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Set Simulations for Quadratic Systems

Giuseppe Calafiore

Abstract—In this note, we study the problem of propagating in time a
bounding set for the state of a class of nonlinear quadratic systems. The
sequence of bounding sets is called theset simulationof the system, and
conveys useful information about the stability and qualitative behavior of
the possible time responses of the system. Numerically efficient recursive
algorithms are presented for the specific cases when the bounding sets are
orthotopes or ellipsoids.

Index Terms—Domain of attraction, nonlinear systems, quadratic sys-
tems, semidefinite relaxations, set simulations.

I. INTRODUCTION AND PROBLEM STATEMENT

The problem of determining geometrical regions in the state space
that contain all possible reachable states of a dynamical system has
been extensively studied in the literature. In the classical determin-
istic (or set-membership) filtering literature [3], [15], [22] an ellip-
soidal bounding set for the state of a linear system is computed recur-
sively, starting from deterministic assumptions on the noise affecting
the system, which is assumed to be an unknown-but-bounded (ubb)
sequence, instead of a stochastic sequence. In the same context, in-
terval analysis is also used to propagate in time intervals of confidence
for the states, and to update this information with upcoming measure-
ments, [12]. For linear systems with uncertain parameters, a polytopic
bounding approach was proposed in [1], while more recently an el-
lipsoidal bounding technique has been proposed in [8], [9]. Ellipsoids
have also been used as target invariant sets in the context of model pre-
dictive control for uncertain systems in [5].

In this note, we propose numerically efficient algorithms for recur-
sively determining orthotopic or ellipsoidal bounds for the state of a
class of nonlinear quadratic, discrete-time systems. From a theoret-
ical point of view, quadratic systems are an important class of non-
linear polynomial systems, and encompass the much studied class of
bilinear systems [14], [17]. Moreover, quadratic systems arise naturally
in the context of generic nonlinear systems, when local analysis is to
be performed using second order Taylor series approximation around
an equilibrium.

Specifically, we here consider an autonomous discrete-time non-
linear system described by the state-difference equations

x(k + 1) = f (x(k)) (1)

wherex(k) 2 n, andf : n ! n is such that each component
fi :

n ! , i = 1; . . . ; n, is a quadratic function ofx

fi(x) = x
T
Qix+ 2bTi x+ ci (2)

whereQi = QT
i 2 n;n, bi 2 n, ci 2 are given matrices.

Suppose that̂x(0) 2 n is a nominal initial state for (1), and thatx̂(k),
k = 0; 1; . . . is the resulting nominal state trajectory obtained from the
initial conditionx(0) = x̂(0).

We consider the following problem. Assume that the initial state of
the system,x(0), is such thatx(0) � x̂(0) 2 X (0), whereX (0) is a
given bounded subset ofn, and letx(k) be the resulting state trajec-
tory. Our goal is to determine a sequence of setsX (k), k = 1; 2; . . .
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of minimal “size” (in a sense to be clarified later on) such thatx(k)�
x̂(k) 2 X (k), k = 1; 2; . . ., for anyx(0) such thatx(0) � x̂(0) 2
X (0). In this work, the setsX (k) are assumed to be either orthotopes
or ellipsoids, and the sequence[X (k)]k=1;2;... is called aset simulation
of (1) with respect to possible initial statesx(0)� x̂(0) 2 X (0).

The reachable setof (1) at timet is defined as

R(t)
:
= x = f

(t) (x(0)) ; x(0) 2 X (0) ; t = 1; 2; . . .

wheref (t)(�) denotes thet-stages compositionf � f � � � � f . Notice
that in the particular case when the system (1) is actuallylinear, and
X (0) is the hypercubefkxk1 � 1g, then the setR(t) is a convex
polytope, [1]. However, in the general quadratic caseR(t) is a com-
plicated nonconvex set, and an exact propagation in time ofR(t) is
numerically unfeasible. An alternative to the exact propagation of the
setR(t) is, therefore, to recursively boundR(t) with computation-
ally tractable setsX (t) having simpler description, such as ellipsoids
or orthotopes. In this latter approach, which is the one pursued in this
paper, we trade some accuracy in the description of the reachable set,
and possibly introduce conservatism, to gain numerical tractability and
efficiency in the computations.

Denote with�(k)
:
= x(k) � x̂(k) the deviation of the actual state

trajectory from the nominal one. The deviation obeys to the following
time-varying quadratic difference equations:

�i(k + 1) = a
T
i (k)�(k) + �

T (k)Hi�(k); i = 1; . . . ; n (3)

where, fori = 1; . . . ; n, andr, c = 1; . . . ; n

a
T
i (k)

:
=

@fi

@x1
� � �

@fi

@xn x=x̂(k)

;

[Hi]r;c
:
=

@2fi

@xr@xc x=x̂(k)

:

Remark 1: For the quadratic system (1), (2), we clearly have
aTi (k) = 2bTi + 2x̂T (k)Qi, andHi = Qi. For more general, not
necessarily quadratic systems, the dynamic equations (3) may be still
assumed to hold, in an approximate sense, as a second-order truncation
of the Taylor series expansions offi(x) aroundx̂(k), i = 1; . . . ; n. In
this case, also the matricesHi will be dependent on the timek. ?

In the next sections, we present our main results for recursive set
simulations for the quadratic dynamics of the deviation from nominal
trajectory expressed in (3).

II. ORTHOTOPICSIMULATIONS FOR QUADRATIC SYSTEMS

In this section, we discuss the set simulation problem for the
quadratic system (3), using orthotopes as bounding sets for the system
state. Orthotopes permit to express the uncertainty in the initial state
in the form of independent intervals. The resulting set simulation
also directly provides (deterministic) intervals of confidence for each
component of the system state. Assume that at a given timek it is
known that�(k) 2 X (k), with

X (k) = f� : � = &(k) +E(k)z; kzk1 � 1g

where&(k) 2 n describes the center of the orthotope, whileE(k)
:
=

diag(e1(k); . . . ; en(k)), ei(k) � 0, i = 1; . . . ; n, describes the half-
widths of the intervals around the center.

Considering equations (3), and substituting�(k) = &(k) + E(k)z,
we obtain

�i(k + 1) = a
T
i (k)&(k) + &

T (k)Hi&(k)

+ a
T
i (k) + 2&T (k)Hi E(k)z + z

T
E

T (k)HiE(k)z (4)
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for kzk1 � 1, i = 1; . . . ; n.
Our goal is to determine a new orthotopeX (k + 1), with center

&(k + 1) and minimal interval widthsE(k + 1) = diag(e1(k +
1); . . . ; en(k + 1)), such that�(k) 2 X (k) implies that�(k + 1) 2
X (k + 1). The problem amounts therefore to determining a minimal
interval containing�i(k + 1), for z that ranges inside the unit box
kzk1 � 1. Since (4) is a quadratic (and in general nonconvex) func-
tion of z, determining the extreme values of�i(k + 1) over the unit
box is NP-hard, [18]. In the following, we propose a semidefinite relax-
ation of the problem, which provides a suboptimal solution that can be
computed with great numerical efficiency via convex semidefinite opti-
mization (SDP) [24]. This relaxation is then compared with a standard
one based on interval arithmetics. We first state the following technical
lemma.

Lemma 1 (Semidefinite Relaxation):Consider the quadratic
function

g(z) = 2dT z + zTWz =
z

1

T

W d

dT 0

z

1

whereW = WT 2 n, and letgmax
:
= maxkzk �1 g(z), gmin

:
=

minkzk �1 g(z). Then, a maximized lower boundg� � gmin and a
minimized upper boundg+ � gmax may be computed solving the fol-
lowing two semidefinite (convex) programming problems in the vari-
ables; �1; . . . ; �n:

g� = � argmin  subject to: (5)
diag(�1; . . . ; �n) +W d

dT  �
n

i=1

�i
� 0 (6)

�1; . . . ; �n � 0; (7)

g+ = argmin  subject to: (8)
diag(�1; . . . ; �n)�W d

dT  �
n

i=1

�i
� 0 (9)

�1; . . . ; �n � 0: (10)

?
Proof: We present a complete proof for the computation of the

upper boundg+; the proof for the lower bound follows from an iden-
tical reasoning. First, we observe that

gmax = argmin ; subject to: (11)

g(z) � ; 8z : kzk1 � 1: (12)

A sufficient condition for the quadratic inequalityg(z) �  � 0
to hold for all z such thatz2i � 1 � 0, i = 1; . . . ; n, is given by
theS procedure [4]. There exist nonnegative scalars�1; . . . ; �n such
that�g(z) +  + n

i=1 �i(z
2
i � 1) � 0, 8 z. Substitutingg(z) =

2dT z+zTWz, and changing variablez = ��, the previous condition
is rewritten in matrix form as:9�1; . . . ; �n � 0 such that

�

1

T �W + diag (�1; . . . ; �n) d

dT  �
n

i=1

�i

�

1
� 0

is satisfied for all�. Clearly, this condition holds if and only if

�W + diag(�1; . . . ; �n) d

dT �
n

i=1

�i
�0; �1; . . . ; �n�0 (13)

which is a linear matrix inequality (LMI) in the variables, �1; . . . ; �n.
Since (13) is a sufficient condition for the constraint (12) to hold, the
feasible set implied by condition (13) is contained in the feasible set

implied by condition (12) [i.e., the constraint (13) is more stringent
than (12)]. Therefore, the convex semidefinite optimization problem

g+ = argmin ; subject to:(13) (14)

has an optimal objective valueg+ which is not smaller thangmax, that
is g+ � gmax.

Remark 2: We remark that the upper and lower bounds obtained by
means of semidefinite relaxations are among the best possible compu-
tationally efficient approximations of the actual optimal valuesgmin,
gmax. For a precise assessment on the sharpness of these relaxations,
and for further recent results, the interested reader is referred to [10],
[16], [18], and [19].

We also notice that, although the focus of this note is on the case
wheng(z) is aquadraticfunction, the same approach could in principle
be applied to generic polynomial systems, using the techniques recently
developed in [16] and [21]. ?

Alternative bounds ongmin, gmax may be computed using stan-
dard interval arithmetics, assuming that the monomials appearing in
the quadratic forms are all independent, see, for instance, [12]. These
bounds are computationally cheaper to determine compared to those
obtained by means of semidefinite relaxations, but are significantly
looser. This introduces undesirable additional conservatism in the sim-
ulations, as further discussed in the examples that follow.

The computation of bounds ong(z) using the independent mono-
mials relaxation is stated in the following lemma, whose simple proof
is omitted.

Lemma 2 (Independent Monomials Relaxation):Let all symbols be
defined as in Lemma 1. Then,[gmin; gmax] � [gI�; gI+], with

gI� = � 2

n

i=1

jdij+

n

i=1

��(wii)� 2

n

i;j=1

j>i

jwij j

gI+ =2

n

i=1

jdij+

n

i=1

�+(wii) + 2

n

i;j=1

j>i

jwij j

where�+(x) =
x; if x > 0

0; otherwise
, ��(x) =

x; if x < 0

0; otherwise
and

wij denotes the element in theith row andjth column ofW . ?
The next theorem reports our main result for recursive orthotopic

simulation of quadratic systems.
Theorem 1 (Orthotopic Simulation):Consider (3). Let

ei(k) � 0, i = 1; . . . ; n, and &(k) 2 n be given, and define
E(k)

:
= diag(e1(k); . . . ; en(k)). Let further, fori = 1; . . . ; n

d(i)T (k)
:
= aTi (k) + 2&T (k)Hi E(k) 2 1;n

W (i)(k)
:
=ET (k)HiE(k) 2 n;n

and letg�i (k), g+i (k) be optimized bounds on the quadratic function
g(i)(z)

:
= 2d(i)T (k)z + zTW (i)(k)z, computed according to

Lemma 1. Define

��i (k + 1)
:
= aTi (k)&(k) + &T (k)Hi&(k) + g�i (k) (15)

�+i (k + 1)
:
= aTi (k)&(k) + &T (k)Hi&(k) + g+i (k): (16)

Then, the orthotopeX (k + 1) with center

&(k+1)=
�+1 (k+1)+��1 (k+1)

2
� � �

�+n (k+1)+��n (k+1)

2

T

and half-widthsei(k + 1) = ((�+i (k + 1)� ��i (k + 1))=2), i =
1; . . . ; n, contains the state�(k + 1), for any�(k) 2 X (k). ?

Proof: The proof is immediate, substituting the linear and
quadratic terms in (4) with the boundsg�i (k), g+i (k) determined
according to Lemma 1.
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Fig. 1. Set simulation for Example 2.1, withe (0) = e (0) = 0:38. (a) Sequence of rectanglesX (k): the bold line shows the initial rectangleX (0). (b) Size
of optimal rectangles (sum of half-widths) versus time: the solid line shows the size for the simulation obtained via semidefinite relaxation, whilethe dotted line
shows the size obtained via independent monomials relaxation.

Fig. 2. Set simulation for Example 2.1, withe (0) = e (0) = 0:75. (a) Sequence of rectanglesX (k) obtained via semidefinite relaxations: the bold line shows
the initial rectangleX (0). (b) Size of optimal rectangles (sum of half-widths) versus time.

Remark 3: Applying Theorem 1 recursively fork = 0; 1; . . .,
starting from an initial orthotopeX (0), we obtain an orthotopic
simulation for the quadratic system (3). In the aforementioned
theorem, one may alternatively use the coarser bounds derived in
Lemma 2 instead of the tight boundsg�i (k), g

+

i (k) derived in Lemma
1. This would speed up the simulation (since no optimization is re-
quired at each step), at the expense of possibly severe conservatism, as
shown in the following. We notice in particular that the computational
effort required to solve each of the semidefinite programs in Lemma
1 to a given accuracy (using a general-purpose SDP solver and not
exploiting structure) grows with problem size asO(n1=2)O(n4) in
the worst case; see [24], while computing the bounds in Lemma 2
basically requiresn(n+ 3)=2 additions. ?

Remark 4: We remark that set simulation can be a fast and effective
tool to analyze the domain of attraction (DA) around an equilibrium: if
x̂(0) is an equilibrium point for (1), we obtain time-invariant dynamics
(3) describing the deviations from equilibrium. The convergence to zero
of the orthotopic simulation on (3) thenprovesthat any trajectory origi-
nating inX (0) converges asymptotically to the origin, thus eliminating
the need of resorting to the Lyapunov approach. However, we remark
that other specific techniques have been developed for this purpose. For
instance, when a quadratic Lyapunov function is given in advance, a
method for determining an ellipsoidal region of attraction for quadratic,

continuous-time systems has been developed in [23], while a technique
for constructing optimal quadratic Lyapunov functions for generic
polynomial systems has been recently proposed in [6]. ?

Example 2.1: Consider the quadratic system

x1(k+1) =0:5x21(k)�0:5x22(k)+0:4x1(k)x2(k)+0:6x2(k)

x2(k+1) =0:6x21(k)+0:5x22(k)+0:6x1(k)x2(k)�0:6x1(k)

for which x̂(0) = 0 is an equilibrium point. Considering an initial
rectangle withe1(0) = e2(0) = 0:38 and&(0) = 0, we obtain the
orthotopic simulation in Fig. 1. The sequence of rectangles produced
by the set simulation is depicted in Fig. 1(a), while Fig. 1(b) shows the
convergence of the size ofX (k) (sum of half-widths), which proves
that the equilibrium is attractive,1 and that all points inX (0) belong to
the domain of attraction relative to the origin.

From Fig. 1(b), we notice the improvement in size reduction ob-
tained by the proposed semidefinite relaxation approach over the stan-
dard interval approach. Indeed, enlarging the regionX (0) to e1(0) =
e2(0) = 0:75, using the semidefinite relaxation method we obtain the
(convergent) set simulation in Fig. 2, while the simulation based on
the independent monomials relaxation fails to converge fore1(0) =
e2(0) � 0:39.

1In this case, the asymptotic stability of the equilibrium is also easily proved
by means of Lyapunov linearization method.
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Fig. 3. Set simulation for Example 2.2. (a) Solid line: bounds on statex , dotted line: envelope of Monte-Carlo simulations. (b) Solid line: bounds on statex ,
dotted line: envelope of Monte-Carlo simulations.

Example 2.2: As a further example, consider the third-order
quadratic system

x1(k + 1) =x2(k)� 2x22(k) + 0:5x1(k)x3(k)

x2(k + 1) =� x1(k) + 2x21(k) + 0:5x2(k)x3(k)

x3(k + 1) =0:5x3(k) + x1(k)x3(k): (17)

For this system, the linearization approach does not provide informa-
tion about the stability of the equilibrium̂x(0) = 0. However, the or-
thotopic simulation withe1(0) = e2(0) = e3(0) = 0:2, &(0) = 0
shows that any trajectory originating inX (0) remains bounded, and
gives additional insight on the qualitative behavior of the response.
Fig. 3 shows the bounds obtained on the first two states using the
proposed semidefinite relaxations, compared with the envelope of the
trajectories obtained running 1000 Monte Carlo simulations on the
system. The Monte Carlo simulations have been performed generating
uniformly random initial states inX (0). We remark that the set sim-
ulation using the independent monomials relaxation of Lemma 2 fails
again to converge in this case, contrary to that based on semidefinite
relaxation.

III. ELLIPSOIDAL SIMULATION FOR QUADRATIC SYSTEMS

Numerically efficient set simulations for quadratic systems may also
be obtained using ellipsoids as bounding sets for the system state. Ellip-
soidal sets provide a good tradeoff between conservatism of the sim-
ulation and corresponding numerical complexity, as discussed in the
following. They are widely used in state estimation and filtering prob-
lems with unknown-but-bounded noise, see the classical references
[15], [20], [22], and the literature cited therein.

Consider the deviations equations (3), and assume that at a given
time k it is known that�(k) 2 X (k), with

X (k) = f� : � = E(k)z; kzk � 1g

whereE(k) 2 n;n is a given matrix which describes the shape of the
ellipsoid, andj � j denotes the standard Euclidean norm. For simplicity
in the derivation, we here consider that all ellipsoids are centered in the
origin; the case in which the centers&(k) are considered follows easily
from the same reasoning; see Remark 5.

Considering again (3), we rewrite this syetm in vector form as

�(k + 1) = A(k)E(k)z+ b(k) (18)

whereA(k)
:
= [a1(k) � � � an(k)]

T , bi(k)
:
= zTET (k)HiE(k)z; i =

1; . . . ; n. Our goal is to determine a minimal ellipsoidX (k+ 1), with
shape matrixE(k+1), such that�(k) 2 X (k) implies that�(k+1) 2
X (k + 1). As a geometrical measure of the “size” ofX (k + 1) we

adopt the sum of the squared semi-axes lengths of the ellipsoid, which
is given byTrP (k + 1), with P (k + 1) = E(k+ 1)ET (k + 1).

First, we notice thatkzk � 1 implies that jbi(k)j �
kET (k)HiE(k)k

:
= mi(k), i = 1; . . . ; n, therefore,�(k + 1)

belongs to the set

W(k + 1)
:
= f� : � = A(k)E(k)z

+

n

i=1

mi(k)1iui; kzk � 1; juij � 1; i = 1; . . . ; n (19)

where1i 2 n has all zero components, except theith, which is equal
to one. The setW(k+1) is the Minkowski sum ofn+1 bounded and
possibly flat ellipsoids centered in the origin. Our second step amounts
then to determining a minimal ellipsoid that containsW(k + 1).

Notice that determining theoptimal minimum trace ellipsoid that
containsW(k + 1) (this ellipsoid exists and it is unique, by an exten-
sion of the John theorem, [13]) is a numerically hard problem. Indeed,
this problem has been shown to be equivalent to the maximization of
a convex quadratic form under convex quadratic constraints, which is
known to be NP-hard, [11], [18]. For these reasons, it is a common ap-
proach to pursue suboptimality, looking for the minimum trace ellip-
soid among a parameterized family of ellipsoids. The following lemma
reports a version of a well-known result due to Schweppe [22] which
gives a parameterization of a family of ellipsoids that contain the sum
of K given ellipsoids.

Lemma 3 (Schweppe):Let

Ei
:
= fx 2 n : x = ci +Eizi; kzik � 1g ; i = 1; . . . ; K

beK given ellipsoids with centerci and shape matrixEi 2
n;n .

Denote withPi
:
= EiE

T
i the squared shape matrices of the ellip-

soids. Then, for any�i > 0, i = 1; . . . ; K such that K

i=1
�i �

1, the ellipsoidE(K)
:
= fx 2 n : x = c(K) +E(K)z;kzk � 1g

with c(K)
:
= K

i=1
ci, P (K) � K

i=1
1=�iPi, beingP (K)

:
=

E(K)ET (K), contains the Minkowski sumS(K)
:
= K

i=1
Ei. ?

The minimum trace ellipsoid in the above family may be computed
in closed form as detailed next; see [7].

Lemma 4: Let all symbols be defined as in Lemma 3. The minimum
trace ellipsoidE(K) in the Schweppe parametric family containing
S(K) = K

i=1
Ei is obtained for

�i =
si
K

j=1
sj
; i = 1; . . . ; K

si
:
= TrEiET

i :

Moreover the optimal size iss(K)
:
= TrP (K) = K

i=1
si: ?
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Fig. 4. (a) Sequence of ellipsoidsX (k) of Example 3.1; the bold line shows the initial ellipsoidX (0). (b) Size of optimal ellipsoids versus time.

As previously discussed, the ellipsoid computed in Lemma 4 is the
optimal one within the considered parametric family, but it is not in gen-
eral guaranteed to be optimal among all possible ellipsoids. However,
recent results on semidefinite relaxations permit to state precise bounds
on the quality of this suboptimal solution. The following bound, which
we report without proof, is a consequence of a result given in [19]. A
similar bound for minimumvolumeellipsoids covering the sum of el-
lipsoidsS(K) has been stated in [2].

Lemma 5: Let all symbols be defined as in Lemma 3 and Lemma
4. Let P (K) be the squared shape matrix of the (sub-optimal) min-
imum trace ellipsoidE(K) containingS(K) = K

i=1
Ei, computed

according to Lemma 4. LetP�(K) be the squared shape matrix of the
actual minimum trace ellipsoidE�(K) containingS(K) = K

i=1
Ei,

computed amongall possibleellipsoids. Then, it holds that

TrP (K)

TrP�(K)
�

�

2
' 1:25: ?

Notice that this result states that the size of the suboptimal bounding
ellipsoid computed by means of Lemma 4 is at most 25.3% larger that
the actual optimal size, and that this figure holds independently of the
space dimensionn and the numberK of ellipsoids to be approximated.

Returning our attention to the quadratic system (3), applying
Lemma 4 to (19) we obtain the following result for robust ellipsoidal
simulation.

Theorem 2 (Ellipsoidal Simulation):Consider the system (3). Let
E(0) 2 n;n be a given matrix, andX (0)

:
= f� : � = E(0)z; kzk �

1g. Further, letE(k)ET (k) = P (k), 1i 2 n with all zero entries,
except theith, which is equal to one, andmi(k)

:
= kET (k)HiE(k)k,

i = 1; . . . ; n. Then, the recursion

s(k + 1) = TrA(k)P (k)AT (k) +

n

i=1

mi(k)

P (k + 1) = s(k + 1)
A(k)P (k)AT (k)

TrA(k)P (k)AT (k)

+

n

i=1

mi(k)1i1
T
i

for k = 0; 1; . . ., determines a suboptimal sequence of sets

X (k)
:
= f� : � = E(k)z;kzk � 1g ; k = 0; 1; . . .

having size TrP (k) = s(k), such that�(k) 2 X (k), k = 0; 1; . . .,
for any initial condition�(0) 2 X (0). ?

Remark 5: A similar result can be stated for the case when also the
ellipsoids centers&(k) are considered in the simulation, i.e., when we
assumeX (k)

:
= f� : � = &(k) + E(k)z;kzk � 1g. It can be readily

proven in this case that if the centers follow the recursion

&(k + 1) = A(k)&(k) + &
T (k)H1&(k) � � � &

T (k)Hn&(k)
T

for k = 0; 1; . . ., then the translated deviations~�(k)
:
= �(k) � &(k)

are such that

~�(k + 1) = A(k) + 2

&T (k)H1

...
&T (k)Hn

E(k)z + b(k):

Comparing this latter expression to (18), we can compute a zero-cen-
tered ellipsoidal simulation for~�(k), k = 0; 1; . . ., and then offset this
simulation by&(k) in order to obtainX (k), k = 0; 1; . . .. ?

Example 3.1: Consider again the quadratic system of Example 2.1,
for which x̂(0) = 0 is an equilibrium point. We run the set simulation
of Theorem 2, starting from an initial ellipsoidX (0), with

E(0) =
:3 :1

:1 :3
:

The sequence of ellipsoids produced by the set simulation is depicted in
Fig. 4(a), while Fig. 4(b) shows the convergence ofs(k), which proves
that the equilibrium is attractive, and that all points inX (0) belong to
the domain of attraction relative to the origin.

IV. CONCLUSION

In this paper, we presented computationally efficient algorithms for
orthotopic and ellipsoidal set simulations for nonlinear quadratic sys-
tems. The orthotopic simulation requires the solution ofn SDPs at each
step (Theorem 1), while the ellipsoidal simulation only requires the im-
plementation of an algebraic matrix recursion (Theorem 2).

One single set simulation provides information on the qualitative be-
havior of the system response for a whole set of initial conditions. The
convergence of the set simulation is a (readily computable) sufficient
condition for the attractivity of an equilibrium, and directly provides a
region contained in the domain of attraction of the system.

We remark that the proposed techniques can also be employed in the
context of set-membership filtering for nonlinear systems: the set sim-
ulation up to timeT constitutes indeed the prediction step of the filter,
and yields an outer bounding set for the achievable states, which is then
to be updated with the upcoming measurement. We also notice that
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further refinements on the relaxation introduced in Lemma 1 may be
obtained using higher order semidefinite relaxations (see, for instance,
[16] and [21, Ch. 6]). Higher order relaxations potentially reduce the
conservatism of the interval bounds, at the expense of increased com-
plexity of the computations. These latter techniques may also be em-
ployed to extend the methodology introduced in this note to generic
polynomial systems.
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Decentralized Control Design for Large-Scale Systems
With Strong Interconnections Using Neural Networks

Sunan Huang, Kok Kiong Tan, and Tong Heng Lee

Abstract—We propose a decentralized neural network (NN) controller
for a class of large-scale nonlinear systems with the strong interconnections.
The NNs are used to approximate the unknown subsystems and intercon-
nections. Due to the functional approximation capabilities of NNs, the ad-
ditional precautions are not required to be made for avoiding the possible
control singularity problems. Semiglobal asymptotic stability results are
obtained and the tracking error converges to zero. Furthermore, the issue
of transient performance of the subsystems is also addressed under an an-
alytical framework.

Index Terms—Adaptive control, decentralized control, neural networks.

I. INTRODUCTION

In classical control theory, it is assumed that control actions are un-
dertaken by a single controller that has all the available information
about the system. While there are obvious theoretical advantages, con-
trol centralization may be difficult for a number of economic and tech-
nical reasons. In recent years, there has been an increased interest in
the development theories for large-scale systems (see [1]–[4]). A sig-
nificant proportion of these effects deals with the problem of control
design methods implemented in a decentralized way. Earlier versions
of the decentralized adaptive control methods were focused on con-
trol of large-scale linear systems. However, most physical systems are
inherently nonlinear. Research on decentralized control for nonlinear
systems was carried out in [5]–[11] and [13]. These previous works
consider subsystems which are linear in a set of unknown parameters
[5]–[7], [11], or consider the isolated subsystems to be known [9], [10],
[13], such as input gain functions. Recently, Spooner and Passino [25]
proposed a radial basis neural network control method to approximate
unknown functions in nonlinear subsystems which may not be linearly
parameterized. Specifically, the direct NN controller in [25], requires
neither the knowledge of input gain functions, nor the direct estimation
of the unknown input gain function. It thus avoids the control singu-
larity problem. On the other hand, the uncertainty also may appear in
the interconnections. Most of the literature on decentralized control is
focused on systems with first-order interconnections [1]–[8]. These re-
sults cannot guarantee stability when the interconnections are of higher
order [9]. The results on decentralized control of large-scale systems
with higher order interconnections are by [9], [11]. In [12] and [13],
the uncertain interconnections are extended to be bounded by known
nonlinear functions.
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