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Correspondence

Set Theoretic Compression with
an Application to Image Coding

Nguyen T. Thao and Martin Vetterli

Abstract—We show that the complete information that is available after
an image has been encoded is not just an approximate quantized image
version, but a whole set of consistent images that contains the original
image by necessity. From this starting point, we develop a set of tools
to design a new class of encoders for image compression, based on a
set decomposition and recombination of image features. As an initial
validation, we show the results of an experiment where these tools are
used to modify the encoding process of block discrete cosine transform
(DCT) coding in order to yield less blocking artifacts.

I. INTRODUCTION

The problem of compression is the trade-off between description
complexity and approximation quality. In traditional source coding,
a given cost metric, e.g., mean square error (MSE), is minimized
under a rate constraint. Attempts to include perceptual criteria have
been made, but are difficult to model and include in optimization
procedures. That is, “perceptual bit allocation” is more difficult than
the standard bit allocation procedures. Furthermore, jointly optimizing
several criteria like MSE and perceptual error can be a difficult
problem.

In this correspondence, we propose a framework that defines a
coded image as belonging to the intersection of several convex sets
[1], and show how such sets can represent both traditional criteria
as well as perceptually motivated ones. We thus call the method “set
theoretic compression.”

Using this framework, we investigate a classic coding problem, that
of low bit rate discrete cosine transform (DCT) compression without
blocking artifacts, and demonstrate improved performance using our
method.

The basic idea is to efficiently describe convex sets containing the
image. Of course, traditional quantization does just this. A hypercube
with sides of size� is defined around the vector representing
the image (see Fig. 1), and the rate distortion trade-off of such
quantization is well studied for many sources of interest. A more
sophisticated version is, of course, vector quantization [2], where
the hypercubes are replaced by more general partitioning cells. For
general convex sets, rate distortion trade-offs are not understood. Our
main purpose here is to formalize a coding design framework in which
convex sets can be targeted to represent selected perceptual features
at low bit rate.

In Section II, we show that in any traditional coding scheme,
the complete information that is provided by an encoder about its
input image is always a convex set, whether this has been purposely
thought by the designer or not (see Figs. 1 and 2). This set is
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Fig. 1. Scalar quantization. The classical and the set theoretic interpretations
of the outputC are, respectively, represented by a dotted and a solid arrow.

Fig. 2. DCT quantization. The classical and the set theoretic interpretations
of the outputC are, respectively, represented by a dotted and a solid arrow.

simply the set of all possible input images that provide the same
coded output. We call it theencoded set. Decoding must at least
recover an image from this set. It appears that decoding traditionally
consists of systematically picking one particular element in this set
(usually its center). However, at low bit rate, this simple decoding
approach becomes insufficient as pointed out in [3]–[5] in the case of
block DCT coding, and decoded image quality can be significantly
improved by more carefully exploiting the complete set information.

While set-based coding provides a perspective for analyzing any
type of coding algorithm, this work focuses on the case where the
encoder is composed of several subencoders used in parallel. The
global encoded set is mathematically described as the intersection of
the sets provided by each subencoder. Suppose that the subencoders
are specialized in capturing different types of features. By retrieving
an estimate in the global encoded set, we will automatically reproduce
an image that contains simultaneously all the targeted features. This
opens new directions for flexible design of perceptually motivated
encoders. A price to pay is, however, a more complex decoding
where projections onto convex sets (POCS) [6], [7] have to be used
to retrieve an element in an intersection (see Fig. 3). We give the
tools to perform such a type of decoding in Section III.
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Fig. 3. Alternating projection algorithm. Case of three convex sets.

As a preliminary demonstration, we propose in Section IV a toy
experiment of set theoretic design. In the context of block-based
coding, we target two types of features to be encoded: i) the image
details within the blocks and ii) the image smoothness across the
block boundaries. The second type of feature is targeted to resolve
the underlying uncertainty that causes the perceptually important
“block artifacts” in decoded images. A standard DCT coder is used to
represent feature i), while a special block boundary transition (BBT)
encoder represents feature ii). By comparing our decoded image with
that of a DCT encoder used alone at the fixed bit rate of 0.25
b/pixel (see Fig. 4), we show how, by set theoretic design, we can
effectively manipulate the targeted features to produce a perceptually
more pleasant image.

II. ENCODED SETS

A. Image and Coding Formalization

We considerN�N black and white images. Every image is anM -
dimensional vectorX = (x1; x2; � � � ; xM) 2 RM whereM = N2

andxk is the luminance value of thekth pixel. In block-based image
processing, an imageX is divided into a partition ofp nonoverlapping
blocksBi of sizeMi, such thatM1 + � � � +Mp = M . Using the
cross product1, such an image can be written asX = B1�� � ��Bp.
For a given blockB of any size and geometry,kBk2 designates
the squared sum of its elements. For given subsetsS1; � � � ;Sp of
R
M ; � � � ;RM respectively,S = S1 � � � � � Sp designates the set

of imagesX 2 RM of the formB1 � � � � � Bp whereBi 2 Si for
all i 2 f1; � � � ; pg.

An image encoder is an operator that maps an input imageX into
an encoded outputC. The corresponding encoded set as defined in
the introduction will be typically denoted byS(C). In the subsequent
sections, we identify this set for various types of encoders.

B. Scalar Quantization

When an imageX is quantized to give a new imageC = Q(X),
every pixelxi of X necessarily belongs to a certain intervalIi(ci)
of R. Typically, Ii(ci) is equal to[ci� �

2
; ci+

�

2
] where�i is the

given quantization step size for theith pixel. In general,Ii(ci) is an
interval ofR that is uniquely determined byi andci. According to
the notations of Section II.A, we haveC = Q(X) if and only if X
belongs to the product setSQ(C) = I1(c1)� � � � � IN (cN). When
the quantization is uniform,SQ(C) is simply a hypercube ofRM

(see Fig. 1). Otherwise, it is in general a rectangular parallelepiped.

1The cross product is such that(x1; x2)� (x3; x4) = (x1; x2; x3; x4).

C. Transform Quantization

A more general type of quantization consists in calculatingC =
Q(T (X)) whereT is an isometry fromRM to RM . We recall that
an isometry is a linear operatorT that satisfieskT (Y )� T (X)k =
kY � Xk. Such an operator is automatically invertible. In the case
of 8 � 8 images, a typical example of isometry is the DCT operator.
In general, we haveC = Q(T (X)) if and only if T (X) 2 SQ(C),
which is equivalent toX 2 T�1(SQ(C)). The encoded set is thus
ST (C) = T�1(SQ(C)) (see DCT example in Fig. 2). BecauseT
is linear and conserves the distance associated with the normk � k;
T�1(SQ(C)) is also a rectangular parallelepiped.

D. Energy Quantization

In this correspondence, we will also use a type of encoder that
is less common. For a given imageX, we will be interested to
measure the scalar encoded valuec = q(kH(X)k) where H is
a given linear operator fromRM to RM and q(�) is a scalar
quantization function of positive numbers such thatq(x) � x.
Because of this constraint, it is clear thatX necessarily belongs to
the setSE(c) = fY 2 RM j kH(Y )k � cg. BecausekH(�)k2 is a
quadratic function, it is easy to show thatSE (c) is a convex set. The
setSE (c) will be considered as the encoded set2.

E. Block-Based Quantization

Block-based quantization consists in splitting the input imageX

into a regular partition of blocksB1 � � � � � Bp, quantizing every
blockBi into an encoded blockDi and forming the encoded output
C = D1 � � � � � Dp. According to the previous paragraphs, the
encoding ofBi into Di implies thatBi must belong to a certain
setSi(Di). According to Section II-A, it is then clear thatX must
belong to the encoded setS(C) = S1(D1)� � � � � Sp(Dp). Scalar
quantization is a trivial example of block-based quantization where
the blocks are reduced to single pixels. A more important example
is the block DCT coding where the image is split into 8� 8 blocks
on which DCT quantization is applied. Every setSi(Di) is in this
case the rectangular parallelepiped DCT�1(SQ(Di)). Because the
cross product is compatible3 with the orthogonality inRM , the global
encoded setS(C) = S1(D1) � � � � � Sp(Dp) is also a rectangular
parallelepiped.

III. SET THEORETIC DECODING IN PARALLEL CODING

As explained in the introduction, when an encoder is composed of
n subencoders producing, respectively,n outputsC1; � � � ; Cn for a
given input, the global encoded set isS(C1; � � � ; Cn) = S1(C1) \
� � � \ Sn(Cn) whereS1(C1); � � � ;Sn(Cn) are the sets provided by
each subencoder. To extract an estimate from the intersection, we
need to perform POCS on each of the individual sets (see Fig. 3).

Theorem and Definition III.1 ([7]): Let S be a convex subset of
R
M . For any givenX 2 RM , there exists a unique element̂X of

the closureS of S such that for allX0 2 S; kX 0�Xk � kX̂�Xk.
The elementX̂ is called the projection ofX onto the convex setS.

2The encoded set should rigorously beSE(c) = fY 2 RM j c0 �
kH(Y )k � cg where c0 is the nearest quantization level inferior toc.
However, this set is not convex, and, in fact, will not be of practical use
in decoding.

3By compatibility we mean the following property. In the cross-product
decompositionRM � � � � �RM of RM , the two imagesX = 0� � � � �
0�Bi�0�� � ��0 andX0

= 0�� � ��0�B0

i�0�� � ��0 are orthogonal
in RM if and only if Bi andB0

i are orthogonal inRM , and the two images
X = 0�� � ��0�Bi�0�� � ��0 andY = 0�� � ��0�Bj�0�� � ��0
are automatically orthogonal wheni 6= j.
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(a) (b)

Fig. 4. DCT coding. (a) Original 512� 512 image. (b) DCT decoded image at bit rate 0.25/pixel (PSNR= 30.15 dB).

TABLE I
EXPRESSION OFPOCSON TYPICAL CONVEX SETS

As a consequence of this definition, the projections onto typical
convex sets can be easily derived and their expressions are given
in Table I. Using this table, it is easy to derive the projections on
the sets encoded by the various quantization schemes presented in
Section II. The case of scalar quantization is solved with the case (f)
of the table, where everySi is an interval, combined with the case
(a). DCT quantization is solved with a combination of (e), (f) and
(a). Indeed, from Section II-C, the encoded set in this case is of the
type DCT�1(SQ) [case (e)] andSQ is the cross product of intervals
[cases (f) and (a)]. As shown by case (b), we cannot perform the
projection on the set encoded by any energy quantizer. However, in
this correspondence, we will consider only energy quantizers where
H(�) is such thatH(Y ) = Y � U

>, whereY is considered as an
N � N matrix, andU is a fixedN -dimensional row vector. This
case is covered by case (d) in Table I, and the projection result is
proved in the Appendix. Finally, block-based encoding schemes in

general are dealt with using case (f) of the table, whereSi is the set
encoded within each block.

IV. EXPERIMENT OF SET THEORETIC ENCODER DESIGN

In this section, we describe our set theoretic design experiment as
explained in the introduction. We first describe our block boundary
transition (BBT) encoder in Section IV-A. We then give the coding
experimental results in Section IV-B.

A. Design of the BBT Encoder

The BBT encoder is composed of two subencoders used in parallel,
processing the vertical and the horizontal boundaries, respectively.
Like the DCT encoder, each of them is an 8� 8 block based
encoder, but using a different image partitioning, as shown in Fig. 5.
Let us concentrate on the vertical BBT encoder. In our design,
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(a) (b) (c)

Fig. 5. An 8� 8 image block partitioning. (a) DCT coding. (b) vertical BBT coding. (c) horizontal BBT coding.

Fig. 6. Vertical BBT energy calculation.

for each blockB of the vertical BBT partitioning [see Fig. 5(b)],
the encoder quantizes the energykB � U>k2 whereB is viewed
as an8 � 8 matrix andU is a fixed row vector of length eight.
When takingU = [0 0 0 +1 �1 0 0 0]; kB � U>k2 gives
the simplest measurement of block boundary discontinuity between
two adjacent DCT blocks that one could think of, and that was
already used in [5]. As can be seen in Fig. 6, this amounts to
calculating the mean squared difference between the adjacent pixels
of two neighboring DCT blocks along their separation boundary. The
general energy functionkB � U>k2 allows us to use more complex
vectorsU . We will see that better discontinuity measurements are
obtained withU = [+1 +2 +3 +4 �4 �3 �2 �1]. Once the
vectorU has been chosen, the vertical BBT output code of an input
imageX, decomposed asRv;1 �Bv;1 �Bv;2 � � � � �Bv;p �Rv;2

according to the partitioning of Fig. 5(b), isCv = c1� c2� � � � � cp
such thatck = q(kBv;k � U

>k). The blocksRv;1 and Rv;2 are
not coded. The horizontal BBT encoder is designed in a similar
manner. The two BBT encoders define the encoded setsSv(Cv) and
Sh(Ch), respectively. Their description is given in Section II and
their respective POCS are derived in Section III.

B. Decoding Experiments

The global encoded set is the intersection betweenSv(Cv);
Sh(Ch) and the DCT encoded set. The decoding can be performed
by alternating the POCS respective to these three sets. In our
experiment, we assign 0.21 b/pixel and 0.04 b/pixel to the DCT
and the BBT encoders, respectively, thus maintaining the total
bit rate of 0.25 b/pixel. We start the iteration from the purely
decoded DCT image at 0.21 b/pixel shown in Fig. 7(a). As an
initial experiment, we first assign an infinite bit rate to the BBT
encoders. In other words, we quantize the energy coefficients with
infinite precision. We show in Fig. 7(b) the decoded image in the
case whereU = [0 0 0 +1 �1 0 0 0]. One can observe some
reduction of the blocking artifacts compared to the purely DCT
decoded image of Fig. 7(a). Much better deblocking results are
obtained withU = [+1 +2 +3 +4 �4 �3 �2 �1] as shown in
Fig. 7(c). The following experiments all use thisU vector.

Next, we propose to quantize the BBT energy coefficients using a
geometric quantization scale. More precisely, we use the quantization
functionq(e) = �m �e0 such thatm is the smallest integer such that
�m �e0 � e and wheree0 and� are predefined parameters. Note that
this ensures thatq(e) � e as required in Section II-D. The coefficient
e0 is a normalization factor that we adjust for each BBT block. We
takee0 = kB � U>k whereB is the block extracted from the purely
DCT decoded image at the same BBT block location. For the sake
of good data compression, we ignore the BBT encoded values of
the blocks where the purely DCT decoded image is smoother than
the original image according to the functionkB � U>k. Finally, the
BBT quantized energy coefficients are compressed using a spatial
run length coding method similar to the JPEG treatment of the AC
coefficients of the DCT. After adjusting� so that the BBT encoder
bit rate is 0.04 b/pixel, we obtain the decoded image of Fig. 7(d).
Although some degradation can be observed compared to the infinite
bit rate image of Fig. 7(c), the loss of quality is quite limited. This
image is the result of our complete modified encoder at the fixed bit
rate of 0.25 b/pixel. Compared with the original DCT image at the
same bit rate shown in Fig. 4(b), we obtain a more pleasant image,
where some detail information has been replaced by some information
about the block boundary transitions.

V. SUMMARY AND DISCUSSION

With the set theoretic interpretation of image compression, we
have introduced new tools for designing an encoder. In a preliminary
experiment, we applied these tools to show how the set theoretic ap-
proach can effectively be used to manipulate the perceptual encoded
features for improving block DCT coding. But the general motivation
is to present a new technique for designing image encoders. This
technique seems particularly suitable to very low bit rate compression,
where the features to be preserved become more specific and more
object oriented but also more heterogeneous. For example, the lower
the bit rate is, the more one has to selectively extract perceptual
features such as edges, texture, smooth areas, etc. In classical en-
coding schemes, the separation and reconstruction of these different
features is usually performed by either linear decomposition or image
segmentation, which have known limitations. In the set theoretic
approach, the reconstructed estimate is an image that simultaneously
reproduces the required features (to a certain precision) with no need
for linear separation and no artificial image segmentation.

Philosophically speaking, our set theoretic technique is interme-
diate between vector quantization—which typically uses the notion
of encoded set (cell) in a very optimal manner (from an information
theoretic point of view)—and object-oriented coding, which performs
feature extraction in a very targeted manner (from a direct perceptual
point of view). While our technique may not have the strong
points of these two extreme techniques, it avoids their respective
drawbacks (lack of universal modeling function of visual perception,
and complex decoding in the first case, too restrictive image coding
range and very irregular coding algorithms not suitable for VLSI
implementation in the second case).
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(a) (b)

(c) (d)

Fig. 7. Coding experiments on Lenna image. (a) DCT reconstructed image at bit rate 0.21 b/pixel (PSNR= 29.03 dB). (b) Projection of image (a)
on Sv(Cv) and onSh(Ch) with vector U = [0 0 0 1 �1 0 0 0] (PSNR = 29.91 dB). (c) Projection of image (a) onSv(Cv) and onSh(Ch)
with vector U = [1 2 3 4 �4 �3 �2 �1] (PSNR = 29.97 dB). (d) Same as (c) but at bit rate 0.04 b/pixel for the BBT encoding; the total
bit rate is 0.25 b/pixel (PSNR= 29.67 dB).

APPENDIX

PROOF OF TABLE I, CASE (d)

BecauseX =2 S, its projectionX0 on S is such thatkX 0 �Xk is
minimized subject to the equality constraintkX 0 �U>k = c. Consider
the spaceV of N �N matricesW such thatW �U> = 0. It can be
shown that the orthogonal spaceV? of V in RM is spanned by the
N�N matrices of the typeV >�U whereV is anyN -dimensional row
vector. LetX = V >�U+W andX 0 = V 0> �U+W 0 be, respectively,
the orthogonal decomposition ofX andX 0 in V�V?. We necessarily

haveW 0 =W . Otherwise, by takingX 00 = V 0> �U +W , we would
obtainkX 0 � Xk2 = kX 00 � Xk2 + kW 0 �Wk2 > kX 00 � Xk2

and kX 00 � U>k = c, which would contradict the fact thatX 0 is
the projection ofX on S. As a resultX 0 � X = (V 0 � V )> � U ,
which implies thatkX 0 � Xk2 = kV 0 � V k2 � kUk2. Now, we
also havec = kX 0 � U>k = kV 0> � U � U> + W 0 � U>k =
kV 0> � (U � U>)k = (U � U>)kV 0k. ThereforeV 0 is such that
kV 0 � V k is minimized subject tokV k = c

U�U
. Therefore,V 0

is the projection ofV onto the sphere of radius c

U�U
, which is

equal to c

U�U
V

kV k
. Then,X 0 � X = ( c

(U�U )kV k
� 1)V > � U .
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BecauseX � U> = V > � U � U> +W � U> = V > � (U � U>), we
havekX � U>k = (U � U>)kV k andV > = X�U

U�U
. This leads to

X 0 = X � ( c

kX�U k
� 1)X � U �U

U�U
.
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Best Neighborhood Matching:
An Information Loss Restoration Technique

for Block-Based Image Coding Systems

Zhou Wang, Yinglin Yu, and David Zhang

Abstract—Imperfect transmission of block-coded images often results
in lost blocks. A novel error concealment method calledbest neighborhood
matching (BNM) is presented by using a special kind of information
redundancy—blockwise similarity within the image. The proposed algo-
rithm can utilize the information of not only neighboring pixels, but also
remote regions in the image. Very good restoration results are obtained
by experiments.

Index Terms—Error concealment, image coding, image restoration.

I. INTRODUCTION

Recently, many image coding algorithms have been developed to
reduce the bit rate for digital image and video representation and
transmission. Among them, block-based techniques have proved to be
the most practical and are adopted by most existing image and video
compression standards such as the Joint Photographers Expert Group
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(JPEG) [1], Motion Picture Expert Group (MPEG) [2], and H.261
[3]. Since real-world communication channels are not error free, the
coded data transmitted on them may be corrupted. Block-based image
coding systems are vulnerable to transmission impairment. Loss of
a single bit often results in loss of a whole block and may cause
consecutive block losses.

Error concealment is aimed at masking the effect of these missing
blocks to create subjectively acceptable images. So far many error
concealment methods have been proposed [4]–[10]. Some of them
have the capability of detecting damaged blocks before recovering
them [7] while the others must be supported by an appropriate
transform format and/or an error detection algorithm that helps to
identify damaged blocks [6], [8], [9]. Some of them are developed
for DCT-based image coding methods [7], [10] while some others
can be applied to any block-based approaches [5], [8], [9]. Some of
them only deal with still images [8], [9], while the others can be used
on image sequences or on both still images and image sequences [4],
[7]. In this correspondence, we introduce a new error concealment
algorithm that

1) assumes we know which information is received correctly and
which is not;

2) can be applied to any block-based image coding system, i.e.,
independent of block encoding approach;

3) only recovers lost blocks for gray scale still images.

Although there are many variations in previously published meth-
ods, they can be categorized into one framework. First, all of them
used the information of only neighboring pixels as the source to
generate pixel values of the missing blocks. Second, they rely on some
predefined constraints on the spectra or structures of the lost blocks.
The reconstructed blocks should be smoothly connected with adjacent
regions either in spatial or in transform domain. Consequently, a well-
recovered lost block is often a smooth block, a sharp edge block,
or a stripe block with very consistent directions. The concealment
algorithm is a lowpass filter or directionally lowpass filter in nature.

The technique proposed in this correspondence is fundamentally
different from the previous framework. It is developed by making
use of a special kind ofa priori information—blockwise similarity
within the image. By taking advantage of such kind of information
redundancy, the fractal block coding (FBC) technique, a very promis-
ing technique for high compression ratios, was developed [11], [12].
The FBC algorithm introduced a practical way to find blockwise self-
similarities within natural images. In this correspondence, we will use
a similar way to find blockwise similarities. However, our algorithm
can not be calledfractal because the word “fractal” in “fractal image
compression” means self-similarity at every different scale while we
are trying to utilize blockwise similarities at the same scale.

II. BEST NEIGHBORHOOD MATCHING (BNM) ALGORITHM

Let xij andxnewij represent the pixel values at position(i; j) in the
damaged image and the restored image, respectively. Since we know
which blocks in the image are received correctly and which are not,
it is easy to give each pixel a binary flagfij indicating whether it
is lost, i.e.,fij = 1 means(i; j) is missing andfij = 0 means it is
good. The goal of our error concealment algorithm is to give each
missing pixel withfij = 1 a new value that can comply with our
visual sense. In this section, we first introduce a class of blockwise
luminance transformations. The BNM algorithm is then developed
by making use of such kind of transformations.
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