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Set Simulations for Quadratic Systems of minimal “size” (in a sense to be clarified later on) such th@t) —
_ _ #(k) € X(k),k = 1,2,..., for any=z(0) such thate(0) — (0) €
Giuseppe Calafiore X(0). In this work, the set&’ (k) are assumed to be either orthotopes

or ellipsoids, and the sequerce(k)]x=1,2.,... is called aset simulation

Abstract—n this note, we study the problem of propagating in time a of (1) with respect to pOSSIblg m't'?l sta_tes()) — #(0) € X(0).
bounding set for the state of a class of nonlinear quadratic systems. The ~ 1hereachable sebf (1) at timet is defined as
sequence of bounding sets is called theet simulationof the system, and ) () i
conveys useful information about the stability and qualitative behavior of R(t) = {T = (2(0)),2(0) € X (0)} ) t=1,2,...
the possible time responses of the system. Numerically efficient recursive }
algorithms are presented for the specific cases when the bounding sets afewheref(“ (+) denotes the-stages compositiofi o f--- o f. Notice
orthotopes or ellipsoids. that in the particular case when the system (1) is actuiaigar, and
Index Terms—Domain of attraction, nonlinear systems, quadratic sys- X (0) is the hypercubd||z||« < 1}, then the seR(#) is a convex
tems, semidefinite relaxations, set simulations. polytope, [1]. However, in the general quadratic c&%e) is a com-
plicated nonconvex set, and an exact propagation in tinig @} is
I. INTRODUCTION AND PROBLEM STATEMENT numericqlly unfeasible. An alter.native to the exaf:t propagatiqn of the
o ) ) ) setR(t) is, therefore, to recursively bourfd(¢) with computation-
The problem of determining geometrical regions in the state spag®, tractable setst(#) having simpler description, such as ellipsoids
that contain all possible reachable states of a dynamical system Bagrthotopes. In this latter approach, which is the one pursued in this
been extensively studied in the literature. In the classical determigper, we trade some accuracy in the description of the reachable set,
istic (or set-membership) filtering literature [3], [15], [22] an ellip-and possibly introduce conservatism, to gain numerical tractability and
soidal bounding set for the state of a linear system is computed recgifficiency in the computations.
sively, starting from deterministic assumptions on the noise affectingpenote withw (k) = x(k) — #(k) the deviation of the actual state

the system, which is assumed to be an unknown-but-bounded (uftBjectory from the nominal one. The deviation obeys to the following
sequence, instead of a stochastic sequence. In the same contextjrfis-varying quadratic difference equations:

terval analysis is also used to propagate in time intervals of confidence B y

for the states, and to update this information with upcoming measure-v: (k + 1) = a/ (k)v(k) + v* (k) Hiv (k). i=L....,n (3)
ments, [12]. For linear systems with uncertain parameters, a polyto
bounding approach was proposed in [1], while more recently an

gﬁ%ere, fori =1,..., n,andr,c=1,....n

lipsoidal bounding technique has been proposed in [8], [9]. Ellipsoids a,T(L:) - {0]‘ _Ofi } .
have also been used as target invariant sets in the context of model pre- o dx1 Oxy e=i(k) ’
dictive control for uncertain systems in [5]. 9% f:
In this note, we propose numerically efficient algorithms for recur- [Hi],,yu = p a; .
“or ¢ lez=a(k)

sively determining orthotopic or ellipsoidal bounds for the state of a
class of nonlinear quadratic, discrete-time systems. From a theoretRemark 1: For the quadratic system (1), (2), we clearly have
ical point of view, quadratic systems are an important class of non! (k) = 267 + 227 (k)Q,, and H; = Q.. For more general, not
linear polynomial systems, and encompass the much studied clasa@fessarily quadratic systems, the dynamic equations (3) may be still
bilinear systems [14], [17]. Moreover, quadratic systems arise naturadlgsumed to hold, in an approximate sense, as a second-order truncation

in the context of generic nonlinear systems, when local analysis isdgbthe Taylor series expansions ff z) around#(k),i = 1,...,n.In
be performed using second order Taylor series approximation arouh case, also the matricég will be dependent on the time *
an equilibrium. In the next sections, we present our main results for recursive set
Specifically, we here consider an autonomous discrete-time nafimulations for the quadratic dynamics of the deviation from nominal
linear system described by the state-difference equations trajectory expressed in (3).
alk+ 1) = fa(k) @ Il. ORTHOTOPICSIMULATIONS FOR QUADRATIC SYSTEMS
\}Yh_eﬂgi‘”f)ﬂ:&eiﬂi ,landf": Ea;aﬂ?;r;t?csftztttigitoiam component .\ this section, we discuss the set simulation problem for the
H H guadratic system (3), using orthotopes as bounding sets for the system
filz) = 2" Qix + 2b] & + ¢ (2) state. Orthotopes permit to express the uncertainty in the initial state
in the form of independent intervals. The resulting set simulation
where@; = Q! € R™", b € R", c; € R are given matrices. 450 directly provides (deterministic) intervals of confidence for each

Suppose thak(0) € R™ is a nominal initial state for (1), and thatk),  component of the system state. Assume that at a given kirites
k =0,1,...isthe resulting nominal state trajectory obtained from thg,gwn thatv (k) € X'(k), with

initial conditionz(0) = 2(0).
We consider the following problem. Assume that the initial state of X(k)={v:v=q(k)+ E(k)z |z|l <1}
the systemy:(0), is such that:(0) — #(0) € X(0), whereX(0) is a
given bounded subset 8", and letz(%) be the resulting state trajec-
tory. Our goal is to determine a sequence of $ét&), k¥ = 1,2,...

whereq(k) € R" describes the center of the orthotope, wiilg:) =
diag(e1(k),...,en(k)),ei(k) > 0,i =1,...,n, describes the half-
widths of the intervals around the center.
Considering equations (3), and substitutir@) = <(k) + E(k)z,
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for||zl|le < 1,i=1,...,n. implied by condition (12) [i.e., the constraint (13) is more stringent
Our goal is to determine a new orthotog&% + 1), with center than (12)]. Therefore, the convex semidefinite optimization problem

¢(k + 1) and minimal interval widths£(k + 1) = diag(e((k + _

1),...,en(k + 1)), such thav (k) € X' (k) implies thatv(k + 1) € 9" = argmin v, subject to{13) (14)

X(k + 1). The problem amounts therefore to determining a minimal ) . L

interval containingv;(k + 1), for = that ranges inside the unit box has an optimal objective valye” which is not smaller thagi...., that

i ot
||z]]lec < 1. Since (4) is a quadratic (and in general nonconvex) funl2 9 2 gmax. ,D
tion of =, determining the extreme values @f(k + 1) over the unit Remark 2: We remark that the upper and lower bounds obtained by

box is NP-hard, [18]. In the following, we propose a semidefinite relaxt€ans of sernjdefinite relgxati_ons are among the bgst possible compu-
ation of the problem, which provides a suboptimal solution that can B%tlonally efﬁmem approximations of :]he z;l]ctual opter;aLvaIl,zye;;sln, .
computed with great numerical efficiency via convex semidefinite optfzx For a precise assessment on the sharpness 0 these relaxations,
mization (SDP) [24]. This relaxation is then compared with a standafgd for further recent results, the interested reader is referred to [10],

one based on interval arithmetics. We first state the following technic{&p]’ (18], and .[19]' . .
We also notice that, although the focus of this note is on the case

lemma.
Lemma 1 (Semidefinite Relaxationfonsider the quadratic Wheng(_:) is aquadr'aticfunctiop,the same approach could_in principle
function be applied to generic polynomial systems, using the techniques recently
developed in [16] and [21]. *
" . - r w4l s Alternative bounds Ofuwin, gmax May be computed using stan-
glz)=2d" z+ 2" Wz = [1} |:dT O} L} dard interval arithmetics, assuming that the monomials appearing in
the quadratic forms are all independent, see, for instance, [12]. These

bounds are computationally cheaper to determine compared to those
obtained by means of semidefinite relaxations, but are significantly
looser. This introduces undesirable additional conservatism in the sim-
Hlations, as further discussed in the examples that follow.

The computation of bounds gy{z) using the independent mono-

whereW = W' € R", and letgmax = max|.|_ <1 9(2), gmin =
miny.|_ <1 g(z). Then, a maximized lower bound™ < gmin and a
minimized upper boung® > ¢.... may be computed solving the fol-
lowing two semidefinite (convex) programming problems in the var

ablesy, r1, ..., 7y . o . . .
A i mials relaxation is stated in the following lemma, whose simple proof
g~ = — arg min~ subject to: 5 s omitted. . )
rdiagm, ..., 1) + W d - Lemma 2 (Independent Monomials Relaxatiohkt all symbols be
e n -0 (6) defined asin Lemma 1. Thefyumin, gmax] C [¢7=, ¢"F], with
dT ') - Z T - n n n
o i=1 - - - -
TiyeuesTn > 05 (7) 91_2—22|di|+20—(wii)_22 i |
=1 =1 7,7=1
gt = arg min v subject to: (8) J>i
rdiagm,...,7) — W d 1 " " <
- n =0 ) g =2 il + D o (wi) +2 ) fwil
i d v - ; i) =1 i=1 ij=1
TiyeuesTn > 0. / (10) ~
whereo (¢) = z, ifx>0 (x) = z, ifx<0
T = 0, otl_lerWise’ 7= l)._ 0, otherwise
Proof: We present a complete proof for the computation of thwi; denotes the element in thth row andjth column of V. *
upper bound;™; the proof for the lower bound follows from an iden- The next theorem reports our main result for recursive orthotopic
tical reasoning. First, we observe that simulation of quadratic systems.
Theorem 1 (Orthotopic Simulation)Consider (3). Let
gmax = arg min v, subject to: (11) ei(k) > 0,7 = 1,...,n, ands(k) € R" be given, and define
9(2) <7, Vz i 2]l £ 1. (12) E(k) = diagei(k),...,en(k)). Let further, fori = 1,...,n
) ()T ¢q, - T A 5 T, . . (e 1,n
A sufficient condition for the quadratic inequaligyfz) — v < 0 a7 (k) (a’ (k) + 2 (L)H’) E(k)eR
to hold for all z such that:? — 1 < 0,i = 1,...,n, is given by W(k)y=E" (k)H:E(k) € R™"
the S procedure [4]. There exist nonnegative scalars. ., 7, such _ N o . .
that—g(z) + v + S0, 7(2 — 1) > 0, ¥ 2. Substitutingg(z) = and letg; (%), g;" (k) be optimized bounds on the quadratic function
~ / i=1 11\~ = M Vo ~ YA DT T HOYIAW :
2d” z+ =" W z, and changing variable= —¢, the previous condition 9z = Q_d() (k)z 4+ ='W (k)z, computed according to
is rewritten in matrix form asir,.... 7. > 0 such that Lemma 1. Define
I R A Ly, (F 1. (k
7 [-W + ding (r, ) d ¢ ”1(1" +1) _“;(k)“(,k) * “T(k)H’“(k) +g;(l") (13)
n T(k+1) =a; (k)s(k " (k) Hs(k 7, (k). 16
) g N AN vi (k+1) =ai (k)s(k) + < (k) His(k) + g, (k). (16)
i=1

Then, the orthotop&’(k + 1) with center

is satisfied for al. Clearly, this condition holds if and only if V(e D)o (k1) N v (k1) 4 (k1) T

k+1)=
W+ diag(r1, . am) d s(k+1) 2 2
i yoyn | B0 e 20 I3 g nalfewidthse: (5 + 1) = (i (k4 1) — v (k4 1))/2), i =
=l 1,...,n, contains the state(k + 1), for anyv (k) € X (k). *
which is a linear matrix inequality (LMI) in the variablesri, ..., 7.. Proof: The proof is immediate, substituting the linear and

Since (13) is a sufficient condition for the constraint (12) to hold, thguadratic terms in (4) with the bounds (k), g; (k) determined
feasible set implied by condition (13) is contained in the feasible satcording to Lemma 1. d
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Fig. 1. Set simulation for Example 2.1, with(0) = e2(0) = 0.38. (a) Sequence of rectanglé¥ k): the bold line shows the initial rectanghé(0). (b) Size
of optimal rectangles (sum of half-widths) versus time: the solid line shows the size for the simulation obtained via semidefinite relaxattbe, duttiél line
shows the size obtained via independent monomials relaxation.
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Fig. 2. Set simulation for Example 2.1, with(0) = e-(0) = 0.75. (a) Sequence of rectanglé¥ k) obtained via semidefinite relaxations: the bold line shows
the initial rectangleY (0). (b) Size of optimal rectangles (sum of half-widths) versus time.

Remark 3: Applying Theorem 1 recursively fok = 0,1,..., continuous-time systems has been developed in [23], while a technique
starting from an initial orthotopeYt(0), we obtain an orthotopic for constructing optimal quadratic Lyapunov functions for generic
simulation for the quadratic system (3). In the aforementiongzblynomial systems hasbeenrecently proposedin[6]. *
theorem, one may alternatively use the coarser bounds derived ifExample 2.1: Consider the quadratic system
Lemma 2 instead of the tight bpungl;_(k), g?_(k) derive(_:i ih Lgmm_a 21 (k+1) =0.527 (k) —0.525 (k) +0.421 (k)22 (k) +0.622 (k)

1. ThIS would speed up the simulation (smpe no optimization is re- 2o (k1) = 0.622(k)+0.522(k)+0.621 (k)2 (k) —0.621 (k)
quired at each step), at the expense of possibly severe conservatism, as * ) o ) o .
shown in the following. We notice in particular that the computationdf” Which &(0) = 0 is an equilibrium point. Considering an initial
effort required to solve each of the semidefinite programs in LemrhgCtangle withe: (0) = e2(0) = 0.38 and<(0) = 0, we obtain the
1 to a given accuracy (using a general-purpose SDP solver and figfiotopic simulation in Fig. 1. The sequence of rectangles produced
exploiting structure) grows with problem size é)génl/Z)()(nz}) in by the set smuﬁtrl]on is de‘;;lc;ed in Flg.flh(al)f, W‘thlf] Fig. ﬁ(br)] shows the
the worst case; see [24], while computing the bounds in Lemmafk?ntvtirgencﬁ.t?. e_sag E 'é(SL:erhot ﬁ -V\'”t ?“),\8’ LC | prO\t/es
basically requires.(n + 3)/2 additions. atthe equiibrium s atiractiveand that afl points I (0) belong to

. . : .the domain of attraction relative to the origin.

Remark 4: We remark that set simulation can be a fast and effective . ; - L .

From Fig. 1(b), we notice the improvement in size reduction ob-

tool to analyze the domain of attraction (DA) around an equilibrium: if ined by the or d semidefinite relaxation roach over the stan
#(0) is an equilibrium pointfor(l),weobtaintime-invariantdynamicéa ed by the proposed semidefinite relaxation approach over the stan-

(3) describing the deviations from equilibrium. The convergence to zegg,rd interval approach. Indeed, enlarging the regit) to e, (0) =

of the orthotopic simulation on (3) thgmovesthat any trajectory origi- €2(0) = 0.75, using the s_eml_deflr_ute relaxgtlon me_thod we obtain the
nating inX’(00) converges asymptotically to the origin, thus e”minatinicor!vergent) set S|mulat|_on in Fig. 2 Wh'.le the simulation based on
the need of resorting to the Lyapunov approach. However, we rem rr)f independent monomials relaxation fails to converge:f66) =

that other specific techniques have been developed for this purpose.fi? P) 2 0.39.

instance, when a quadratic Lyapunov function is given in advance, ajn this case, the asymptotic stability of the equilibrium is also easily proved
method for determining an ellipsoidal region of attraction for quadratiby means of Lyapunov linearization method.
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Fig. 3. Set simulation for Example 2.2. (a) Solid line: bounds on statelotted line: envelope of Monte-Carlo simulations. (b) Solid line: bounds onstate
dotted line: envelope of Monte-Carlo simulations.

Example 2.2:As a further example, consider the third-ordeadopt the sum of the squared semi-axes lengths of the ellipsoid, which
quadratic system is given byTr P(k 4+ 1), with P(k 4+ 1) = E(k4+ 1)E7 (k + 1).
- —9.2(1 ; 1 e (e First, we notice that||z < 1 implies that |b;(k <
mk+1) =2a(k) 2”(? +0'5T‘,(L)"/3(“ |ET(k)H,E(k)|| = ml-(|L)|,|7Z = 1,...,n, theref0r|e,y((13|+ 1)
2o(k+1) == 21 (k) + 227 (k) + 0.522(k)ws (k) belongs to the set
x3(k+ 1) =0.523(k) + x1(k)xs (k). a7) W+ 1) = {v: v = A(k)E(k)=
For this system, the linearization approach does not provide informa- n
tion about the stability of the equilibriumi(0) = 0. However, the or- + Z mi(k)Liwg, 2| € 1,]u| €1, i=1,..., n} (19)
thotopic simulation withe,(0) = e2(0) = e3(0) = 0.2,5(0) = 0 im1
shows that any trajectory originating ixi(0) remains bounded, and wherel,; € R™ has all zero components, except ftig which is equal
gives additional insight on the qualitative behavior of the responge.one. The setV'(k + 1) is the Minkowski sum of: + 1 bounded and
Fig. 3 shows the bounds obtained on the first two states using essibly flat ellipsoids centered in the origin. Our second step amounts
proposed semidefinite relaxations, compared with the envelope of then to determining a minimal ellipsoid that containg % -+ 1).
trajectories obtained running 1000 Monte Carlo simulations on theNotice that determining theptimal minimum trace ellipsoid that
system. The Monte Carlo simulations have been performed generaigagtainsV (k + 1) (this ellipsoid exists and it is unique, by an exten-
uniformly random initial states itk’(0). We remark that the set sim- sion of the John theorem, [13]) is a numerically hard problem. Indeed,
ulation using the independent monomials relaxation of Lemma 2 failsis problem has been shown to be equivalent to the maximization of
again to converge in this case, contrary to that based on semidefiriteonvex quadratic form under convex quadratic constraints, which is

relaxation. known to be NP-hard, [11], [18]. For these reasons, it is a common ap-
proach to pursue suboptimality, looking for the minimum trace ellip-
Ill. ELLIPSOIDAL SIMULATION FOR QUADRATIC SYSTEMS soid among a parameterized family of ellipsoids. The following lemma

Numerically efficient set simulations for quadratic systems may alfgpPorts a version of a well-known resuilt due to Schweppe [22] which

be obtained using ellipsoids as bounding sets for the system state. Em:;\)/es a param_eter_lzatlon of a family of ellipsoids that contain the sum
. ; : of K given ellipsoids.
soidal sets provide a good tradeoff between conservatism of the sim: )
) - . . . . Lemma 3 (Schweppe)Let
ulation and corresponding numerical complexity, as discussed in the ’
following. They are widely used in state estimation and filtering prob- & = {z € R" : x = ¢; + Eiz;, ||z < 1}, i=1,.... K
lems with unknown-but-bounded noise, see the classical referenggs; given ellipsoids with center; and shape matri€; € R™ "= .

[15], [20], [22], and the literature cited therein. Denote withP, = E;E; the squared shape matrices of the ellip-
Consider the deviations equations (3), and assume that at a gi¥gfyis. Then, for any; > 0,i = 1,...,K such thatyX - <
time k it is known thatv (k) € X (%), with 1, the eIIipsoidS([g) = (+€R": & :}c([() + E(K)Za”ﬁ” <1}
X(k)={v:v=E)z |z|| <1} with e(K) = Y ¢, P(K) = X, 1/7P;, being P(K) =

T 17 H : : o K .
whereE(k) € R™" is a given matrix which describes the shape of th& (/)£ (L), contains the Minkowski susi(K') = >_,_, &. %

i=1
ellipsoid, and - | denotes the standard Euclidean norm. For simplicity 1€ Minimum trace _eII|p50|d.|n the above family may be computed
in the derivation, we here consider that all ellipsoids are centered in fRgF!0S€d form as detailed next; see [7].

origin; the case in which the center:) are considered follows easily -€mma4: Letall symbols be defined as in Lemma 3. The minimum
from the same reasoning; see Remark 5. trace ellipsoid€(K') in the Schweppe parametric family containing

O .
Considering again (3), we rewrite this syetm in vector formas S (&) = X2i2, & is obtained for

v(k+1) = A(k)E(k)z + b(k) (18) E=——\  i=1,...,K
whereA(k) = [a1 (k) an(k)]", bi(k) = =" ET (W) H:E(k)z,i = 2=t %
1,...,n.Ourgoal is to determine a minimal ellipsoidd( & + 1), with s; =\/TrE,BF.

shape matri¥(k+1), suchthav (k) € X' (k) impliesthat/(k+1) € )
X(k + 1). As a geometrical measure of the “size” ®{k + 1) we Moreover the optimal size ig§ K') = /TrP(R) = Zf‘zl 5. *
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Fig. 4. (a) Sequence of ellipsoid$(k) of Example 3.1; the bold line shows the initial ellipsctd0). (b) Size of optimal ellipsoids versus time.

As previously discussed, the ellipsoid computed in Lemma 4 is theRemark 5: A similar result can be stated for the case when also the
optimal one within the considered parametric family, butitis notin gerllipsoids centers(%) are considered in the simulation, i.e., when we
eral guaranteed to be optimal among all possible ellipsoids. Howevassumet' (k) = {v : v = ¢(k) + E(k)z,||z|| < 1}. It can be readily
recent results on semidefinite relaxations permit to state precise boupasven in this case that if the centers follow the recursion
on the quality of this suboptimal solution. The following bound, which T
we report without proof, is a consequence of a result given in [19]. A s(k + 1) = A(k)s(k) + [S‘T(k)m (k). CT(k)an(k‘)]
similar bound for minimunvolumeellipsoids covering the sum of el-
lipsoidsS(K) has been stated in [2].

Lemma 5: Let all symbols be defined as in Lemma 3 and Lemm

for k = 0,1,..., then the translated deviation$k) = v(k) — <(k)
are such that

4. Let P(K') be the squared shape matrix of the (sub-optimal) min- ! (k) Hy
imum trace ellipsoict (k) containingS(K) = S5 | &, computed pk+1)= [ A(k)+2 : E(k)z 4 b(k).
according to Lemma 4. Left. (') be the squared shape matrix of the 'T(A:)H
actual minimum trace ellipsoifl. (K) containingS(K) = S5 &, o N
computed amongll possibleellipsoids. Then, it holds that Comparing this latter expression to (18), we can compute a zero-cen-
_ tered ellipsoidal simulation fa¥(k), k = 0, 1, ..., and then offset this
TrP(K) < | ~1.95. . Simulation by<(k) in order to obtain¥'(k), k = 0,1,.... *
VTIP(K) — V2 Example 3.1: Consider again the quadratic system of Example 2.1,

Notice that this result states that the size of the suboptimal boundifr? which 2(0) = 0 IS an equmbr_lu_m p0|r_1t. We run th_e set simulation
heorem 2, starting from an initial ellipsoitl(0), with

ellipsoid computed by means of Lemma 4 is at most 25.3% larger 1At
the actual optimal size, and that this figure holds independently of the E(0) = 301
space dimension and the numbek’ of ellipsoids to be approximated. 0= 103

Returning our attention to the quadratic system (3), applylg:fuesequenceofellipsoids produced by the set simulation is depicted in
i

g. 4(a), while Fig. 4(b) shows the convergence(@f), which proves
that the equilibrium is attractive, and that all pointsiti0) belong to
the domain of attraction relative to the origin.

Lemma 4 to (19) we obtain the following result for robust ellipsoid
simulation.

Theorem 2 (Ellipsoidal Simulation)Consider the system (3). Let
E(0) € R™" be a given matrix, an&’'(0) = {v : v = E(0)z, ||z|| <
1}. Further, letE(k)ET (k) = P(k), 1; € R™ with all zero entries,

except theth, which is equal to one, and; (k) = ||E” (k) H, E(k)||, IV. CONCLUSION

i =1,...,n. Then, the recursion In this paper, we presented computationally efficient algorithms for
n orthotopic and ellipsoidal set simulations for nonlinear quadratic sys-

s(k+1) = \/TrA(k) P(k)AT (k) 4+ > mi(k) tems. The orthotopic simulation requires the solution 8DPs at each
i=1 step (Theorem 1), while the ellipsoidal simulation only requires the im-

A(k)P(k)A” (k) plementfition of an algepraic ma_trix r_ecursion_ (Theorem 2). o
JTIAGR) PR AT () Qne single set simulation provides |nformat|on_op_the qua_ll_tatlve be-
havior of the system response for a whole set of initial conditions. The
~ ’ i I convergence of the set simulation is a (readily computable) sufficient
+ 3 (k)L condition for the attractivity of an equilibrium, and directly provides a
= region contained in the domain of attraction of the system.

P(k+1):s(k+1)<

fork =0,1,..., determines a suboptimal sequence of sets We remark that the proposed techniques can also be employed in the
X(E)={v:v=Ek)z|=] <1}, k=0,1,... context of set?membership filte_ring for nonlinegr systems: the set sim-
’ - i ulation up to timel” constitutes indeed the prediction step of the filter,
having size\/TrP(k) = s(k), such thav (k) € X(k),k =0,1,..., andyields an outer bounding set for the achievable states, which is then

for any initial conditionv(0) € X(0). * to be updated with the upcoming measurement. We also notice that
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further refinements on the relaxation introduced in Lemma 1 may b¢23] A. Tesi, F. Villoresi, and R. Genesio, “On the stability domain estima-
obtained using higher order semidefinite relaxations (see, for instance, tion via a quadratic Lyapunov function: convexity and optimality prop-
[16] and [21, Ch. 6]). Higher order relaxations potentially reduce the ~ Erties for polynomial systems|EEE Trans. Automat. Confivol. 41,

Rk . i pp. 1650-1656, Nov. 1996.
conservatism of the interval bounds, at the expense of increased COMa] L. Vandenberghe and S. Boyd, “Semidefinite programmisaiM Rev.

plexity of the computations. These latter techniques may also be em- ~ vol. 38, no. 1, pp. 49-95, March 1996.
ployed to extend the methodology introduced in this note to generic
polynomial systems.
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