
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We can assume w.l.o.g. that δ and m have the same parity1 so that mA +
mB = m.

The following theorem, adapted from a standard theorem on rational
interpolation (see [31], Proposition 2.2.1.4), shows that a support set of size
m is sufficient to ensure uniqueness.

Theorem 1 Let V be a support set with m elements over a field F. Assume
there exist two monic rational functions f and g that satisfy V , and that the
numerator and denominator of f (respectively g) have degrees summing to
at most m. If the difference in degrees between numerator and denominator
of f is the same as for g, then f and g are equivalent.

In our case, we know that a rational function f satisfying the degree
bounds of Theorem 1 exists because the support set V is taken from the
rational function χ∆A

(Z)/χ∆B
(Z), which is assumed to satisfy those degree

bounds. Thus, existence and uniqueness (up to equivalence) are guaranteed.

3.2.3 Example

Consider the sets SA = {1, 2, 9, 12, 33} and SB = {1, 2, 9, 10, 12, 28} stored
at hosts A and B respectively as 6-bit integers represented by elements of
F97. Each host assumes a bound m = 5 and agrees a priori to the evaluation
points E = {−1,−2,−3,−4,−5}.

The characteristic polynomials for A and B are:

χ
SA

(Z) = (Z − 1) · (Z − 2) · (Z − 9) · (Z − 12) · (Z − 33),

χ
SB

(Z) = (Z − 1) · (Z − 2) · (Z − 9) · (Z − 10)·

(Z − 12) · (Z − 28).

The polynomials are evaluated at the locations in E over F97 to give values:

Z = −1 −2 −3 −4 −5
χ

SA
(Z) 58 19 89 77 4

χ
SB

(Z) 15 54 68 77 50
χ

SA
(Z)/χSB

(Z) 75 74 17 1 35

The rational function χ∆A
(Z)/χ∆B

(Z) is recovered by solving the system of
equations described in Section 3.2.2. Since the actual symmetric difference

1If δ and m don’t have the same parity, then m− 1 is also a bound on m and trivially

has the same parity as δ.
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is less then 5, the system of linear equations is singular and we arbitrarily
choose the solution

Z2 + 46Z + 12

Z3 + 41Z2 + 91Z + 4
=

Z − 33

Z2 + 59Z + 86

The zeros of the numerator and denominator are {33} and {10, 28} respec-
tively, which are exactly equal to ∆A and ∆B.

3.2.4 Analysis

In order to compute sets ∆A and ∆B , Protocol 2 requires m evaluations of
χ

SA
(Z) and χ

SB
(Z), along with the sizes of SA and SB. This leads to a

communication complexity of

(b + 1)m + b = (m + 1)(b + 1) − 1 (4)

bits. If m is chosen near m = mA + mB, then (4) is close to mb, the
cost of simply sending the missing bitstrings. If A recovers the symmetric
difference, then an extra mAb ≤ mb bits are required for A to send to B
the elements required for B to compute SA ∪ SB . Section 4 compares these
results to the information theoretic bounds.

The computational complexity of Protocol 2 has two dominating com-
ponents: the cost of evaluating the characteristic polynomials χ

SA
(Z) and

χ
SB

(Z) at the evaluation points, and the cost of interpolating and factor-
ing. The former component requires O(|S|m) time, but can be amortized as
O(m) per insertion as noted in Section 3.2.1. The cost of interpolation using
Gaussian elimination to solve the system of linear equations is O(m3) opera-
tions over Fq, as is the expected cost of simple root finding (see Appendix A).
Asymptotically faster algorithms are available, but their practical benefit in
this context are unclear.

3.3 Reconciliation without a bound on m

Protocol 2 requires a bound m on the size m of the symmetric difference.
In the absence of such a bound, a pair of hosts could reconcile their sets by
executing Protocol 2 using progressively larger values for m. Once a suffi-
ciently large m is reached, the reconciliation can be completed successfully.
Such an approach, however, requires a means for determining whether the
value of m chosen is large enough.

How can one efficiently test whether the chosen m is large enough? One
approach would be for hosts A and B to execute Protocol 2 as usual, and
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check for success at the end. If the interpolation and factorization steps con-
clude successfully, then the reconciling hosts can test whether the recovered
sets are actually equal by, for example, exchanging hashes of those sets. Any
such test must be probabilistic in nature in order to be efficient, as we note
in Section 4.

It is not necessary to do the complete reconstruction of the sets in or-
der to test whether m is large enough. Instead, we can do the necessary
test after the interpolation step of the protocol is completed. Let g(Z) be
the rational function returned by the interpolation step, and let f(Z) be
χ∆A

(Z)/χ∆B
(Z). If g(Z) = f(Z), then m must be an upper bound on

m. We thus require an efficient means for testing the equality of rational
functions.

Rational function equality can be tested probabilistically by evaluating
the rational functions in question at a random point and checking whether
those values agree. As follows from Theorem 1, the probability of two dif-
ferent monic rational functions agreeing on a randomly selected point is no
more than ρ = (D − 1)/|E|, where E is the subset of Fq from which the
evaluation points were chosen and D is a bound on the degrees of the ra-
tional functions. In our context, D = |SA| + |SB | serves as a trivial upper
bound on the degree of the rational functions. Assuming sets SA and SB

are sparse and |E| is a significant fraction of q, the typical value of ρ will be
small and ρk will converge to zero quickly in k.

The approach described above requires evaluation points to be chosen
at random, and so the evaluation points would need to be sent in addition
to the values of the characteristic polynomial at those points. In practice, a
pseudo-random number generator can be used to generate evaluation points,
thus reducing the amount of data that needs to be sent.

3.3.1 Minimizing bit complexity

If minimizing the number of transmitted bits is a priority, then evaluations
could be sent individually. B would simply recompute the interpolated
rational function g(Z) every time it receives an evaluation that does not
confirm the previous value of g(Z). When B receives k evaluations in a row
that confirm the previous value of g(Z), then B accepts g(Z) as equal to
f(Z).

The probability that the above protocol terminates with g(Z) 6= f(Z) is
bounded above by mρk. To achieve a probability of failure less than ǫ, one
therefore needs no more than

k = ⌈logρ(ǫ/m)⌉ > ⌈logρ(ǫ/(|SA| + |SB |))⌉ (5)
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extra evaluation points. As an example, to achieve a confidence level of
10−11 when reconciling sets of 64-bit strings whose combined size is less
than 10, 000 would require k = 1 extra evaluations.

Using a value of k chosen according to (5) and a pseudo-random number
generator for choosing evaluation points would result in the transmission of
at most

(b + 2)(m + k) + b

bits, which is close to the communication complexity of Protocol 2 and
the information-theoretic minimum given in Section 4. The communication
complexity is close to that given in (4) when m is chosen exactly equal to
m. The computational complexity of this method is O(m4) operations, since
the interpolation can be repeated as many as m times.

3.3.2 Minimizing round complexity

Sending a single evaluation at a time has the advantage of requiring the
computation and transmission of the minimum number of polynomial eval-
uations. It has the disadvantage, however, of requiring (m + k) rounds of
communication. We can reduce the number of rounds to ⌈logc(m + k)⌉
by increasing the total number of evaluations by a factor of c each round.
Then, in the worst case scenario, the number of extra evaluations sent is
(c− 1)(m + k). Equation (5) can be used for selecting k in this case as well.

The communications complexity for this approach is bounded above by

(b + 1)c(m + k) + b + ⌈logc(m + k)⌉

which is approximately c times the communications complexity of sending
one evaluation at a time. Moreover, for fixed c, the computational complex-
ity is O((m+ k)3) operations, which is cubic in m, as opposed to quartic for
the one-by-one approach.

4 Information-Theoretic Bounds

The set reconciliation algorithms described in Sections 3 have communi-
cations complexity within a small constant of mb. In this section we will
show that, for sparse sets, mb is close to the best achievable communication
complexity for any set reconciliation protocol.

Let N = |SA ∩ SB |. Set reconciliation demands that host A discern mB

integers from the 2b −N −mA that it might be missing, and symmetrically
for B. This gives the following information-theoretic lower bound on Ĉ∞,
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the number of bits that need to be transmitted between A and B assuming
no bound on the number of rounds of communication:

Ĉ∞ ≥ lg

[(

2b − N − mA

mB

)

·

(

2b − N − mB

mA

)]

. (6)

If m = mA + mB is held constant then this expression is minimized when
mA or mB is zero, as appropriate. This is because, for all n, j, k ≥ 0 and
j + k ≤ n,

(

n

j

)(

n − j

k

)

≥

(

n

j + k

)

, . (7)

Thus,

Ĉ∞ ≥ lg

[(

2b − N − m

m

)]

. (8)

When 2b is at least twice as large as either host set, then the lower bound
in inequality (8) becomes (b − 1 − lg m) · m ≈ mb − m lg m. Thus,

Ĉ∞

mb
≥ 1 −

lg m

b
.

Assuming the sets are sparse, lg m must be significantly smaller than b, and
so Ĉ∞ is at best within a small fraction of mb.

The bound in (8) presumes that m is known a priori. Without such
knowledge, there is no deterministic algorithm for set reconciliation that
has better than linear communication complexity in the size of the sets. To
see why, note that set reconciliation is strictly more difficult than testing set
equality. As follows from a theorem of Yao [32, Theorem 1], the communi-
cation complexity of set equality is linear in the size of the sets being tested.
It is for this reason that the protocol proposed in Section 3.3 (for the case
where no bound on m is known) is probabilistic.

5 Reed-Solomon codes

Set reconciliation can also be accomplished by the use of error-correcting
codes, as described in Section 2.1. In fact, the information sent by our
algorithm can be understood in terms of the redundancy of a transformed
Reed-Solomon code.

Recall that in Protocol 2 we convert a set S = {x1, x2, x3, . . . , xn} into
a characteristic polynomial χ

S(Z) = (Z − x1)(Z − x2)(Z − x3) · · · (Z − xn).
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We then evaluate the polynomial at evaluation points pi to get values

{χS(p1), χS(p2), χS(p3), . . . χS(pm)} (9)

for an upper bound m on the number of tolerated differences with other
sets. These evaluations are transmitted to a reconciling host.

On the other hand, the redundant residue code formulation of Reed-
Solomon codes involves converting a message u = (u1, u2, u3, . . . , uk) ∈ F

k
q

into a polynomial u(Z) =
∑k

i=1
uiZ

i−1. In this formulation, the codeword
corresponding to the message u is given by

c = (u(α0), u(α1), u(α2), . . . , u(αq−2)),

where α is a primitive root of unity in Fq. The Chinese Remainder Theorem
dictates that u(α0) . . . u(αk) uniquely determine the message u. Thus, the
redundant part of the codeword is given by

{u(αk), u(αk+1), u(αk+2), . . . u(αq−2)}. (10)

If the message u is set to the coefficients of the characteristic polynomial
χ

S(Z), the evaluation points pi are set to the appropriate powers of α, and
k is set to q − 1 − m, then Equations (9) and (10) are identical. Thus,
Protocol 2 transmits the redundancy of a Reed-Solomon encoding of the
coefficients of a set’s characteristic polynomial.

6 Conclusion

We have examined the problem of reconciling two related sets, stored at
separate hosts, with low communication complexity. We have presented and
analyzed two protocols for set reconciliation, one deterministic for the case
where a bound on the size of the difference is known, and one probabilistic
for the case where no such bound is known.

The deterministic protocol requires a tight bound on the number of dif-
ferences between reconciling hosts, but it does not require interaction and
can thus be used in broadcast-style applications. The probabilistic protocol
does not require any a priori bound on the number of differences between
reconciling hosts, but is interactive. The communication complexity of both
protocols is within a small constant of the information theoretic lower bound
for set reconciliation with sparse sets.

We have implemented all these protocols in a variety of settings [3, 4,
33, 34] and believe that these protocols can serve as a foundation for a new
breed of scalable synchronization protocols for distributed applications.
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A Root Finding of Polynomials

Assume we are given a polynomial f(Z) of degree m over a finite field Fq.
This appendix briefly shows how to determine if all the zeros of f(Z) are
distinct and lie in Fq and, if so, how to find them using classical algorithms
that require an expected O(m3 lg q) field operations. More sophisticated
algorithms improve the asymptotic complexity to as low as O(m1.82 lg q) [35],
although their basic structure is similar to that presented here and their
practical benefits are not clear. The techniques described here are based
on well known results (see for instance, [30, 36]) and are included here for
completeness.

The particular type of root finding needed by the set reconciliation pro-
tocols involves three steps. First, determine if f(Z) is square free. Second,
verify that all irreducible factors of f(Z) are linear. And finally, find the
linear factors of f(Z).

We can determine if f(Z) is square-free by computing the GCD (great-
est common divisor) of f(Z) and its derivative f ′(Z) using the Euclidean
algorithm in O(m2) field operations. To verify that f(Z) is the produce
of m linear factors, we simply verify that f(Z) = GCD(f(Z), Zq − Z), the
latter term being the product of all monic linear polynomials over Fq. This
verification can be completed in O(m2 log q) time by using repeated squaring
(mod f(Z)), giving an overall verification time of O(m2 log q).

Finally, we find the linear factors of f(Z) using probabilistic techniques.
We consider two different cases for the field Fq (corresponding to the possible
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choices for use in our set-reconciliation protocols): one where q is a prime
and the other where q = 2b. When q is a prime, note that the elements of
Fq are zeros of

Zq − Z = (Z
q−1

2 + 1) · Z · (Z
q−1

2 − 1).

So, almost half of the elements of Fq are zeros of R(Z) = Z
q−1

2 − 1.
A polynomial with similar properties can also be constructed for the field

F2b :

R(Z) = Z2b−1

+ Z2b−2

+ · · · + Z4 + Z2 + Z.

We then have that

R(Z) · (R(Z) + 1) = R(Z)2 + R(Z),

= Z2b

+ Z2b−1

+ · · · + Z2 + R(Z),

= Z2b

+ Z.

So, all the elements of F2b are zeros of R(Z) · (R(Z) + 1), and each element
is either a zero of R(Z) or of R(Z) + 1.

To determine the zeros of f(Z), we chose a random element of a ∈ Fq

and compute GCD(f(Z),R(Z - a)), which will have almost half the degree of
f(Z). Applying this technique recursively on the two factors of f(Z), with
different values for a will further split the polynomial, ultimately into linear
factors. In total, the expected number of GCDs required will be O(d).
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