
Letters in Mathematical Physics (2021) 111:105
https://doi.org/10.1007/s11005-021-01437-7

Set-theoretic Yang–Baxter & reflection equations and
quantum group symmetries

Anastasia Doikou1,2 · Agata Smoktunowicz2,3

Received: 6 May 2020 / Revised: 14 June 2021 / Accepted: 28 June 2021 /
Published online: 2 August 2021
© The Author(s) 2021

Abstract
Connections between set-theoretic Yang–Baxter and reflection equations and quan-
tum integrable systems are investigated. We show that set-theoretic R-matrices are
expressed as twists of known solutions. We then focus on reflection and twisted alge-
bras and we derive the associated defining algebra relations for R-matrices being
Baxterized solutions of the A-type Hecke algebra HN (q = 1). We show in the case
of the reflection algebra that there exists a “boundary” finite sub-algebra for some
special choice of “boundary” elements of the B-type Hecke algebra BN (q = 1, Q).
We also show the key proposition that the associated double row transfer matrix is
essentially expressed in terms of the elements of the B-type Hecke algebra. This is
one of the fundamental results of this investigation together with the proof of the dual-
ity between the boundary finite subalgebra and the B-type Hecke algebra. These are
universal statements that largely generalize previous relevant findings and also allow
the investigation of the symmetries of the double row transfer matrix.
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1 Introduction

The Yang–Baxter equation and the R-matrix are central objects in the framework of
quantum integrable systems. The Yang–Baxter equation was first introduced by Yang
[73] when investigating many particle systems with δ-type interactions and later in
the celebrated work of Baxter, who solved the anisotropic Heisenberg magnet (XYZ
model) [2]. The solution of the model by Baxter was achieved by implementing the
so-called Q-operator method, a sophisticated approach leading to sets of functional
relations known as T-Q relations, that provide information on the spectrum of the
model. A different approach on the resolution of the spectrum of 1D statistical models
is the Quantum Inverse Scattering (QISM) method, an elegant algebraic technique
[50], that led directly to the invention of quasitriangular Hopf algebras known as
quantum groups, which then formally developed by Jimbo andDrinfeld independently
[29,30,44,45].

Drinfeld [28] also suggested the idea of set-theoretic solutions to the Yang–Baxter
equation, and since then a lot of research activity has been devoted to this issue (see for
instance [32,40]). Set-theoretical solutions and Yang–Baxter maps have been investi-
gated in the context of classical discrete integrable systems related also to the notion of
Darboux-Bäcklund transformation [1,61,72]. Links between the set-theoretical Yang–
Baxter equation and geometric crystals [3,33], or soliton cellular automatons [39,71]
have been also revealed. Set-theoretical solutions of the Yang–Baxter equations have
been investigated by employing the theory of braces and skew-braces. The theory
of braces was established by W. Rump who developed a structure called a brace
to describe all finite involutive set-theoretic solutions of the Yang–Baxter equation
[63,64]. He showed that every brace provides a solution to the Yang–Baxter equa-
tion, and every non-degenerate, involutive set-theoretic solution of the Yang–Baxter
equation can be obtained from a brace, a structure that generalizes nilpotent rings.
Skew-braces were then developed in [38] to describe non-involutive solutions. Key
links between set-theoretical solutions and quantum integrable systems and the asso-
ciated quantum algebras were uncovered in [26].

Following the works of Cherednik [9] and Sklyanin [65], who introduced and
studied the reflection equation, much attention has been focused on the issue of
incorporating boundary conditions in to integrable models. The boundary effects,
controlled by the refection equation, shed new light on the bulk theories themselves,
and also paved the way to new mathematical concepts and physical applications. The
set-theoretical reflection equation together with the first examples of solutions first
appeared in [5], while a more systematic study and a classification inspired by maps
appearing in integrable discrete systems presented in [4]. Other solutions were also
considered and used within the context of cellular automata [54]. In [48,69] methods
coming from the theory of braces were used to produce families of new solutions to
the reflection equation, and in [13] skew braces were used to produce reflections.

The outline of the paper. In this study, we consider set-theoretic solutions of the
Yang–Baxter and reflection equations coming from braces and we construct quantum
spin chains with open boundary conditions through Sklyanin’s double row transfer
matrix [65].We should mention that typical well-studied solutions of the Yang–Baxter
equation are the Yangians, expressed as R(λ) = P + λI , where P is the flip map:
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u ⊗ v → v ⊗ u. Here we consider more general classes of solutions of the Yang–
Baxter equation that are expressed as R(λ) = P + λP ř , where ř is a map that can
be obtained for instance from a brace. Such solutions are of particular interest, given
that in general they have no semi-classical analogue and as such they are distinctly
different from the known quantum group solutions. Let us describe below in more
detail what is achieved in each section:

• In Sect. 2, we present some basic background information. More precisely,
in Sect. 2.1, we review some background on R-matrices associated with non-
degenerate, involutive, set-theoretic solutions of the Yang–Baxter equation as well
as set-theoretic solutions of the reflection equation and some information onbraces.
Then, in Sect. 2.2, we provide a review on recent results on the connections of brace
solutions of the Yang–Baxter equation and the corresponding quantum algebras
and integrable quantum spin chains [26].

• In Sect. 3 examples of set-theoretic R-matrices expressed as simple twists of known
solutions via isomorhisms within the finite set {1, . . . ,N } are presented. Based
on these solutions we construct explicitly the associated “twisted” co-products by
employing the finite set isomorphisms. We then move on to show that the generic
brace solution of the Yang–Baxter equation can be obtained from the permutation
operator via suitable Drinfeld twists [31]. Note that the properties of the brace
structures are instrumental in deriving the formof the twist. Certain generalizations
regarding the q-deformed case are also discussed.

• In Sect. 4, we focus on quadratic algebras, i.e., the reflection and twisted algebras
[60,65].

(1) In Sects. 4.1 and 4.2, we review some background information on reflection
algebras and B-type Hecke algebras. More precisely, in Sect. 4.1, we recall
the links between the refection algebras and B-type Hecke algebras and the
Baxterization process, whereas in Sect. 4.2, we discuss set-theoretic repre-
sentations of the B-type Hecke algebra by essentially reviewing some recent
results on solutions of the set-theoretic reflection equation [69].

(2) In Sect. 4.3, we derive the associated defining algebra relations for Baxterized
solutions of the A-type Hecke algebra HN (q = 1), and we show in the case
of the reflection algebra that there exist a finite sub-algebra for some special
choice of “boundary” elements of the B-type Hecke algebra, which also turns
out to be a symmetry of the double row transfer matrix for special boundary
conditions as will be shown in Sect. 5.2.

• In Sect. 5, we introduce open spin chains like systems and we focus on the study
of the associated quantum group symmetries. We first review the construction of
open quantum spin chains via the use of tensorial representations of the reflection
algebras and the derivation of the double row transfer matrix. The findings of each
subsection are described below.

(1) In Sect. 5.1, we study the symmetries of the double row transfer matrix con-
structed fromBaxterized solutions of the B-typeHecke algebraBN (q = 1, Q).
We first prove the key proposition of this study, i.e., we show that almost all the
factors, but one, of the λ-series expansion of the open transfer matrix can be
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expressed in terms of the elements of the B-type Hecke algebra. Interestingly,
when choosing special boundary conditions, the full open transfer matrix can
be exclusively expressed in terms of elements of the A-type Hecke algebra.
Another fundamental result is that that all elements of the of the B type Hecke
algebra BN (1 = 1, Q) commute with a finite sub algebra of the reflection
algebra. This then leads to another important proposition regarding the sym-
metry of the associate double row transfer matrix. These are universal results
that largely extends earlier partial findings (see, e.g., [23,24,62]), and are of
particulate physical and mathematical significance.

(2) In Sect. 5.2, more symmetries of open transfer matrices associated with certain
classes of set-theoretic solutions of the Yang–Baxter equation coming from
braces are also discussed. The derivation of these symmetries is primarily
based on the properties of the brace structures. Some of these symmetries
generalize recent findings on periodic transfer matrices [26], while others are
new.

(3) In Sect. 5.3, symmetries of the double row transfer matrix constructed from the
special class of Lyubashenko’s solutions are identified confirming also some
of the findings of Sect. 3.

2 Preliminaries

We present in this section some basic background information regarding set-theoretic
solutions of the Yang–Baxter and reflection equations and braces as well as a brief
review on the recent findings of [26] on the links between set-theoretic solutions of
the Yang–Baxter equation from braces and quantum algebras.

2.1 The set-theoretic Yang–Baxter equation

Let X = {x1, . . . , xN } be a set and ř : X × X → X × X . Denote

ř(x, y) = (σx (y), τy(x)
)
.

We say that r is non-degenerate if σx and τy are bijective functions. Also, the solutions
(X , ř) is involutive: ř(σx (y), τy(x)) = (x, y), (ř ř(x, y) = (x, y)). We focus on non-
degenerate, involutive solutions of the set-theoretic braid equation:

(ř × idX )(idX × ř)(ř × idX ) = (idX × ř)(ř × idX )(idX × ř).

Let V be the space of dimension equal to the cardinality of X , and with a slight
abuse of notation, let ř also denote the R-matrix associated with the linearization of ř
on V = CX (see [68] for more details), i.e., ř is the N 2 × N 2 matrix:

ř =
∑

x,y,z,w∈X
ř(x, z|y, w)ex,z ⊗ ey,w, (2.1)
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where ex,y is the N × N matrix: (ex,y)z,w = δx,zδy,w. Then for the ř -matrix related
to (X , ř): ř(x, z|y, w) = δz,σx (y)δw,τy(x). Notice that the matrix ř : V ⊗ V → V ⊗ V
satisfies the (constant) Braid equation:

(ř ⊗ IV )(IV ⊗ ř)(ř ⊗ IV ) = (IV ⊗ ř)(ř ⊗ IV )(IV ⊗ ř).

Notice also that ř2 = IV⊗V the identity matrix, because ř is involutive.
For set-theoretical solutions, it is thus convenient to use the matrix notation:

ř =
∑

x,y∈X
ex,σx (y) ⊗ ey,τy(x). (2.2)

Define also, r = P ř , where P = ∑
x,y∈X ex,y ⊗ ey,x is the permutation opera-

tor, consequently r = ∑
x,y∈X ey,σx (y) ⊗ ex,τy(x). The Yangian is a special case:

ř(x, z|y, w) = δz,yδw,x .
Let (X , ř) be a non-degenerate set-theoretic solution to the Yang–Baxter equation.

A map k : X → X is a reflection of (X , ř) if it satisfies

ř(k × idX )ř(k × idX ) = (k × idX )ř(k × idX )ř .

We say that k is a set-theoretic solution to the reflection equation. We also say that k
is involutive if k(k(x)) = x .

Using thematrix notation introduced above then the reflectionmatrix K is anN×N
matrix represented as:

k =
∑

x∈X
ex,k(x) (2.3)

and satisfies the constant reflection equation:

ř(k ⊗ IV )ř(k ⊗ IV ) = (k ⊗ IV )ř(k ⊗ IV )ř . (2.4)

Let us now recall the role of braces in the derivation of set-theoretic solutions of
the Yang–Baxter equation. In [63,64], Rump showed that every solution (X , ř) can be
in a good way embedded in a brace.

Definition 2.1 (Proposition 4, [64]) A left brace is an abelian group (A;+) together
with a multiplication · such that the circle operation a ◦ b = a · b + a + b makes A
into a group, and a · (b + c) = a · b + a · c.

In many papers, an equivalent definition is used [7] . The additive identity of a brace
A will be denoted by 0 and the multiplicative identity by 1. In every brace 0 = 1. The
same notation will be used for skew braces (in every skew brace 0 = 1).

Throughout this paper, we will use the following result, which is implicit in [63,64]
and explicit in Theorem 4.4 of [7].

Theorem 2.2 (Rump’s theorem, [7,63,64]). It is known that for an involutive, non-
degenerate solution of the braid equation there is always an underlying brace
(B, ◦,+), such that the maps σx and τy come from this brace, and X is a subset

123



105 Page 6 of 40 A. Doikou, A. Smoktunowicz

in this brace such that ř(X , X) ⊆ (X , X) and ř(x, y) = (σx (y), τy(x)), where
σx (y) = x ◦ y − x, τy(x) = t ◦ x − t , where t is the inverse of σx (y) in the cir-
cle group (B, ◦). Moreover, we can assume that every element from B belongs to the
additive group (X ,+) generated by elements of X. In addition, every solution of this
type is a non-degenerate, involutive set-theoretic solution of the braid equation.

Wewill call the brace B an underlying brace of the solution (X , ř), or a brace asso-
ciated with the solution (X , ř). We will also say that the solution (X , ř) is associated
with brace B. Notice that this is also related to the formula of set-theoretic solutions
associated with the braided group (see [32] and [36]).

The following remark was also discovered by Rump.

Remark 2.3 Let (N ,+, ·) be an associative ring which is a nilpotent ring. For a, b ∈ N
define a ◦ b = a · b + a + b, then (N ,+, ◦) is a brace.

2.2 Yang–Baxter equation & quantum groups

In this subsection, we briefly review the main results reported in [26] on the various
links between braces, representations of the A-type Hecke algebras, and quantum
algebras.

Recall first the Yang–Baxter equation in the braid form (δ = λ1 − λ2):

Ř12(δ) Ř23(λ1) Ř12(λ2) = Ř23(λ2) Ř12(λ1) Ř23(δ). (2.5)

We focus here on brace solutions1 of the YBE, given by (2.2) and the Baxterized
solutions:

Ř(λ) = λř + I, (2.6)

where I = IX ⊗ IX and IX is the identitymatrix of dimension equal to the cardinality of
the set X . Let also R = P Ř, (recall the permutation operatorP =∑x,y∈X ex,y⊗ey,x ),
then the following basic properties for R matrices coming from braces were shown in
[26]:

Basic Properties. The brace R-matrix satisfies the following fundamental proper-
ties:

R12(λ) R21(−λ) = (−λ2 + 1)I, Unitarity (2.7)

Rt1
12(λ) Rt2

12(−λ − N ) = λ(−λ − N )I, Crossing-unitarity

Rt1t2
12 (λ) = R21(λ), (2.8)

where t1,2 denotes transposition on the fist, second space, respectively, and recall N
is the same as the cardinality of the set X .

Let us also recall the connection of the brace representation with the A-type Hecke
algebra.

1 All, finite, non-degenerate, involutive, set-theoretic solutions of the YBE (2.2) are coming from braces
(Theorem 2.2), therefore we will call such solutions brace solutions.
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Definition 2.4 The A-type Hecke algebra HN (q) is defined by the generators gl , l ∈
{1, 2, . . . , N − 1} and the exchange relations:

gl gl+1 gl = gl+1 gl gl+1, (2.9)
[
gl , gm

]
= 0, |l − m| > 1 (2.10)

(
gl − q

)(
gl + q−1) = 0. (2.11)

Remark 2.5 The brace solution ř (2.2) is a representation of the A-type Hecke algebra
for q = 1. Indeed, ř satisfies the braid relation and ř2 = 1, which is shown by using
the involution property. Also, the braid relation is satisfied by means of the brace
properties (see also Theorem 2.2 and [26]).

The quantum algebra associated with braces

Given a solution of the Yang–Baxter equation, the quantum algebra is defined via
the fundamental relation [34] (we have multiplied the familiar RTT relation with the
permutation operator):

Ř12(λ1 − λ2) L1(λ1) L2(λ2) = L1(λ2) L2(λ1) Ř12(λ1 − λ2). (2.12)

Ř(λ) ∈ End(CN ⊗ C
N ), L(λ) ∈ End(CN ) ⊗ A, where A2 is the quantum algebra

defined by (2.12). We shall focus henceforth on solutions associated with braces only
given by (2.6), (2.2). The defining relations of the corresponding quantum algebra
were derived in [26]:

The quantum algebra associated with the brace R matrix (2.6), (2.2) is defined by
generators L(m)

z,w, z, w ∈ X , and defining relations

L(n)
z,wL

(m)

ẑ,ŵ − L(m)
z,wL

(n)

ẑ,ŵ = L(m)

z,σw(ŵ)
L(n+1)
ẑ,τŵ(w)

− L(m+1)
z,σw(ŵ)

L(n)

ẑ,τŵ(w)

−L(n+1)
σz(ẑ),w

L(m)

τẑ(z),ŵ
+ L(n)

σz(ẑ,)w
L(m+1)

τẑ(z),ŵ
. (2.13)

The proof is based on the fundamental relation (2.12) and the form of the brace
R-matrix (for the detailed proof see [26]). Recall also that in the index notation we
define Ř12 = Ř ⊗ idA:

L1(λ) =
∑

z,w∈X
ez,w ⊗ I ⊗ Lz,w(λ), L2(λ) =

∑

z,w∈X
I ⊗ ez,w ⊗ Lz,w(λ).

(2.14)

The exchange relations among the various generators of the affine algebra are
derived below via (2.12). Let us express L as a formal power series expansion

L(λ) =∑∞
n=0

L(n)

λn
. Substituting expressions (2.6), and the λ−1 expansion in (2.12) we

2 Notice that in L in addition to the indices 1 and 2 in (2.12) there is also an implicit “quantum index‘n
associated with A, which for now is omitted, i.e., one writes L1n , L2n .
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obtain the defining relations of the quantum algebra associated with a brace R-matrix
(we focus on terms λ−n

1 λ−m
2 ):

ř12L
(n+1)
1 L(m)

2 − ř12L
(n)
1 L(m+1)

2 + L(n)
1 L(m)

2

= L(m)
1 L(n+1)

2 ř12 − L(m+1)
1 L(n)

2 ř12 + L(m)
1 L(n)

2 . (2.15)

The latter relations immediately lead to the quantum algebra relations (2.13), after
recalling: L(k)

1 = ∑x,y∈X ex,y ⊗ I ⊗ L(k)
x,y , L

(k)
2 = ∑x,y∈X I ⊗ ex,y ⊗ L(k)

x,y , and

ř12 = ř⊗idA, L
(k)
x,y are the generators of the associated quantum algebra. The quantum

algebra is also equipped with a co-product � : A �→ A ⊗ A [29,30,34]. Indeed, we
define

T1;23(λ) = L13(λ)L12(λ), (2.16)

which satisfies (2.12) and is expressed as T1;23 =∑x,y∈X ex,y ⊗ �(Lx,y(λ)).

Remark 2.6 In the special case ř = P the Y(glN ) algebra is recovered:

[
L(n+1)
i, j , L(m)

k,l

]
−
[
L(n)
i, j , L(m+1)

k,l

]
= L(m)

k, j L
(n)
i,l − L(n)

k, j L
(m)
i,l . (2.17)

The next natural step is the classification of solutions of the fundamental relation
(2.12), for the brace quantum algebra. A first step towards this goal will be to examine
the fundamental object L(λ) = L0 + 1

λ
L1, and search for finite and infinite repre-

sentations of the respective elements. The fusion procedure [51] can be also exploited
to yield higher dimensional representations of the associated quantum algebra. The
classification of L-operators will allow the identification of new classes of quantum
integrable systems, such as analogues of Toda chains or deformed boson models. A
first obvious example to consider is associated with Lyubashenko’s solutions, which
are discussed in what follows. This is a significant direction to pursue and will be
systematically addressed elsewhere.

3 Set-theoretic solutions as Drinfeld twists

In this section, we first introduce some special cases of solutions of the braid equa-
tion that are immediately obtained from fundamental known solutions. We show in
particular that a special class of solutions known as Lyubashenko’s solutions [28] can
be expressed as simple twists. Although the construction is simple, it has significant
implications on the associated symmetries of the braid solutions. We then move on to
show that the generic brace solution of the Yang–Baxter equation (2.2) can be obtained
from the permutation operator via a suitable Drinfeld twist [31], and we identify the
specific form of the twist. Moreover, inspired by the isotropic case, we provide a
similar construction for the q-deformed analogue of Lyubashenko’s solution.

Before we derive the Lyubashenko solution as a suitable twist, we first introduce a
useful Lemma.
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Lemma 3.1 Let ř ′ : V ⊗ V → V ⊗ V (V is a finite dimensional space) satisfy the
braid relation and (ř ′)2 = I⊗2. Let also V : V → V be an invertible map, such that
(V ⊗ V)ř ′ = ř ′(V ⊗ V). We define ř = (V ⊗ I )ř ′(V−1 ⊗ I ) = (I ⊗ V

−1)ř ′(I ⊗ V),

then:

(1) ř2 = I⊗2

(2) ř satisfies the braid relation.

Proof (1) ř2 = (V ⊗ I )(ř ′)2(V−1 ⊗ I ) = (V ⊗ I )I⊗2(V−1 ⊗ I ) = I⊗2.

(2) It is given that ř ′ satisfies the braid relation:

(ř ′ ⊗ I )(I ⊗ ř ′)(ř ′ ⊗ I ) = (I ⊗ ř ′)(ř ′ ⊗ I )(I ⊗ ř ′). (3.1)

We express: ř ′ ⊗ I = (V−1 ⊗ I ⊗ I )(ř ⊗ I )(V ⊗ I ⊗ I ) and I ⊗ ř ′ = (I ⊗ I ⊗
V)(I ⊗ ř)(I ⊗ I ⊗ V

−1). We then conclude for the left hand side of (3.1):

LHS : (V−1 ⊗ I ⊗ V)(ř ⊗ I )(I ⊗ ř)(ř ⊗ I )(V ⊗ I ⊗ V
−1). (3.2)

Similarly, for the RHS of (3.1) :

RHS : (V−1 ⊗ I ⊗ V)(I ⊗ ř)(ř ⊗ I )(I ⊗ ř)(V ⊗ I ⊗ V
−1). (3.3)

From (3.2), (3.3), we conclude that ř also satisfies the braid relation.

�

Proposition 3.2 Let τ, σ : X → X, X = {1, . . . ,N } be isomorphisms, such that
σ(τ(x)) = τ(σ (x)) = x and let V = ∑x∈X ex,τ (x) and V

−1 = ∑x∈X eτ(x),x . Then
any solution of the type (Lyubashenko’s solution)

ř =
∑

x,y∈X
ex,σ (y) ⊗ ey,τ (x), (3.4)

can be obtained from the permutation operator P =∑x,y∈X ex,y ⊗ ey,x as

ř = (V ⊗ I )P(V−1 ⊗ I ) = (I ⊗ V
−1)P(I ⊗ V) (3.5)

Proof The proof relies on the definitions of P, V, V
−1 and the fundamental property

ex,yez,w = δy,zex,w:

(V ⊗ I )P(V−1 ⊗ I )

=
(
∑

z∈X
eσ(z),z ⊗ I

)⎛

⎝
∑

x,y∈X
ex,y ⊗ ey,x

⎞

⎠

(
∑

w∈X
ew,σ(w) ⊗ I

)

=
∑

x,y∈X
eσ(x),σ (y) ⊗ ey,x .
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The latter is indeed equal to (3.4) given that σ(τ(x)) = τ(σ (x)) = x , and due to
Lemma 3.1, ř (3.4) satisfies the braid relation and ř2 = I⊗2. 
�

Note that r = P ř , and consequently R = P Ř take a simple form for this class of
solutions:

r = V
−1 ⊗ V ⇒ R(λ) = λV

−1 ⊗ V + P. (3.6)

Examples:

1. σ(y) = y + 1, τ (x) = x − 1, (see also [68]).
2. σ(y) = N + 1 − y, τ (x) = N + 1 − x .

Note that in both examples above x, y ∈ {1, . . . ,N } and σ, τ in example 1 are
defined modN .

Before we present our findings on the symmetry of Lyubashenko’s ř -matrix, we
first introduce a useful Lemma.

Lemma 3.3 Let lx,y be the generators of the glN algebra satisfying:

[
lx,y, lz,w

]
= δy,z lx,w − δx,wlz,y . (3.7)

The glN algebra is equipped with a coproduct � : glN → glN ⊗ glN such that

�(lx,y) = lx,y ⊗ id + id ⊗ lx,y . (3.8)

The N-coproduct is obtained by iteration�(N ) = (�(N−1) ⊗ id)� = (id⊗�(N−1))�

and is given as �(N )(lx,y) =∑N
n=1 id ⊗ . . . ⊗ lx,y︸︷︷︸

nth position

⊗ . . . ⊗ id.

Let also F(N ) : gl⊗N
N → gl

⊗N
N be an invertible element such that F(N )�(N )(lx,y) =

�
(N )
T (lx,y)F

(N ), then �
(N )
T (lx,y) also satisfy the glN algebraic relations.

Proof The N -coproducts satisfy theglN relations (3.7), i.e.,
[
�(N )(lx,y),�

(N )(lz,w)
]

=
δy,z�

(N )(lx,w) − δx,w�(N )(lz,y). By acting from the left with F(N ) and with (FN )−1

from the right in the latter commutatorwe immediately obtain
[
�

(N )
T (lx,y),�

(N )
T (lz,w)

]
=

δy,z�
(N )
T (lx,w) − δx,w�

(N )
T (lz,y). 
�

Corollary 3.4 Let ρ : glN → End(CN ) be the fundamental representation of glN ,

such that lx,y �→ ex,y,where recall ex,y areN×N matriceswith elements (ex,y)z,w =
δx,zδy,w. The special solution ř (3.4) is glN symmetric, i.e.,

[
ř , �i (ex,y)

]
= 0, x, y ∈ X , (3.9)

where we define the “twisted” co-products (i = 1, 2):

�1(ex,y) = eσ(x),σ (y) ⊗ I + I ⊗ ex,y,
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�2(ex,y) = ex,y ⊗ I + I ⊗ eτ(x),τ (y), (3.10)

(�1(eτ(x),τ (y)) = �2(ex,y)).

Proof This can be shown using the form of the special class of solutions (3.4). The
permutation operator is glN symmetric, i.e.,

[
P, �(ex,y)

]
= 0, (3.11)

where the co-products �(ex,y) are defined in Lemma (3.3) (lx,y �→ ex,y).
Let V =∑x∈X ex,τ (x), then (3.9) immediately follows from (3.11) and (3.5) after

multiplying (3.11) from the left and right with V ⊗ I , V
−1 ⊗ I or I ⊗ V

−1, I ⊗ V

respectively. �i (ex,y) are then defined as

�1(ex,y) = Vex,yV
−1 ⊗ I + I ⊗ ex,y,

�2(ex,y) = ex,y ⊗ I + I ⊗ V
−1ex,yV (3.12)

and explicitly given by (3.10). Indeed, Vex,yV−1 = eσ(x),σ (y) and V
−1ex,yV =

eτ(x),τ (y).
According to Lemma 3.3�i (ex,y) also satisfy the glN algebra relations, thus ř (3.4)

is glN symmetric. In this particular case, as is clear from the computation above, two
invertible linear maps are involved, F (2)

i : End(CN ⊗ C
N ) → End(CN ⊗ C

N ), i ∈
{1, 2} such thatF (2)

1 := V⊗ I andF (2)
2 := I⊗V

−1 andF (2)
i �(ex,y) = �i (ex,y)F (2)

i .

�

By iteration one derives the N co-products: �(N )
1 = (�

(N−1)
1 ⊗ id)�1 and �

(N )
2 =

(id ⊗ �
(N−1)
2 )�2, which explicitly read as

�
(N )
1 (ex,y) =

N∑

n=1

I ⊗ . . . ⊗ eσ N−n(x),σ N−n(y) ⊗ . . . ⊗ I , (3.13)

�
(N )
2 (ex,y) =

N∑

n=1

I ⊗ . . . ⊗ eτ n−1(x),τ n−1(y) ⊗ . . . ⊗ I , (3.14)

The above expressions can be written in a compact form as:
�

(N )
i (ex,y) = F (N )

i �(N )(ex,y)(F (N )
i )−1, where

�(N )(ex,y) =∑N
n=1 id⊗ . . .⊗ ex,y︸︷︷︸

nth position

⊗ . . .⊗id, and we defineF (N )
1 := V

N−1⊗

V
N−2 ⊗ . . .⊗V⊗ I andF (N )

2 := I ⊗V
−1 ⊗V

−2 ⊗ . . .⊗V
−(N−1) (see also relevant

findings in [27]).
It was shown in [26] that the periodicHamiltonian for systems built with R-matrices

associated with the Hecke algebraHN (q = 1) is expressed exclusively in terms of the
A-type Hecke algebra elements. In the special case where ř = P , i.e., the Yangian the
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periodic transfer matrix is glN symmetric. However, if we focus on the more general
class of Lyubashenko’s solutions of Proposition 3.2 and Corollary 3.4 we conclude
that because of the existence of the term řN1 (due to periodicity) [26], and also due to
the form of the modified co-products (3.13), (3.14), the periodic Hamiltonian and in
general the periodic transfer matrix is not glN symmetric anymore. However, we shall
be able to show in section 5 that for a special choice of boundary conditions not only
the corresponding Hamiltonian is glN symmetric, but also the double row transfer
matrix. This means that the open spin chain enjoys more symmetry compared to the
periodic one similarly to the q-deformed case [12,19,22,53,62]. It is therefore clear that
from this point of view open spin chains are rather more natural objects to consider
compared to the periodic ones. In [26] a systematic investigation of symmetries of
the periodic transfer matrix for generic representations of the A-type Hecke algebra
HN (q = 1) as well as for certain solutions of the Yang–Baxter equation coming from
braces is presented.

With the following proposition we generalize the results on Lyubashenko’s solu-
tions. Specifically, we express the generic brace ř -matrix (2.2) as a twist of the
permutation operator. Drinfeld introduced [31] the“twisting” (or deformation) of a
(quasi) triangular Hopf algebra that produces yet another (quasi) triangular (quasi)
Hopf algebra (see also relevant [52,56]). Let us briefly recall the notion of a twist.
Let Ř be the quantum group invariant matrix, i.e., it commutes with the the respective
quantum algebra [8,44,45]. We are focusing on the finite algebra g, specifically we
are considering here the algebras glN or Uq(glN ), although via the evaluation homo-
morphism one obtains the corresponding affine algebras, i.e., the Yangian Y(glN )

or the affine Uq (̂glN ) respectively [8,44,45]. Consider the fundamental representa-
tion π : g �→ End(CN ), the co-products � : g �→ g ⊗ g and the Ř-matrix satisfy
linear intertwining relations: (π ⊗ π)�(X) Ř = Ř (π ⊗ π)�(X) for X ∈ g. Let
also F ∈ End(CN ⊗ C

N ), then the Ř matrix can be “twisted” as F ŘF−1, where F
also satisfies a set of constraints dictated by the YBE. Given the linear intertwining
relations and the twisted Ř-matrix, one derives the twisted co-products of the finite
algebra as F (π ⊗ π)�(X) F−1 (for a more detailed exposition on the notions of
quasi-triangular Hopf algebras and Drinfeld twists the interested reader is referred for
instance to [8]).

Proposition 3.5 Let ř =∑x,y∈X ex,σx (y) ⊗ ey,τy(x) be the brace solution of the Yang–

Baxter equation (see also (2.2) and footnote 1 in page 6). Let also Vk, k ∈ {1, . . . ,N 2}
be the eigenvectors of the permutation operator P = ∑x,y∈X ex,y ⊗ ey,x , and V̂k ,

k ∈ {1, . . . ,N 2} be the eigenvectors of the brace ř matrix. Then the ř matrix can be
expressed as a Drinfeld twist, such that ř = FPF−1, where the twist F is explicitly

expressed as F =∑N 2

k=1 V̂k V
T
k .

Proof We divide our proof in three parts:

(1) First we diagonalize the permutation operator. Let ê j be theN dimensional column
vectors with one at the j th position and zero elsewhere, and then the (normalized)
eigenvectors of the permutation operator are (x, y ∈ X ):
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Vk = 1√
2

(
êx ⊗ êy + êy ⊗ êx

)
, k ∈ {1, . . . , N

2 + N
2

}
,

Vk = 1√
2

(
êx ⊗ êy − êy ⊗ êx

)
, k ∈ {N

2 + N
2

+ 1, . . . ,N 2}, x �= y.

The first N 2+N
2 eigenvectors have the same eigenvalue 1, while the rest N 2−N

2
eigenvectors have eigenvalue −1. Also it is easy to check that Vk form an
ortho-normal basis for the N 2 dimensional space. Indeed, V T

k Vl = δkl and
∑N 2

k=1 VkV
T
k = IN 2 (T denotes usual transposition).

(2) Second we diagonalize the brace ř -matrix. First we observe that

ř ex ⊗ ey = eσx (y) ⊗ eτy(x), ř eσx (y) ⊗ eτy(x) = ex ⊗ ey .

Then we find that the eigenvectors of the ř matrix are

V̂k = 1√
2

(
êx ⊗ êy + êσx (y) ⊗ êτy(x)

)
, k ∈ {1, . . . , N

2 + N
2

}
,

V̂k = 1√
2

(
êx ⊗ êy − êσx (y) ⊗ êτy(x)

)
, (x, y) �= (σx (y), τy(x)),

k ∈ {N
2 + N
2

+ 1, . . . ,N 2}.

As in the case of the permutation operator the ř matrix has the same eigenvalues 1
and −1 and the same multiplicities, N 2+N

2 and N 2−N
2 , respectively. Hence, the

twomatrices are similar, i.e., there exists someF ∈ End(CN ⊗C
N ) (not uniquely

defined) such that ř = FPF−1.
(3) Our task now is to derive the explicit form of F . This is quite straightforward, and

indeed, the eigenvalue problem for P (and ř ) reads as

PVk = λkVk ⇒ ř V̂k = λk V̂k

where, via ř = FPF−1, we identifyFVk = V̂k , which by using
∑N 2

k=1 VkV
T
k = I ,

leads to the explicit expression F =∑N 2

k=1 V̂k V
T
k .


�
Note that if ř = FPF−1 (P the permutation operator) then r = P ř = F (op)F−1,

where F (op) = PFP, and consequently the Baxterized solution (2.6) is given as
R(λ) = P Ř(λ) = λF (op)F−1 + P.

Corollary 3.6 The brace solution ř (2.2) is glN symmetric, i.e.,
[
ř , �T (ex,y)

] = 0,
where the twisted co-products are given as �T (ex,y) = F�(ex,y)F−1.

Proof The proof is straightforward as in Corollary 3.4 using the fact that the permu-
tation operator is glN symmetric. 
�
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Notice that here we identified the Drinfeld twist as a similarity transformation
between the permutation operator and the brace solution. The twisted n-co-product as
well as the n form of F should be identified and the admissibility of the twist should
be also examined. Also, issues on the co-associativity of the co-product need to be
addressed. We already observe in the simple case of Lyubashenko’s solutions that the
co-associativity of the twisted co-products is not guaranteed. These are significant
issues that are addressed in [27].

3.1 Parenthesis: the q-deformed case

We slightly deflect in this subsection from our main issue, which is the set-theoretic
solutions of the Yang–Baxter equation, and briefly discuss the q-deformed case.
Inspired by the special class of Lyubashenko’s solutions, we generalize inwhat follows
Proposition 3.2 and Corollary 3.4 in the case of the Uq(glN ) invariant representation
of the A-type Hecke algebra [44,45]:

g =
N∑

x �=y=1

(
ex,y ⊗ ey,x − q−sgn(x−y)ex,x ⊗ ey,y

)
+ q. (3.15)

Note that strictly speaking this solution is not a set-theoretic solution of the braid
equation. Nevertheless, isomorphisms within the set of integers {1, . . . ,N } can be
still exploited to yield generalized solutions based on (3.15).

Proposition 3.7 Let σ, τ : X → X be isomorprhisms (X = {1, . . . ,N }) such that
σ(τ(x)) = τ(σ (x)) = x. The quantity

G =
N∑

x �=y=1

(
ex,y ⊗ eτ(y),τ (x) − q−sgn(x−y)ex,x ⊗ eτ(y),τ (y)

)
+ q

=
N∑

x �=y=1

(
eσ(x),σ (y) ⊗ ey,x − q−sgn(x−y)eσ(x),σ (x) ⊗ ey,y

)
+ q (3.16)

can be obtained from the Uq(glN ) invariant braid solution (3.15), provided that
sgn(x − y) = sgn(τ (x) − τ(y)) = sgn(σ (x) − σ(y)), and is also a representa-
tion of the A-type Hecke algebra.

Proof LetV =∑w ew,τ(w), and V
−1 =∑z eτ(z),z . We show by explicit computation

that,
(V ⊗ V) g = g (V ⊗ V) (3.17)

provided that sgn(τ (x)− y) = sgn(σ (x)− y). We then define, bearing inmind (3.17):

G = (V ⊗ I ) g (V−1 ⊗ I ) = (I ⊗ V
−1) g (I ⊗ V), (3.18)

which leads to (3.16).
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Also, g is a given representation of the A-type Hecke algebra, i.e.,

(g ⊗ I ) (I ⊗ g) (g ⊗ I ) = (I ⊗ g) (g ⊗ I ) (I ⊗ g), (3.19)
(
g − q

)(
g + q−1) = 0. (3.20)

By multiplying (3.19) with V⊗ I ⊗V
−1 from the left and V

−1⊗ I ⊗V from the right,
and also multiplying (3.20) with V ⊗ I from the left and V

−1 ⊗ I from the right, and
using the definition (3.18) we immediately conclude that G is also a representation of
the A-type Hecke algebra (see also Lemma 3.1). 
�

Itwill be useful forwhat follows to recall the basic definitions regarding theUq (glN )

algebra [44,45]. Let

ai j = 2δi j − δi, j+1 − δi+1, j , i, j ∈ {1, . . . ,N − 1} (3.21)

be the Cartan matrix of the associated Lie algebra.

Definition 3.8 The quantum algebra Uq(slN ) has the Chevalley–Serre generators ei ,

fi , q± hi
2 , i ∈ {1, . . . ,N − 1} obeying the defining relations:

[
q± hi

2 , q± h j
2

]
= 0 q

hi
2 e j = q

1
2 ai j e j q

hi
2 q

hi
2 f j = q− 1

2 ai j f j q
hi
2 ,

[
ei , f j

]
= δi j

qhi − q−hi

q − q−1 , i, j ∈ {1, . . . , ,N − 1} (3.22)

and the q deformed Serre relations

1−ai j∑

n=0

(−1)n
[
1 − ai j

n

]

q
χ
1−ai j−n
i χ j χn

i = 0, χi ∈ {ei , fi }, i �= j . (3.23)

Remark 3.9 q±hi = q±(εi−εi+1), where the elements q±εi belong to Uq(glN ). Recall
thatUq(glN ) is derived by adding toUq(slN ) the elements q±εi i ∈ {1, . . . ,N } so that
q
∑N

i=1 εi belongs to the center [44,45], and
[
qεi , qε j

] = 0, qεi e j = qδi, j−δi, j+1e j qεi ,
qεi f j = q−(δi, j−δi, j+1) f j qεi .

Uq(glN ) is equipped with a co-product � : Uq(glN ) → Uq(glN ) ⊗ Uq(glN ) such
that

�(ξ) = q− hi
2 ⊗ ξ + ξ ⊗ q

hi
2 , ξ ∈

{
ei , fi

}
, �(q± εi

2 ) = q± εi
2 ⊗ q± εi

2 . (3.24)

The N -fold co-product may be derived by using the recursion relations

�(N ) = (id ⊗ �(N−1))� = (�(N−1) ⊗ id)�, (3.25)

and as is customary, �(2) = � and �(1) = id.
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Let us now consider the fundamental representation of Uq(glN ) [44,45], π :
Uq(glN ) → End(CN ):

π(ei ) = ei,i+1, π( fi ) = ei+1,i , π(q
εi
2 ) = q

ei,i
2 , (3.26)

and let us also introduce some useful notation:

(π⊗π)�(e j ) = �(e j, j+1), (π⊗π)�( f j ) = �(e j+1, j ), (π⊗π)�(qε j ) = �(qe j, j ).
(3.27)

Corollary 3.10 The element G defined in (3.16) is Uq(glN ) symmetric, i.e.,

[
G, �i (Y )

]
= 0, Y ∈

{
e j, j+1, e j+1, j , qe j, j

}
(3.28)

where we define the modified co-products (i = 1, 2):

�1(q
ei,i ) = qeσ(i),σ (i) ⊗ qei,i , �2(q

ei,i ) = qei,i ⊗ qeτ (i),τ (i)

�1(ξ) = ξσ ⊗ q
Hj
2 + q− Hσ( j)

2 ⊗ ξ,

�2(ξ) = ξ ⊗ q
Hτ ( j)

2 + q− Hj
2 ⊗ ξτ . (3.29)

Hj = (
e j, j − e j+1, j+1

)
, HF( j) = (

eF( j),F( j) − eF( j+1),F( j+1)
)
, for ξ ∈{

e j, j+1, e j+1, j

}
, we define respectively: ξF ∈

{
eF( j),F( j+1), eF( j+1),F( j)

}
.

Proof This can be shown in a straightforward manner from the properties of (3.16).
Indeed, g (3.15) is Uq(glN ) invariant [44–46] (recall the fundamental representation
(3.26)) [

g, �(Y )
]

= 0, (3.30)

where Y ∈
{
e j, j+1, e j+1, j , qe j, j

}
and the co-products of the algebra elements

are given in (3.24) (see also (3.26), (3.27)). We consider two invertible linear maps:
F (2)
i : End(CN ⊗ C

N ) → End(CN ⊗ C
N ), i ∈ {1, 2} such that F (2)

1 := V ⊗ I and

F (2)
2 := I ⊗ V

−1, where V is defined in Proposition 3.7, then from (3.30)

F (2)
i

[
g, �(Y )

]
(F (2)

i )−1 = 0 ⇒
[
G, �i (Y )

]
= 0, (3.31)

where themodified co-products are defined as�i (Y ) = F (2)
i �(Y )(F (2)

i )−1, andmore
specifically:

�1(q
ei,i ) = Vqei,i V−1 ⊗ qei,i , �2(q

ei,i ) = qei,i ⊗ V
−1qei,i V,

�1(ξ) = VξV
−1 ⊗ q

Hj
2 + Vq− Hj

2 V
−1 ⊗ ξ,

�2(ξ) = ξ ⊗ V
−1q

Hj
2 V + q− Hj

2 ⊗ V
−1ξV, ξ ∈

{
e j, j+1, e j+1, j

}
(3.32)
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and explicitly given by (3.29).
The coproducts �(Y ) satisfy the Uq(glN ) relations, then via �i (Y ) = F (2)

i �(Y )

(F (2)
i )−1, themodified coproducts�i (Y ) also satisfy theUq(glN ) exchange relations,

thus G is Uq(glN ) symmetric. 
�

Explicit expressions for the modified N co-products are then given as:

�
(N )
1 (qe j, j ) =

N⊗

n=1

qeσN−n ( j),σN−n ( j) , �
(N )
2 (qe j, j ) =

N⊗

n=1

qeτn−1( j),τn−1( j)

�
(N )
1 (ξ) =

N∑

n=1

q−
H

σN−1( j)
2 ⊗ . . . ⊗ q−

H
σN−n+1( j)

2 ⊗ ξσ N−n ⊗ q
H

σN−n−1( j)
2 . . . ⊗ q

Hj
2 ,

�
(N )
2 (ξ) =

N∑

n=1

q− Hj
2 ⊗ . . . ⊗ q−

H
τn−2( j)

2 ⊗ ξτ n−1 ⊗ q
Hτn ( j)

2 . . . ⊗ q
H

τN−1( j)
2 , (3.33)

where ξFn ∈
{
eFn( j),Fn( j+1), eFn( j+1),Fn( j)

}
. The above expressions can be writ-

ten in a compact form as: �
(N )
i (Y ) = F (N )

i �(N )(Y )(F (N )
i )−1, where recall Y ∈{

e j, j+1, e j+1, j , qe j, j
}
, �(N )(Y ) are the Uq(glN ) N -coproducts, and we define

F (N )
1 := V

N−1 ⊗V
N−2 ⊗ . . .⊗V⊗ I andF (N )

2 := I ⊗V
−1 ⊗V

−2 ⊗ . . .⊗V
−(N−1)

(see also [27]).
Some general comments are in order here. We should note that set-theoretic solu-

tions from braces have no semi-classical analogue [26], thus they are fundamentally
different from the known Yangian solutions or the q-deformed solutions of the YBE
associated with glN or Uq(glN ) [8,44,45,59]. This is evident even in the simple case
of Lyubashenko’s solution (please see Proposition 3.2 and simple examples 1 and 2 in
page 9), recall r = V

−1 ⊗ V ⇒ R(λ) = λV
−1 ⊗ V + P, where V =∑x,∈X ex,τ (x)

(more generally due to Proposition 3.5, R(λ) = λF (op)F−1+P andF (op) = PFP).
Such R-matrices can not be expressed as 1+�r (1)+· · · (up to an overall multiplicative
function f (λ)), given the form of V (or F explicitly given in [27]), a fact that makes
our construction distinct compared to the known examples of quantum algebras (quasi
triangular Hopf algebras) as described for instance by Drinfeld in [29,30] (a detailed
analysis on these issues is presented in [27]). In this spirit, it would be also very inter-
esting to consider general twists, in analogy to Proposition 3.5, for the q-deformed
case as well as the corresponding quantum groups andmake possible connections with
the theory of braces.

4 Co-ideals: reflection & twisted algebras

We introduce two, in principle distinct, quadratic algebras associated with the classifi-
cation of boundary conditions in quantum integrable models. To define these quadratic
algebras in addition to the R-matrix, we also need to introduce the K -matrix, which
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physically describes the interaction of particle-like excitations displayed by the quan-
tum integrable system, with the boundary of the system. The K -matrix satisfies
[9,60,65]:

R12(λ1−λ2)K1(λ1)R̂12(λ1+λ2)K2(λ2) = K2(λ2)R̂21(λ1+λ2)K1(λ1)R21(λ1−λ2),

(4.1)
where we define in general A21 = P12A12P12. We make two distinct choices for R̂,
which lead to the two district quadratic algebras:

R̂12(λ) = R−1
12 (−λ) Reflection algebra (4.2)

R̂12(λ) = Rt1
12

(
−λ − N

2

)
Twisted algebra, (4.3)

notice N
2 is the Coxeter number for glN .

In the self-conjugate cases, e.g., in the case of sl2, Uq(sl2) or son, spn R-matrices
R(λ) ∼ C1Rt1

12(−λ − c)C1, for some matrix C : C2 = I , i.e., the R-matrix is crossing
symmetric, and the two algebras, twisted and refection, coincide. The constant c is
associated with the Coxeter number of the corresponding algebra. It is worth noting
that these algebras are linked to two distinct types of integrable boundary conditions,
extensively studied in the context of A(1)

N−1 affine Toda field theories [10,11,14,15,25],
and quantum spin chains [65] associated with glN , Uq(glN ), and gl(N |M) algebras
[16,17,19–24,57].

4.1 Boundary Yang–Baxter equation & B-type Hecke algebra

Let us first focus in the case where R̂12(λ) = R−1
12 (−λ) ∝ R21(λ), i.e., we consider

the boundary Yang–Baxter or reflection equation [9,65], expressed in the braid form

Ř12(λ1−λ2)K1(λ1)Ř12(λ1+λ2)K1(λ2) = K1(λ2)Ř12(λ1+λ2)K1(λ1)Ř12(λ1−λ2).

(4.4)
As in the case of the Yang–Baxter equation, where representations of the A-type
Hecke algebra are associated with solutions of the Yang–Baxter equation [44,45],
via the Baxterization process, representations of the B-type Hecke algebra provide
solutions of the reflection equation [18,55].

Definition 4.1 The B-type Hecke algebra BN (q, Q) is defined by the generators gl ,
l ∈ {1, 2, . . . , N − 1} and G0 and the exchange relations (2.9)-(2.11) and

G0 g1 G0 g1 = g1 G0 g1 G0 (4.5)
[
G0, gl

]
= 0, l > 1 (4.6)

(
G0 − Q

)(
G0 − Q−1) = 0. (4.7)

We focus here on the case where q = 1 and Q arbitrary, and consider the brace
solutions (2.2) as representation of the Hecke elements gl . We can solve the quadratic
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relation (4.5) together with (4.7) to provide representation of the G0 element. Then
via Baxterization we are able to identify suitable solutions of the reflection equation.
It is obvious that the identity is a solution of the relations (4.5), (4.7), and hence of the
reflection equation.

Remark 4.2 Let b = ∑x,z∈X bz,wez,w be a representation of the G0 element of the
B-typeHecke algebra and ř is the set-theoretic solution given in (2.2). Representations
of G0 can be identified.

Indeed, let us solve the quadratic relation (4.5)

(b ⊗ I ) ř (b ⊗ I ) ř = ř (b ⊗ I ) ř (b ⊗ I ). (4.8)

The LHS of the latter equation leads to

∑
bz,xbσx (y),x̂ ez,σx̂ (ŷ) ⊗ ey,τŷ(x̂), (4.9)

subject to: ŷ = τy(x), whereas the RHS gives:

∑
bσx (y),x̂bσx̂ (ŷ),ŵex,ŵ ⊗ ey,τŷ(x̂) (4.10)

subject to: ŷ = τy(x). Comparison of the LHS and RHS provide conditions among
bx,w. Moreover, b should satisfy condition (4.7) of the B-type Hecke algebra, which
leads to ∑

y

bz,yby,w = (Q − Q−1)bz,w + δz,w. (4.11)

Study of the fundamental relations above for any brace solution will lead to admissible
representations for G0.

Note that in the special case that bz,w = δw,k(z), where k : X → X satisfies
k(k(x)) = x (Q = 1), and some extra conditions that are discussed in the subsequent
subsection, one recovers set-theoretic reflections (see also next subsection and [69]
for a more detailed discussion). In general, the full classification of representations
of the B-type Hecke algebra using the brace ř -matrix (2.2) is an important problem
itself, which however will be left for future investigations.

Remark 4.3 Let ř : V ⊗ V → V ⊗ V , b : V → V provide representations of the
B-type Hecke algebra, and assume that there exists some invertible V : V → V (see
also Lemma 3.1 and Proposition 3.2):

(V ⊗ V)ř = ř(V ⊗ V). (4.12)

We also define

ρ̌ = (V ⊗ I ) ř (V−1 ⊗ I ) = (I ⊗ V
−1) ř (I ⊗ V), β = VbV

−1 (4.13)

It then follows that ř , b as well as ρ̌, β provide presentations of the B-type Hecke
algebra.
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Remark 4.4 Let b be an N ⊗ N matrix and ř be an N 2 ⊗ N 2 matrix. Let also b1
(index notation) be a tensor realization of the G0 element of the B-type Hecke algebra
BN (q = 1, Q) and řll+1 a tensor realization of the element gl of BN (q = 1, Q). Then
solutions of the reflection equation (4.4) (Ř(λ) = λř + I⊗2) can be expressed as, up
to an overall function of λ, (Baxterization):

K(λ) = λ
(
b − κ

2
I
)+ ĉ

2
I , (4.14)

where ĉ is an arbitrary constant, κ = Q − Q−1 and I the N × N identity matrix.

This has been done in [18,55], but we briefly review the procedure here, in the special
case q = 1. Indeed, recall Ř is given by (2.6) and let K(λ) = ξ(λ)I + ζ(λ)b where
the functions ξ(λ), ζ(λ) will be identified. We substitute the expressions for Ř and
K (λ) in the reflection equation (4.4) and use repeatedly relations (4.5), (4.6), then
after various terms cancellations the reflection equation (4.4) becomes:

2λ1ξ1ζ2 − 2λ2ζ1ξ2 + κ(λ1 − λ2)ζ1ζ2 = 0 (4.15)

where we define: ζi = ζ(λi ), ξi = ξ(λi ) and κ = Q − Q−1. We divide (4.15) by
ζ1ζ2 (provided that this is nonzero) and set Qi = ξi

ζi
:

2λ1Q1 − 2λ2Q2 + κ(λ1 − λ2) = 0 ⇒ Qi = ĉ

2λi
− κ

2
, (4.16)

and the latter implies: ξ(λ)
ζ(λ)

= ĉ−λκ
2λ (ĉ is an arbitrary constant).

The remark above 4.4 is of course valid at the abstract level, that is solutions of
the spectral dependent braid and reflections equations can be expressed in terms of
the generators gl , G0 of the B-type Hecke algebra BN (q = 1, Q), i.e., Řll+1(λ) =
λgl + id and K1(λ) = λ

(
G0 − κ

2 id
)+ ĉ

2 id.

4.2 Set-theoretic representations of B-type Hecke algebras

In this section, we further investigate connections between the B-type Hecke algebra
and the set-theoretic reflection equation, and give some specific examples of repre-
sentations of Hecke algebras that correspond to set-theoretic reflections.

Lemma 4.5 Let (X , ř) be an involutive non-degenerate set-theoretic solution of
the braid equation where ř(x, y) = (σx (y), τy(x)). Then (X , ř ′) is an involu-
tive non-degenerate set-theoretic solution of the braid equation where ř ′(x, y) =
(τx (y), σy(x)).

Let k : X → X be a function. Then the following are equivalent:

(1) k : X → X is a solution to the set-theoretic reflection equation for the solution
(X , ř):

ř K[1]ř K[1] = K[1]ř K[1]ř
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where K[1](x, y) = (k(x), y).
(1) k : X → X is a solution to the following version of the reflection equation

considered in [69] for the solution (X , ř ′):

ř ′K[2]ř ′K[2] = K[2]ř ′K[2]ř ′

where K[2](x, y) = (y, k(x)).

Proof Observe that ř is non-degenerate, and hence maps σx , τy are bijections. Con-
sequently, ř is non-degenerate. Let P : X × X → X × X be defined as usually
as P(x, y) = (y, x) for x, y ∈ X . Observe that ř ′ = Př P , indeed Př P(x, y) =
Př(y, x) = P(σy(x), τx (y)) = ř ′(x, y).

Notice that ř ′ is involutive: ř ′ř ′ = Př P Př P = Př2P = P2 = idX×X . Observe
that

ř ′K[2]ř ′K[2] = K[2]ř ′K[2]ř ′

is equivalent to

(Př ′P)(PK[2]P)(Př ′P)PK[2]P = (PK[2]P)(Př ′P)(PK[2]P)(Př ′P),

which immediately leads to

ř K[1]ř K[1] = K[1]ř K[1]ř .

It remains to check that ř ′ is also a solution to the braid equation. For this purpose
let us introduce, in the index notation, P13: P13(x, y, z) = (z, y, x), it then follows that
P13(ř × idX )P13 = idX × ř ′ and P13(idX × ř)P13 = ř ′ × idX . This is easily shown,
indeed P13(ř × idX )P13(x, y, z) = P13(ř × idX )(z, y, x) = P13(σz(y), τy(z), x) =
(x, τy(z), σz(y)) = (idX × ř ′)(x, y, z). Similarly, we show that P13(idX × ř)P13 =
ř ′ × idX . By acting on the braid equation for ř with P13 from the left and right it then
immediately follows that ř ′ also satisfies the braid relation. 
�

Examples of functions k satisfying the reflection equation related to braces can be
found in [13,48,69]. Recall that this set-theoretical version of the reflection equation
together with the first examples of solutions first appeared in the work of Caudrelier
and Zhang [5]

Notice that the element of the Hecke algebra can be used to construct c-number
K -matrices satisfying equation (4.4), provided that Q = 1. Hence, by Lemma 4.5,
constant K -matrices can be obtained from involutive set-theoretic solutions to the
reflection equation. In particular, involutive τ -equivariant functions give c-number
solutions of the parameter dependent equation (4.4), and every linear combination
over C of such K -matrices is also a constant K -matrix, and hence gives a solution to
equation (4.4) (by Theorem 5.6 [69] applied with interchanging σ and τ ).

As an application of Lemma 4.5 we obtain:
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Proposition 4.6 Let (X , ř) be an involutive, non-degenerate solution of the braid equa-
tion. Let ř = ∑x,y∈X ex,σx (y) ⊗ ey,τx (y), and let gn = I⊗n−1 ⊗ ř ⊗ I⊗N−n−1. Let
b =∑x∈X ex,k(x) for some function k : X → X such that k(k(x)) = x for all x ∈ X.
Then b⊗ I is a representation of the G0 element of the B-type Hecke algebra (together
with ř used for representation of elements gn) if and only if

ττy(x)(k(σx (y))) = ττy(k(x))(k(σk(x)(y))).

Proof This follows immediately from Lemma 4.5 and Theorem 1.8 from [69], when
we interchange σ with τ . 
�

Let (X , ř) be an involutive, non-degenerate solution of the braid equation where
we denote ř(x, y) = (σx (y), τy(x)), and let k : X → X be a function. We say that k
is τ -equivariant if for every x, y ∈ X we have

τx (k(y)) = k(τx (y)).

It was shown in [69] that every function k : X → X satisfying k(σx (y)) = σx (k(y))
satisfies the set-theoretic reflection equation. By interchanging σ with τ and applying
Lemma 4.5, we get:

Corollary 4.7 Let (X , ř) be an involutive, non-degenerate solution of the braid equa-
tion. Let ř = ∑x,y∈X ex,σx (y) ⊗ ey,τx (y), and let gn = I⊗n−1 ⊗ ř ⊗ I⊗N−n−1. Let
b =∑x∈X ex,k(x) for some τ -equivariant function k : X → X such that k(k(x)) = x
for all x ∈ X. Then b ⊗ I is a representation of the G0 element of the B-type Hecke
algebra (together with ř used for representation of elements gn in this Hecke algebra).

Examples of τ -equivariant functions can be defined by fixing x, y ∈ X and defining
for k(r) = τz(y) for r = τz(x) (provided that τv(x) = x implies τv(y) = y for every
v ∈ X ). In [48] Kyriakos Katsamaktsis used central elements to construct G(X , r)
equivariant functions, his ideas also allow to define τ -equivariant functions in an
analogous way as k(x) = τc(x), where c is central.

4.3 Reflection & twisted algebras

We shall discuss in more detail now the two distinct algebras associated with the
quadratic equation (4.1). A solution of the quadratic equation (4.1) is of the form
[60,65]

K(λ|θ1) = L(λ − θ1)
(
K (λ) ⊗ id

)
L̂(λ + θ1), (4.17)

where L(λ) ∈ End(CN )⊗A satisfies the RTT relation (2.12) and K (λ) ∈ End(CN ) is
a c-number solution of the quadratic equation (4.1) (for some R(λ) ∈ End(CN ⊗C

N ),

solution of the Yang–Baxter equation). We also define (in the index notation (see also
Footnote 2, page 7))

L̂1n(λ) = L−1
1n (−λ) Reflection algebra
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L̂1n(λ) = Lt1
1n

(
−λ − N

2

)
Twisted algebra. (4.18)

The quadratic algebra B defined by (4.1) is a left co-ideal of the quantum algebra A
for a given R-matrix (see also, e.g., [14,15,22,65]), i.e., the algebra is endowed with
a co-product � : B → B ⊗ A [65]. Indeed, we define (in the index notation)

T0;12(λ|θ1, θ2) = L02(λ − θ2)K01(λ|θ1)L̂02(λ + θ2), (4.19)

where K(λ|θ1) is given in (4.17) and in the index notation K01(λ|θ1) = L01(λ −
θ1)K0(λ)L̂01(λ + θ1). Let also K01(λ|θ1) = ∑N

a,b=1 ea,b ⊗ Ka,b(λ|θ1) ⊗ id, L02 =
∑N

a,b=1 ea,b ⊗ id⊗ La,b(λ) and T0;12(λ|θ1, θ2) =∑N
a,b=1 ea,b ⊗ �(Ka,b(λ|θ1, θ2)),

then via expression (4.19):

�(Ka,b(λ|θ1, θ2)) =
∑

k,l

Kk,l(λ|θ1) ⊗ La,k(λ − θ2)L̂l,b(λ + θ2), (4.20)

where the elements Kk,l(λ|θ1) can be also re-expressed in terms of the elements of
the c-number matrix K and L when considering the realization (4.17).

In our analysis in the subsequent section, we shall be primarily focusing on tensor
representations of K and on the special case: L(λ) → R(λ), L̂(λ) → R̂(λ) and for
the rest of the present subsection and subsections 5.1–5.3 we shall be considering
R(λ) = λP ř + P , where ř provides a representation of the A-type Hecke algebra
HN (q = 1) and P is the permutation operator.

Before we move on with stating the next Proposition and Corollaries regarding the
quadratic algebras defined by (4.1) we first introduce some useful notation associated
with both the reflection and twisted algebras (4.1). We introduce ř∗ and P̂:

ř∗
12 = ř12, P̂12 = I⊗2 Reflection algebra (4.21)

ř∗
12 = r t112P12, P̂12 = (N

2
r t112 − P t1

12

)
P12 Twisted algebra. (4.22)

Proposition 4.8 Let Ř(λ) = λř + I⊗2, where ř provides a tensor realization of the
Hecke algebraHN (q = 1), and let K(λ) satisfy the quadratic equation (4.1). Let also

K(λ) =∑∞
n=0

K
(n)

λn
and K

(n) =∑z,w∈X ez,w ⊗K
(n)
z,w, where K

(n)
z,w are the generators

of the quadratic algebra defined by (4.1). The exchange relations among the quadratic
algebra generators are encoded in:

ř12K
(n+2)
1 ř∗

12K
(m)
1 − ř12K

(n)
1 ř∗

12K
(m+2)
1 + ř12K

(n+1)
1 P̂12K

(m)
1

−ř12K
(n)
1 P̂12K

(m+1)
1 + K

(n+1)
1 ř∗

12K
(m)
1 + K

(n)
1 ř∗

12K
(m+1)
1 + K

(n)
1 P̂12K

(m)
1

= K
(m)
1 ř∗

12K
(n+2)
1 ř12 − K

(m+2)
1 ř∗

12K
(n)
1 ř12 + K

(m)
1 P̂12K

(n+1)
1 ř12

−K
(m+1)
1 P̂12K

(n)
1 ř12 + K

(m+1)
1 ř∗

12K
(n)
1 + K

(m)
1 ř∗

12K
(n+1)
1 + K

(m)
1 P̂12K

(n)
1 ,

(4.23)
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where ř∗ and P̂ are defined in (4.21), (4.22).

Proof First we act from the left and right of (4.1) with the permutation operator P,

then (4.1) becomes

Ř12(λ1−λ2)K1(λ1)Ř
∗
12(λ1+λ2)K1(λ2) = K1(λ2)Ř

∗
12(λ1+λ2)K1(λ1)Ř12(λ1−λ2),

(4.24)
where Ř(λ1 − λ2) = (λ1 − λ2)ř + I⊗2 and Ř∗(λ1 + λ2) = (λ1 + λ2)ř∗ + P̂ (ř∗, P̂
are defined in (4.21), (4.22)), and we recall that K(λi ) = ∑∞

n=0
K

(n)

λni
(i ∈ {1, 2}).

We substitute the above expressions in (4.24), and we gather terms proportional to
λ−n
1 λ−m

2 , n,m ≥ 0 in the LHS and RHS of (4.24), which lead to (4.23). Recalling also

that in general A12 = A ⊗ idA, K
(n)
1 = ∑z,w∈X ez,w ⊗ I ⊗ K

(n)
z,w, and substituting

the latter expressions in (4.23) we obtain the exchange relations among the generators
K

(n)
z,w, which are particularly involved and are omitted here. 
�
It is useful for the following Corollaries to focus on terms proportional to λ21λ

−m
2

and λ1λ
−m
2 (or equivalently λ22λ

−m
1 and λ2λ

−m
1 ) in the λ1,2 expansion of the quadratic

algebra, and obtain

ř12K
(0)
1 ř∗

12K
(m)
1 = K

(m)
1 ř∗

12K
(0)
1 ř12 (4.25)

ř12K
(1)
1 ř∗

12K
(m)
1 + K

(0)
1 ř∗

12K
(m)
1 + ř12K

(0)
1 P̂12K

(m)
1

= K
(m)
1 ř∗

12K
(1)
1 ř12 + K

(m)
1 ř∗

12K
(0)
1 + K

(m)
1 P̂12K

(1)
1 ř12. (4.26)

The two corollaries that follow concern the reflection algebra only, i.e., ř∗ = ř , P̂ =
I⊗2.

Corollary 4.9 A finite non-abelian sub-algebra of the reflection algebra exists, realized
by the elements of K

(1) when K
(0) ∝ I .

Proof We focus on terms proportional λ21λ
−m
2 and λ1λ

−m
2 (4.25), (4.26) in the case of

the reflection algebra:

[
ř12K

(0)
1 ř12, K

(m)
1

]
= 0 (4.27)

[
ř12K

(1)
1 ř12, K

(m)
1

]

= K
(m)
1 K

(0)
1 ř12 + K

(m)
1 ř12K

(0)
1 − K

(0)
1 ř12K

(m)
1 − ř12K

(0)
1 K

(m)
1 . (4.28)

Notice that due to (4.17) in the case of the reflection algebra K
(0) ∝ I when the

c-number matrix K ∝ I . For m = 1 equation (4.28) provides the defining relations
of a finite sub-algebra of the reflection algebra generated by K

(1)
x,y . 
�

Corollary 4.10 For the special class of Lyubashenkos’s solutions ř of Proposition 3.2, a
finite non-abelian sub-algebra of the reflection algebra exists, realized by the elements
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of K
(1) for any K

(0). When K
(0) ∝ I the finite sub-algebra generated by the K

(1)
x,y is

the glN algebra. Moreover, traces of K
(m) commute with the elements K

(1)
x,y ,

[
K

(1)
x,y, tr1(K

(m)
1 )
]

= 0, ∀x, y ∈ X . (4.29)

Proof For the special class of solutions ř12 = V1P12V
−1
1 (3.4), equation (4.27)

becomes
[
K̃

(0)
2 , K̃

(m)
1

]
= 0, where we define K̃

(m) = V
−1

K
(m)

V (V =
∑

x∈X ex,τ (x)), which reads for the matrix elements as: K
(m)
x,y = K̃

(m)
τ (x),τ (y). The lat-

ter commutator implies that K
(0) is a c-number matrix (i.e., the entries of K

(0) are
c-numbers). Also, (4.28) becomes

[
K̃

(1)
2 , K̃

(m)
1

]
= P12

(
K̃

(m)
2

(
K̃

(0)
1 + K̃

(0)
2

)− (K̃(0)
1 + K̃

(0)
2

)
K̃

(m)
1

)
. (4.30)

Given that K
(0) is a c-number matrix, we conclude that expression (4.30) for m =

1 provides a closed algebra formed by the elements of K
(1). For m = 1 and for

K
(0) ∝ I (4.30) gives the glN exchange relations (up to an overall multiplicative

factor, which can be absorbed by rescaling the generators). See also relevant results
on tensor realizations of the sub-algebra in Corollary 5.17.

Taking the trace of (4.30) with respect to space 1 and using
[
K̃

(0)
2 , K̃

(m)
1

] = 0 we
arrive at (4.29). 
�

5 Open quantum spin chains & associated symmetries

We consider in what follows spin-chain like representations, i.e., we are focusing on
tensor representations of the quadratic algebra (4.1) (see also (4.17)): L(λ) → R(λ),
L̂(λ) → R̂(λ) and K01(λ|θ1) → K01(λ|θ1) = R01(λ − θ1)K0(λ)R̂01(λ + θ1), where
recall K (λ) is a c-number solution of the quadratic equation (4.1), R(λ) is a solution
of the Yang–Baxter equation and R̂(λ) is defined in (4.2), (4.3).

We introduce the open monodromy matrix T0,1,2...N (λ|{θi }) ∈ End((CN )⊗(N+1))

[65], which provides a tensor representation of (4.1):

T0;12...N (λ|{θi }) = T0;12...N (λ|{θi }) K0(λ) T̂0;12...N (λ|{θi }), (5.1)

where {θi } := {θ1, . . . , θN } and the monodromy matrix
T0;12...N (λ|{θi }) ∈ End((CN )⊗(N+1)) is given by

T0;12...N (λ|{θi }) = R0N (λ − θN ) · · · R02(λ − θ2)R01(λ − θ1) (5.2)

and satisfies (2.12). Also, T̂0;12...N (λ|{θi }) = T−1
0;12...N (−λ|{θi }) in the case of the

reflection algebra and T̂0;12...N (λ|{θi }) = T t0
0;12...N (−λ− N

2 |{θi }) in the case of twisted
algebra. We shall consider henceforth in expression (5.2) θi = 0, i ∈ {1, . . . N }. Such
a choice is justified by the fact that we wish to construct local Hamiltonians, based on
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the fact that R(0) ∝ P (P the permutation operator), as will be transparent in the next
subsection. The fact that the monodromy matrix T satisfies the RTT relation and K is
a c-number solution of the refection equation guarantee that the modified monodromy
T also satisfies the reflection equation, The elements of the modified monodromy
matrix are Tx,y(λ) = �(N )(Kx,y(λ)) (see also discussion in the first paragraph of
subsection 4.3). We also define the open or double row transfer matrix [65] as

t(λ) = tr0
(
K̂0T0(λ)

)
, (5.3)

where K̂ is a solutionof a dual quadratic equation3 (4.1).Note that for historical reasons
the space indexed by 0 is usually called the auxiliary space, whereas the spaces indexed
by 1, 2, . . . , N are called quantum spaces. Notice also that the quantum indices are
suppressed in the definitions of T , T̂ and T for brevity.

To prove integrability of the open spin chain, constructed from the brace R-matrix
and the corresponding K -matrices wemake use of the two important properties for the
R-matrix, i.e., the unitarity and crossing-unitarity (2.7) and (2.8) respectively. Indeed,
using the fact that T and K̂ satisfy the quadratic and dual equations (4.1), and also R
satisfies the fundamental properties (2.8), (2.8) it can be shown that (see [20,21,65]
for detailed proofs on the commutativity of the open transfer matrices associated to
both reflection and twisted algebras):

[
t(λ), t(μ)

]
= 0. (5.4)

We focus henceforth on the reflection algebra only, and we investigate the symme-
tries associated with the open transfer matrix for generic boundary conditions. The
main goal in the context of quantum integrable systems is the derivation of the eigen-
values and eigenstates of the transfer matrix. This is in general an intricate task and the
typical methodology used is the Bethe ansatz formulation, or suitable generalizations
[35,50]. In the algebraic Bethe ansatz scheme the symmetries of the transfer matrices
and the existence of a reference state are essential components.When an obvious refer-
ence state is not available, which is the typical scenario when considering set-theoretic
solutions, certain Bethe ansatz generalizations can be used. Specifically, themethodol-
ogy implemented by Faddeev and Takhtajan in [35] to solve the XYZmodel, based on
the application of local gauge (Darboux) transformations at each site of the spin chain
can be used. The separation of variables technique, introduced by Sklyanin [66], and
recently further developed for open quantum spin chains [49], can also be employed,
in particular when addressing the issue of Bethe ansatz completeness, but also as a
further consistency check. Moreover, we plan to generalize the findings of [56] on the
role of Drinfeld twists in the algebraic Bethe ansatz, for set-theoretic solutions. This
will lead to new significant connections, for instance, with generalized Gaudin-type
models.

3 The dual quadratic equation is similar to (4.1), but λi → −λi − N
2 in the arguments of R, R̂.
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5.1 Symmetries of the open transfer matrix

We shall prove in what follows some fundamental Propositions that will provide
significant information on the symmetries of the double row transfer matrix (5.3).
Note that henceforth we consider K̂ ∝ I in (5.3).

Let us first prove a useful lemma for the brace ř matrix.

Lemma 5.1 Let (X , ř) be a finite, involutive, non-degenerate set-theoretic solution of
the Yang–Baxter equation (i.e., a solution obtained from a finite brace). Let ř be the
brace matrix ř =∑x,y∈X ex,σx (y) ⊗ ey,τy(x), then tr0(řn0) = I .

Proof Let (X , ř) be our underlying set-theoretic solution. Recall that ř = ∑x,y∈X
ex,σx (y) ⊗ ey,τy(x). Observe that

tr0(řn0) =
∑

(x,y)∈W
ex,σx (y),

where (x, y) ∈ W if and only if y = τy(x). Notice that if (x, y) ∈ W then x = τ−1
y (y).

Observe that τ−1
y (y) is always in the set X (because our sets are finite so the inverse

of map τ is some power of map τ ), so for each y there exist x such that (x, y) ∈ W .
This implies that that for each y in X there is exactly one x in X such that (x, y) is in
W , we will denote this x as x[y]. This implies that tr0(řn0) =∑y∈X ex[y],σx[y] (y). We
notice that σx[y](y) = x[y], it follows from the fact that (x[y], y) is inW . Consequently,
tr0(řn0) =∑y∈X ex[y],x[y] . We notice further that if (x, y) in W and (x, z) in W then
y = z, so for each x there is exactly one y such that (x, y) is in W . Therefore,

tr0(řn0) =
∑

z∈X
ez,z

(where z equals elements x[y] for different y). Hence, that tr0(řn0) = I where recall
I is the identity matrix of dimension equal to the cardinality of X . 
�

The following Proposition is quite general and holds for any R(λ) = λP ř + P ,
and K (λ) = λc(b − κ

2 I ) + I , (c is an arbitrary constant and κ = Q − Q−1, see
also Remark 4.4). Also, ř and b provide a representation of the B-type Hecke algebra
BN (q = 1, Q), and P is the permutation operator. Recall we consider K̂ = I in the
definition of the open transfer matrix (5.3).

Proposition 5.2 Let R(λ) = λP ř + P , and K (λ) = λc(b − κ
2 I ) + I , where ř and b

provide representations of the the B-type Hecke algebra BN (q = 1, Q) and P is the
permutation operator (c is an arbitrary constant and κ = Q − Q−1). Consider the
λ-series expansion of the corresponding modified monodromy matrix (5.1) : T (λ) =
λ2N+1∑2N+1

k=0
T (k)

λk
, and the series expansion of the double row transfer matrix t(λ) =

λ2N+1∑2N+1
k=0

t(k)

λk
, where t(k) = tr0(T (k)

0 ). Then the commuting quantities, t(k) for
k = 1, . . . , 2N + 1, are expressed exclusively in terms of the elements řnn+1, n =
1, . . . , N − 1, and b1, provided that tr0(řN0) = I .

123



105 Page 28 of 40 A. Doikou, A. Smoktunowicz

Proof Let T (λ) = λN∑N
k=0

T (k)

λk
, k ∈ {0, 1, . . . , N }. Let us also introduce some

useful notation:

T(N−k−1) =
∑

[nk ,n1]

←∏

1≤ j≤k

řn j n j+1, T̂(N−k−1) =
∑

[nk ,n1]

→∏

1≤ j≤k

řn j n j+1,

where we define [nk, n1] : 1 ≤ nk < · · · < n1 ≤ N − 1, and the ordered prod-
ucts are given as

∏→
1≤ j≤k řn j n j+1 = řnknk+1řn2n2+1 . . . řn1n1+1,

∏←
1≤ j≤k řn j n j+1 =

řn1n1+1řn2n2+1 . . . řnknk+1, n1 > n2 > . . . nk .
In the proof of Proposition 4.1 in [26], all the members of the expansion of the mon-

odromy T (k), were computed using the notation introduced above and the definition of

the monodromy, and were expressed as: T (N−k)
0 =

(
T(N−k−1) + řN0T

(N−k)
)
P01�,

and similarly: T̂ (N−k)
0 = �̂P01

(
T̂(N−k−1)+T̂(N−k)řN0

)
, where� = P12 . . .PN−1N

and �̂ = PN−1NPN−2N−1 . . .P12.
Let us also express the c-number K -matrix (4.14) (derived up to an overall constant)

as: K (λ) = λb̂ + I , where b̂ = c
(
b − κ

2 I
)
(see also (4.14)), and recall here K̂ =

I . Also, in accordance to the expansion of the monodromy matrix in the previous
section we express the modified monodromy as a formal series expansion: T (λ) =
λ2N+1∑

k
T (k)

λk
, then each term of the expansion is expressed as:

T (2N−n+1)
0 =

∑

k,l

T (N−k)
0 b̂0T̂

(N−l)
0 |k+l=n−1 +

∑

k,l

T (N−k)
0 T̂ (N−l)

0 |k+l=n . (5.5)

After taking the trace and using the fact the tr0(řN0) = I we conclude for the first
term of the expression (5.5) above:

tr0
(
T (N−k)
0 b̂0T̂

(N−l)
0

)
k+l=n−1 = T(N−k)b̂1T̂

(N−l−1) + T(N−k−1)b̂1T̂
(N−l)

+NT(N−k−1)b̂1T̂
(N−l−1)

+tr0
(
řN0T

(N−k)b̂1T̂
(N−l)řN0

)
. (5.6)

Analogous expression is derived for the second term in (5.5), given that b̂ → I and
k + l = n in the expression above. The first three terms of (5.6) are clearly expressed
only in terms of the elements of the B-type Hecke algebra řnn+1, b1 (recall b̂ =
c
(
b− κ

2 I
)
). Let us focus on the last term: tr0

(
řN0T

(N−k)b̂1T̂(N−l)řN0
) = tr0

(
řN0
(
A+

B + C + D
)
řN0

)
, where we define

A =
∑

[nk−1,n1]

←∏

1≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m1]

→∏

1≤ j ′≤l−1

řm j ′m j ′+1

B =
∑

[nk−1,n1)

←∏

1≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m1]

→∏

1≤ j ′≤l−1

řm j ′m j ′+1
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C =
∑

[nk−1,n1]

←∏

1≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m1)

→∏

1≤ j ′≤l−1

řm j ′m j ′+1

D =
∑

[nk−1,n1)

←∏

1≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m1)

→∏

1≤ j ′≤l−1

řm j ′m j ′+1, (5.7)

and [nk−1, n j ) : 1 ≤ nk−1,< · · · < n j < N − 1, and [nk−1, n j ] : 1 ≤ nk−1,< · · · <

n j = N − 1. The last three terms above (B, C, D) lead to the following expressions,
after using the braid relation, involution and the fact that tr0(řN0) = I :

tr0
(
řN0BřN0

)
=

∑

[nk−1,n1)

←∏

1≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m2)

→∏

2≤ j ′≤l−1

řm j ′m j ′+1

tr0
(
řN0CřN0

)
=

∑

[nk−1,n2)

←∏

2≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m1)

→∏

1≤ j ′≤l−1

řm j ′m j ′+1

tr0
(
řN0DřN0

)
= N

∑

[nk−1,n1)

←∏

1≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m1)

→∏

1≤ j ′≤l−1

řm j ′m j ′+1.

The terms above clearly they depend only on řnn+1, b1. Let us now focus on the more
complicated first term of (5.7), and consider:

tr0
(
řN0AřN0

)
=

∑

[nk−1,n1)

←∏

1≤ j≤k−1

řn j n j+1b̂1
∑

[ml−1,m1)

→∏

1≤ j ′≤l−1

řm j ′m j ′+1

=
∑

[nk−1,n1)

←∏

k′+1≤ j≤k−1

řn j n j+1b̂1 tr0
(
řN0

←∏

1≤ j≤k′
řn j n j+1

∣∣∣
c j=0,ck′>0

×
∑

[ml−1,m1)

→∏

1≤ j ′≤l ′
řm j ′m j ′+1řN0

) →∏

l ′+1≤ j ′≤l−1

řm j ′m j ′+1

∣∣∣
c j ′=0,cl′>0

.

We distinguish the following cases:

(1) l ′ = k′, then

tr0
(
řN0

←∏

1≤ j≤k′
řn j n j+1

→∏

1≤ j ′≤k′
řm j ′m j ′+1řN0

)
= N I⊗k′

.

(2) |l ′ − k′| = 1, then

tr0
(
řN0

←∏

1≤ j≤k′
řn j n j+1

→∏

1≤ j ′≤k′
řm j ′m j ′+1 řN0

)
= I⊗m .

where m = max(k′, l ′)
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(3) k′ − l ′ = m + 1, then

tr0
(
řN0

←∏

1≤ j≤k′
řn j n j+1

→∏

1≤ j ′≤k′
řm j ′m j ′+1 řN0

)
=

←∏

l ′+2≤ j≤l ′+m+1

řn j n j+1

∣
∣∣
c j=0

(4) l ′ − k′ = m + 1, then

tr0
(
řN0

←∏

1≤ j≤k′
řn j n j+1

→∏

1≤ j ′≤k′
řm j ′m j ′+1 řN0

)
=

→∏

k′+2≤ j≤k′+m+1

řn j n j+1

∣∣∣
c j=0

,

where we define c j = n j − n j+1 − 1.

It is thus clear that the factor tr0
(
řN0AřN0

)
is also expressed in terms of the elements

řnn+1 and b1. Indeed, then all the factors t(k), k ∈ {1, . . . , 2N + 1} are expressed in
terms of řnn+1, b1. However, the term
t(0) = tr0

(
řN0řN−1N . . . ř12b̂1ř12 . . . řN−1N řN0

)
can not be expressed in the general

case in terms of řnn+1, b1. Notice that in the special case where b = I we obtain
t(0) ∝ I⊗N

The local Hamiltonian of the system for instance is given by the following explicit
expression

t(2N ) = tr0(T (2N )
0 ) = 2

N−1∑

n=1

řnn+1 + b̂1 + 2tr0(řN0). (5.8)


�
We prove below a useful Lemma:

Lemma 5.3 The elements T(i) and T̂(i), i ∈ {0, 1}, introduced on Proposition 5.2,
satisfy the following relations with the A-type Hecke algebra HN (q = 1) elements
řnn+1:

T(i)řnn+1 = řn−1nT
(i), n ∈ {2, . . . N − 1}

T̂(i)řnn+1 = řn+1n+2T̂
(i), n ∈ {1, . . . N − 2}

Proof The proof is straightforward for T(0), T̂(0) due to the form of T(0), T̂(0) and
the use of the braid relation.

ForT(1), T̂(1) the proof is a bit more involved. Let us focus onT(1) acting on řnn+1,
which can be explicitly expressed as

T(1)řnn+1 =
(
A + B + C + D

)
řnn+1 (5.9)

where we define: A = ∑m řN−1N . . . řm+1m+2řm−1m . . . ř12 for m ≥ n + 2 or m ≤
n − 2, B = řN−1N . . . řnn+1řn−2n−1 . . . ř12, C = řN−1N . . . řn+2n+1řnn+1 . . . ř12 and
D = řN−1N . . . řn+12n+2řn−1n . . . ř12.
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Using the braid relations and the fact that ř2 = I⊗2, we show that: Ařnn+1 =
řn−1nA, Břnn+1 = řn−1nD, Cřnn+1 = řn−1nC and Dřnn+1 = řn−1nB, which
immediately lead to T(1)řnn+1 = řn−1nT

(1), n ∈ {2, . . . N − 1}.
The proof for T̂(1)is in exact analogy, so we omit the details here for brevity. 
�
For the rest of the section we focus on representations of the the B-type Hecke

algebra BN (q = 1, Q = 1).

Proposition 5.4 Let R(λ) = λP ř + P , and K (λ) = λcb + I (c is an arbitrary
constant), where ř and b provide a representation of the B-typeHecke algebraBN (q =
1, Q = 1), and P is the permutation operator. The elements of T (i), i ∈ {0, 1},
introduced on Proposition 5.2, commute with the B-type Hecke algebra BN (q =
1, Q = 1) generators:

[
T (i)
x,y, řnn+1

]
=
[
T (i)
x,y, b1

]
= 0, n ∈ {1, . . . , N − 1}, x, y ∈ X . (5.10)

Proof We first write down explicitly the elements T (0) and T (1). Recall that T (0) =
řN0T

(0)b̂1T̂(0)řN0, (b̂ = cb) and from the proof of Proposition 5.2:
T (1) = a+b+c+d+ I⊗(N+1), where a = řN0T

(1)b̂1T̂(0)řN0, b = řN0T
(0)b̂1T̂(1)řN0

c = T(0)b̂1T̂(0)řN0, d = řN0T
(0)b̂1T̂(0).

Using Lemma 5.3 and the expressions just above, we conclude:
[
T (i), řnn+1

] =
0, n ∈ {1, . . . N −2}, i ∈ {0, 1}. Moreover, using the quadratic relation of the B-type
algebra ř12b1ř12b1 = b1ř12b1ř12 and the form of T (0) we show that

[
T (0), b1

] = 0,
while use of the braid relation and the form of T (0) lead to

[
T (0), řN−1N

] = 0.
It now remains to show that

[
T (1), řN−1N

] = [T (1), b1
] = 0, the proof of the

latter is more involved. Indeed, let us first focus on
[
T (1), b1

]
, it is convenient in this

case to express the first two terms of T (1) as a = a1 + a2 and b = b1 + b2, where
a1 = řN0

∑N−1
n=2

(
řN−1N · · · řn+1n+2řn−1n · · · ř23

)
ř12b̂1T̂(0)řN0,

a2 = řN0řN−1N · · · ř23b̂1T(0)řN0,
b1 = řN0T

(0)b̂1ř12
∑N−1

n=2

(
ř23 · · · řn−1nřn+1n+2 · · · řN−1N

)
řN0,

b2 = řN0T
(0)b̂1ř23 · · · řN−1N řN0.

Using the quadratic relation ř12b1ř12b̂1 = b1ř12b1ř12, and the fact that b2 = I we
show that: a1b1 = b1a1, b1b1 = b1b1, a2b1 = b1b2 and b2b1 = b1a2, cb1 = b1c,
db1 = b1d, which lead to

[
T (1), b1

] = 0.
We lastly focus on

[
T (1), řN−1N

]
, it is convenient in this case as well to express

the first two terms of T (1) as a = â1 + â2 and b = b̂1 + b̂2, where we define
â1 = řN0řN−1N

∑N−2
n=1

(
řN−2N−1 · · · řn+1n+2řn−1n · · · ř12

)
b̂1T̂(0)řN0,

â2 = řN0řN−2N−1 · · · ř12b̂1T(0)řN0,
b̂1 = řN0T

(0)b̂1
∑N−2

n=1

(
ř12 · · · řn−1nřn+1n+2 · · · řN−2N−1

)
řN−1N řN0,

b̂2 = řN0T
(0)b̂1ř12 · · · řN−2N−1řN0.

Using the braid relation and the fact that ř2 = I⊗2 we show that: â1řN−1N = řN−1N â1,
b̂1řN−1N = řN−1N b̂1, â2řN−1N = řN−1N c and b̂2řN−1N = řN−1Nd, cřN−1N =
řN−1N â2, dřN−1N = řN−1N b̂2, which lead to

[
T (1), řN−1N

] = 0.
And this concludes our proof. 
�
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Corollary 5.5 Let R(λ) = λP ř +P , and K (λ) = λcb+ I (c is an arbitrary constant),
where ř and b provide a representation of the B-type Hecke algebra BN (q = 1, Q =
1), and P is the permutation operator. Let also t(k), k ∈ {1, . . . , 2N + 1} be the
mutually commuting charges as defined in Proposition 5.2, and tr0(řN0) ∝ I⊗2, then

[
t(k), T (i)

x,y

]
= 0, i ∈ {0, 1}. (5.11)

Proof The proof is straightforward, based on Propositions 5.2 and 5.4. 
�
Corollary 5.6 Let R(λ) = λP ř +P , and K (λ) = λcb+ I (c is an arbitrary constant),
where ř and b provide a representation of the B-type Hecke algebra BN (q = 1, Q =
1), and P is the permutation operator. Let also t(k), k ∈ {0, . . . , 2N + 1} be the
mutually commuting charges as defined in Proposition 5.2, and tr0(řN0) ∝ I⊗2. In
the special case b = I :

[
t(k), T (1)

x,y

]
= 0 ⇒

[
t(λ), T (1)

x,y

]
= 0. (5.12)

Proof The proof follows directly from Propositions 5.2 and 5.4, and the fact that for
b = I , T (0) ∝ I⊗(N+1) and t(0) ∝ I⊗N . 
�
Remark 5.7 The twisted co-products for the finite algebra generated by the element of
T (1), in the special case b = I can be expressed as follows, after recalling the notation
introduced in the proof of Proposition 5.2:

T (1) = 2c
N∑

n=1

(
r0Nr0N−1 . . . r0n+1řn0r̂0n+1 . . . r̂0N−1r̂0N

)
, (5.13)

where r = P ř , r̂ = řP andP the permutation operator. After using expression (5.13),
the brace relation and recalling that r = P ř , r̂ = řP , we have

T (1) = 2c
N∑

n=1

(
řnn+1řn+1n+2 . . . řN−1N řN0řN−1N . . . řn+1n+2řnn+1

)
. (5.14)

Note that explicit expressions of the above co-products for (5.14) can be computed
for the brace solution.We shall derive in the next subsection the co-products associated
with Lyubashenko’s solutions recovering the twisted co-products of Corollary 3.4.

An interesting direction to pursue is the derivation of analogous results in the
case of the twisted algebras extending the findings of [12] on the duality between
twisted Yangians and Brauer algebras [59] to include set-theoretic solutions. We aim
at examining whether the corresponding transfer matrix can be expressed in terms
of the elements of the Brauer algebra, and also check if the elements of the Brauer
algebra commute with a finite sub-algebra of the twisted algebra. These findings will
have significant implications on the symmetries of open transfer matrices providing
valuable information on their spectrum.
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5.2 More examples of symmetries

In this subsection, we present examples of symmetries of the double row transfer
matrix partly inspired by the symmetries in [26], but also some new ones. Let (X , ř)
be a set-theoretic solution, as usually we denote ř(x, y) = (σx (y), τy(x)). In all the
examples below, we assume that the solution (X , ř) is involutive, non-degenerate and
finite. Also, we always assume that K̂ = I in (5.3).

The following class of symmetries is similar to those of Proposition 4.6 in [26].

Lemma 5.8 Let (X , ř) be a set-theoretic solution of the braid equation and let f :
X → X be an isomorphism of solutions, so f (σx (y)) = σ f (x)( f (y)) and f (τx (y)) =
τ f (x)( f (y)). Denote M = ∑

x∈X ex, f (x), and let t(λ) be the double row transfer
matrix for R(λ) = P + λP ř and K (λ) = λcb + I , where c is an arbitrary constant
and b =∑x∈X ex,k(x). Then, given that f (k(x)) = k( f (x)):

[
M⊗N , t(λ)

]
= 0.

Proof Notice that M ⊗ M commutes with r = P ř and r̂ = řP , which leads to
M⊗(N+1)T (λ) = T (λ)M⊗(N+1) and M⊗(N+1)T̂ (λ) = T̂ (λ)M⊗(N+1), also due to
f (k(x)) = k( f (x)) we have that bM = Mb. These commutation relations then
lead to

[
T (λ), M⊗(N+1)

] = 0, and from the latter we obtain, following the proof
of Proposition 4.6 in [26], M⊗NT f (x), f (x) = Tx,x M⊗N , which directly leads to[
t(λ), M⊗N

] = 0. 
�
The following Lemma also follows from Proposition 4.9 in [26].

Lemma 5.9 Let (X , ř) be a finite, non degenerate involutive set-theoretic solution of
the braid equation. Let x1, . . . , xα ∈ X for some α ∈ {1, . . . ,N } and assume that
ř(xi , y) = (y, xi ), ∀y ∈ X. Then, ∀i, j ∈ {1, 2, . . . , α}

[
�(N )(exi ,x j ), t(λ)

]
= 0,

where �(N )(exi ,x j ) = ∑N
n=1 I ⊗ . . . ⊗ exi ,x j︸ ︷︷ ︸

nth posi tion

⊗ . . . ⊗ I , t(λ) is the double row

transfer matrix for R(λ) = P + λP ř and K (λ) such that
[
K (λ), exi ,x j

] = 0.

Proof The co-product �(exi ,x j ) commutes with both r = P ř and r̂ = řP , then as in
the proof of Proposition 4.9 in [26] it can be shown that

[
�(N+1)(exi ,x j ), T (λ)

] =
[
�(N+1)(exi ,x j ), T̂ (λ)

] = 0, recall also that
[
K (λ), exi ,x j

] = 0. The three com-
mutation relations then immediately lead to

[
�(N+1)(exi ,x j ), T (λ)

] = 0. Then
following the proof of Proposition 4.9 in [26], we focus on the diagonal entries
of the latter commutator:

[
�(N )(exi ,x j ), Txi ,xi (λ)

] = −Tx j ,xi (λ) + δi jTx j ,xi (λ),[
�(N )(exi ,x j ), Tx j ,x j (λ)

] = Tx j ,xi (λ) − δi jTx j ,xi (λ) and
[
�(N )(exi ,x j ), Tz,z(λ)

] =
0, z �= xi , x j , and we conclude that

[
�(N )(exi ,x j ), t(λ)

] = 0. 
�
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The following Lemma is similar to Proposition 4.11 in [26], but here for the double
row transfer matrix, we obtain a stronger result:

Lemma 5.10 Let (X , ř) be a finite, non degenerate involutive set-theoretic solution of
the braid equation. Let x1, . . . , xα ∈ X for some α ∈ {1, . . . ,N } and assume that
ř(xi , xi ) = (xi , xi ). Then, ∀i, j ∈ {1, 2, . . . , α}

[
e⊗N
xi ,x j , t(λ)

]
= 0

where t(λ) is the double row transfer matrix for R(λ) = P + λP ř and K (λ) ∝ I .

Proof Similarly as in the proof of Proposition 4.11 from [26] it can be shown that
e⊗N
xi ,x j commutes with řnn+1, ∀n ∈ {1, . . . , N−1}. The result now immediately follows

from Proposition 5.2 and from the fact that for b = I , we have T (0) = I⊗(N+1) and
t(0) = I⊗N . 
�

We also present the following new examples of symmetries, different to the ones
derived in [26]. Let us first introduce some invariant subsets of a set-theoretic solution.
Let (X , ř) be an involutive, non-degenerate set-theoretic solution.

Definition 5.11 Let (X , ř) be a finite set-theoretic solution of the braid equation and
let Y ⊆ X . Denote ř(x, y) = (σx (y), τy(x)). We say that Y is a σ -equivariant set if
whenever x, y ∈ Y then σx (y) and τy(x) ∈ Y .

Proposition 5.12 Let (X , ř) be an involutive non-degenerate solution of the braid
equation. Let Y , Z ⊆ X be σ -equivariant sets. Define MY ,Z =∑i∈Y , j∈Z ei, j , then

[
M⊗N

Y ,Z , t(λ)
]

= 0

where t(λ) is the double row transfer matrix for K (λ) ∝ I and R(λ) = P + λP ř .

Proof By Proposition 5.2 it suffices to show that MY ,Z commutes with řnn+1, ∀n ∈
{1, . . . , N − 1}.

Observe first that

M ⊗ M =
∑

i, j∈Y ,k,l∈Z
ei,k ⊗ e j,l .

Also, ř(M ⊗ M) = M ⊗ M and (M ⊗ M)ř = M ⊗ M ,

(M ⊗ M)ř =
∑

i, j∈Y ,k,l∈Z
ei,k ⊗ e j,l

∑

x,y∈X
ex,σx (y) ⊗ ey,τy(x)

=
∑

i, j∈Y ,k,l∈Z
ei,σk (l) ⊗ e j,τl (k) = M ⊗ M,

because mapping ř : Y ⊗ Y → Y ⊗ Y with (k, l) → (σk(l), τl(k)) is bijective (as
explained in the end of the proof).

123



Set-theoretic YB, reflection equations & quantum groups Page 35 of 40 105

To show that ř(M ⊗ M) = M ⊗ M observe that, because ř is involutive it follows
that ř =∑x,y∈X eσx (y),x ⊗ eτy(x),y . Therefore,

ř(M ⊗ M) =
∑

x,y∈X
eσx (y),x ⊗ eτy(x),y

∑

i, j∈Y ,k,l∈Z
eσi ( j),k ⊗ eτ j (i),l = M ⊗ M,

because ř : Z ⊗ Z → Z ⊗ Z is a bijective function.
Therefore M⊗N commutes with řnn+1, ∀n ∈ {1, . . . , N − 1}. The results now

follows from Proposition 5.2.
To show that ř is a bijective function on Y ×Y observe that ř has the zero kernel on

X⊗X , so is injective on Y ⊗Y . Notice that ř(Y ⊗Y ) ⊆ Y ⊗Y since Y is σ -equivariant
set. Because ř : Y ⊗ Y → Y ⊗ Y is injective then ř(Y ⊗ Y ) has the same cardinality
as Y ⊗ Y , hence ř : Y ⊗ Y → Y ⊗ Y is surjective and hence bijective. 
�
Remark 5.13 We we choose σ -equivariant subsets of X which have pairwise empty
intersections we get similar algebra of symmetries as in the previous Lemma.

Definition 5.14 Let z ∈ X . By the orbit of z we will mean the smallest set Y ⊆ X
such that z ∈ Y and σx (y) ∈ Y and τx (y) ∈ Y , for all y ∈ Y , x ∈ X .

We have also the following symmetries:

Lemma 5.15 Let (X , ř) be an involutive, non degenerate solution of the braid equation
and let Q1, . . . , Qt be orbits of X.
Define Wp1,...,pt ,q1,...,qt = {i1, i2, . . . , in, j1, j2, . . . , jn : exactly pi elements among
i1, i2, . . . , in belong to the orbit Qi and exactly qi elements among j1, j2, . . . , jn
belong to the orbit Qi for every i ≤ t}.

Fix non-negative integers p1, . . . , pt , q1, . . . , qt , and define

Ap1,...,pt ,q1,...,qt =
∑

i1,i2,...,in , j1, j2,..., jn∈Wp1,...,pt ,q1,...,qt

ei1, j1 ⊗ ei2, j2 ⊗ · · · ⊗ ein , jn .

Then Ap1,...,pt ,q1,...,qt commutes with řn,n+1 and so it commutes with the double row
transfer matrix when K (λ) ∝ I .

Proof It follows from the fact that if (X , ř) is an involutive, non-degenerate set-
theoretic solution of theBraid equation then r(Qi , Q j ) ⊆ (Qi , Q j ) and it is a bijective
map, for every i, j ≤ t . 
�

5.3 Symmetries associated with Lyubashenko’s solution.

We focus in this subsection on the symmetries of the open transfer matrix constructed
from the Lyubashenko solution of Proposition 3.2.

Corollary 5.16 Let t(λ) be the double row transfer matrix for R(λ) = λP ř+P,where
ř is Lyubashenko’s solution of Proposition 3.2, and K (λ) = λcb+ I , c is an arbitrary
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constant and b satisfies: b2 = I and b1ř12b1ř12 = ř12b1ř12b1. Then,

[
t(λ), T (1)

x,y

]
= 0, x, y ∈ X . (5.15)

Proof Recall from the notation introduced in the proof of Proposition 5.2 that
T (0) = r0N · · · r01cb0r̂01 · · · r̂0N , r̂ = PrP . Then using the fact that in the
special case of Lyubashenko’s solutions, r0n = V

−1
0 Vn , we can explicitly write

T (0) = V
−N
0 cb0VN

0 , which is a c-number matrix and t(0) = tr0(cb0), which immedi-

ately leads to
[
t(0), T (1)

x,y
] = 0, and via Propositions 5.2 and 5.4 we arrive at (5.15).


�
Corollary 5.17 Let ř be Lyubashenko’s solution of Proposition 3.2, R(λ) = λP ř +P,

and K (λ) ∝ I . Then the elements T (1)
x,y of (5.13) are twisted co-products of glN , and

hence the corresponding double row transfer matrix t(λ) is glN symmetric.

Proof Recall that in the special case where b = I the quantity T (1) is given in (5.13).
In the case of the special solutions of Proposition 3.2 recall that řn0 = V

−1
0 P0nV0,

then expression (5.13) simplifies to

T (1) = 2c
N∑

n=1

(
V

(N−n+1)
n P0nV

−(N−n+1)
n

)
.

Recall also from Proposition 3.2 thatV =∑x∈X eσ(x),x andP =∑x,y∈X ex,y ⊗ey,x ,

then T (1) can be explicitly expressed as (we set for simplicity 2c = 1)

T (1) =
∑

x,y∈X
ex,y ⊗ (

N∑

n=1

I ⊗ . . . ⊗ eσ N−n+1(y),σ N−n+1(x)︸ ︷︷ ︸
nth posi tion

⊗ . . . ⊗ I
)
.

The latter expression immediately provides the elements T (1)
x,y = �

(N )
1 (eσ(y),σ (x)),

where the twisted N co-product �
(N )
1 of glN is defined in Corollary 3.4, expression

(3.13). Then due toCorollary 5.6we deduce that the corresponding double row transfer
matrix t(λ) is glN symmetric And with this we conclude our proof (compare also with
the results in Corollary 4.10 for K

(0) = I ). 
�
Corollary 5.18 Let ř be Lyubashenko’s solution of Proposition 3.2, and M =∑

y∈X αyMy, where My = ∑x∈X ex,σ y(x) and αy ∈ C. Let also t(λ) be the dou-
ble row transfer matrix for R(λ) = P + λP ř and K = λcb + I , where c is an
arbitrary constant and b =∑x∈X ex,k(x), then

[
M⊗N

y , t(λ)
]

=
[
M⊗N , t(λ)

]
= 0, (5.16)

provided that σ y(k(x)) = k(σ y(x)).
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Moreover, let ξ ∈ C and A =∑x∈X ξ xex,x , then

[
A⊗N , t(λ)

]
= 0, (5.17)

provided that ξ x = ξ k(x) and ξ x+y = ξσ(y)+τ(x).

Proof Observe that

ř
(
ez,w ⊗ eẑ,ŵ

) = (eσ(ẑ),σ (ŵ) ⊗ eτ(z),τ (w)

)
ř , (5.18)

then ř(My ⊗ Mŷ) = (Mŷ ⊗ My)ř , hence ř as well as r = P ř and r̂ = řP commute
withMy⊗My andM⊗M . Moreover,My, M commute with K (λ) due to σ y(k(x)) =
k(σ y(x)). T , T̂ and K commute with M⊗(N+1)

y and M⊗(N+1), and consequently so

does the double row transfer matrix T (λ). From
[
M⊗(N+1)

y , T (λ)
] = 0 we obtain

ex,σ y(x) ⊗ M⊗N
y Tσ y(x),σ y(x) = ex,σ y(x) ⊗ Tx,x M⊗N

y , then
∑

x∈X M⊗N
y Tσ y(x),σ y(x) =∑x∈x Tx,x M⊗N

y , similarly for M, which lead to (5.16).
Notice that in the special case b = I (5.16) follows also immediately from the fact

that M⊗N
y and M⊗N commute with řnn+1, ∀n ∈ {1, . . . , N − 1} and Proposition 5.2.

Similarly, via (5.18) and the fact that ξ x+y = ξσ(y)+τ(x) we show that[
A⊗A, ř

] = 0, andhence
[
T (λ), A⊗(N+1)

] = [T̂ (λ), A⊗(N+1)
] = 0.Moreover, due

to ξ x = ξ k(x) we show that
[
K (λ), A

] = 0, and consequently
[
T (λ), A⊗(N+1)

] = 0.
By taking the trace over the auxiliary space in the latter commutator, we arrive at
(5.17). 
�
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