
Set Similarity Join on Probabilistic Data

Xiang Lian and Lei Chen
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon

Hong Kong, China
{xlian, leichen}@cse.ust.hk

ABSTRACT
Set similarity join has played an important role in many real-world
applications such as data cleaning, near duplication detection, data
integration, and so on. In these applications, set data often con-
tain noises and are thus uncertain and imprecise. In this paper, we
model such probabilistic set data on two uncertainty levels, that is,
set and element levels. Based on them, we investigate the problem
of probabilistic set similarity join (PS2J) over two probabilistic set
databases, under the possible worlds semantics. To efficiently pro-
cess the PS2J operator, we first reduce our problem by condensing
the possible worlds, and then propose effective pruning techniques,
including Jaccard distance pruning, probability upper bound prun-
ing, and aggregate pruning, which can filter out false alarms of
probabilistic set pairs, with the help of indexes and our designed
synopses. We demonstrate through extensive experiments the PS2J
processing performance on both real and synthetic data.

1. INTRODUCTION
Recently, set similarity join has become an increasingly impor-

tant tool in many real-world applications such as data cleaning [7],
near duplication detection [23], data integration [12], and so on.
As an example, in the application of detecting near duplicate Web
pages [23], each Web page contains a set of tokens (such as words
or shingles [6]), and the similarity of any two Web pages can be
evaluated by a Jaccard similarity between their corresponding sets
of tokens. Large similarity measure indicates a high likelihood that
these two pages are duplicates. Similarly, in the application of data
integration, based on the set similarity of tokens, similar documents
from multiple sources can be also identified and merged.

Formally, given two set databases R and S containing sets of
elements and a similarity threshold γ ∈ (0, 1], a set similarity join
returns all pairs of sets r ∈ R and s ∈ S such that sim(r, s) ≥ γ,
where sim(·, ·) is a function measuring the similarity of two sets.

In the aforementioned applications, owing to reasons such as en-
try typos, data integration from unreliable sources, or inaccurate
information extraction from unstructured documents, the obtained
data are often uncertain and imprecise. It is reported by recent
statistics that even enterprises typically have approximately 1%-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

5% erroneous data [20]. Such unreliable data are propagated by
copier, truncated, updated, or merged with other data. As a result,
the same data entity might have different versions, resulting from
different sources. Given another example, in the case of informa-
tion extraction [13], the city information can be automatically ex-
tracted from an unstructured address string “52-A Goregaon West
Mumbai 400 076”. However, due to different segmentations, the
city name can be either “Mumbai” or “West Mumbai”, each with
certain confidence.

To describe the uncertainty in the set data, in this paper, we
model imprecise sets of tokens (e.g., extracted from Web pages
or documents) as probabilistic data [11]. We tackle the problem
of set similarity join over probabilistic data, namely probabilistic
set similarity join (PS2J). Specifically, we first formalize the prob-
abilistic set models on two levels, that is, set and element levels,
and then define PS2J over two set databases RP and SP , retriev-
ing those pairs of probabilistic sets such that they are similar to
each other with the probability above a given threshold. Intuitively,
this probabilistic threshold guarantees the confidence of join results
over probabilistic set data.

Although there are many previous works [7, 3, 23] on manipu-
lating similarity join over precise set data, to the best of our knowl-
edge, no prior work dealt with the set similarity join problem in
the context of probabilistic set data. Compared to the join over
precise set data, the manipulation of probabilistic data usually con-
siders the possible worlds semantics, where each possible world is
a materialized instance of probabilistic data that can occur in the
real world. The PS2J problem is equivalent to first conducting the
join operator in each possible world and then aggregating the join
results from all the possible worlds. Since the number of possi-
ble worlds is exponentially large with respect to the database size,
directly applying the join method on precise set data to our PS2J
scenario can be computationally expensive. Therefore, it is impor-
tant yet challenging to efficiently obtain the PS2J results under the
possible worlds semantics.

In order to tackle the efficiency obstacle of performing PS2J,
in this paper, we propose effective pruning techniques to filter out
false pairs of probabilistic sets, and reduce the PS2J search space.
In particular, while previous works on join over precise set data
usually conduct linear scan on raw set data or simple signatures,
we utilize an M-tree index built upon probabilistic set data to fa-
cilitate the PS2J processing. We design a synopsis for summariz-
ing probabilistic set data, which can be seamlessly integrated into
the constructed index and help the pruning with the probabilistic
threshold. Further, we present efficient procedure of PS2J process-
ing that integrates our proposed pruning techniques.

Specifically, we make the following contributions in this paper.
1. We formally define the models of probabilistic set data, on

both set and element levels in Section 2.

650

probabilistic set, ri set instance, rik existence prob., rik.p

r1 r11 = {A, B, C} 0.8
r12 = {B, C, D} 0.2

r2 r21 = {A, B} 0.6
r12 = {C, D} 0.3

possible world, pwSL(RP) appearance prob., Pr{pwSL(RP)}
pwSL

1 (RP) = {r11} 0.8× (1− 0.6− 0.3) = 0.08

pwSL
2 (RP) = {r12} 0.2× (1− 0.6− 0.3) = 0.02

pwSL
3 (RP) = {r11, r21} 0.8× 0.6 = 0.48

pwSL
4 (RP) = {r11, r22} 0.8× 0.3 = 0.24

pwSL
5 (RP) = {r12, r21} 0.2× 0.6 = 0.12

pwSL
6 (RP) = {r12, r22} 0.2× 0.3 = 0.06

Table 1: Set-level probabilistic set DB and its possible worlds (6).

2. We propose the problem of probabilistic set similarity join
(PS2J) over two probabilistic set databases in Section 2, and
reduce the complex problem under the possible worlds se-
mantics by condensing the possible worlds in Section 3.

3. We design effective pruning techniques to reduce the search
space of PS2J, and propose a synopsis to facilitate the filter-
ing of false alarms in Section 4.

4. We demonstrate through extensive experiments the efficiency
of our proposed approaches for PS2J processing in Section 6.

In addition, Section 7 reviews previous works on set similarity
join over certain set databases, and probabilistic join processing
with different probabilistic data types and measures. Finally, Sec-
tion 8 concludes this paper.

2. PROBLEM DEFINITION
In this section, we propose probabilistic set data model, and de-

fine the problem of probabilistic set similarity join (PS2J).

2.1 Probabilistic Set Models
Set-Level Probabilistic Set Database. Set-level probabilistic set
database is useful in many real applications, such as integrating
near duplicate documents from multiple data sources. In particular,
a data source (e.g., a Web site) may contain some near duplicate
documents, which correspond to a document entity, and each docu-
ment can be associated with a probability to indicate its correctness
in reality. Thus, in this case, the document entity can be modeled as
a set-level probabilistic set consisting of several set instances (near
duplicate documents). When we do the integration, we may want
to find and merge similar document entities (i.e., matching set-level
probabilistic sets) from different sources.

Formally, a set-level probabilistic set database RP consists of a
number of probabilistic sets, denoted as ri (1 ≤ i ≤ a). Each
probabilistic set ri can be explicitly represented by li set instances
ri1, ri2, ..., and rili . All the set instances rik (for any 1 ≤ k ≤ li)
of a probabilistic set ri are mutually exclusive (i.e., they cannot
appear in the real world at the same time); moreover, each instance
rik is associated with an existence probability rik.p ∈ (0, 1], where∑li

k=1 rik.p ≤ 1 (note: the inequality indicates the absence of this
probabilistic set ri).

Table 1 depicts an example of a set-level probabilistic set database,
which contains two probabilistic sets r1 and r2. In particular, r1 has
two set instances r11 = {A, B, C} and r12 = {B, C, D}, with
existence probabilities r11.p = 0.8 and r12.p = 0.2, respectively,
where symbols A, B, C, and D are set elements.

After defining the set-level probabilistic database, we immedi-
ately give its possible worlds semantics.

DEFINITION 2.1. (Possible Worlds of Set-Level Probabilistic
Set Databases, pwSL(RP)) Given a set-level probabilistic set
database RP containing a number of probabilistic sets {r1, r2, ...,

ra}, a possible world, pwSL(RP), of RP is a subset of prob-
abilistic set database RP , where each probabilistic set ri con-
tributes either 0 or 1 instance rik. The appearance probability
Pr{pwSL(RP)} of possible world pwSL(RP) is given by:

Pr{pw
SL

(R
P

)}

=
∏

∀rik∈pwSL(RP)

rik.p ·
∏

∀ri /∈pwSL(RP)

(1−
li∑

k=1

rik.p). (1)

where rik is the k-th set instance of probabilistic set ri.
In Definition 2.1, each probabilistic set ri in the database RP

has either zero or one (i.e., rik) set instance appearing in a possible
world pwSL(RP). The appearance probability, Pr{pwSL(RP)},
of possible world pwSL(RP) is given by multiplying probabilities
that set instances exist or do not exist in the possible world.

In Table 1, we also show the 6 possible worlds of the previously
discussed set-level probabilistic set database.
Element-Level Probabilistic Set Database. Different from the
set-level probabilistic set, the element-level probabilistic set has a
finer uncertainty level. In the application of information extraction
from unstructured sources [13], tokens can be extracted from each
sentence of a document. However, due to different segmentation
methods, different tokens can be obtained for the same sentence.
Thus, we can model the sentence as a probabilistic element, and to-
kens extracted from this sentence as its instances (each associated
with a probability to be correct). As a result, the entire document
(element-level probabilistic set) consists of a set of probabilistic
elements. With such a model, we can detect near duplicate doc-
uments from different data sources, which exactly corresponds to
our PS2J problem defined later.

Specifically, an element-level probabilistic set database RP con-
sists of a number of probabilistic sets, denoted as ri. Rather than
explicitly representing instances of a probabilistic set ri, each ri

is now expressed by mi probabilistic elements {ri[1], ri[2], ...,
ri[mi]}1. In particular, the k-th probabilistic element ri[k] can
have uik (mutually exclusive) values r1

i [k], r2
i [k], ..., and r

uik
i [k],

each ru
i [k] associated with an existence probability ru

i [k].p ∈ (0, 1],
where

∑uik
u=1 ru

i [k].p ≤ 1.
As an example in Table 2, we have an element-level probabilis-

tic set database consisting of two probabilistic sets r1 and r2. In
particular, the set r1 has at most two elements, that is, the first ele-
ment position r1[1] can be either token A (= r1

1[1]) with existence
probability 0.4, or B (= r2

1[1]) with probability 0.6; the second
position r1[2] can be D with probability 0.3, or have no element
(with probability 0.7).

Note that, in fact, the element-level probabilistic set can be ex-
panded and explicitly transformed to the set-level one, by enumer-
ating all possible set instances. For example, the probabilistic set r1

in Table 2 can be expanded to 4 instances {A}, {B}, {A, D}, and
{B, D}. However, in the worst case, such an expansion can incur
exponential space cost (w.r.t. the maximum number of elements in
set instances), and in turn high computational cost. This is also the
reason that we try to find a different solution to our element-level
PS2J problem (defined later). Due to the more compressed set rep-
resentation in the element-level model, we need to process PS2J
without materializing all the probabilistic sets, which is thus more
complex compared to the set-level one.

Similar to the set-level probabilistic set database, the element-
level probabilistic set database can be defined as follows.

DEFINITION 2.2. (Possible Worlds of Element-Level Probabilis-
tic Set Databases, pwEL(RP)) Given an element-level probabilis-
tic set database RP , a possible world, pwEL(RP), of RP is a
1Note that, although there is no order among probabilistic elements, here we number
them only for the ease of illustration.

651

probabilistic set, ri probabilistic element, (ri[k], ru
i [k].p)

r1 r1[1] = {(A, 0.4), (B, 0.6)}
r1[2] = {(D, 0.3)}

r2 r2[1] = {(A, 1)}
r2[2] = {(C, 0.6), (D, 0.4)}

possible world, pwEL(RP) appearance prob., Pr{pwEL(RP)}
pwEL

1 (RP) = {{A}, {A, C}} 0.4× (1− 0.3)× 1× 0.6 = 0.168

pwEL
2 (RP) = {{A}, {A, D}} 0.4× (1− 0.3)× 1× 0.4 = 0.112

pwEL
3 (RP) = {{B}, {A, C}} 0.6× (1− 0.3)× 1× 0.6 = 0.252

pwEL
4 (RP) = {{B}, {A, D}} 0.6× (1− 0.3)× 1× 0.4 = 0.168

pwEL
5 (RP) = {{A, D}, {A, C}} 0.4× 0.3× 1× 0.6 = 0.072

pwEL
6 (RP) = {{A, D}, {A, D}} 0.4× 0.3× 1× 0.4 = 0.048

pwEL
7 (RP) = {{B, D}, {A, C}} 0.6× 0.3× 1× 0.6 = 0.108

pwEL
8 (RP) = {{B, D}, {A, D}} 0.6× 0.3× 1× 0.4 = 0.072

Table 2: Element-level probabilistic set DB and its 8 possible worlds.

subset of probabilistic set database RP , where each position ri[k]
of probabilistic set ri has either none or 1 element value ru

i [k].
The appearance probability Pr{pwEL(RP)} of possible world
pwEL(RP) is given by:

Pr{pw
EL

(R
P

)} =
∏

∀ri[k]∈pwEL(RP)

∏

∀ru
i

[k]∈ri[k]

r
u
i [k].p

·
∏

∀ri[k]/∈pwEL(RP)

(1−
uik∑

u=1

r
u
i [k].p). (2)

In Table 2, we present the 8 possible worlds of the element-level
probabilistic set database.

2.2 PS2J Definition
Probabilistic Set Similarity Join.

DEFINITION 2.3. (Probabilistic Set Similarity Join, PS2J) Given
two probabilistic set databases RP and SP , a similarity threshold
γ ∈ (0, 1], and a probabilistic threshold α ∈ (0, 1], a probabilistic
set similarity join (PS2J) obtains all the pairs (ri, sj) from RP and
SP with probability greater than or equal to threshold α, that is,

Pr{sim(ri, sj) ≥ γ} ≥ α, (3)

where sim(·, ·) is a similarity function to evaluate the degree of
similarity between two sets.

Note that, the choice of the similarity function sim(·, ·) in Eq. (3)
highly depends on the application domain. Examples of such a
choice include Jaccard similarity, cosine similarity, overlap simi-
larity, and so on. Nonetheless, as mentioned in [3, 23], the afore-
mentioned 3 measures are inter-related, and can be converted into
each other via some variation. Therefore, in this paper, we will
focus on one popular set similarity measure, Jaccard similarity:

sim(x, y) = J(x, y) =
|x ∩ y|
|x ∪ y| . (4)

Probability Computation for Set-Level PS2J. Under the possible
worlds semantics over the set-level probabilistic set data (in Defi-
nition 2.1), Pr{sim(ri, sj) ≥ γ} in Eq. (3) can be obtained by:

Pr{sim(ri, sj) ≥ γ}

=
∑

∀pwSL(RP):ri∈pwSL(RP)




∑

∀pwSL(SP):sj∈pwSL(SP)

Pr{pw
SL

(R
P

)}

·Pr{pw
SL

(S
P

)} ·




∑

∀r′∈ri,s′∈sj :r′∈pwSL(RP)∧s′∈pwSL(SP)

χ(sim(r
′
, s
′
) ≥ γ)

))
(5)

where r′ and s′ are set instances of ri and rj , respectively; and
χ(z) is a function s.t. χ(z) = 1 if z is true; χ(z) = 0, otherwise.

Intuitively, the probability computation of Pr{sim(ri, sj) ≥
γ} in Eq. (5) checks all the possible world combinations of RP

and SP , pwSL(RP) and pwSL(SP), and sums up the appearance

probabilities of those combinations in which set instances (i.e., r′

and s′) of ri and sj occur and satisfy the condition in χ function.
Probability Computation for Element-Level PS2J. Similarly, ac-
cording to the possible worlds semantics with the element-level
probabilistic set model (as given by Definition 2.2), the probability
Pr{sim(ri, sj) ≥ γ} in Eq. (3) can be rewritten as:

Pr{sim(ri, sj) ≥ γ}
=

∑

∀pwEL(RP):ri∈pwEL(RP)

∑

∀pwEL(SP):sj∈pwEL(SP)

Pr{pw
EL

(R
P

)}

·Pr{pw
EL

(S
P

)} · χ (
sim(r

′
, s
′
) ≥ γ, for r

′
=

argmax∀r′={r′[1],...,r′[li]}∈ri∧r′∈pwEL(RP)|r
′|, and

s
′
= argmax∀s′={s′[1],...,s′[lj]}∈sj∧s′∈pwEL(SP)|s

′|
)

, (6)

where r′ and s′ are the materialized set instances of ri and rj ,
respectively, converted from element level, and |x| is set x’s size.

Similar to the set-level case, Eq. (6) calculates appearance prob-
abilities of possible world combinations, where the materialized
element-level set instances (i.e., r′ and s′) of ri and sj appear and
satisfy the condition in function χ.
Straightforward Method for Processing PS2J. One straightfor-
ward approach to solve the PS2J problem (given by Definition 2.3)
on either set or element level is to compute the probability (i.e.,
Pr{sim(ri, sj) ≥ γ}) for every pair of probabilistic sets, (ri, sj),
in a nested loop manner. However, this nested loop method incurs
O(a · b) complexity, which is clearly not efficient for PS2J process-
ing in terms of both CPU time and I/O cost, where a and b are the
numbers of probabilistic sets in RP and SP , respectively. Further-
more, as given in Eqs. (5) and (6), the probability computations on
both set and element levels, respectively, have to consider exponen-
tial number of possible worlds. Thus, the cost of direct computation
by enumerating all possible worlds is very expensive.

Thus, to tackle the efficiency problem of PS2J processing, in the
sequel, we will propose to condense the possible worlds, and re-
duce our PS2J problem to the one on probabilistic data themselves
in Section 3. Then, we will provide effective pruning techniques in
Section 4, which can filter out false alarms of probabilistic set pairs
that violate the PS2J condition in Eq. (3). Further, to enable the
pruning, we carefully design synopses for summarizing probabilis-
tic sets on either set or element level, which can be integrated into
a tree-based index on probabilistic set data and facilitate the prun-
ing. We will discuss the details of efficient PS2J processing over
indexes constructed on probabilistic set databases. We summarize
the commonly used symbols in this paper in Table 3, Appendix A.

3. PROBLEM REDUCTION
In the sequel, we aim to condense possible worlds, and simplify

formulae of probability computation on both set and element levels.
Reduction of Set-Level Probability Computation. We first give
the reduction of our PS2J problem on the set level.

LEMMA 3.1. (Probability Computation on the Set Level) The
probability computation of Pr{sim(ri, sj) ≥ γ} on the set level
in Eq. (5) can be simplified as:

Pr{sim(ri, sj) ≥ γ} =
∑

∀r′∈ri

∑

∀s′∈sj

r
′
.p · s′.p · χ(sim(r

′
, s
′
) ≥ γ) (7)

Proof. Please refer to Appendix B. 2

Lemma 3.1 reduces probabilistic computation on exponential num-
ber of possible worlds in Eq. (5) to the one that only considers
instances (r′ and s′) of probabilistic sets in Eq. (7). The time com-
plexity of computing Eq. (7) is O(li · lj), where li and lj are num-
bers of set instances in probabilistic sets ri and sj , respectively.
Reduction of Element-Level Probability Computation. Next,
we consider the PS2J problem reduction on the element level.

652

LEMMA 3.2. (Probability Computation on the Element Level)
The probability computation of Pr{sim(ri, sj) ≥ γ} on the ele-
ment level in Eq. (6) can be simplified as:

Pr{sim(ri, sj) ≥ γ}
=

∑

∀r′∈ri

∑

∀s′∈sj

∏

∀r′u[k]∈r′
r
′u

[k].p ·
∏

∀r′[k]/∈r′
(1−

∑

∀r′u[k]∈r′[k]

r
′u

[k].p)

·
∏

∀s′v [k]∈s′
s
′v

[k].p ·
∏

∀s′[k]/∈s′
(1−

∑

∀s′v [k]∈s′[k]

s
′v

[k].p)

·χ(sim(r
′
, s
′
) ≥ γ) (8)

where r′u[k] and s′v[k] are the values of the k-th element positions
r′[k] and s′[k], respectively.
Proof. Please refer to Appendix C. 2

Lemma 3.2 reduces the problem of computing the probability
over possible worlds for element-level PS2J to the one directly on
probabilistic set elements, which is similar to the set-level case.
However, the time complexity of directly computing the probabil-
ity in Eq. (8) can still be exponential, that is, O(

∏
k uik ·

∏
k vjk),

where uik and vjk are the numbers of possible values for the k-th
element position ri[k] and sj [k], respectively. Therefore, it is still
challenging and computationally expensive to compute all pairs of
probabilistic sets from the two databases. Inspired by this, we aim
to avoid checking those false alarms of some pairs via pruning tech-
niques on either set or element level. This way, the computational
cost of both cases can be greatly reduced.

4. PRUNING TECHNIQUES
4.1 Jaccard Distance Pruning

In this subsection, we present the Jaccard distance pruning method,
which utilizes the property of Jaccard similarity measure. Specif-
ically, although Jaccard similarity J(ri, sj) itself is not a metric
function, the Jaccard distance,

J dist(ri, sj) = 1− J(ri, sj),

is a metric distance function, which follows the triangle inequality.
Thus, the basic idea of our Jaccard distance pruning is to use the
property of triangle inequality in Jaccard distance to prune those
probabilistic set pairs that are definitely dissimilar.

Without loss of generality, for the set-level probabilistic set ri

(or sj), we can select a pivot set pivri (pivsj) that minimizes the
summed Jaccard distance to all other set instances of ri (or sj), that
is, achieving the minimum

L(ri, pivri
) = max

∀rik∈ri

J dist(pivri
, rik)

(or L(sj , pivsj) = max∀sjk∈sj J dist(pivsi , sjk)). Similarly,
for the element-level probabilistic set ri (or sj), we can also se-
lect one pivot set pivri (pivsj) with the same criterion, considering
different set instances materialized from probabilistic elements.

Then, for any two probabilistic sets ri and sj , we have the fol-
lowing pruning lemma.

LEMMA 4.1. (Jaccard Distance Pruning) Given two probabilis-
tic sets ri and sj , and their selected pivot sets pivri and pivsj ,
respectively, and a similarity threshold γ ∈ (0, 1], if it holds that:

J dist(pivri
, pivsj

)− L(ri, pivri
)− L(sj , pivsj

) > 1− γ, (9)

then the probabilistic set pair (ri, sj) can be safely pruned.
Proof. Please refer to Appendix D. 2

4.2 Probability Upper Bound Pruning
The second pruning method we propose is to utilize the prob-

abilistic threshold α (as mentioned in Definition 2.3) to filter out
those probabilistic set pairs with confidence below α. Intuitively,
if the probability upper bound (denoted as UB P (ri, sj)) of the
probability Pr{sim(ri, sj) ≥ γ} in Eq. (3) is smaller than α, then
the pair (ri, sj) can be safely pruned. The following lemma sum-
marizes the probability upper pruning.

Figure 1: A visualization for the output of χ(·) function.

LEMMA 4.2. (Probability Upper Bound Pruning) Let UB P (ri,
sj) be the probability upper bound of probability Pr{sim(ri, sj)
≥ γ} given in Eq. (3). Then, given a probabilistic threshold α ∈
(0, 1] specified by PS2J, if it holds that:

UB P (ri, sj) < α, (10)

we can safely discard the probabilistic set pair (ri, sj).

Proof. Please refer to Appendix E. 2

Below, we address the non-trivial and challenging issue on how
to obtain probability upper bound, UB P (ri,sj), in Lemma 4.2.
Derivation of Set-Level Probability Upper Bound. We next aim
to derive the set-level probability upper bound from Eq. (7). In
particular, due to the equivalent form

J(x, y) =
|x ∩ y|

|x|+ |y| − |x ∩ y|
of Jaccard similarity, we can replace the equivalent condition in
function χ(·) of Eq. (7) as follows.

Pr{sim(ri, sj) ≥ γ} (11)

=
∑

∀r′∈ri

∑

∀s′∈sj

r
′
.p · s′.p · χ(|r′ ∩ s

′| ≥ γ

1 + γ
· (|r′|+ |s′|))

Since it holds that |r′| ≥ |r′ ∩ s′| and |s′| ≥ |r′ ∩ s′|, from
Eq. (11), we have:

Pr{J(ri, sj) ≥ γ} (12)

=
∑

∀r′∈ri

∑

∀s′∈sj

r
′
.p · s′.p · χ

(
|r′| ≥ γ

1 + γ
· (|r′|+ |s′|)

∧|s′| ≥ γ

1 + γ
· (|r′|+ |s′|) ∧ |r′ ∩ s

′| ≥ γ

1 + γ
· (|r′|+ |s′|)

)

=
∑

∀r′∈ri

∑

∀s′∈sj

r
′
.p · s′.p · χ

(
γ · |s′| ≤ |r′| ≤ 1

γ
· |s′|

∧|r′ ∩ s
′| ≥ γ

1 + γ
· (|r′|+ |s′|)

)
.

Note that, the first term in the χ(·) function on the RHS of
Eq. (12) is a necessary condition of the second term (i.e., the second
term subsumes the first one).

Based on Eq. (12), we can visualize the cases where χ(·) func-
tion may output 1 during the probability calculation. As illustrated
in Figure 1, we consider a 2D space, where the horizontal axis cor-
responds to the size, |r′|, of a set instance r′ ∈ ri, and the vertical
axis is the size, |s′|, of a set instance s′ ∈ sj , where |r′| ≤ li and
|s′| ≤ lj . In this 2D space, we draw 3 lines, 1) |s′| = γ · |r′|;
2) |s′| = 1

γ
· |r′|; and 3) |r′| + |s′| = 1+γ

γ
· |r′ ∩ s′|, where the

first two lines correspond to the first term in the χ(·) function of
Eq. (12) (when taking the equalities), and the third line correspond
to the second term (taking the equality). These three lines form a
shaded region (as shown in Figure 1), exactly indicating the case
where the χ(·) function may output 1 (other white region corre-
sponds to output of 0).

Therefore, let max size(|ri ∩sj |) be the maximum possible
size of the set intersection (r′ ∩ s′), for any r′ ∈ ri and s′ ∈ sj .
We can obtain an upper bound of the probability in Eq. (12) via
max size(|ri ∩sj |) as follows:

653

Pr{J(ri, sj) ≥ γ} (13)

≤
∑

∀r′∈ri

∑

∀s′∈sj

r
′
.p · s′.p · χ

(
γ · |s′| ≤ |r′| ≤ 1

γ
· |s′|

∧max size(|ri ∩ sj |) ≥
γ

1 + γ
· (|r′|+ |s′|)

)
.

= UB P (ri, sj)

In order to further simplify UB P (ri, sj) in Eq. (13), without
loss of generality, we assume that set instances rik (or sjk) of
ri (sj) have their sizes in non-descending order, that is, |ri1| ≤
|ri2| ≤ ... ≤ |rili | (or |sj1| ≤ |sj2| ≤ ... ≤ |sjlj |). Correspond-
ingly, we denote their cumulative probability vector as CPVri (or
CPVsj), where CPVri [w] indicates the existence probability that
ri has sizes of instance sets smaller than or equal to w, that is,
CPVri [w] =

∑
∀k,|rik|≤w rik.p.

We have the following lemma to derive probability upper bound
used for pruning over set-level probabilistic sets (in Lemma 4.2).

LEMMA 4.3. (Derivation of Set-Level Probability Upper Bound
Pruning) Let min len(|rik|) = γ · |rik|, and max len(|rik|) =
min{lj , 1

γ
· |rik|, 1+γ

γ
·max size(ri∩sj)−|rik|}. Then, we have:

UB P (ri, sj) (14)

=

li∑

k=1

rik.p ·




CPVsj
[dmax len(|rik|)e]− CPVsj

[bmin len(|rik|)c]
if min len(|rik|) ≤ max len(|rik|);

0 otherwise.

Proof. Please refer to Appendix F. 2

Derivation of Element-Level Probability Upper Bound. With
the element-level probabilistic set model, the basic idea of deriv-
ing the element-level probability upper bound is the same to that
of the set-level one (as discussed above in Lemma 4.3). However,
there are two obstacles to tackle, which are the differences from
the set-level computation. In brief, due to the element-level uncer-
tainty, we need to compute the probability that the materialized set
instances of a probabilistic set have sizes 1) equal to or 2) smaller
than an integer, which have their counterparts, rik.p and CPVsj [·],
respectively, in Eq. (14).

Let F (ri, N, n) be the probability that, among N element posi-
tions we have seen so far, there are exactly n elements appearing in
set instances. Thus, we can recursively compute F (ri, N, n) by:

F (ri, N, n) =
∑

∀u

r
u
i [N].p · F (ri, N − 1, n− 1)

+(1−
∑

∀u

r
u
i [N].p) · F (ri, N − 1, n)

F (ri, N, 0) =
N∏

k=1

(1−
∑

∀u

r
u
i [k].p)

F (ri, n, n) =

n∏

k=1

∑

∀u

r
u
i [k].p

Therefore, to compute the probability that instance has size w,
Pr{|r′| = w}, we simply let it be F (ri, li, w). Thus, correspond-
ingly, the cumulative probability CPVri [w] = Pr{|r′| ≤ w} (for
1 ≤ w ≤ li) can be easily obtained.

We have the lemma below to derive probability upper bound used
for pruning on element-level probabilistic sets (in Lemma 4.2).

LEMMA 4.4. (Derivation of Element-Level Probability Upper
Bound Pruning) Let min len(w) = γ · w, and max len(w) =
min{lj , 1

γ
· w, 1+γ

γ
·max size(ri ∩ sj)− w}. Then, we have:

UB P (ri, sj) =

li∑

w=1

F (ri, li, w) (15)

·




CPVsj
[dmax len(w)e]− CPVsj

[bmin len(w)c]
if min len(w) ≤ max len(w);

0 otherwise.

Proof. Please refer to Appendix G. 2

5. PS2J PROCESSING APPROACH

5.1 Synopsis Design
Index. As mentioned in Section 4.1, the Jaccard distance is a met-
ric measure that follows the triangle inequality. Thus, we can utilize
this property to index the probabilistic set database via any metric-
space index. In this paper, we adopt one popular metric index, M-
tree [10]. Nonetheless, since our proposed methodology does not
rely on the choice of metric index, our pruning techniques can be
easily applied to other indexes in the metric space. Specifically, in
the M-tree, for each probabilistic set ri, we select a pivot set pivri ,
associated with the maximum deviation L(pivri , ri) from any in-
stance of ri to pivot. Then, the probabilistic sets are recursively
grouped (via standard criteria for metric-space M-tree construction)
until one final node (root) is obtained.
Synopses. Next, we focus on the synopsis design for probabilistic
sets to facilitate the index pruning. In particular, within each inter-
mediate node e of the M-tree index, we store a synopsis, Syn(e),
to describe the information for probabilistic sets rooted from this
node. Each synopsis Syn(e) consists of max size probability vec-
tors SPV e

max, min/max cumulative probability vectors CPV e
min

and CPV e
max, max element probability vectors EPV e

max, max el-
ement count vectors ECV e

max, and max set sizes Sizee
max.

Specifically, the w-th position of SPV e
max stores the maximum

probabilities, that probabilistic sets under e have instances of ex-
actly size w; CPV e

min and CPV e
max are the min/max cumula-

tive probability vectors w.r.t. SPV.. Moreover, each position in
EPV e

max (or ECV e
max) corresponds a unique element value, and

stores min/max existence probability (or count) for this element in
probabilistic sets under node e. Finally, Sizee

max is the maximum
size of probabilistic set instances under node e.

5.2 Node Level Pruning
Similar to the data-level pruning in Lemmas 4.1 and 4.2, we give

the pruning below on the node level via Jaccard distance pruning
and probability upper bound pruning, respectively.

LEMMA 5.1. (Node-Level Jaccard Distance Pruning) Given two
nodes e1 and e2, as well as their pivots pive1 and pive2 , respec-
tively, and a similarity threshold γ ∈ (0, 1], if it holds that:

J dist(pive1 , pive2)− L(e1, pive1)− L(e2, pive2) > 1− γ, (16)

then the node pair (e1, e2) can be safely pruned.
LEMMA 5.2. (Node-Level Probability Upper Bound Pruning)

Let UB P (e1, e2) be the probability upper bound of probability
Pr{sim(e1, e2)≥ γ} given in Eq. (3). Then, given a probabilistic
threshold α ∈ (0, 1] specified by PS2J, if it holds that:

UB P (e1, e2) < α, (17)

we can safely discard the probabilistic set pair (e1, e2), where on
either set or element level, we have:

UB P (e1, e2) =

Size
e1
max∑

w=1

SPV
e1

max[w] (18)

·




CPVsj,max[dmax len(w)e]− CPVsj,min[bmin len(w)c]
if min len(w) ≤ max len(w);

0 otherwise.

Furthermore, max size(e1, e2) used for computing max len(·)
in Eq. (18) is the upper bound size of intersection ri ∩ sj for any
ri ∈ e1 and sj ∈ e2. We let max size(e1, e2) = min{Sizee1

max,
Sizee2

max,
∑
∀w min{ECV e1

max[w], ECV e2
max[w]}}.

Node-Level Aggregate Pruning. We notice that in Lemma 5.2,
we always uses the maximum size max size(e1, e2) to compute
the probability upper bound, which might have lower pruning abil-
ity for higher level tree nodes (as they contain more probabilistic

654

sets). Therefore, in order to enhance the pruning power, we ad-
ditionally propose another probability upper bound UB P (e1, e2)
by exploring the probability aggregates stored in the synopses.

Since UB P (e1, e2) is the maximum probability that any two
probabilistic sets ri ∈ e1 and sj ∈ e2 are similar, our basic idea
is to compute an upper bound probability that the intersection be-
tween ri and sj has size w (1 ≤ w ≤ max size(e1, e2)).

Specifically, according to vectors EPV e1
max, EPV e2

max, ECV e1
max,

and ECV e2
max, we can identify those elements that may have inter-

section between sets from e1 and e2 (i.e., both positions in ECV e1
max

and ECV e2
max have nonzero counts). Without loss of generality, we

denote them as elem1, ..., elemn, in non-increasing order of their
(multiplied) corresponding probabilities (denoted as elemi.p) in
EPV e1

max and EPV e2
max. Then, the upper bound probability that

any intersection has size w ∈ [1, max size(e1, e2)], can be given
by

∏w
i=1 elemi.p. Therefore, we can obtain another probability

upper bound via aggregates, that is,

UB P (e1, e2) =

max size(e1,e2)∑

w=1

w∏

i=1

elemi.p. (19)

5.3 PS2J Procedure
Our PS2J processing procedure traverses the two M-trees con-

structed on two probabilistic set databases in parallel. For any pair
of two nodes or probabilistic sets that we encounter, we will apply
our aforementioned Jaccard distance pruning, aggregate pruning, or
probability upper bound pruning to filter out false alarms. If a node
pair cannot be pruned, we will further check their child nodes; if an
object pair cannot be pruned, we will add this pair to a candidate
set, PS2J cand. Finally, we refine candidate pairs in PS2J cand
and return the actual PS2J answers. The pseudo code of PS2J pro-
cessing and its detailed descriptions can be found in Appendix H.

6. EXPERIMENTAL STUDY
In this section, we evaluate the efficiency and effectiveness of

our proposed PS2J processing approaches on both set and element
levels over real and synthetic data sets. Synthetic data sets include
U -Syn and G-Syn whose set elements are within [1, 100], fol-
lowing Uniform and Gaussian distribution (with the mean 50 and
variance 20), respectively. For the set-level model, [λmin, λmax]
is the range of the number of set instances per probabilistic set, and
[σmin, σmax] is the range of the number of elements in each set in-
stance. For the element-level model, [umin, umax] is the range of
the number of instances for each probabilistic elements, and θ is the
percentage of element positions in a set that are probabilistic. We
also test real data set, DBLP , which contains around 20K titles
of papers extracted from DBLP 2. We parse the tokens in titles and
generate probabilistic set instances/elements following Uniform or
Gaussian distribution, resulting in two data sets U -DBLP and G-
DBLP , respectively. We index the above mentioned probabilistic
sets with M-trees3 [10], where the page size is 4K. The detailed
descriptions of data sets can be found in Appendix I.
Evaluation measures. To report the performance of PS2J process-
ing, in the sequel, we test two measures the wall clock time and
speed-up ratio. In particular, the wall clock time is the total time
cost that executes the PS2J procedure in Figure 11, including both
filtering and refinement cost. Moreover, to our best knowledge, no
prior work has studied the set similarity join problem in probabilis-
tic set databases. Thus, the only available method is the nested loop
join (denoted as NLJ) as mentioned in Section 2.2. That is, for
each probabilistic set ri ∈ RP , we access those sets sj ∈ SP that

2http://dblp.uni-trier.de/xml/.
3Source code is available at http://www-db.deis.unibo.it/Mtree/.

0.1 0.2 0.5 0.8 0.9
10

−3

10
−2

10
−1

10
0

γ

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn
U−DBLP
G−DBLP

(a) wall clock time

0.1 0.2 0.5 0.8 0.9
10

3

10
4

γ

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn
U−DBLP
G−DBLP

(b) speed-up ratio

Figure 2: Set-level PS2J performance vs. γ.

0.1 0.2 0.5 0.8 0.9
10

−3

10
−2

10
−1

10
0

10
1

α

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn
U−DBLP
G−DBLP

(a) wall clock time

0.1 0.2 0.5 0.8 0.9
10

2

10
3

10
4

10
5

α

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn
U−DBLP
G−DBLP

(b) speed-up ratio

Figure 3: Set-level PS2J performance vs. α.

have common elements with ri (via inverted index). The speed-up
ratio is defined as the wall clock time of NLJ divided by that of
PS2J . In particular, for NLJ over set-level probabilistic sets, we
apply the state-of-the-art approach, ppjoin+ [23], to filter out false
alarms of pairs of (certain) set instances in probabilistic sets. For
element-level probabilistic sets, however, since ppjoin+ (and other
works like [7, 3] as well) requires sorting tokens in the (certain) set
according to a global ordering, such a sorting cannot be achieved in
our problem with condensed probabilistic elements (except for ma-
terializing all possible set instances, which is however not space-
efficient). Thus, for element-level probabilistic sets, we will on-
line materialize them, and directly check the predicate in Definition
2.3. Since the total time cost of NLJ is rather high (especially for
the element level), we take 100 random sample sets from RP , join
them with SP , obtaining the total joining time, J time, and esti-
mate the wall clock time of NLJ by (J time · |RP |/100), where
|RP | is the number of uncertain sets in RP . All our subsequent ex-
periments are conducted on a PC with Core(TM)2 Duo 3GHz CPU
with 3G memory.

6.1 PS2J over Set-Level Probabilistic Data
In this subsection, we present the experimental results of PS2J

on set-level probabilistic data. Each time we vary the value of one
parameter, while setting others to their default values (i.e., γ = 0.5,
α = 0.5, [λmin, λmax] = [1, 5], [σmin, σmax] = [1, 5], and N =
50K). Detailed settings can be found in Appendix J.
PS2J performance vs. similarity threshold γ. Figure 2 illustrates
the PS2J processing performance over 4 real and synthetic data, U -
Syn, G-Syn, U -DBLP , and G-DBLP . From figures, when the
similarity threshold γ increases (other parameters are set to their

[1, 2] [1, 3] [1, 5] [1, 8] [1, 10]
10

−3

10
−2

10
−1

10
0

[λ
min

, λ
max

]

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn
U−DBLP
G−DBLP

(a) wall clock time

[1, 2] [1, 3] [1, 5] [1, 8] [1, 10]
10

0

10
1

10
2

10
3

10
4

10
5

[λ
min

, λ
max

]

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn
U−DBLP
G−DBLP

(b) speed-up ratio

Figure 4: Set-level PS2J performance vs. [λmin, λmax].

655

[2, 10] [3, 10] [5, 10] [8, 10] [9, 10]
10

−2

10
−1

10
0

[σ
min

, σ
min

]

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn

(a) wall clock time

[2, 10] [3, 10] [5, 10] [8, 10] [9, 10]
10

2

10
3

10
4

10
5

[σ
min

, σ
max

]

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn

(b) speed-up ratio

Figure 5: Set-level PS2J performance vs. [σmin, σmax].

10K 20K 50K 80K 100K
10

−2

10
−1

10
0

N

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn

(a) wall clock time

10K 20K 50K 80K 100K
10

2

10
3

10
4

10
5

N

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn

(b) speed-up ratio

Figure 6: Set-level PS2J performance vs. N .

default values), the wall clock time for all the 4 data sets decreases.
This is because with large γ value, the condition of Jaccard distance
pruning in Eq. (9) can filter out more false alarms, and probability
upper bound pruning in Eq. (13) can achieve tighter (smaller) upper
bound. As a result, fewer candidates need to be retrieved and re-
fined, which incurs lower time cost. Note that, due to different data
sizes between U -(G-)DBLP and U -(G-)Syn, in this and subse-
quent experiments, the trends of curves for DBLP data are always
more smooth than that for Syn. Figure 7(b) shows the speed-up
ratio of our PS2J approach, compared with NLJ via ppjoin+

filtering. PS2J performs better than NLJ by about 3-4 orders of
magnitude, which indicates good performance of our approach.
PS2J performance vs. probabilistic threshold α. Figure 3 varies
the probabilistic threshold α from 0.1 to 0.9, where other parame-
ters are set to default values. Similar to previous results, when α
increases, the wall clock time of PS2J decreases. This is because
for large α, the probability upper bound pruning can filter out more
candidate pairs, and thus the cost of search/refinment decreases.
PS2J outperforms NLJ by about 2-4 orders of magnitude.
PS2J performance vs. range of the instance number in a proba-
bilistic set [λmin, λmax]. Figure 4 evaluates the effect of the num-
ber of instances in a probabilistic set (i.e., λ) on PS2J performance,
where the range [λmin, λmax] of λ varies from [1, 2] to [1, 10] and
other parameters are set to default values. In figures, the wall clock
time increases with wider λ range (or higher λ value on average).
This is because more set instances in probabilistic sets would incur
higher retrieval and refinement costs. Moreover, similar to previous
results, PS2J has better performance than NLJ . To further eval-
uate the robustness of our approach, we also evaluate the effects of
other parameters on synthetic data U -Syn and G-Syn below.
PS2J performance vs. range of the number of elements in set
instances [σmin, σmax]. Figure 5 varies the range [σmin, σmax]
of set instance size from [2, 10] to [9, 10], where other parameters
are set to default values. For wider range of (or larger) set sizes,
more wall clock time is needed for retrieval and refined, which is
confirmed in Figure 5(a). Furthermore, PS2J performs better than
NLJ by about 3-4 orders of magnitude.
PS2J performance vs. data size N . Figure 6 tests the scalabil-
ity of our PS2J approach by varying the total number of proba-
bilistic sets in each database (i.e., N) from 10K to 100K, where
other parameters are set to default values. From figures, we can
see that when N becomes larger, the wall clock time of PS2J also

0.1 0.2 0.5 0.8 0.9
0.002

0.004

0.006

0.008

0.01

γ

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn
U−DBLP
G−DBLP

(a) wall clock time

0.1 0.2 0.5 0.8 0.9
10

7

10
8

10
9

γ

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn
U−DBLP
G−DBLP

(b) speed-up ratio

Figure 7: Element-level PS2J performance vs. γ.

0.1 0.2 0.5 0.8 0.9
10

−3

10
−2

10
−1

α

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn
U−DBLP
G−DBLP

(a) wall clock time

0.1 0.2 0.5 0.8 0.9
10

7

10
8

10
9

10
10

α

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn
U−DBLP
G−DBLP

(b) speed-up ratio

Figure 8: Element-level PS2J performance vs. α.
increases due to the filtering and refinement with more candidate
pairs. Nonetheless, compared with NLJ , the speed-up ratio of our
PS2J approach increases with the increasing data size, which in-
dicates the good scalability of our approach against data size.

6.2 PS2J over Element-Level Probabilistic Data
Next, we evaluate the PS2J performance on element-level proba-

bilistic set databases. As mentioned earlier in this section, we com-
pare our PS2J approach with NLJ in which we directly compute
the PS2J probability in the join predicate (i.e., Eq. (3)) via Eq. (5).
PS2J performance vs. similarity threshold γ and probabilistic
threshold α. Figure 7 presents the experimental results of PS2J
processing under element-level probabilistic set level, for different
γ values. In Figure 7(a), the wall clock time of all the data sets
are small (below 0.01s), and slight decreases with the increasing
γ, which can be reflected by the increasing speed-up ratio shown
in Figure 7(b). While NLJ needs to materialize instances for all
probabilistic sets, our PS2J approach only needs to refine the ob-
tained candidate pairs, which thus incurs lower cost by about 7-9
orders of magnitude. Figure 8 shows the results with different α
from 0.1 to 0.9, with similar trends to that of γ.
PS2J performance vs. range of the instance number for each
element position [umin, umax]. Figure 9 evaluates the PS2J per-
formance with different ranges of the number of instances for prob-
abilistic elements. From figures, we can see that the wall clock time
slightly increases with wider range of instance numbers (i.e., more
expected instances). This is because higher cost is required for re-
fining candidate pairs with more element instances. Nevertheless,
the time cost is low (i.e., below 0.02s), and can perform better than
NLJ by 8-9 orders of magnitude.
PS2J performance vs. percentage of probabilistic elements in
a probabilistic set θ. Figure 10 illustrates the results for different

[1, 2] [1, 3] [1, 5] [1, 8] [1, 10]
0

0.01

0.02

0.03

0.04

[u
min

, u
max

]

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn
U−DBLP
G−DBLP

(a) wall clock time

[1, 2] [1, 3] [1, 5] [1, 8] [1, 10]
10

7

10
8

10
9

10
10

[u
min

, u
max

]

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn
U−DBLP
G−DBLP

(b) speed-up ratio

Figure 9: Element-level PS2J performance vs. [umin, umax].

656

2% 3% 5% 8% 10%
0

0.002

0.004

0.006

0.008

0.01

θ

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

U−Syn
G−Syn

(a) wall clock time

2% 3% 5% 8% 10%
10

6

10
7

10
8

10
9

10
10

θ

sp
ee

d−
up

 r
at

io

U−Syn
G−Syn

(b) speed-up ratio

Figure 10: Element-level PS2J performance vs. θ.

percentages, θ, of probabilistic elements in a probabilistic set from
2% to 10%. The wall clock time increases with larger θ due to
the higher refinement cost; meanwhile, the speed-up ratio also in-
creases, which indicates the scalability of our approach against θ,
compared with NLJ .

In addition, similar to the set-level case, the PS2J performance
of our approach also shows good scalability against large data size.

7. RELATED WORK
The existing works [21, 7, 2, 3, 23] on set similarity join usually

focus on the join over certain sets, where each set (including its el-
ements) are assumed to be precisely known. The join operator is
conducted between two certain set databases, and aims to retrieve
those pairs of sets that are similar to each other under some set
similarity function (e.g., Jaccard similarity, Cosine similarity, and
overlap similarity). In order to efficiently perform the threshold-
based set similarity join, many pruning techniques have been pro-
posed, including the signature-based filtering [2], prefix filtering [7,
3], and positional/suffix filtering [23]. In these works, either syn-
opses or data pre-processing techniques are designed specific for
certain set data, which cannot be directly or efficiently applied to
our PS2J problem for probabilistic sets. For example, the signature
proposed in [2] summarizes precise elements in each set, which
can employ the pigeon hole principle to facilitate pruning during
the join processing. However, it is not trivial to directly use sig-
natures to characterize probabilistic sets associated with probabili-
ties, and moreover help the pruning under possible worlds seman-
tics. Further, for prefix filtering [7, 3] or positional/suffix filtering
[23], a global ordering of elements is required for sorting each (cer-
tain) set, which is however not applicable to our PS2J problem over
element-level probabilistic sets (in Section 6, we tested the filter-
ing methods in [23] for the join over set-level probabilistic sets,
whose performance is inferior to our approach). In addition, Jacox
and Samet [14] studied the join on certain data in metric spaces,
whereas our work focuses on the join on uncertain data under pos-
sible worlds semantics.

Due to the existence of data uncertainty in many real applications
such as sensor networks [19], efficient and effective manipulation
of probabilistic data has recently been extensively studied [11], and
many systems such as MystiQ [5], Orion [8], TRIO [4], MayBMS
[1], MCDB [15], and BayesStore [22] have been proposed. To the
best of our knowledge, no prior work has studied the set similar-
ity join problem over either set- or element-level probabilistic set
databases. There are some existing works on join over uncertain
databases such as [9, 17, 18]. However, the underlying uncertain
database is assumed to contain numerical data (instead of set data)
with distance functions such as L2-norm (rather than set similarity
measure). Thus, their proposed techniques cannot be directly used
in our PS2J problem. Recently, Jestes et al. [16] studied the prob-
abilistic string similarity join with the expected Edit distance over
all possible worlds, where string- and character-level uncertainties
are considered. To help the pruning, a notion of probabilistic q-
grams is proposed. In contrast, our PS2J problem considers the
join over probabilistic sets (rather than strings) and under a differ-

ent measure, Jaccard distance (not expected Edit distance), which
thus cannot borrow the proposed techniques in our PS2J scenario.

8. CONCLUSIONS
Inspired by the importance of joining noisy set data in emerging

applications such as data integration and near duplicate detection,
in this paper, we propose two models for probabilistic sets on set
and element levels of uncertainty. We propose a novel problem
of joining two probabilistic set databases, namely probabilistic set
similarity join (PS2J), under these two models. To facilitate effi-
cient processing, we design effective filtering techniques to reduce
the PS2J search space. We have demonstrated the PS2J perfor-
mance of our propped approaches through extensive experiments.

Acknowledgments
Funding for this work was provided by Hong Kong RGC GRF
Grant No. 611608 and NSFC Grant No. 60933011 and 60933012.

9. REFERENCES
[1] L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing

incomplete information with probabilistic world-set decompositions.
In ICDE, 2007.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity
joins. In VLDB, 2006.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, 2007.

[4] O. Benjelloun, A. Das Sarma, A. Y. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In VLDB, 2006.

[5] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and D. Suciu.
Mystiq: a system for finding more answers by using probabilities. In
SIGMOD, 2005.

[6] A. Broder. On the resemblance and containment of documents. In
SEQUENCES, 1997.

[7] S. Chaudhuri, V. G., and R. Kaushik. A primitive operator for
similarity joins in data cleaning. In ICDE, 2006.

[8] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system
for managing constantly-evolving data. In VLDB, 2005.

[9] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia.
Efficient join processing over uncertain data. In CIKM, 2006.

[10] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB, 1997.

[11] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. VLDB J., 16(4), 2007.

[12] X. L. Dong, A. Halevy, and C. Yu. Data integration with uncertainty.
The VLDB Journal, 18(2), 2009.

[13] R. Gupta and S. Sarawagi. Creating probabilistic databases from
information extraction models. In VLDB, 2006.

[14] E. H. Jacox and H. Samet. Metric space similarity joins. TODS,
33(2), 2008.

[15] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas.
Mcdb: a monte carlo approach to managing uncertain data. In
SIGMOD, 2008.

[16] J. Jestes, F. Li, Z. Yan, and K. Yi. Probabilistic string similarity joins.
In SIGMOD, 2010.

[17] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic
similarity join on uncertain data. In DASFAA, 2006.

[18] V. Ljosa and A. K. Singh. Top-k spatial joins of probabilistic objects.
In ICDE, 2008.

[19] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X.-Y. Li, and G. Dai. Canopy
closure estimates with greenorbs: Sustainable sensing in the forest.
In ACM Sensys, 2009. http://greenorbs.org.

[20] T. C. Redman. The impact of poor data quality on the typical
enterprise. Commun. ACM, 41(2), 1998.

[21] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD, 2004.

[22] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein.
Bayestore: Managing large, uncertain data repositories with
probabilistic graphical models. In VLDB, 2008.

[23] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for
near duplicate detection. In WWW, 2008.

657

Appendix
A. Notations
Table 3 summarizes the commonly used symbols in this paper.

Symbol Description

RP (or SP) a probabilistic set database
pw(RP) (or pw(SP)) a possible world of probabilistic set database RP (or SP)
ri (or sj) a probabilistic set in RP (or SP)
rik, r′ (or sjk, s′) a set instance in the set-level probabilistic set ri (or sj)
rik.p (or sjk.p) the existence probability of set instance rik (or sjk)

on the set level
ri[k] (or sj [k]) a probabilistic element in the element-level probabilistic

set ri (or sj)
r

uik
i [k] (or s

vjk
j [k]) a possible value of probabilistic element ri[k] (or sj [k])

on the element level
r

uik
i [k].p (or s

vjk
j [k].p) the existence probability of value r

uik
i [k] (or s

vjk
j [k])

on the element level

Table 3: Symbols and descriptions.

B. Proof of Lemma 3.1
Proof. In Eq. (5), when either probabilistic set ri or sj does not
have set instance r′ or s′ appearing in possible worlds, it holds that
J(r′, s′) = 0, and we always have χ(sim(r′, s′) ≥ γ) = 0. Thus,
we can simplify the formula by condensing those possible worlds
that both contain set instances r′ and s′ of ri and sj , respectively.
Therefore, we can rewrite Eq. (5) as:

Pr{sim(ri, sj) ≥ γ}
=

∑

∀r′∈ri

∑

∀s′∈sj

r
′
.p · s′.p

∑

∀pwSL(RP−{ri})

∑

∀pwSL(SP−{sj})

Pr{pw
SL

(R
P − {ri})} · Pr{pw

SL
(S

P − {sj})}
·χ(sim(r

′
, s
′
) ≥ γ)

=
∑

∀r′∈ri

∑

∀s′∈sj

r
′
.p · s′.p · 1 · χ(sim(r

′
, s
′
) ≥ γ)

which is exactly Eq. (7).
Hence, Eq. (7) holds, which completes the proof. 2

C. Proof of Lemma 3.2
Proof. As mentioned in Section 2.2, the element-level PS2J prob-
lem is equivalent to the set-level one by materializing all the in-
stances of probabilistic sets in the databases. Therefore, the prob-
ability computation on the element level in Eq. (8) is equivalent to
Eq. (7) on the set level, by expanding r′.p and s′.p to their element
levels. Hence, similar to the proof of Lemma 3.1, Eq. (8) condenses
the possible worlds of probabilistic set databases that contain both
materialized set instances r′ and s′. 2

D. Proof of Lemma 4.1
Proof. It is sufficient to show that for any instance sets r′ ∈ ri and
s′ ∈ sj , it holds that J dist(r′, s′) > 1− γ (since it is equivalent
to J(r′, s′) < γ, that is, Pr{J(r′, s′) ≥ γ} = 0 < α).

According to the definition of L(·, ·), we have
J dist(r

′
, pivri

) ≤ L(ri, pivri
)

and
J dist(s

′
, pivsj

) ≤ L(sj , pivsj
),

for any r′ ∈ ri and s′ ∈ sj .
Since Jaccard distance function J dist(·, ·) follows the triangle

inequality, by inequality transition, we obtain:

J dist(r
′
, s
′
)

≥ J dist(pivri
, s
′
)− J dist(r

′
, pivri

)

≥ J dist(pivri
, s
′
)− L(r

′
, pivri

)

≥ J dist(pivri
, pivsj

)− J dist(s
′
, pivsj

)− L(r
′
, pivri

)

≥ J dist(pivri
, pivsj

)− L(s
′
, pivsj

)− L(r
′
, pivri

)

From the lemma assumption given by Eq. (9) and the inequality
transition, we have:

J dist(r
′
, s
′
) > 1− γ.

Hence, pair (r′, s′) cannot be one of the PS2J results, and thus
can be safely pruned. 2

E. Proof of Lemma 4.2
Proof. According to the definition of UB P (ri, sj) and Eq. (10),
we have the following inequality transition:

Pr{sim(ri, sj) ≥ γ} ≤ UB P (ri, sj) < α.

Thus, it violates the PS2J condition given in Eq. (3) (i.e., Pr{sim(ri,
sj) ≥ γ} ≥ α). As a result, based on Definition 2.3, the pair
(ri, sj) can be safely pruned. Hence, the lemma holds. 2

F. Proof of Lemma 4.3
Proof. As illustrated in Figure 1, the probability upper bound is
given by summing up the (multiplied) existence probabilities of
set instances rik ∈ ri and sjn ∈ sj , when their set sizes fall
into the shaded region in the 2D space. Thus, min len(|rik|) and
max len(|rik|) are exactly lower and upper bound for the shaded
region along vertical axis, when the horizontal coordinate equals to
|rik|. As a result, the upper bound probability can be given by sum-
ming up the existence probability of set instance rik times the prob-
ability that |sjn| is within [min len(|rik|), max len(|rik|) (i.e.,
the difference of cumulative probability CPVsj [dmax len(|rik|)e]
−CPVsj [bmin len(|rik|)c]. Hence, Eq. (14) is equivalent to the
UB P (ri, sj) definition in Eq. (13), which completes the proof. 2

G. Proof of Lemma 4.4
Proof. As illustrated in Figure 1, the probability upper bound is
given by summing up the (multiplied) existence probabilities of
set instances rik ∈ ri and sjn ∈ sj , when their set sizes fall
into the shaded region in the 2D space. Thus, min len(w) and
max len(w) are exactly lower and upper bound for the shaded
region along vertical axis, when the horizontal coordinate equals
to w. As a result, the upper bound probability can be given by
summing up the probability that set instance rik has size w (i.e.,
F (ri, li, w)) times the probability that |sjn| is within [min len(w),
max len(w) (i.e., the difference of cumulative probability CPVsj

[dmax len(w)e] −CPVsj [bmin len(w)c]. Hence, Eq. (15) is
equivalent to the UB P (ri, sj) definition in Eq. (13), which com-
pletes the proof. 2

H. Descriptions of PS2J Processing Procedure
Figure 11 presents the details of our PS2J processing procedure,
namely PS2 Processing. Specifically, the procedure PS2 Processing
utilizes a minimum heap H to traverse the two M-tree indexes in
parallel, that is, IR and IS , constructed over probabilistic set databases
RP and SP , respectively. Each heap entry has the form (eR, eS , key)

658

(line 2), where eR and eS are nodes from IR and IS , respectively,
and key is defined as the LHS of Eq. (9) (i.e., a lower bound of
the Jaccard distance between any set instances under nodes eR and
eS).

Initially, we insert one entry containing the roots of both indexes
into heap H (line 3). Each time an entry (eR, eS , key) with the
minimum key is popped out from the heap (intuitively, small key
indicates high Jaccard similarity; lines 4-5). In case eR and eS are
both leaf nodes, for each set pair (ri, sj) under them, we check
whether or not it can be pruned by our proposed 2 pruning tech-
niques (i.e., in Lemmas 4.1 and 4.2) on the set- or element-level.
If the answer is no, then we add this pair to the PS2J candidate set
PS2J cand (lines 7-10). Similarly, when eR and eS are not both
leaf nodes, we expand the children of non-leaf nodes, and obtain
node pairs (e1, e2). If (e1, e2) cannot be pruned by our proposed
node-level pruning techniques (i.e., Jaccard distance pruning, ag-
gregate pruning, or probability upper bound pruning), we need to
insert this pair back into the heap H for further filtering (lines 11-
14). When heap H is empty (line 4) or all remaining entries in H
can be pruned by threshold (1 − γ) (line 5), the loop above termi-
nates. We refine the remaining candidate pairs in the candidate set
PS2J cand and return the final PS2J results (lines 15-16).

Procedure PS2J Processing {
Input: two probabilistic set databases RP and SP , with their corresponding

M-trees IR and IS , respectively, a similarity threshold γ ∈ (0, 1],
and a probabilistic threshold α ∈ (0, 1]

Output: the PS2J results in the form (ri, sj) satisfying Eq. (3)
(1) PS2J cand = ∅;
(2) initialize an empty min-heapH accepting entries (eR, eS , key)
(3) insert (root(IR), root(IS)) into heapH
(4) while heapH is not empty
(5) (eR, eS , key) = de-heap(H)
(6) if key > 1− γ, then terminate the loop;
(7) if eR and eS are both leaf nodes
(8) for any set pair (ri, sj) such that ri ∈ eR and sj ∈ eR

(9) if (ri, sj) cannot be pruned by Jaccard distance pruning or probability
upper bound pruning // Lemmas 4.1 and 4.2, respectively

(10) add (ri, sj) to PS2J cand
(11) else
(12) for any pair (e1, e2) such that e1 ∈ eR and e2 ∈ eR

(13) if (e1, e2) cannot be pruned by Jaccard distance pruning, aggregate
pruning, or probability upper bound pruning

// Lemma 5.1, Eq. (19), and Lemma 5.2, respectively
(14) insert (e1, e2, key) into heapH
(15) refine pairs (ri, sj) in PS2J cand via Eq. (14) or (15)
(16) return the refined PS2J results in PS2J cand

}
Figure 11: Procedure of probabilistic set similarity join.

I. Descriptions of Experimental Data Sets
For synthetic data, we generate li (∈ [λmin, λmax]) set instances
for each set-level probabilistic set ri ∈ RP (or sj ∈ SP) as fol-
lows. For each set instance r′ of ri, we first randomly produce
its set size |r′| = σ ∈ [σmin, σmax], and then, for each (the
k-th) element position, we generate a random element r′[k] ∈
[1, 100], following either Uniform or Gaussian distribution (with
the mean 50 and variance 20). We also associated each set in-
stance r′ ∈ ri with its existence probability r′.p ∈ (0, 1] such that
(
∑
∀r′∈ri

r′.p) ∈ [pmin, pmax] (we set [pmin, pmax] = [0.9, 1]
as default value range in our experiments). On the other hand, for
the element-level probabilistic sets, we first synthetically generate
a pivot set pivr′ of a random size |r′| = σ ∈ [σmin, σmax] (using
the above mentioned method), and then for each of its randomly se-
lected (θ·|r′|) element positions r′[k], we synthetically produce u
(∈ [umin, umax]) possible probabilistic element numbers, r′u[k],
with Uniform or Gaussian distribution, where

∑
∀u r′u[k] ∈ [pmin,

pmax]. For brevity, we denote the synthetic data with uniform and

Gaussian element number distributes as U -Syn and G-Syn, re-
spectively. In the sequel, we report the results over two data pairs,
U -Syn ∼ U -Syn and G-Syn ∼ G-Syn (for short U -Syn and
G-Syn, respectively), and omit similar results for other data com-
binations due to space limit. We also use the real data set, DBLP ,
which contains around 20K titles of papers extracted from DBLP
(http://dblp.uni-trier.de/xml/).. We parse tokens (words) of these
paper titles, and remove some frequent but meaningless tokens such
as “of”, “a”, “the”, “for”, “and”, “in”, “on”, “with”, “an”, “to”, and
so on. As a result, we can obtain sets of about 5-10 tokens for
each paper title. For each paper title (probabilistic set ri), we let its
corresponding token set be the pivot set r′, based on which we gen-
erate other set instances by altering (θ·|r′|) elements of r′ for set-
level probabilistic set, or probabilistic element numbers r′u[k] for
θ·|r′| randomly selected element positions r′[k] for element-level
probabilistic sets. The resulting data sets are denoted as U -DBLP
and G-DBLP , respectively. We divide each data set into two parts
of equal size, and use them as two joining data sets for testing PS2J
performance. For those data with other parameter settings (e.g.,
distributions of set elements, mean/variance of Gaussian distribu-
tions, or join combinations of data sets), the experimental results
are similar and thus omitted.

J. Experimental Settings
Table 4 depicts the experimental settings in our experiments, where
the values in bold font indicate default values. For each set of ex-
periments, we will vary the value of one parameter, while setting
others to their default values.

parameters values
γ set- / element-level 0.1, 0.2, 0.5, 0.8, 0.9
α set- / element-level 0.1, 0.2, 0.5, 0.8, 0.9
[λmin, λmax] set-level [1, 2], [1, 3], [1, 5], [1, 8], [1, 10]
[umin, umax] element-level [1, 2], [1, 3], [1, 5], [1, 8], [1, 10]
[σmin, σmax] set- / element-level [2, 10], [3, 10], [5, 10], [8, 10], [9, 10]
θ element-level 2%, 3%, 5%, 8%, 10%
N set- / element-level 10K, 20K, 50K, 80K, 100K

Table 4: The Parameter Settings

659

