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Abstract This paper addresses a set-theoretic method for

the detection of data corruption cyber-attacks on the load

frequency control loop of a networked power system. The

system consists of several interconnected control areas

forming a power grid. Based on the overall discrete-time

network dynamics, a convex and compact polyhedral

robust invariant set is extracted and is used as a set-induced

anomaly detector. If the state vector exits the invariant set,

then an alarm will be activated, and the potential threat is

considered disclosed. The attack scenario used to assess the

efficiency of the proposed anomaly detector concerns

corrupted frequency sensor measurements transmitted to

the automatic generation control unit of a compromised

control area. Simulation studies highlight the ability of a

set-theoretic approach to disclose persistent and

intermittent attack patterns even when they occur at the

same time with changes in the power load demand.

Keywords Power systems, Load frequency control,

Cyber-attacks, Set-theoretic methods

1 Introduction

Modern power grids are presently integrated with an

extended digital layer comprised of sensors and smart

meters that provide measurements at a fast rate and a high

resolution [1]. Several smart devices are also able to

transmit measurements via wireless communication chan-

nels that although flexible and efficient are generally

unprotected and vulnerable to cyber-attacks [2]. Cyber-at-

tackers compromise the integrity of sensitive elements of

the network aiming to cause system malfunctions [3].

Common attack scenarios include the delaying or jamming

of the acquired sensor data [4] and the corruption of the

measurements by injecting false signals [5]. The reliable

transmission of the data requires the use of security-en-

hancing techniques that increase the complexity of the

infrastructure, leading to a cyber physical system modeling

approach [6].

Attacks on the load frequency control loop of power

networks have been studied in [7, 8], whereas in [9] the

concept of positive invariance was used to quantify the

attack impact on a two-area power plant. The design of

stealthy adversaries was addressed in [10] and attack

detectors in the form of network monitors were proposed in

[11, 12]. Residual-based state estimators are by far the

most common way of detecting attacks on networked

systems as it is shown in [13, 14]. These detectors rely on

the value of the estimation residue in order to decide
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whether or not the system is under attack. If the residue

obtains a steady-state value larger than a critical threshold,

then an alarm is activated. The motivation of this work

emerges from the fact that if the attack pattern forces the

state variables to oscillate, then they will never obtain a

constant steady-state value and therefore the residual-based

estimator will never cause the alarm to be triggered.

The use of a robust invariant set in order to develop a

set-theoretic attack detector was first introduced in [15],

where the load frequency control loop of a single control

area was studied. The key idea was to trigger an alarm

whenever the state vector exits the invariant set. It was

shown that small persistent bias injected signals corrupting

the frequency sensor measurements can pass undetected.

Explicit boundary values of the bias injected signal that

ensure a stealthy attack were derived in [16]. However,

these bounds are consistently small and therefore imprac-

tical from an adversarial point of view, since realistic

attack scenarios involve larger values of the attack

signal.

This paper elaborates on previous results of the authors

[17, 18]. In this work, the use of set-theoretic attack

detectors is expanded on a networked power system and

their efficiency is assessed considering both persistent and

intermittent data corruption attack patterns on the fre-

quency measurements. The simulations concern a case

study of the benchmark two area power plant and they

highlight the ability of the set-theoretic detector to disclose

attacks during the transient response of the system, while

also in the presence of disturbances; a feat that the tradi-

tional residual-based estimators are unable to

demonstrate.

The paper is organized as follows. In Section 2 the

mathematical model of the power network is established,

while in Section 3 the design of the set-theoretic attack

detector is presented. In Section 4 the switching signal

driving the intermittent attack pattern is developed and

Section 5 presents simulation results validating our con-

ceptual approach. In Section 6 we provide concluding

remarks, whereas an ‘‘Appendix A’’ explains some of the

notations used throughout the paper.

2 System description

The algorithms used for the computation of a robust

invariant set require a discrete-time representation of the

system dynamics. The discretization process of the power

network is performed in three steps. First, we extract the

discrete-time equivalent models of all interconnected areas

assuming that the power exchanged via the tie lines is an

external signal. Then, we discretize the tie line model of

each control area separately and finally, we combine the

control area and tie line dynamics into a single discrete-

time state space model.

2.1 Interconnected control area model

Consider the generic interconnected control area model,

subject to a data corruption cyber-attack depicted in Fig. 1.

According to [19, 20], a state space model that describes

the evolution of the plant in the continuous-time domain is

given as:

Sci :

d

dt
xiðtÞ ¼ Ac;ixiðtÞ þ Bc;iuc;iðtÞ þ Dc;iDPL;iðtÞ

þ Ec;iDPtie;iðtÞ

xið0Þ ¼ xi;0

yiðtÞ ¼ CixiðtÞ

8

>

>

>

>

>

<

>

>

>

>

>

:

where the subscript i 2 I ¼ f1; 2; . . .;Ng denotes the i-th

control area of the network and t 2 Rþ is the time variable.

The state vector xiðtÞ 2 R
2 encapsulates the deviation of

the electrical frequency DfiðtÞ and the deviation of the

mechanical power in the output of the turbine DPG;iðtÞ,

namely:

xiðtÞ ¼ DfiðtÞ DPG;iðtÞ
� �T

We assume that the mechanical power provided to the

rotor shaft is equal to the electrical power produced by the

generator. The system output yiðtÞ 2 R is identical to the

first state variable DfiðtÞ, thus Ci ¼ ½1 0�. The control

input uc;iðtÞ 2 R consists of two components, namely the

primary frequency control action DPf ;iðtÞ and the automatic

generation control law DPc;iðtÞ. According to Fig. 1, the

input uc;iðtÞ is defined as:

uc;iðtÞ ¼ DPc;iðtÞ þ DPf ;iðtÞ

and is subject to the saturation hard constraint:

+
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+
+
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Fig. 1 Load frequency control loop of a generic interconnected

control area subject to a data corruption cyber-attack on the frequency

sensor measurements (the speed governor dynamics are omitted for

brevity)
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juc;iðtÞj � ui;max 8t� 0

The signal DPL;iðtÞ 2 R is an unknown but bounded

disturbance representing the power load deviation due to

the demand of the consumers. In contrast to other works

[8, 9], we allow the load to change over time according to

the power demand, that is DPL;iðtÞ 6¼ 0, and we assume that

it obeys the constraint:

jDPL;iðtÞj �DPL;i;max 8t� 0

The signal DPtie;iðtÞ 2 R represents the deviation of the

electrical power exchanged between the i-th control area

and the network through the tie line interconnection,

whenever a power load change occurs. The matrix Ac;i 2

R
2�2 is defined as:

Ac;i ¼
�1=Tp;i Kp;i=Tp;i

0 �1=TT ;i

� �

and the matrices Bc;i;Dc;i;Ec;i 2 R
2�1 are defined as:

Bc;i ¼
0

KT ;i=TT ;i

� �

Dc;i ¼ Ec;i ¼
�Kp;i=Tp;i

0

� �

The load changes affecting the control areas cause the

electrical frequency and the tie line power to deviate from

their nominal values. The speed governor performs the

primary frequency control action defined as:

DPf ;iðtÞ ¼ �
1

Ri

yiðtÞ ð1Þ

where Ri is the speed droop parameter. The remaining

steady-state errors are eliminated by the automatic

generation control unit, which is usually implemented in

terms of an integral controller [21] defined as:

DPc;iðtÞ ¼ KI;i

Z t

0

ACEiðsÞds ð2Þ

ACEiðtÞ ¼ DP
ref
tie;i � DPtie;iðtÞ

� �

þ Bi Df
ref
i � ~yiðtÞ

� �

where ACEiðtÞ represents the i-th area control error, the

reference signals DP
ref
tie;i ¼ 0 and Df

ref
i ¼ 0 associate with

the tie line power deviation and the electrical frequency

deviation respectively and Bi ¼ 1=Ri. The signal ~yiðtÞ is

defined as:

~yiðtÞ ¼ yiðtÞ � airiðtÞ ð3Þ

where ai 2 R denotes the attack signal corrupting the

measurement channel and ri : Rþ ! f0; 1g determines

whether or not the i-th area is under attack. The speed

governor remains unaffected since it is either mechanically

or hydraulically coupled with the generator.

The equivalent discrete-time model of each intercon-

nected control area is extracted by first computing the

eigenvalues of the matrices Ac;i and then selecting a global

sampling frequency fs at least ten times greater than the

frequency of the fastest eigenvalue of the network. We

apply the zero-order hold method and obtain a discrete-

time state space representation as

Sdi :

xi½k þ 1� ¼ Ad;ixi½k� þ Bd;iud;i½k� þ Dd;iDPL;i½k�

þ Ed;iDPtie;i½k�

xi½0� ¼ xi;0

yi½k� ¼ Cixi½k�

8

>

>

>

<

>

>

>

:

where k 2 N is the new time variable.

Finally, since uc;iðtÞ implements a dynamic control law,

we need to determine the equivalent discrete-time con-

troller ud;i½k�. Let us set the accumulated time errors

z1;iðtÞ ¼
1

f �

Z t

0

Df
ref
i � ~yiðsÞ

� �

ds ð4Þ

z2;iðtÞ ¼
1

jP�
tie;ij

Z t

0

DP
ref
tie;i � DPtie;iðsÞ

� �

ds ð5Þ

as the extra state variables augmenting the system due to

the existence of the integrator (2). Parameters f � and P�
tie;i

represent the nominal network frequency and the nominal

power exchanged via the i-th tie line respectively. We

remark that P�
tie;i is considered positive when the power

flow is directed from the i-th area towards the network. If

we consider (1)-(5), while keeping the sampling frequency

and the discretization method unaltered, then we obtain:

ud;i½k� ¼ �KI1;iz1;i½k� þ �KI2;iz2;i½k� �
1

Ri

yi½k�

where the gains �KI1;i and
�KI2;i are defined as:

�KI1;i ¼ KI;iBif
�

�KI2;i ¼ KI;ijP
�
tie;ij

(

and the variables z1;i½k�, z2;i½k� satisfy the equations:

z1;i½k þ 1� ¼ z1;i½k� �
1

fsf �
~yi½k�

z1;i½0� ¼ z2;i½0� ¼ 0

8

<

:

ð6Þ

z2;i½k þ 1� ¼ z2;i½k� �
1

fsjP�
tie;ij

DPtie;i½k� ð7Þ

The model of the discrete-time closed-loop

interconnected control area under attack is written as:
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Scli :

ni½k þ 1� ¼ Acl;ini½k� þ aiBcl;iri½k�

þ Dcl;iDPL;i½k� þ Ecl;iDPtie;i½k�

yi½k� ¼ Ccl;ini½k�

8

>

<

>

:

ð8Þ

where the augmented state vector ni½k� 2 R
4 is given as:

ni½k� ¼ Dfi½k� DPG;i½k� z1;i½k� z2;i½k�
� �T

the matrix Acl;i 2 R
4�4 is given as:

Acl;i ¼

Ad;i � 1=Rið ÞBd;iCi Bd;i
�KI1;i Bd;i

�KI2;i

�1= fsf
�ð ÞCi 1 0

O1�2 0 1

2

6

4

3

7

5

the matrices Bcl;i;Dcl;i;Ecl;i 2 R
4�1 are given as:

Bcl;i ¼ O1�2 1= fsf
�ð Þ 0½ �T

Dcl;i ¼ DT
d;i 0 0

h iT

Ecl;i ¼ ET
d;i 0 � 1= fsjP

�
tie;ij

� �h iT

8

>

>

>

>

<

>

>

>

>

:

and Ccl;i ¼ ½Ci 0 0�.

2.2 Tie line model

Each control area that is connected to the network is

able to exchange power with it through a tie line. When-

ever a load change occurs, the power flow of each tie line

deviates from its nominal value P�
tie;i according to DPtie;iðtÞ.

The linearized tie line dynamics associated with the i-th

area are governed by the equation [19, 20]:

d

dt
DPtie;iðtÞ ¼

X

N

j¼1

2pTij DfiðtÞ � DfjðtÞ
� 	� �

ð9Þ

where Tij denotes the synchronization coefficient between

the control areas i and j and DPtie;i encapsulates all existing

interconnections of the i-th area with the other areas of the

grid.

The synchronization coefficients satisfy the condition

Tij ¼ Tji for all i; j 2 I and if two control areas i, j are not

interconnected, then by definition we have Tij ¼ 0. In other

words, if we consider the network in terms of a weighted

graph, as depicted in Fig. 2, where the nodes ai represent

the control areas and the coefficients Tij indicate the

existing interconnections, then the synchronization coeffi-

cients Tij are the elements of the adjacency matrix.

In order to extract a discrete-time equivalent model for

the tie line, we use the same global sampling frequency fs
and apply again the zero order hold method. The outcome

is the difference equation:

DPtie;i½k þ 1� ¼ DPtie;i½k� þ Ts
X

N

j¼1

2pTij Dfi½k� � Dfj½k�
� 	� �

ð10Þ

where Ts ¼ 1=fs is the sampling period.

2.3 Network model

If we compute the models of all interconnected control

areas along with their corresponding tie lines and then

express them in the discrete-time domain, we can directly

compute a discrete-time representation of the entire net-

work. In our case, the dynamic evolution of the overall

networked power system in the discrete-time domain can

be described in augmented form in terms of the following

difference equation:

Snet :

xnet½k þ 1� ¼ Anetxnet½k� þ Bnet½k� þ DnetDPL;net½k�

xnet½0� ¼ xnet;0

ynet½k� ¼ Cnetxnet

8

>

<

>

:

ð11Þ

where the number of the state variables per control area is

n ¼ 4, the vector of the state variables for the entire

network xnet 2 R
ðnþ1ÞN is defined as:

xnet½k� ¼ nT1 ½k� . . . n
T
N ½k� DPtie;1½k� . . . DPtie;N ½k�

� �T

and the vector of the power load changes for the entire

network DPL;net 2 R
N is defined as:

DPL;net½k� ¼ DPL;1½k� DPL;2½k� . . . DPL;N ½k�
� �T

Matrix Anet 2 R
ðnþ1ÞN�ðnþ1ÞN is structured as:

Anet ¼
Anet;11 Anet;12

Anet;21 Anet;22

� �

where Anet;11 2 R
nN�nN and Anet;12 2 R

nN�N associate with

the interconnected control area models (8) and are defined

as:

Ti1 Tj3

Tj4

a3a1

a2 ai aj

a4aN

Ti2

TiN

Tij

Fig. 2 Graph depiction of a network
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Anet;11 ¼

Acl;1 On�n . . . On�n

On�n Acl;2 . . . On�n

.

.

.
.
.
.

.

.

.

On�n On�n . . . Acl;N

2

6

6

6

6

4

3

7

7

7

7

5

Anet;12 ¼

Ecl;1 On�1 . . . On�1

On�1 Ecl;2 . . . On�1

.

.

.
.
.
.

.

.

.

On�1 On�1 . . . Ecl;N

2

6

6

6

6

4

3

7

7

7

7

5

whereas Anet;21 2 R
N�nN and Anet;22 2 R

N�N associate with

the tie line models (10) are defined as:

Anet;21 ¼

L11 L12 . . . L1N

L21 L22 . . . L2N

.

.

.
.
.
.

.

.

.

LN1 LN2 . . . LNN

2

6

6

6

6

4

3

7

7

7

7

5

Anet;22 ¼ IN�N

The elements Lij 2 R
1�n are vector quantities associated

with the tie line synchronization coefficients and are given

in terms of the following equations:

Lij ¼

h

P

N

j¼1

2pTijTs
� 	

O1�ðn�1Þ

i

; i ¼ j

h

� 2pTijTs O1�ðn�1Þ

i

; i 6¼ j

8

>

>

<

>

>

:

We define Bnet 2 R
ðnþ1ÞN�1 and Dnet 2 R

ðnþ1ÞN�N as:

Bnet½k� ¼

a1Bcl;1r1½k�

a2Bcl;2r2½k�

.

.

.

aNBcl;NrN ½k�

ON�1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

Dnet ¼
Dnet;11

ON�N

� �

Dnet;11 ¼

Dcl;1 On�1 . . . On�1

On�1 Dcl;2 . . . On�1

.

.

.
.
.
.

.

.

.

On�1 On�1 . . . Dcl;N

2

6

6

6

6

4

3

7

7

7

7

5

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

and the matrix Cnet 2 R
2N�ðnþ1ÞN is defined as:

Cnet ¼

Ccl;1 O1�n . . . O1�n O1�N

O1�n Ccl;2 . . . O1�n O1�N

.

.

.
.
.
.

.

.

.
.
.
.

O1�n O1�n . . . Ccl;N O1�N

ON�n ON�n . . . ON�n IN�N

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

For the remainder of this paper we consider that the power

network evolves in the discrete-time domain and its

dynamic behavior is described in terms of (11).

2.4 Stability analysis

The networked system obtained through our modeling

process is Lyapunov stable. Lyapunov stability in the

continuous-time domain means that there exist system

eigenvalues located on the imaginary axis. Accordingly, in

the discrete-time domain it means that there exist system

eigenvalues located on the boundary of the unit disc. In our

case, it can be shown that the continuous-time system has

some eigenvalues located exactly at the origin of the

complex plane and that the discrete-time system has some

eigenvalues with unit value.

If the network evolves in the absence of an attacker, that

is ri ¼ 0 for all i 2 I , then ~yi ¼ yi and the system operates

normally. Every power load change DPL;i is matched with

an equal increase or decrease in the produced power DPG;i.

At steady-state, all frequency deviations Dfi converge to

zero along with the tie line power deviations DPtie;i. The

variables z1;i and z2;i converge to some constant nonzero

steady-state values and the same holds for uc;i and ud;i. This

scenario is studied in many textbooks [19, 20] and no

instability can occur under these circumstances.

The instability is identified both in the continuous and

the discrete-time domain, when the network is affected by

an attacker. Suppose that the tie line power deviations

DPtie;i reach an equilibrium and converge to constant

steady-state values, say DPtie;i;ss. This means that at some

point we obtain

d

dt
DPtie;iðtÞ ¼ 0 8i ¼ 1; 2; . . .;N ð12Þ

for the continuous-time domain and

DPtie;i½k þ 1� ¼ DPtie;i½k� 8i ¼ 1; 2; . . .;N ð13Þ

for the the discrete-time domain. Expressions (12), (13)

along with (9), (10) imply that if an equilibrium is to be

reached, then the frequency deviations Dfi of all control

areas must converge to the same steady-state value, that is

limt!1 DfiðtÞ ¼ Dfi;ss ¼ Dfss for all i ¼ 1; 2; . . .;N.

Now, we identify two distinct cases. First, the case

where all control areas are affected by the same attack

signal and then, the case where the attack signal differs
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from one control area to another. The scenario where the

adversary affects only some control areas and not all of

them falls under the second case, where some ai ¼ 0.

Let us consider the case where all control areas are

affected by the same attack signal, that is ai ¼ a for all

i 2 I . The frequency deviation reference signal is set as

Df
ref
i ¼ 0 and ~yiðtÞ ¼ yiðtÞ � ai. Therefore, (4) can be

written as:

z1;iðtÞ ¼
1

f �

Z t

0

ai � yiðsÞð Þds ð14Þ

and implies that this attack scenario essentially alters all

the reference signals Df
ref
i from zero to a. For the fre-

quency deviations, we have limt!1 DfiðtÞ ¼ a for all

i ¼ 1; 2; . . .;N, based either on the continuous-time equa-

tion (14) or the discrete-time equation (6). For the tie line

power deviations, we have limt!1 DPtie;iðtÞ ¼ 0 for all

i ¼ 1; 2; . . .;N, based either on the continuous-time equa-

tions (5), (9), (12) or the discrete-time equations (7), (10),

(13). The variables z1;i and z2;i converge to some constant

nonzero steady-state values, such that all uc;i and ud;i pro-

duce the required DPG;i to match both the load changes

DPL;i and the nonzero steady-state frequency deviations.

Since all state variables converge to constant values, the

system is stable.

Let us now consider the case where the attack signal

differs from one control area to another. For a persistent

attacker, we have limt!1 DPtie;iðtÞ ¼ DPtie;i;ss 6¼ 0. This

implies two things. Firstly, as t ! 1, (5) integrates a

constant nonzero quantity, therefore all z2;i are forced to

increase linearly over time. Secondly, once DPtie;i reaches

an equilibrium, all Dfi must have converged to the same

steady-state value, which is nonetheless different than the

one that each ai dictates, that is

limt!1 DfiðtÞ ¼ limt!1 yiðtÞ 6¼ ai. In turn, (14), as t ! 1,

integrates a constant nonzero quantity, therefore all z1;i are

forced to increase linearly over time as well. The same two

results can be obtained from the discrete-time equations

(6), (7). Although z1;i and z2;i tend to infinity, their opposite

signs drive uc;i and ud;i to some constant steady-state val-

ues, causing each generator to produce the necessary power

DPG;i that satisfies both the load changes DPL;i and the

nonzero steady-state frequency deviations.

In conclusion, the network instability appears when the

attack signal differs from one control area to another or

when the attacker affects only some control areas of the

network. We highlight that instead of z1;i and z2;i we could

choose different integral variables, say:

wiðtÞ ¼

Z t

0

ACEiðsÞds ¼ jP�
tie;ijz2;iðtÞ þ Bif

�z1;iðtÞ

and obtain an asymptotically stable system, since the wi

will follow the convergence of uc;i and ud;i. However, in

this case we lose our main advantage, which is the ability

to always detect an adversary, unless all of the control

areas are simultaneously corrupted by the same attack

signal. The unstable character of z1;i and z2;i ensures that

the state trajectory will, sooner or later, exit any given

convex and compact robust invariant set, causing the

adversary to be disclosed. The trade-off for using the states

z1;i and z2;i is the increased complexity in the calculation of

the robust invariant set, due to the Lyapunov stable net-

work dynamics.

3 Attack detector design

In order to extract the robust invariant set that will be

exploited as a set-theoretic attack detector, our first priority

is to determine a set of state constraints that ensures the

risk-free behavior of the network. This set can be obtained

by enforcing suitable bounds on each state variable based

on the standard safety considerations invoked in the

literature.

According to [8], large frequency deviations, that may

occur during the transients, jeopardize the stability of the

grid. Thus, the frequency deviation Dfi½k� should always

respect the inequality:

jDfi½k�j �Dfi;max ¼ 1:5 Hz 8k 2 N

The hard constraints imposed on the control signal imply

that similar bounds exist for DPG;i½k�. The discretization

does not alter the dc-gains of the system and the turbine has

a unit dc-gain. Therefore, the bounds of DPG;i, uc;i and ud;i

are identical with each other and the mechanical power

produced in the output of the turbine should always respect

the inequality

jDPG;i½k�j �DPG;i;max ¼ ui;max 8k 2 N

In comparison to the bounds of Dfi, the constraints imposed

on DPG;i are hard and can never be violated.

The variables z1;i½k� and z2;i½k� are measured in time units

and, according to [19, 22], it is always necessary to limit

the deviation of the synchronous clocks driven by the

system frequency. Thus, the accumulated time errors

should always respect the inequalities:

jz1;i½k�j � z1;i;max ¼ 3 s 8k 2 N

jz2;i½k�j � z2;i;max ¼ 3 s 8k 2 N




Each tie line connects a control area to the network and is

designed to transfer a nominal amount of power. After

every power load change, the tie line power deviates from

its nominal value. Large and persistent oscillations of
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DPtie;i½k� are generally undesirable, because they stress the

tie line to its thermal limits and threaten the stability of the

grid. Therefore, the tie line power deviations should always

respect the inequality:

jDPtie;i½k�j �DPtie;i;max 8k 2 N

The constraints associated with ni can be expressed in

terms of the set:

X iðQi; qiÞ ¼ fni 2 R
n
: Qini � qig

where Qi 2 R
2n�n and qi 2 R

2n are given as:

Qi ¼
In�n

�In�n

� �

qi ¼
qi;max

qi;max

" #

8

>

>

>

>

<

>

>

>

>

:

qi;max ¼ Dfi;max DPG;i;max z1;i;max z2;i;max

� �T

The constraints associated with DPtie;i can be expressed in

terms of the set:

�X ið �Qi; �qiÞ ¼ fDPtie;i 2 R : �QiDPtie;i � �qig

where �Qi 2 R
2�1 and �qi 2 R

2�1 are given as:

�Qi ¼
1

�1

� �

�qi ¼
DPtie;i;max

DPtie;i;max

� �

8

>

>

>

<

>

>

>

:

The constraints associated with xnet are determined by

combining the sets X i and �X i for all i 2 I and can be

expressed in terms of the set:

X net ¼ xnet 2 R
ðnþ1ÞN

: Qnetxnet � qnet

n o

The matrix Qnet is structured as

Qnet ¼
Qnet;11 Qnet;12

Qnet;21 Qnet;22

" #

and the vector qnet is structured as:

qnet ¼ qT1 . . . qTN �qT1 . . . �qTN
� �T

The blocks Qnet;11 2 R
2nN�nN and Qnet;22 2 R

2N�N

associate with the constraints imposed on ni and DPtie;i

respectively and are defined as:

Qnet;11 ¼

Q1 O2n�n . . . O2n�n

O2n�n Q2 . . . O2n�n

.

.

.
.
.
.

.

.

.

O2n�n O2n�n . . . QN

2

6

6

6

6

4

3

7

7

7

7

5

Qnet;22 ¼

�Q1 O2�1 . . . O2�1

O2�1
�Q2 . . . O2�1

.

.

.
.
.
.

.

.

.

O2�1 O2�1 . . . �QN

2

6

6

6

6

4

3

7

7

7

7

5

whereas the blocks Qnet;12 and Qnet;21 are defined as:

Qnet;12 ¼ O2nN�N

Qnet;21 ¼ O2N�nN

(

We may also define the admissible states ni that result in

a control law ud;i½k� respecting the hard input constraints in

terms of the set:

U iðPi; piÞ ¼ ni 2 R
n
: Pini � pif g

where Pi 2 R
2�n and pi 2 R

2 are given as:

Pi ¼
� 1=Rið ÞCi

�KI1;i
�KI2;i

1=Rið ÞCi � �KI1;i � �KI2;i

� �

pi ¼
ui;max

ui;max

� �

8

>

>

>

<

>

>

>

:

The set of the admissible values of xnet is determined by

combining the sets U i for all i 2 I and can be expressed as:

Unet ¼ xnet 2 R
ðnþ1ÞN

: Pnetxnet � pnet

n o

The matrix Pnet is structured as:

Pnet ¼ Pnet;1 Pnet;2½ �

and the vector pnet is structured as:

pnet ¼ pT1 pT2 . . . pTN
� �T

The blocks Pnet;1 2 R
2N�nN and Pnet;2 are defined as:

Pnet;1 ¼

P1 O2�n . . . O2�n

O2�n P2 . . . O2�n

.

.

.
.
.
.

.

.

.

O2�n O2�n . . . PN

2

6

6

6

6

4

3

7

7

7

7

5

Pnet;2 ¼ O2N�N

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Finally, we can define the set of the admissible network

disturbances DPL;net as:

Wnet ¼ DPL;net 2 R
N
: Qnet;22DPL;net � rnet

� �

where the vector rnet 2 R
2N is structured as:
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rnet ¼ rT1 rT2 . . . rTN
� �T

ri ¼
DPL;i;max

DPL;i;max

� �

8

>

<

>

:

A set is robust invariant when all initial conditions

belonging to this set generate state trajectories remaining

inside the same set for all future time instances and for all

bounded disturbance sequences. A formal definition of

robust invariance can be found in [23, 24]. If we consider

DPtie;i as an additional disturbance on the model of each

control area (8), then we could try to assign robust

invariant sets to each control area individually. However,

this concept is invalid since (7), (8) imply that a constant

DPtie;i will drive z2;i towards infinity, hence the existence of

a robust invariant set is immediately denied. In reality,

DPtie;i will decay, but the robust approach must consider all

potential disturbance sequences. Consequently, the robust

invariant set has to be extracted in a centralized manner

considering the network dynamics in (11). We remark that

since the robust invariant set will be used in order to detect

an adversary, it has to be determined considering the

dynamics (11) in the absence of an attacker, that is when

ri½k� ¼ 0, for all k 2 N, i 2 I .

According to [15, 16], the input hard constraints do not

allow the controllers to perform unsaturated for all states

xnet 2 X net. To solve this problem, we can define the set

Anet ¼ X net \ Unet and then try to determine the maximal

subset of Anet that is robust positively invariant with

respect to the network dynamics in (11). This new set,

denoted with Anet;1, is defined as:

Anet;1 ¼fxnet;0 2 Anet : Anetxnet½k� þ DnetDPL;net½k�

2Anet;1; 8DPL;net½k� 2 Wnet; 8k 2 N
�

An efficient algorithm for the computation of maximal

robust invariant subsets was proposed in [25]. However,

this algorithm ensures finite time determination of these

sets only for systems described by asymptotically

stable dynamics. Due to the abundance of the integral

control actions, the dynamics of the network are Lyapunov

stable. This fact implies that there exist eigenvalues of the

matrix Anet located exactly on the boundary of the unit

disc. In this article, we apply the methods of [25, 26] and

we compute an approximation of Anet;1, based on the

structure of the network.

The key idea, is to separate the network dynamics into

an asymptotically stable compartment and a Lyapunov

stable one. This is always possible through a suitable sim-

ilarity transformation of the state space coordinates. If we

solve the eigensystem AnetV ¼ VF; then we can compute a

diagonal matrix F containing the eigenvalues of Anet and

an invertible matrix V containing the eigenvectors of the

system. For complex eigenvalues, it is trivial to render the

matrix F in its equivalent block-diagonal real form and

compute the matrix V accordingly. Using the change of

variables w½k� ¼ V�1xnet½k� the network dynamics of (11)

can be written as:

S
ðwÞ
net : w½k þ 1� ¼ Fw½k� þHDPL;net½k� w½0� ¼ w0

where the matrices F and H are given as:

F ¼
FS Os1�s2

Os2�s1 FL

� �

H ¼ V�1Dnet ¼
HS

HL

� �

for some partitioning indices s1; s2 2 N
� such that

s1 þ s2 ¼ ðnþ 1ÞN. The matrices FS 2 R
s1�s1 and FL 2

R
s2�s2 associate with the asymptotically stable and the

Lyapunov stable dynamics respectively, HS 2 R
s1�N , HL 2

R
s2�N and the state vector w can be split into two

compartments as:

w½k� ¼ wT
S wT

L

� �T

where wS 2 R
s1 and wL 2 R

s2 . We remark that each vector

evolves independently from the other, due to the form of

the matrix F.

The network model (11) obtained through the dis-

cretization process in the previous section has two special

characteristics. Firstly, the Lyapunov stable eigenvalues

have all unit values, therefore FL ¼ Is2�s2 and secondly the

matrix Dnet is sparse, so that even after the change of

variables, the matrix HL satisfies the condition

HL ¼ Os2�N . We remark that if the matrix HL contained

any nonzero elements, then a robust invariant set would not

exist.

As the interconnection of two polyhedra, set Anet will

have the generic polyhedral representation

Anet ¼ xnet 2 R
ðnþ1ÞN

: Gxnet � g
n o

The change of variables w½k� ¼ V�1xnet½k� gives the

representation of Anet in the w-domain as:

A
ðwÞ
net ¼ w 2 R

s1þs2 : �Gw� �g
� �

�G ¼ GV �g ¼ g

and its maximal robust invariant subset is defined as:

A
ðwÞ
net;1 ¼ w0 2 A

ðwÞ
net

n

: Fw½k� þHDPL;net½k�

2AðwÞ
net;1; 8DPL;net½k� 2 Wnet; 8k 2 N

o

According to [25], a finite time determined

approximation of A
ðwÞ
net;1 is the set Â

ðwÞ
net;1 defined as:
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Â
ðwÞ
net;1 ¼ w0 2 A

ðwÞ
net

n

: ĈSwS½k� þ ĈLwL½k�

2L0 �A
ðwÞ
net ; 8DPL;net½k� 2 Wnet; 8k 2 N

o

where the matrices ĈS and ĈL are given as:

ĈS ¼
Os2�s1

CS

� �

ĈL ¼
Is2�s2

CL

� �

8

>

>

>

<

>

>

>

:

the matrices CS 2 R
ðs1þs2Þ�s1 , CL 2 R

ðs1þs2Þ�s2 satisfy the

equation ½CS CL� ¼ Iðs1þs2Þ�ðs1þs2Þ, the set L0 is defined

as:

L0 ¼ wL 2 R
s2 : CLF

k
LwL 2 Y0; 8k 2 N

� �

ð15Þ

and the set Y0 	 R
s1þs2 is determined via the following

standardized procedure [25]. Consider the recursion:

/i
0 ¼ �gi

/i
kþ1 ¼ /i

k � hWnet
ððCSF

k
SHSÞ

T �GiÞ

(

The parameters /i
k and �gi denote the i-th element of the

vectors /k and �g respectively, �Gi stands for the i-th row of

the matrix �G, while the mapping:

hWnet
ðgÞ ¼ sup

x2Wnet

ðgTxÞ

represents the support function of the set Wnet. If we

specify a scalar 0\b\1, then there exists a k� such that

b/k� � hk� � 0, where the i-th element of the vector hk� is

defined as:

hik� ¼ kfið1� lÞ�1
lk

�

The parameter l 2 R
�
þ is the spectral radius of the matrix

FS, the scalar k 2 R
�
þ is selected such that

Wnet 	 kB2ðNÞ, with B2ðNÞ representing the 2-norm

unit ball in R
N and the constants fi 2 R

�
þ can always be

determined such that kðCSF
k�

S HSÞ
T �Gik2 � fil

k� for all i. Let

/0 satisfy:

ð1� bÞ/k�\/0
\/k� � hk�

Then, the set Y0 is defined as:

Y0 ¼ w 2 R
s1þs2 : �Gw�/0

� �

and since FL ¼ Is2�s2 the set L0 of (15) is defined as:

L0 ¼ wL 2 R
s2 : �GCLwL �/0

� �

Considering the polyhedral nature of the sets L0 and A
ðwÞ
net ,

their Cartesian product can be computed as:

L0 �A
ðwÞ
net ¼




wL

w

� �

2 R
s1þ2s2 :

�GCL Ol�ðs1þs2Þ

Ol�s2
�G

� �

wL

w

� �

�
/0

�g

� � 


and l denotes the number of rows of the matrices �GCL and
�G. The attack detection mechanism can now be formally

introduced in terms of the alarm signal

qðwÞ ¼
0 w 2 Â

ðwÞ
net;1

1 otherwise

(

and it is triggered whenever the vector w exits the robust

invariant set Â
ðwÞ
net;1. We assume that the vector xnet½k� is

available to the control center at any given time instant k in

order to allow the real-time computation of the vector w½k�.

4 Switching signal design

The authors in [15, 16] studied bias injection cyber-

attacks on the frequency sensor measurements, when the

attack signal ai was set to a constant value and affected the

system indefinitely. It was shown that in the case of a

single-area power plant the structural properties of the

integral controllers force the frequency deviation to regu-

late wherever the attack signal dictates. However, the only

way for an adversary to regulate the frequency in a net-

worked system is to incorporate a coordinated attack on all

interconnected areas using the same attack signal ai for all

i 2 I .
A more realistic scenario would be to consider that an

attack occurs not on every frequency sensor of the grid at

the same time, but only to those sensors that are success-

fully compromised by the adversary. In this case, only a

few of the Lyapunov stable dynamics of the integral con-

trollers will be affected by the attack signal and therefore

input to state instability is unavoidable. Specifically, the

state variables z1;i, z2;i are forced to diverge linearly

towards infinity for as long as the attacker remains active

and the set-induced anomaly detector will ultimately trig-

ger an alarm.

Since persistent attacks on individual control areas seem

inevitably detectable in terms of our set-theoretic approach,

the only alternative for the adversary is to prolong their

disclosure. The attacker can attempt to remain undetected

for a longer period by means of a hysteresis-based

switching pattern [27]

ri½k� ¼

0 j~yi½k�j[ �ai;max and ri½k � 1� ¼ 1

1 jyi½k�j\�ai;min and ri½k � 1� ¼ 0

ri½k � 1� otherwise

8

>

<

>

:
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where �ai;max ¼ ai;max � d and �ai;min ¼ ai;min þ d are the

hysteresis bounds and d 2 R
�
þ is the tolerance factor

ensuring that a switching can occur only inside the fre-

quency zone yi 2 Df ai;min;Df
a
i;max

h i

¼ ai;min; ai;max

� �

.

The only attack resources required in our scenarios are

the knowledge of the frequency measurements yi and the

ability to corrupt them. However, the bounds that we used

to limit the load changes, the state variables and the control

inputs of the system can be easily obtained, since some of

them are standard in the literature. We remark that

knowledge alone of these bounds is not enough to defeat

our detection mechanism. The attacker can remain poten-

tially undetected only if he additionally has full knowledge

of the state vector nnet and of the robust invariant set

Â
ðwÞ
net;1. However, to determine this set, the attacker must

also know the exact model of the network, namely the

matrices Anet, Bnet, Cnet and Dnet, along with the design-

dependent set L0. Only then the adversary can reproduce

the set Â
ðwÞ
net;1 and use it to develop elaborate state-de-

pendent switching patterns that will prevent an alarm

activation.

5 Simulation studies

In this section, we study the load frequency control loop

of the benchmark two-area power plant considering two

distinct attack scenarios. Initially, we address the case

where an adversary compromises the frequency sensor

measurements of the first control area and corrupts the data

transmitted to the automatic generation control unit with an

intermittent bias injected attack signal a1. The simulations

indicate that intermittent attack patterns driven by the

switching logic developed in the previous section are

harder to detect and they cause the state variables to

oscillate. In the sequel, we address the cases of

detectable and undetectable coordinated cyber attacks

occurring simultaneously on both control areas, using two

persistent bias injected attack signals a1, a2. The simula-

tions highlight that if the attack signals have the same

value, then the adversary is able to regulate the frequency

deviation of the network to any safety-critical steady-state

value. Both scenarios demonstrate the ability of a set-the-

oretic attack detector to disclose either a persistent or an

intermittent adversary, even in the presence of unknown

disturbances.

The parameters of the two-area power network that were

used in the simulations are provided in the Tables 1 and 2

[19]. For completeness, we also provide the formulas

associated with the gains Kp;i and the constants Tp;i as:

Kp;i ¼
1

Di

Tp;i ¼
2HiPB;i

f �Di

8

>

>

<

>

>

:

where f � ¼ 50Hz is the nominal network frequency. We

assume that the simulations start at k ¼ 0, that the initial

condition is xnet½0� ¼ 0 and that the duration is the time

interval t 2 ½0; 35�. For a global sampling frequency

fs ¼ 100Hz, we have k 2 ½0; 3:5� 103�. Furthermore,

since our main objective is to assess the efficiency of the

set-theoretic attack detector in the presence of

disturbances, we assume that the two-area network is

subject to the following power load changes:

DPL;1ðtÞ ¼ 20MW t� 0 s

DPL;2ðtÞ ¼
0 MW 0� t\10 s

�5 MW t� 10 s




Table 1 Parameter values for control area 1

Parameter Symbol Value Unit

Power base PB;1 2000 MW

Load dependency factor D1 16.66 MW/Hz

Speed droop R1 1:2� 10�3 Hz/MW

Generator inertia constant H1 5 s

Turbine static gain KT;1 1 MW/MW

Turbine time constant TT;1 0.3 s

Area static gain Kp;1 0.06 Hz/MW

Area time constant Tp;1 24 s

Controller static gain KI;1 0.5 1/s

Control input bound u1;max 600 MW

Power load bound DPL;1;max 20 MW

Table 2 Parameter values for control area 2

Parameter Symbol Value Unit

Power base PB;2 1500 MW

Load dependency factor D2 10.5 MW/Hz

Speed droop R2 1:33� 10�3 Hz/MW

Generator inertia constant H2 4 s

Turbine static gain KT;2 1 MW/MW

Turbine time constant TT;2 0.25 s

Area static gain Kp;2 0.095 Hz/MW

Area time constant Tp;2 22.85 s

Controller static gain KI;2 0.45 1/s

Control input bound u2;max 450 MW

Power load bound DPL;2;max 15 MW
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The tie line is assumed to be lossless, the nominal

exchanged power is P�
tie;1 ¼ �P�

tie;2 ¼ 1000 MW and the

synchronization coefficients are assigned the values

T12 ¼ T21 ¼ 175 MW=rad.
The bounds of the load changes DPL;i;max were selected

as small percentages of the power base P�
B;i of each control

area [19, 20]. The bounds of the state variables

Dfi;max ¼ 1:5 Hz, DPG;i;max ¼ ui;max and z1;i;max ¼ z2;i;max ¼

3 s are standardized, holding for all i ¼ 1; 2. In particular,

the bounds Dfi;max are mentioned in [8], whereas the

bounds z1;i;max and z2;i;max are derived from [22]. The

bounds of the tie line power deviations DPtie;i;max were

selected through extensive simulations. Specifically, we

observed that even when the maximum admissible power

load changes DPL;i;max occurred, the graphs of DPtie;i never

exceeded the values DPtie;i;max ¼ 0:5jP�
tie;ij. The bounds of

the control signals ui;max were selected in the following

manner. First of all, they have to be at least equal to the

maximum admissible load changes, in order to be able to

service them. Furthermore, they have to amend for poten-

tial overshoots during the transient response, so they need

to be further increased. The final tuning was performed

again through simulations, since the bounds of the control

inputs determine to a great extent whether or not a none-

mpty robust invariant set for the networked system actually

exists. Ultimately, they had to be pushed to their current

values to ensure the existence of the robust invariant set

Â
ðwÞ
net;1.

Regarding the design of the attack detector, the parti-

tioning indices of the matrix F 2 R
10�10 are s1 ¼ 7 and

s2 ¼ 3, the set Y0 was determined using b ¼ 0:2 and

k� ¼ 60, the radius k was selected as:

k ¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

2

i¼1

ðDP2
L;i;maxÞ

v

u

u

t

and each element of the vector /0 was taken as the mean of

its boundary values. For the operations involving polyhe-

dral constraints and optimization problems we used the

MPT Toolbox 3.0 [28].

The conventions used for the depiction of the state tra-

jectories obey the following rules. The state variables of

area 1 are printed in red while an attacker is active (i.e.

r1½k� ¼ 1) and in blue while an attacker is inactive (i.e.

r1½k� ¼ 0). The state variables of area 2 are always printed

in green color and whether the attacker is active (i.e.

r2½k� ¼ 1) or not (i.e. r2½k� ¼ 0) is determined in the

legend of each figure.

5.1 Individual area attack scenario

For this scenario we consider two separate cases. The

first case is presented in Fig. 3 and involves the attack

signals a1 ¼ 4:5 Hz and a2 ¼ 0, whereas the second case is

presented in Fig. 4 and involves the attack signals a1 ¼
2 Hz and a2 ¼ 0. In both cases, we study intermittent

attack patterns and the switching bounds of r1½k� are given

as a1;min ¼ 0:01 Hz, a1;max ¼ 0:1 Hz and the tolerance

d ¼ 10�3. We remark that the value of a1;min is meaningful

Fig. 3 State trajectories for a1 ¼ 4:5 Hz and a2 ¼ 0

Fig. 4 State trajectories for a1 ¼ 2 Hz and a2 ¼ 0
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only if it is larger than the frequency measurement error

(
 10�3) [19].

Both cases share several common characteristics. First,

the input saturation constraints are never activated, since

DPG;i½k�\DPG;i;max ¼ ui;max for all time instances. This

fact is important since it ensures that if an alarm is acti-

vated, then this activation did not occur simply because the

control input triggered the saturation constraints but rather

because the state vector exited the robust invariant set. In

addition, the intermittent attack pattern causes the state

variables Dfi to oscillate. Although these discrepancies are

not significant, they inflict large persistent and non-de-

caying oscillations on DPtie;i, which stress the tie line and

may cause the coupled generators to desynchronize.

Finally, we highlight that the attacker is only activated

during brief intervals. In fact, during an approximately 5 s

oscillation, the switching logic causes the attacker to

remain active only for approximately 0:5 s.

From Fig. 3, we observe that for a1 ¼ 4:5 Hz the set-

theoretic attack detector is regularly triggered. In this case,

the detection mechanism successfully discloses the adver-

sary on a very early stage. In contrast, Fig. 4 reveals that if

the adversary decreases the value of the attack signal to

a1 ¼ 2 Hz, then the attack passes undetected for a longer

period. Naturally, the state variables z1;i and z2;i slowly

increase, starting from a larger value after every activation

of the attacker. However, until the alarm is triggered, the

stability of the network is already jeopardized due to the tie

line power oscillations. This situation is also visible in the

first scenario on Fig. 3, where after t ¼ 20 s the divergence

of the z1;i and z2;i causes the alarm signal to remain con-

stantly active. We remark that a traditional residual-based

attack detector would never be able to disclose this

adversary, since the intermittent nature of the attack does

not allow the residual quantity to obtain a steady-state

constant value over time.

5.2 Multiple area attack scenario

For this scenario we consider two separate cases. The

first case is presented in Fig. 5 and involves the attack

signals a1 ¼ a2 ¼ 2 Hz, whereas the second case is pre-

sented in Fig. 6 and involves the attack signals

a1 ¼ a2 ¼ 1 Hz. In both cases, we assume that the attack is

persistent, in the sense that the switching signals r1½k� ¼
r2½k� ¼ 1 for all k� 0.

According to the Figs. 5, 6, the adversary is always able

to drive the frequency deviation wherever the attack signals

dictate. We highlight that the input saturation constraints

are never triggered and that after the steady-state is

reached, the produced powers DPG;i satisfy both the power

load demands and the increase in the network frequency.

Although the persistent nature of the attack does not cause

any power oscillations on the tie line, the steady-state

errors in the frequency deviation are critical for the sta-

bility of the grid and may lead the power relays to trip the

generators off, thus causing a blackout. Furthermore, we

observe that the adversary can remain undetectable as long

as the attack signals retain relatively small values. In par-

ticular, for a1 ¼ a2 ¼ 2 Hz the adversary is ultimately

disclosed but for a1 ¼ a2 ¼ 1 Hz the attack is stealthy.

During the stability analysis, we established that the

only way to create potentially undetectable attacks is to

obtain stable responses of the state variables z1;i and z2;i.

Since we have explained that the only way to achieve this

is to use the same attack signal on all control areas, we can
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now proceed to the attack detection issue. Clearly, an

attack that drives the state vector to an equilibrium that

belongs to the set Â
ðwÞ
net;1 remains undetectable when

DPL;i ¼ 0 for all i 2 I . However, even when the power

network is affected by nonzero disturbances there is no

guarantee that an alarm will be triggered. The robustness

property of the set Â
ðwÞ
net;1 ensures that if the system

evolves in the absence of an attacker, then the state vector

will remain exclusively inside Â
ðwÞ
net;1 for any disturbance

sequences DPL;i that respect the bounds DPL;i;max. How-

ever, when the system is affected both by an attacker and a

disturbance, it is mostly dependent on the disturbance

whether an alarm will be activated or not. Since the usual

disturbances DPL;i have the form of step load changes, it

may take a significantly more elaborate disturbance

sequence to trigger an alarm.

Consequently, when the adversary uses the same attack

signal on all control areas, the key factor that determines

whether a detection will occur or not is the magnitude of

the attack signal ai. The larger it is, the greater the chance

the state vector will exit the set Â
ðwÞ
net;1 becomes. There is

no obvious improvement of the detector from a set-theo-

retic point of view. We have already calculated the maxi-

mal robust invariant set with respect to the networked

system dynamics in the absence of an attacker, that is when

ri ¼ 0 for all i 2 I . Clearly, this is the best approach, in

order to ensure that any nonzero attack signal can poten-

tially trigger an alarm.

In contrast to the previous scenario, which involved an

attack only on the first control area, this case demonstrates

that a set-theoretic anomaly detector may be unable to

disclose an adversary as long as the attack occurs simul-

taneously on every control area and the attack signals have

small values. However, compromising every frequency

sensor in large power grids consists a highly unrealistic

attack scenario. It is more reasonable to consider that only

a few areas can be compromised at the same time, but in

this case the set-theoretic detector will always be able to

disclose a data corruption attack, due to the convex and

compact nature of the robust invariant set and due to the

linear divergence of the integrator variables z1;i and z2;i.

We remark that a traditional residual-based attack

detector may or may not be able to disclose a coordinated

attack, depending on the value of the critical threshold

imposed on the residue. If we take into account the

unknown power load changes, then the critical threshold

has to be more conservative than usual and an attack may

pass undetected.

Based on [13], the critical threshold can be selected as

follows. Since the load changes DPL;i are part of the normal

operation of the network, they do not pose a threat to the

safety of the system. In addition, all DPL;i are bounded

signals. Hence, we can calculate the maximum admissible

deviation of the estimation residue from zero, say dr;max, by

considering the behavior of the system when the maximum

allowed step load changes DPL;i;max occur in the absence of

an attacker. Now, we can obtain an estimation of the crit-

ical threshold as dr;max. We stress that, in our case, we

neglect the measurement and process noise of the system

during the modeling process. Therefore, the threshold

dr;max should suffice, since false alarms due to the noise are

not about to occur.

Let us now consider the case, when DPL;i ¼ 0 and ai ¼ a

for all i 2 I . In this case, the estimation residue will ulti-

mately converge to a nonzero constant steady-state value.

However, if the attack signals are relatively small, then the

steady-sate value of the residue will probably remain below

the critical threshold. In other words, the attack signals will

be treated by the detector as admissible load changes and the

alarmwill not be activated. As amatter of fact, a coordinated

attack on all control areas with the same attack signal is

equally difficult to detect either by a residual-based estimator

or by a set-theoretic anomaly detector.

6 Conclusion

This article concerns a security enhancing method for

the detection of data corruption attacks on cyber physical

power systems. We present the design process of a cen-

tralized set-theoretic attack detector using a robust invari-

ant set and apply this concept on the load frequency control

loop of a networked power system. The adversarial sce-

narios studied in this work involve the corruption of the

frequency sensor measurements using intermittent and

persistent attack patters. Simulation studies on a bench-

mark two-area power plant demonstrate the ability of a set-

theoretic attack detector to disclose an adversary even in

the presence of external unknown disturbances.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted
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Appendix A

Regarding notations, the symbols Om�n and In�n denote

the zero and the identity matrix of appropriate dimensions

respectively, the set BpðnÞ ¼ fx 2 R
n
: kxkp � 1g repre-

sents the unit ball corresponding to the p-norm in R
n, while
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all inequalities involving matrices or vectors are assumed

to be componentwise.
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