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Set Theoretic Compression with X3
an Application to Image Coding rM So(C)
Nguyen T. Thao and Martin Vetterli
e x2
\\
Abstract—We show that the complete information that is available after Y AN
an image has been encoded is not just an approximate quantized image \

version, but a whole set of consistent images that contains the original

\
image by necessity. From this starting point, we develop a set of tools 1 !
to design a new class of encoders for image compression, based on a !
set decomposition and recombination of image features. As an initial X C
validation, we show the results of an experiment where these tools are Q
used to modify the encoding process of block discrete cosine transform (g, ees Xpp) (Cpvmr Cap)

(DCT) coding in order to yield less blocking artifacts.

Fig. 1. Scalar quantization. The classical and the set theoretic interpretations

I. INTRODUCTION of the outputC' are, respectively, represented by a dotted and a solid arrow.

The problem of compression is the trade-off between description
complexity and approximation quality. In traditional source coding,
a given cost metric, e.g., mean square error (MSE), is minimized
under a rate constraint. Attempts to include perceptual criteria have
been made, but are difficult to model and include in optimization
procedures. That is, “perceptual bit allocation” is more difficult than
the standard bit allocation procedures. Furthermore, jointly optimizing
several criteria like MSE and perceptual error can be a difficult
problem. !

In this correspondence, we propose a framework that defines a \
coded image as belonging to the intersection of several convex sets \
[1], and show how such sets can represent both traditional criteria \
as well as perceptually motivated ones. We thus call the method “set !
theoretic compression.” X Y C

Using this framework, we investigate a classic coding problem, that DCT] Q
of low bit rate discrete cosine transform (DCT) compression without (X5 oo Xy (TR /Y9 (€ps-en Cpy)
blocking artifacts, and demonstrate improved performance using our o ) . )
method. Fig. 2. DCT quantization. The classical and the set theoretic interpretations

. . - . - f the outputC' are, respectively, represented by a dotted and a solid arrow.
The basic idea is to efficiently describe convex sets containing tﬁe P P y. Tep y

image. Of course, traditional quantization does just this. A hypercube
with sides of sizeA is defined around the vector representingimply the set of all possible input images that provide the same
the image (see Fig. 1), and the rate distortion trade-off of suclrded output. We call it thencoded setDecoding must at least
guantization is well studied for many sources of interest. A morecover an image from this set. It appears that decoding traditionally
sophisticated version is, of course, vector quantization [2], whegensists of systematically picking one particular element in this set
the hypercubes are replaced by more general partitioning cells. Fasually its center). However, at low bit rate, this simple decoding
general convex sets, rate distortion trade-offs are not understood. @pproach becomes insufficient as pointed out in [3]-[5] in the case of
main purpose here is to formalize a coding design framework in whitock DCT coding, and decoded image quality can be significantly
convex sets can be targeted to represent selected perceptual featompgoved by more carefully exploiting the complete set information.
at low bit rate. While set-based coding provides a perspective for analyzing any
In Section Il, we show that in any traditional coding schemeype of coding algorithm, this work focuses on the case where the
the complete information that is provided by an encoder about gsicoder is composed of several subencoders used in parallel. The
input image is always a convex set, whether this has been purposgliybal encoded set is mathematically described as the intersection of
thought by the designer or not (see Figs. 1 and 2). This setti® sets provided by each subencoder. Suppose that the subencoders
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elementary C. Transform Quantization
POCS

A more general type of quantization consists in calculating=
Q(T(X)) whereT is an isometry fromR* to R™. We recall that
an isometry is a linear operatdr that satisfied|7(Y) — T'(X)|| =
[[Y" — X||. Such an operator is automatically invertible. In the case
of 8 x 8 images, a typical example of isometry is the DCT operator.
In general, we have' = Q(T(X)) if and only if T'(X) € Sg(C),
which is equivalent taX € T~'(Sg(C)). The encoded set is thus
Sr(C) = T7H(Sq(C)) (see DCT example in Fig. 2). Becauge
is linear and conserves the distance associated with the fierin
T~'(Se(C)) is also a rectangular parallelepiped.

SinS5:n S D. Energy Quantization

Fig. 3. Alternating projection algorithm. Case of three convex sets.  In this correspondence, we will also use a type of encoder that
is less common. For a given imagg, we will be interested to

o ) ) ] measure the scalar encoded value= ¢(||H(X)||) where H is
As a preliminary demonstration, we propose in Section IV a toy given linear operator fronR™ to R™’ and ¢() is a scalar

experiment of set theoretic design. In the context of block-basagamizaﬁon function of positive numbers such thdt:) > .

coding, we target two types of features to be encoded: i) the imaggc4 se of this constraint, it is clear thiit necessarily belongs to
details within the blocks and ii) the image smoothness across tfg setSe(c) = {Y € RM | |[H(Y)|| < ¢}. Becausd|H(-)||* is a

block bounc_iaries. The _second type of feature is targeted Fo reso&(%\dratic function, it is easy to show th¢(c) is a convex set. The
the unde.rlylng .uncertalnty.that causes the perceptually .|mportzgg,[3£(c) will be considered as the encoded?set
“block artifacts” in decoded images. A standard DCT coder is used to

represent feature i), while a special block boundary transition (BBT
encoder represents feature ii). By comparing our decoded image
that of a DCT encoder used alone at the fixed bit rate of 0.25Block-based quantization consists in splitting the input image
b/pixel (see Fig. 4), we show how, by set theoretic design, we cino a regular partition of block®3; x --- x B,, quantizing every
effectively manipulate the targeted features to produce a perceptudllgck B; into an encoded bloclk; and forming the encoded output
more pleasant image. C = Dy x --- x D,. According to the previous paragraphs, the
encoding ofB; into D; implies that B; must belong to a certain
setS;(D;). According to Section II-A, it is then clear th& must
belong to the encoded s8({C') = Si(Dy) x --- x §,(D,,). Scalar
guantization is a trivial example of block-based quantization where

Block-Based Quantization

Il. ENCODED SETS

A. Image and Coding Formalization the blocks are reduced to single pixels. A more important example
We considerV x N black and white images. Every image isih IS the block DCT coding where the image is split into<88 blocks
dimensional vectoX = (1,9, --.xn) € R™ whereM = N2 on which DCT quantization is applied. Every s&t(D;) is in this

andx, is the luminance value of thigth pixel. In block-based image case the rectangular parallelepiped DCTSq(D;)). Because the
processing, an imag¥ is divided into a partition of nonoverlapping Cross product is compatitievith the orthogonality iR, the global
blocks B, of size M;, such thatd,; + --- 4+ M, = M. Using the encoded sef(C) = S1(D1) x -+ x Sp(D,) is also a rectangular
cross produét such an image can be written &s= B, x --- x B,. parallelepiped.

For a given blockB of any size and geometny|B||* designates

the squared sum of its elements. For given subsets--,S, of Il SET THEORETIC DECODING IN PARALLEL CODING

R, ... ,RM? respectivelyS = Si x --- x S, designates the set o _ _ )
of imagesX € R of the form By x --- x B, whereB; € S for As explained in the introduction, when an encoder is composed of
alli € {1,---,p}. n subencoders producing, respectivelyputputsCt,---,C, for a

An image encoder is an operator that maps an input imiageto  9iven input, the global encoded setd¢Cr, -+, Cn) = Si(Cr) N

an encoded outpuf’. The corresponding encoded set as defined iri” 1 Sn(Cn) WhereSi(Ch). -+, S5, (C) are the sets provided by
the introduction will be typically denoted k§(C'). In the subsequent each subencoder. To extract an estlmgte. from the |ntersec.t|on, we
sections, we identify this set for various types of encoders. need to perform PO_C_S_ on each of the individual sets (see Fig. 3).
Theorem and Definition 111.1 ([7]): Let S be a convex subset of
o RM. For any givenX € R™, there exists a unique elemetit of
B. Scalar Quantization the closureS of S such that for allY’ € S, |X' = X|| > ||X - X].
When an imageX is quantized to give a new imagé = Q(X), The elementX is called the projection of onto the convex sef.
every pixelz; of X necessarily beIonAgs to aAcertain intervalc; )
of R. Typically, Ii{c) is equal tofe; — 5r, ¢; + 5] whereA, is the 2The encoded set should rigorously Bg(¢) = {Y € RM | ¢ <

given quantization step size for tlith pixel. In general/;(c;) is an IH(Y)| < c} where¢ is the nearest quantization level inferior to

interval of R that is uniquely determined byandc;. According t0  However, this set is not convex, and, in fact, will not be of practical use
the notations of Section II.A, we havg = Q(X) if and only if X  in decoding.

belongs to the product s&q(C) = I1(¢1) X --- x In(en). When 3By compatibility we mean the following property. In the cross-product
the quantization is uniformSq (C) is simply a hypercube oR"™  decompositiorR*: x - x R™» of R, the two imagesY =0 x - -- x

! !
see Fig. 1). Otherwise, it is in general a rectangular parallelepiped Bi X 0x - x 0 andX" = 0x---x0x B; x 0 x .- x 0 are orthogonal
( g1 9 9 P PP inRM if and only if B, and B! are orthogonal iR+, and the two images
X=0x---x0xB;x0x---x0andY =0x---x0xB; x0x---x0

1The cross product is such thaty, x2) x (23, 24) = (21, 22, T3, 24). are automatically orthogonal wher# ;.
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@) (b)
Fig. 4. DCT coding. (a) Original 51% 512 image. (b) DCT decoded image at bit rate 0.25/pixel (PSNB0.15 dB).

TABLE |
ExprESsION oFPOCSoN TypicaL CONVEX SETS
case | set type I convex set § l set parameters “ projection of X ¢ S on § I projection parameters
(a) interval [a, 8] M=1a<b a,if X <a
bif X >b
(b) sphere {Y € RM‘ Y] < c} ceRY cﬁ((—”
(c) ellipsoid {Y € RM‘ |HY)| < c} ceRt no algebraic closed form
H 1s a linear operator
(d) | spherical {YERM‘”Y.UTHSC} ceRY, M =N? X—
cylinder Y is expressed as an (1— W)X - g—TU—T
N x N matrix, U is a
given N dimensional (see proof in appendix)
row vector
(e) | “rotated” T-1(8") T 1s an isometry T-HP(T(X))) P is the POCS on &’
convex sct S’ is a convex set
) cross S x-x S 81, ..., 8p are convex Py(B1) x -+ x Pp(Bp) By x --- X By is the
product sets of RM1 . RM» decomposition of X
set respectively, with in RM1 x ... x RM»,
Mi+..+M,=M P; is the POCS on §;

As a consequence of this definition, the projections onto typicgéneral are dealt with using case (f) of the table, wirés the set
convex sets can be easily derived and their expressions are gieegoded within each block.
in Table I. Using this table, it is easy to derive the projections on
the sets encoded by the various quantization schemes presented in
Section Il. The case of scalar quantization is solved with the case (f)

of the table, where ever§; is an interval, combined with the case ! - . ! > :
(a). DCT quantization is solved with a combination of (e), (f) angXPlained in the introduction. We first describe our block boundary

(a). Indeed, from Section II-C, the encoded set in this case is of tﬁgnsmon (BBT) encher in sectlon IV-A. We then give the coding
type DCT '(Sg) [case (e)] andSq is the cross product of intervals experimental results in Section IV-B.

[cases (f) and (a)]. As shown by case (b), we cannot perform the

projection on the set encoded by any energy quantizer. However/An Design of the BBT Encoder

this correspondence, we will consider only energy quantizers whereThe BBT encoder is composed of two subencoders used in parallel,
H(-) is such thatH (Y) = Y - U", whereY is considered as an processing the vertical and the horizontal boundaries, respectively.
N x N matrix, andU is a fixed N-dimensional row vector. This Like the DCT encoder, each of them is an»8 8 block based
case is covered by case (d) in Table I, and the projection resulteiscoder, but using a different image partitioning, as shown in Fig. 5.
proved in the Appendix. Finally, block-based encoding schemesliet us concentrate on the vertical BBT encoder. In our design,

IV. EXPERIMENT OF SET THEORETIC ENCODER DESIGN
In this section, we describe our set theoretic design experiment as
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B, By By By l
| 5.,

By Bs By w1l B |

By By By Bys |

@ (b) (c)
Fig. 5. An 8 x 8 image block partitioning. (a) DCT coding. (b) vertical BBT coding. (c) horizontal BBT coding.

B Next, we propose to quantize the BBT energy coefficients using a
X P geometric quantization scale. More precisely, we use the quantization
R o functiong(e) = A™ - eg such thatn is the smallest integer such that
[ A™.ep > e and wherezg andA are predefined parameters. Note that
this ensures that(e) > e as required in Section 1I-D. The coefficient
eo IS a normalization factor that we adjust for each BBT block. We
takeco = ||[B- U " || whereB is the block extracted from the purely
Is. o DCT decoded image at_the same BBT block location. For the sake
U of good data compression, we ignore the BBT encoded values of
the blocks where the purely DCT decoded image is smoother than
the original image according to the functiyB - U " ||. Finally, the
BBT quantized energy coefficients are compressed using a spatial
run length coding method similar to the JPEG treatment of the AC
coefficients of the DCT. After adjusting so that the BBT encoder
for each blockB of the vertical BBT partitioning [see Fig. 5(b)], Pit rate is 0.04 bipixel, we obtain the decoded image of Fig. 7(d).
the encoder quantizes the energ - U ' ||* where B is viewed A_Ithough some degradatlon can be observe_d c_omp_areq tg the |nf!n|te
as an8 x 8 matrix andU is a fixed row vector of length eight. .bll rate. image of Fig. 7(c), the loss of qygllty is quite Ilmlted: ThIS.
When takingl’ = [0 0 0 +1 —1 0 0 0], ||[B-U"|]? gives Imageis the res_ult of our completg mod|f|e_d _encoder a}t the fixed bit
the simplest measurement of block boundary discontinuity betwet{€ Of 0-25 b/pixel. Compared with the original DCT image at the
two adjacent DCT blocks that one could think of, and that wasdme bit rate shown in Fig. 4(b), we obtain a more pleasant image,
already used in [5]. As can be seen in Fig. 6, this amounts Yrere some detail information héttS: been replaced by some information
calculating the mean squared difference between the adjacent pi@1gut the block boundary transitions.
of two neighboring DCT blocks along their separation boundary. The
general energy functiofB - U T||? allows us to use more complex i o i ) .
vectorsU. We will see that better discontinuity measurements are W'th the set theoretic mterpre@anpn of image compression, we
obtained withl’ = [+1 +2 +3 +4 —4 —3 —2 —1]. Once the have |_ntroduced new tools for designing an encoder. In aprellml_nary
vectorU has been chosen, the vertical BBT output code of an inp%penment, we aPp"ed these tools to ghow how the set theoretic ap-
image X, decomposed aB, 1 X Bui X Byo X -+ X Bup X Ruo proach can gﬁectlyely be used to mgnlpulate the perceptual gngoded
according to the partitioning of Fig. 5(b), &, = 1 x e N e features for improving block_ DCT codmg_. B_ut th_e general motlvatlon_
such thater, = ¢(||Bos - UT]|). The blocksR..; and R, are is to present a new _technlque_ for designing image encoders. ThIS
not coded. The horizontal BBT encoder is designed in a Sim”g?chnlque seems particularly suitable to very low bit rate compression,
manner. The two BBT encoders define the encoded%diS. ) and wh_ere th_e features to be preserved become more specific and more
S,(Ch), respectively. Their description is given in Section Il an(?bjeCF orlent(_ad but also more heterogeneous_. For example, the lower
their respective POCS are derived in Section III. the bit rate is, the more one has to selectively extract perC(_eptuaI
features such as edges, texture, smooth areas, etc. In classical en-
coding schemes, the separation and reconstruction of these different
features is usually performed by either linear decomposition or image
The global encoded set is the intersection betwe&gnC.), segmentation, which have known limitations. In the set theoretic
S,(Cy) and the DCT encoded set. The decoding can be performagproach, the reconstructed estimate is an image that simultaneously
by alternating the POCS respective to these three sets. In oeproduces the required features (to a certain precision) with no need
experiment, we assign 0.21 b/pixel and 0.04 b/pixel to the DC®r linear separation and no artificial image segmentation.
and the BBT encoders, respectively, thus maintaining the totalPhilosophically speaking, our set theoretic technique is interme-
bit rate of 0.25 b/pixel. We start the iteration from the purelyliate between vector quantization—which typically uses the notion
decoded DCT image at 0.21 b/pixel shown in Fig. 7(a). As aof encoded set (cell) in a very optimal manner (from an information
initial experiment, we first assign an infinite bit rate to the BBTheoretic point of view)—and object-oriented coding, which performs
encoders. In other words, we quantize the energy coefficients witkature extraction in a very targeted manner (from a direct perceptual
infinite precision. We show in Fig. 7(b) the decoded image in thgoint of view). While our techniqgue may not have the strong
case wherd/ = [0 0 0 +1 —1 0 0 0]. One can observe somepoints of these two extreme techniques, it avoids their respective
reduction of the blocking artifacts compared to the purely DCidlrawbacks (lack of universal modeling function of visual perception,
decoded image of Fig. 7(a). Much better deblocking results aa@d complex decoding in the first case, too restrictive image coding
obtained withU = [+1 +2 +3 +4 —4 -3 —2 —1] as shown in range and very irregular coding algorithms not suitable for VLSI
Fig. 7(c). The following experiments all use tHis vector. implementation in the second case).

MSE

Fig. 6. \Vertical BBT energy calculation.

V. SUMMARY AND DISCUSSION

B. Decoding Experiments
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(d)

Fig. 7. Coding experiments on Lenna image. (@) DCT reconstructed image at bit rate 0.21 b/pixel £SR3 dB). (b) Projection of image (a)
on §,(C,) and onS,(C),) with vectorU = [0 0 0 1 —1 0 0 0] (PSNR= 29.91 dB). (c) Projection of image (a) o, (C.) and onS,(C},)

with vectorU = [1 2 3 4 —4 —3 —2 —1] (PSNR = 29.97 dB). (d) Same as (c) but at bit rate 0.04 b/pixel for the BBT encoding; the total

bit rate is 0.25 b/pixel (PSNR= 29.67 dB).

APPENDIX
PROOF OF TABLE |, Case (d)

BecauseX ¢ S, its projectionX’ on S is such thaf| X' — X|| is
minimized subject to the equality constrajjiX’-U T || = ¢. Consider
the spacé’ of N x NV matricesi¥ such thati’’ - U " = 0. It can be
shown that the orthogonal spate of V in R" is spanned by the
N x N matrices of the typ& " -U whereV is any N -dimensional row
vector. LetX = VT.U+W andX’' = V'T-U+W’ be, respectively,
the orthogonal decomposition &F andX” in V& VL. We necessarily

havel¥’ = 1. Otherwise, by takingt”’ = V'" - U + W, we would
obtain || X" — X[|* = [|X" — X|]* + |[W' = W|* > |X" - X[
and || X" - U"|| = ¢ which would contradict the fact thaX’ is
the projection ofX onS. As aresultX’ — X = (V' - V)T - U,
which implies that|| X’ — X||* = ||V’ = V||* - ||U]|*. Now, we
also havec = || X' - UT|| = |[V'T-U-UT +W .UT|| =
VT - (U -U"N)|| = (U-U|V'||l. ThereforeV' is such that
V' — V|| is minimized subject td|V|| = . Therefore,V’
is the projection ofi” onto the sphere of radius——, which is
equal to —<—+ Y. Then, X' — X = ( -Vt .U,

c
v-u T v w-uHivi
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BecauseX - U =V .U.UT+W.UT =V .(U-U"),we (JPEG) [1], Motion Picture Expert Group (MPEG) [2], and H.261
have || X - UT|| = (U- UT)||V|| and VT = XU7 This leads to [3]. Since real-world communication channels are not error free, the

UuUT " . .
X' = X = (oo = )X - vt coded data transmitted on them may be corrupted. Block-based image
XU vut coding systems are vulnerable to transmission impairment. Loss of
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3) only recovers lost blocks for gray scale still images.

Although there are many variations in previously published meth-
ods, they can be categorized into one framework. First, all of them
used the information of only neighboring pixels as the source to

Best Neighborhood Matching: generate pixel values of the missing blocks. Second, they rely on some
An Information Loss Restoration Technique predefined constraints on the spectra or structures of the lost blocks.
for Block-Based Image Coding Systems The reconstructed blocks should be smoothly connected with adjacent
regions either in spatial or in transform domain. Consequently, a well-
Zhou Wang, Yinglin Yu, and David Zhang recovered lost block is often a smooth block, a sharp edge block,

or a stripe block with very consistent directions. The concealment

Abstract et o  block-coded i " i algorithm is a lowpass filter or directionally lowpass filter in nature.
strac mpertect transmission o 0OCK-Ccoded Images otten results . A f :
in lost blocks. A novel error concealment method calledest neighborhood .The technique propqsed in this corresp_ondence IS fundamentally
matching (BNM) is presented by using a special kind of information different from .the _preV'OUS_frf?‘meWO"k-_'t Is deVe|0_ped _by_mf_ikmg
redundancy—blockwise similarity within the image. The proposed algo- use of a special kind o& priori information—blockwise similarity
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ing technique for high compression ratios, was developed [11], [12].

Index Terms—Error concealment, image coding, image restoration. The FBC algorithm introduced a practical way to find blockwise self-
similarities within natural images. In this correspondence, we will use
a similar way to find blockwise similarities. However, our algorithm
) ] i can not be calledractal because the word “fractal” in “fractal image
Recently, many image coding algorithms have been developedcinpression” means self-similarity at every different scale while we

reduce the bit rate for digital image and video representation aggh trying to utilize blockwise similarities at the same scale.
transmission. Among them, block-based techniques have proved to be
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compression standards such as the Joint Photographers Expert Group I

. INTRODUCTION

BEST NEIGHBORHOOD MATCHING (BNM) ALGORITHM
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