
Set Transformer: A Framework for Attention-based

Permutation-Invariant Neural Networks

Juho Lee 1 2 Yoonho Lee 3 Jungtaek Kim 4 Adam R. Kosiorek 1 5 Seungjin Choi 4 Yee Whye Teh 1

Abstract

Many machine learning tasks such as multiple

instance learning, 3D shape recognition and few-

shot image classification are defined on sets of in-

stances. Since solutions to such problems do not

depend on the order of elements of the set, mod-

els used to address them should be permutation

invariant. We present an attention-based neural

network module, the Set Transformer, specifically

designed to model interactions among elements

in the input set. The model consists of an encoder

and a decoder, both of which rely on attention

mechanisms. In an effort to reduce computational

complexity, we introduce an attention scheme in-

spired by inducing point methods from sparse

Gaussian process literature. It reduces computa-

tion time of self-attention from quadratic to linear

in the number of elements in the set. We show

that our model is theoretically attractive and we

evaluate it on a range of tasks, demonstrating in-

creased performance compared to recent methods

for set-structured data.

1. Introduction

Learning representations has proven to be an essential prob-

lem for deep learning and its many success stories. The

majority of problems tackled by deep learning are instance-

based and take the form of mapping a fixed-dimensional

input tensor to its corresponding target value (Krizhevsky

et al., 2012; Graves et al., 2013).

For some applications, we are required to process set-

structured data. Multiple instance learning (Dietterich et al.,
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1997; Maron & Lozano-Pérez, 1998) is an example of such

a set-input problem, where a set of instances is given as an

input and the corresponding target is a label for the entire

set. Other problems such as 3D shape recognition (Wu et al.,

2015; Shi et al., 2015; Su et al., 2015; Charles et al., 2017),

sequence ordering (Vinyals et al., 2016), and various set op-

erations (Muandet et al., 2012; Oliva et al., 2013; Edwards &

Storkey, 2017; Zaheer et al., 2017) can also be viewed as the

set-input problems. Moreover, many meta-learning (Thrun

& Pratt, 1998; Schmidhuber, 1987) problems which learn

using different, but related tasks may also be treated as set-

input tasks where an input set corresponds to the training

dataset of a single task. For example, few-shot image clas-

sification (Finn et al., 2017; Snell et al., 2017; Lee & Choi,

2018) operates by building a classifier using a support set

of images, which is evaluated with query images.

A model for set-input problems should satisfy two critical

requirements. First, it should be permutation invariant —

the output of the model should not change under any permu-

tation of the elements in the input set. Second, such a model

should be able to process input sets of any size. While these

requirements stem from the definition of a set, they are not

easily satisfied in neural-network-based models: classical

feed-forward neural networks violate both requirements,

and RNNs are sensitive to input order.

Recently, Edwards & Storkey (2017) and Zaheer et al.

(2017) propose neural network architectures which meet

both criteria, which we call set pooling methods. In this

model, each element in a set is first independently fed into

a feed-forward neural network that takes fixed-size inputs.

Resulting feature-space embeddings are then aggregated

using a pooling operation (mean, sum, max or similar).

The final output is obtained by further non-linear processing

of the aggregated embedding. This remarkably simple ar-

chitecture satisfies both aforementioned requirements, and

more importantly, is proven to be a universal approximator

for any set function (Zaheer et al., 2017). Thanks to this

property, it is possible to learn a complex mapping between

input sets and their target outputs in a black-box fashion,

much like with feed-forward or recurrent neural networks.

Even though this set pooling approach is theoretically at-

tractive, it remains unclear whether we can approximate
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complex mappings well using only instance-based feature

extractors and simple pooling operations. Since every el-

ement in a set is processed independently in a set pooling

operation, some information regarding interactions between

elements has to be necessarily discarded. This can make

some problems unnecessarily difficult to solve.

Consider the problem of amortized clustering, where we

would like to learn a parametric mapping from an input

set of points to the centers of clusters of points inside the

set. Even for a toy dataset in 2D space, this is not an easy

problem. The main difficulty is that the parametric mapping

must assign each point to its corresponding cluster while

modelling the explaining away pattern such that the resulting

clusters do not attempt to explain overlapping subsets of

the input set. Due to this innate difficulty, clustering is

typically solved via iterative algorithms that refine randomly

initialized clusters until convergence. Even though a neural

network with a set poling operation can approximate such an

amortized mapping by learning to quantize space, a crucial

shortcoming is that this quantization cannot depend on the

contents of the set. This limits the quality of the solution

and also may make optimization of such a model more

difficult; we show empirically in Section 5 that such pooling

architectures suffer from under-fitting.

In this paper, we propose a novel set-input deep neural

network architecture called the Set Transformer, (cf. Trans-

former, (Vaswani et al., 2017)). The novelty of the Set

Transformer is in three important design choices:

1. We use a self-attention mechanism to process every

element in an input set, which allows our approach to

naturally encode pairwise- or higher-order interactions

between elements in the set.

2. We propose a method to reduce the O(n2) computation

time of full self-attention (e.g. the Transformer) to

O(nm) where m is a fixed hyperparameter, allowing

our method to scale to large input sets.

3. We use a self-attention mechanism to aggregate fea-

tures, which is especially beneficial when the prob-

lem requires multiple outputs which depend on each

other, such as the problem of meta-clustering, where

the meaning of each cluster center heavily depends its

location relative to the other clusters.

We apply the Set Transformer to several set-input problems

and empirically demonstrate the importance and effective-

ness of these design choices, and show that we can achieve

the state-of-the-art performances for the most of the tasks.

2. Background

2.1. Pooling Architecture for Sets

Problems involving a set of objects have the permutation

invariance property: the target value for a given set is the

same regardless of the order of objects in the set. A sim-

ple example of a permutation invariant model is a network

that performs pooling over embeddings extracted from the

elements of a set. More formally,

net({x1, . . . , xn}) = ρ(pool({φ(x1), . . . , φ(xn)})). (1)

Zaheer et al. (2017) have proven that all permutation in-

variant functions can be represented as (1) when pool is

the sum operator and ρ, φ any continuous functions, thus

justifying the use of this architecture for set-input problems.

Note that we can deconstruct (1) into two parts: an encoder

(φ) which independently acts on each element of a set of n
items, and a decoder (ρ(pool(·))) which aggregates these

encoded features and produces our desired output. Most

network architectures for set-structured data follow this

encoder-decoder structure.

Zaheer et al. (2017) additionally observed that the model

remains permutation invariant even if the encoder is a stack

of permutation-equivariant layers:

Definition 1. Let Sn be the set of all permutations of indices

{1, . . . , n}. A function f : Xn → Y n is permutation equiv-

ariant iff for any permutation π ∈ Sn, f(πx) = πf(x).

An example of a permutation-equivariant layer is

fi(x; {x1, . . . , xn}) = σi(λx+ γpool({x1, . . . , xn}))
(2)

where pool is the pooling operation, λ, γ are learnable scalar

variables, and σ(·) is a nonlinear activation function.

2.2. Attention

Assume we have n query vectors (corresponding to a set

with n elements) each with dimension dq: Q ∈ R
n×dq .

An attention function Att(Q,K, V ) is a function that

maps queries Q to outputs using nv key-value pairs K ∈
R

nv×dq , V ∈ R
nv×dv .

Att(Q,K, V ;ω) = ω
(

QK⊤
)

V. (3)

The pairwise dot product QK⊤ ∈ R
n×nv measures how

similar each pair of query and key vectors is, with weights

computed with an activation function ω. The output

ω(QK⊤)V is a weighted sum of V where a value gets

more weight if its corresponding key has larger dot product

with the query.

Multi-head attention, originally introduced in Vaswani

et al. (2017), is an extension of the previous attention
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(a) Our model (b) MAB (c) SAB (d) ISAB

Figure 1. Diagrams of our attention-based set operations.

scheme. Instead of computing a single attention func-

tion, this method first projects Q,K, V onto h different

dMq , dMq , dMv -dimensional vectors, respectively. An atten-

tion function (Att(·;ωj)) is applied to each of these h pro-

jections. The output is a linear transformation of the con-

catenation of all attention outputs:

Multihead(Q,K, V ;λ, ω) = concat(O1, · · · , Oh)W
O,

(4)

where Oj = Att(QWQ
j ,KWK

j , V WV
j ;ωj) (5)

Note that Multihead(·, ·, ·;λ) has learnable parameters

λ = {WQ
j ,WK

j ,WV
j }hj=1

, where WQ
j ,WK

j ∈ R
dq×dM

q ,

WV
j ∈ R

dv×dM
v , WO ∈ R

hdM
v ×d. A typical choice for the

dimension hyperparameters is dMq = dq/h, dMv = dv/h,

d = dq . For brevity, we set dq = dv = d, dMq = dMv = d/h
throughout the rest of the paper. Unless otherwise specified,

we use a scaled softmax ωj(·) = softmax(·/
√
d), which

our experiments were worked robustly in most settings.

3. Set Transformer

In this section, we motivate and describe the Set Trans-

former: an attention-based neural network that is designed

to process sets of data. Similar to other architectures, a Set

Transformer consists of an encoder followed by a decoder

(cf. Section 2.1), but a distinguishing feature is that each

layer in the encoder and decoder attends to their inputs to

produce activations. Additionally, instead of a fixed pooling

operation such as mean, our aggregating function pool(·)
is parameterized and can thus adapt to the problem at hand.

3.1. Permutation Equivariant (Induced) Set Attention

Blocks

We begin by defining our attention-based set operations,

which we call SAB and ISAB. While existing pooling meth-

ods for sets obtain instance features independently of other

instances, we use self-attention to concurrently encode the

whole set. This gives the Set Transformer the ability to com-

pute pairwise as well as higher-order interactions among

instances during the encoding process. For this purpose,

we adapt the multihead attention mechanism used in Trans-

former. We emphasize that all blocks introduced here are

neural network blocks with their own parameters, and not

fixed functions.

Given matrices X,Y ∈ R
n×d which represent two sets of

d-dimensional vectors, we define the Multihead Attention

Block (MAB) with parameters ω as follows:

MAB(X,Y ) = LayerNorm(H + rFF(H)), (6)

where H = LayerNorm(X +Multihead(X,Y, Y ;ω)),
(7)

rFF is any row-wise feedforward layer (i.e., it pro-

cesses each instance independently and identically), and

LayerNorm is layer normalization (Ba et al., 2016). The

MAB is an adaptation of the encoder block of the Trans-

former (Vaswani et al., 2017) without positional encoding

and dropout. Using the MAB, we define the Set Attention

Block (SAB) as

SAB(X) := MAB(X,X). (8)

In other words, an SAB takes a set and performs self-

attention between the elements in the set, resulting in a set

of equal size. Since the output of SAB contains information

about pairwise interactions among the elements in the input

set X , we can stack multiple SABs to encode higher order

interactions. Note that while the SAB (8) involves a multi-

head attention operation (7), where Q = K = V = X , it

could reduce to applying a residual block on X . In practice,

it learns more complicated functions due to linear projec-

tions of X inside attention heads, (3) and (5).

A potential problem with using SABs for set-structured

data is the quadratic time complexity O(n2), which may be

too expensive for large sets (n ≫ 1). We thus introduce

the Induced Set Attention Block (ISAB), which bypasses

this problem. Along with the set X ∈ R
n×d, additionally

define m d-dimensional vectors I ∈ R
m×d, which we call

inducing points. Inducing points I are part of the ISAB

itself, and they are trainable parameters which we train

along with other parameters of the network. An ISAB with

m inducing points I is defined as:

ISABm(X) = MAB(X,H) ∈ R
n×d, (9)

where H = MAB(I,X) ∈ R
m×d. (10)

The ISAB first transforms I into H by attending to the

input set. The set of transformed inducing points H , which
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contains information about the input set X , is again attended

to by the input set X to finally produce a set of n elements.

This is analogous to low-rank projection or autoencoder

models, where inputs (X) are first projected onto a low-

dimensional object (H) and then reconstructed to produce

outputs. The difference is that the goal of these methods is

reconstruction whereas ISAB aims to obtain good features

for the final task. We expect the learned inducing points

to encode some global structure which helps explain the

inputs X . For example, in the amortized clustering problem

on a 2D plane, the inducing points could be appropriately

distributed points on the 2D plane so that the encoder can

compare elements in the query dataset indirectly through

their proximity to these grid points.

Note that in (9) and (10), attention was computed between

a set of size m and a set of size n. Therefore, the time

complexity of ISABm(X;λ) is O(nm) where m is a (typ-

ically small) hyperparameter — an improvement over the

quadratic complexity of the SAB. We also emphasize that

both of our set operations (SAB and ISAB) are permutation

equivariant (definition in Section 2.1):

Property 1. Both SAB(X) and ISABm(X) are permuta-

tion equivariant.

3.2. Pooling by Multihead Attention

A common aggregation scheme in permutation invariant

networks is a dimension-wise average or maximum of the

feature vectors (cf. Section 1). We instead propose to aggre-

gate features by applying multihead attention on a learnable

set of k seed vectors S ∈ R
k×d. Let Z ∈ R

n×d be the set of

features constructed from an encoder. Pooling by Multihead

Attention (PMA) with k seed vectors is defined as

PMAk(Z) = MAB(S, rFF(Z)). (11)

Note that the output of PMAk is a set of k items. We use

one seed vector (k = 1) in most cases, but for problems such

as amortized clustering which requires k correlated outputs,

the natural thing to do is to use k seed vectors. To further

model the interactions among the k outputs, we apply an

SAB afterwards:

H = SAB(PMAk(Z)). (12)

We later empirically show that such self-attention after pool-

ing helps in modeling explaining-away (e.g., among clusters

in an amortized clustering problem).

Intuitively, feature aggregation using attention should be

beneficial because the influence of each instance on the

target is not necessarily equal. For example, consider a

problem where the target value is the maximum value of a

set of real numbers. Since the target can be recovered using

only a single instance (the largest), finding and attending to

that instance during aggregation will be advantageous.

3.3. Overall Architecture

Using the ingredients explained above, we describe how we

would construct a set transformer consists of an encoder and

a decoder. The encoder Encoder : X 7→ Z ∈ R
n×d is a

stack of SABs or ISABs, for example:

Encoder(X) = SAB(SAB(X)) (13)

Encoder(X) = ISABm(ISABm(X)). (14)

We point out again that the time complexity for ℓ stacks

of SABs and ISABs are O(ℓn2) and O(ℓnm), respectively.

This can result in much lower processing times when using

ISAB (as compared to SAB), while still maintaining high

representational power. After the encoder transforms data

X ∈ R
n×dx into features Z ∈ R

n×d, the decoder aggre-

gates them into a single or a set of vectors which is fed into

a feed-forward network to get final outputs. Note that PMA

with k > 1 seed vectors should be followed by SABs to

model the correlation between k outputs.

Decoder(Z;λ) = rFF(SAB(PMAk(Z))) ∈ R
k×d (15)

where PMAk(Z) = MAB(S, rFF(Z)) ∈ R
k×d, (16)

3.4. Analysis

Since the blocks used to construct the encoder (i.e., SAB,

ISAB) are permutation equivariant, the mapping of the en-

coder X → Z is permutation equivariant as well. Combined

with the fact that the PMA in the decoder is a permutation

invariant transformation, we have the following:

Proposition 1. The Set Transformer is permutation invari-

ant.

Being able to approximate any function is a desirable prop-

erty, especially for black-box models such as deep neural

networks. Building on previous results about the universal

approximation of permutation invariant functions, we prove

the universality of Set Transformers:

Proposition 2. The Set Transformer is a universal approxi-

mator of permutation invariant functions.

Proof. See supplementary material.

4. Related Works

Pooling architectures for permutation invariant map-

pings Pooling architectures for sets have been used in

various problems such as 3D shape recognition (Shi et al.,

2015; Su et al., 2015), discovering causality (Lopez-Paz

et al., 2017), learning the statistics of a set (Edwards &

Storkey, 2017), few-shot image classification (Snell et al.,

2017), and conditional regression and classification (Gar-

nelo et al., 2018). Zaheer et al. (2017) discuss the structure
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in general and provides a partial proof of the universality

of the pooling architecture, and Wagstaff et al. (2019) fur-

ther discuss the limitation of pooling architectures. Bloem-

Reddy & Teh (2019) provides a link between probabilistic

exchangeability and pooling architectures.

Attention-based approaches for sets Several recent

works have highlighted the competency of attention mecha-

nisms in modeling sets. Vinyals et al. (2016) pool elements

in a set by a weighted average with weights computed using

an attention mechanism. Yang et al. (2018) propose AttSets

for multi-view 3D reconstruction, where dot-product atten-

tion is applied to compute the weights used to pool the

encoded features via weighted sums. Similarly, Ilse et al.

(2018) use attention-based weighted sum-pooling for multi-

ple instance learning. Compared to these approaches, ours

use multihead attention in aggregation, and more impor-

tantly, we propose to apply self-attention after pooling to

model correlation among multiple outputs. PMA with k = 1
seed vector and single-head attention roughly corresponds

to these previous approaches. Although not permutation

invariant, Mishra et al. (2018) has attention as one of its

core components to meta-learn to solve various tasks using

sequences of inputs. Kim et al. (2019) proposed attention-

based conditional regression, where self-attention is applied

to the query sets.

Modeling interactions between elements in sets An im-

portant reason to use the Transformer is to explicitly model

higher-order interactions among the elements in a set. San-

toro et al. (2017) propose the relational network, a simple

architecture that sum-pools all pairwise interactions of el-

ements in a given set, but not higher-order interactions.

Similarly to our work, Ma et al. (2018) use the Transformer

to model interactions between the objects in a video. They

use mean-pooling to obtain aggregated features which they

fed into an LSTM.

Inducing point methods The idea of letting trainable vec-

tors I directly interact with data points is loosely based on

the inducing point methods used in sparse Gaussian pro-

cesses (Snelson & Ghahramani, 2005) and the Nyström

method for matrix decomposition (Fowlkes et al., 2004). m
trainable inducing points can also be seen as m independent

memory cells accessed with an attention mechanism. The

differential neural dictionary (Pritzel et al., 2017) stores pre-

vious experience as key-value pairs and uses this to process

queries. One can view the ISAB is the inversion of this idea,

where queries I are stored and the input features are used as

key-value pairs.

5. Experiments

To evaluate the Set Transformer, we apply it to a suite of

tasks involving sets of data points. We repeat all experi-

Table 1. Mean absolute errors on the max regression task.

Architecture MAE

rFF + Pooling (mean) 2.133 ± 0.190
rFF + Pooling (sum) 1.902 ± 0.137
rFF + Pooling (max) 0.1355 ± 0.0074

SAB + PMA (ours) 0.2085 ± 0.0127

ments five times and report performance metrics evaluated

on corresponding test datasets. Along with baselines, we

compared various architectures arising from the combina-

tion of the choices of having attention in encoders and de-

coders. Unless specified otherwise, “simple pooling” means

average pooling.

• rFF + Pooling (Zaheer et al., 2017): rFF layers in

encoder and simple pooling + rFF layers in decoder.

• rFFp-mean/rFFp-max + Pooling (Zaheer et al., 2017):

rFF layers with permutation equivariant variants in

encoder (Zaheer et al., 2017, (4)) and simple pooling +

rFF layers in decoder.

• rFF + Dotprod (Yang et al., 2018; Ilse et al., 2018):

rFF layers in encoder and dot product attention based

weighted sum pooling + rFF layers in decoder.

• SAB (ISAB) + Pooling (ours): Stack of SABs (ISABs)

in encoder and simple pooling + rFF layers in decoder.

• rFF + PMA (ours): rFF layers in encoder and PMA

(followed by stack of SABs) in decoder.

• SAB (ISAB) + PMA (ours): Stack of SABs (ISABs)

in encoder and PMA (followed by stack of SABs) in

decoder.

5.1. Toy Problem: Maximum Value Regression

To demonstrate the advantage of attention-based set aggre-

gation over simple pooling operations, we consider a toy

problem: regression to the maximum value of a given set.

Given a set of real numbers {x1, . . . , xn}, the goal is to

return max(x1, · · · , xn). Given prediction p, we use the

mean absolute error |p−max(x1, · · · , xn)| as the loss func-

tion. We constructed simple pooling architectures with three

different pooling operations: max, mean, and sum. We

report loss values after training in Table 1. Mean- and sum-

pooling architectures result in a high mean absolute error

(MAE). The model with max-pooling can predict the output

perfectly by learning its encoder to be an identity function,

and thus achieves the highest performance. Notably, the

Set Transformer achieves performance comparable to the

max-pooling model, which underlines the importance of

additional flexibility granted by attention mechanisms — it

can learn to find and attend to the maximum element.
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Figure 2. Counting unique characters: this is a randomly sampled

set of 20 images from the Omniglot dataset. There are 14 different

characters inside this set.

Table 2. Accuracy on the unique character counting task.

Architecture Accuracy

rFF + Pooling 0.4382 ± 0.0072
rFFp-mean + Pooling 0.4617 ± 0.0076
rFFp-max + Pooling 0.4359 ± 0.0077

rFF + Dotprod 0.4471 ± 0.0076

rFF + PMA (ours) 0.4572 ± 0.0076
SAB + Pooling (ours) 0.5659 ± 0.0077
SAB + PMA (ours) 0.6037 ± 0.0075

5.2. Counting Unique Characters

In order to test the ability of modelling interactions between

objects in a set, we introduce a new task of counting unique

elements in an input set. We use the Omniglot (Lake et al.,

2015) dataset, which consists of 1,623 different handwritten

characters from various alphabets, where each character is

represented by 20 different images.

We split all characters (and corresponding images) into train,

validation, and test sets and only train using images from the

train character classes. We generate input sets by sampling

between 6 and 10 images and we train the model to predict

the number of different characters inside the set. We used

a Poisson regression model to predict this number, with

the rate λ given as the output of a neural network. We

maximized the log likelihood of this model using stochastic

gradient ascent.

We evaluated model performance using sets of images sam-

pled from the test set of characters. Table 2 reports accuracy,

measured as the frequency at which the mode of the Poisson

distribution chosen by the network is equal to the number

of characters inside the input set.

We additionally performed experiments to see how the num-

ber of incuding points affects performance. We trained

ISABn+PMA on this task while varying the number of in-

ducing points (n). Accuracies are shown in Figure 3, where

other architectures are shown as horizontal lines for compar-

ison. Note first that even the accuracy of ISAB1 + PMA
surpasses that of both rFF+Pooling and rFF+PMA, and

that performance tends to increase as we increase n.

1 2 3 4 5 6 7 8 9 10 11

Number of Inducing Points (n)

0.
45

0.
50

0.
55

0.
60

A
cc
u
ra
cy

ISAB(n)+PMA

SAB+PMA

SAB + Pooling

rFF + PMA

rFF + Pooling

Figure 3. Accuracy of ISABn + PMA on the unique character

counting task. x-axis is n and y-axis is accuracy.

5.3. Amortized Clustering with Mixture of Gaussians

We applied the set-input networks to the task of maxi-

mum likelihood of mixture of Gaussians (MoGs). The

log-likelihood of a dataset X = {x1, . . . , xn} generated

from an MoG with k components is

log p(X; θ) =

n
∑

i=1

log

k
∑

j=1

πjN (xi;µj , diag(σ
2

j )). (17)

The goal is to learn the optimal parameters θ∗(X) =
argmaxθ log p(X; θ). The typical approach to this prob-
lem is to run an iterative algorithm such as Expectation-
Maximisation (EM) until convergence. Instead, we aim
to learn a generic meta-algorithm that directly maps the
input set X to θ∗(X). One can also view this as amor-
tized maximum likelihood learning. Specifically, given a
dataset X , we train a neural network to output parameters

f(X;λ) = {π(X), {µj(X), σj(X)}kj=1
} which maximize

EX





|X|
∑

i=1

log

k
∑

j=1

πj(X)N (xi;µj(X), diag(σ2

j (X)))



 . (18)

We structured f(·;λ) as a set-input neural network and

learned its parameters λ using stochastic gradient ascent,

where we approximate gradients using minibatches of

datasets.

We tested Set Transformers along with other set-input net-

works on two datasets. We used four seed vectors for the

PMA (S ∈ R
4×d) so that each seed vector generates the

parameters of a cluster.

Synthetic 2D mixtures of Gaussians: Each dataset con-

tains n ∈ [100, 500] points on a 2D plane, each sampled

from one of four Gaussians.

CIFAR-100: Each dataset contains n ∈ [100, 500] images

sampled from four random classes in the CIFAR-100 dataset.

Each image is represented by a 512-dim vector obtained

from a pretrained VGG network (Simonyan & Zisserman,

2014).
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Table 3. Meta clustering results. The number inside parenthesis indicates the number of inducing points used in ISABs of encoders. We

show average likelihood per data for the synthetic dataset and the adjusted rand index (ARI) for the CIFAR-100 experiment. LL1/data,

ARI1 are the evaluation metrics after a single EM update step. The oracle for the synthetic dataset is the log likelihood of the actual

parameters used to generate the set, and the CIFAR oracle was computed by running EM until convergence.

Synthetic CIFAR-100

Architecture LL0/data LL1/data ARI0 ARI1

Oracle -1.4726 0.9150
rFF + Pooling -2.0006 ± 0.0123 -1.6186 ± 0.0042 0.5593 ± 0.0149 0.5693 ± 0.0171

rFFp-mean + Pooling -1.7606 ± 0.0213 -1.5191 ± 0.0026 0.5673 ± 0.0053 0.5798 ± 0.0058
rFFp-max + Pooling -1.7692 ± 0.0130 -1.5103 ± 0.0035 0.5369 ± 0.0154 0.5536 ± 0.0186

rFF + Dotprod -1.8549 ± 0.0128 -1.5621 ± 0.0046 0.5666 ± 0.0221 0.5763 ± 0.0212

SAB + Pooling (ours) -1.6772 ± 0.0066 -1.5070 ± 0.0115 0.5831 ± 0.0341 0.5943 ± 0.0337
ISAB (16) + Pooling (ours) -1.6955 ± 0.0730 -1.4742 ± 0.0158 0.5672 ± 0.0124 0.5805 ± 0.0122

rFF + PMA (ours) -1.6680 ± 0.0040 -1.5409 ± 0.0037 0.7612 ± 0.0237 0.7670 ± 0.0231
SAB + PMA (ours) -1.5145 ± 0.0046 -1.4619 ± 0.0048 0.9015 ± 0.0097 0.9024 ± 0.0097

ISAB (16) + PMA (ours) -1.5009 ± 0.0068 -1.4530 ± 0.0037 0.9210 ± 0.0055 0.9223 ± 0.0056

Figure 4. Clustering results for 10 test datasets, along with centers and covariance matrices. rFF+Pooling (top-left), SAB+Pooling

(top-right), rFF+PMA (bottom-left), Set Transformer (bottom-right). Best viewed magnified in color.

We report the performance of the oracle along with the set-

input neural networks in Table 3. We additionally report

scores of all models after a single EM update. Overall,

the Set Transformer found accurate parameters and even

outperformed the oracles after a single EM update. This

may be due to the relatively small size of the input sets;

some clusters have fewer than 10 points. In this regime,

sample statistics can differ substantially from population

statistics, which limits the performance of the oracle while

the Set Transformer can adapt accordingly. Notably, the

Set Transformer with only 16 inducing points showed the

best performance, even outperforming the full Set Trans-

former. We believe this is due to the knowledge transfer

and regularization via inducing points, helping the network

to learn global structures. Our results also imply that the

improvement from using the PMA is more significant than

that of the SAB, supporting our claim of the importance

of attention-based decoders. We provide detailed genera-

tive processes, network architectures, and training schemes

along with additional experiments with various numbers of

inducing points in the supplementary material.

5.4. Set Anomaly Detection

We evaluate our methods on the task of meta-anomaly de-

tection within a set using the CelebA dataset. The dataset

consists of 202,599 images with the total of 40 attributes.

We randomly sample 1,000 sets of images. For every set,

we select two attributes at random and construct the set

by selecting seven images containing both attributes and

one image with neither. The goal of this task is to find the

image that does not belong to the set. We give a detailed

description of the experimental setup in the supplementary

material. We report the area under receiver operating char-

acteristic curve (AUROC) and area under precision-recall

curve (AUPR) in Table 5. Set Transformers outperformed

all other methods by a significant margin.
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Table 4. Test accuracy for the point cloud classification task using 100, 1000, 5000 points.

Architecture 100 pts 1000 pts 5000 pts

rFF + Pooling (Zaheer et al., 2017) - 0.83 ± 0.01 -
rFFp-max + Pooling (Zaheer et al., 2017) 0.82 ± 0.02 0.87 ± 0.01 0.90 ± 0.003

rFF + Pooling 0.7951 ± 0.0166 0.8551 ± 0.0142 0.8933 ± 0.0156

rFF + PMA (ours) 0.8076 ± 0.0160 0.8534 ± 0.0152 0.8628 ± 0.0136
ISAB (16) + Pooling (ours) 0.8273 ± 0.0159 0.8915 ± 0.0144 0.9040 ± 0.0173
ISAB (16) + PMA (ours) 0.8454 ± 0.0144 0.8662 ± 0.0149 0.8779 ± 0.0122

Figure 5. Sampled datasets. Each row is a dataset, consisting of

7 normal images and 1 anomaly (red box). In each subsampled

dataset, a normal image has two attributes (rightmost column)

which anomalies do not.

Table 5. Meta set anomaly results. Each architecture is evaluated

using average of test AUROC and test AUPR.

Architecture Test AUROC Test AUPR

Random guess 0.5 0.125
rFF + Pooling 0.5643 ± 0.0139 0.4126 ± 0.0108

rFFp-mean + Pooling 0.5687 ± 0.0061 0.4125 ± 0.0127
rFFp-max + Pooling 0.5717 ± 0.0117 0.4135 ± 0.0162

rFF + Dotprod 0.5671 ± 0.0139 0.4155 ± 0.0115

SAB + Pooling (ours) 0.5757 ± 0.0143 0.4189 ± 0.0167
rFF + PMA (ours) 0.5756 ± 0.0130 0.4227 ± 0.0127

SAB + PMA (ours) 0.5941 ± 0.0170 0.4386 ± 0.0089

5.5. Point Cloud Classification

We evaluated Set Transformers on a classification task using

the ModelNet40 (Chang et al., 2015) dataset1, which con-

tains three-dimensional objects in 40 different categories.

Each object is represented as a point cloud, which we treat

as a set of n vectors in R
3. We performed experiments with

input sets of size n ∈ {100, 1000, 5000}. Because of the

large set sizes, MABs are prohibitively time-consuming due

to their O(n2) time complexity.

Table 4 shows classification accuracies. We point out that

Zaheer et al. (2017) used significantly more engineering

for the 5000 point experiment. For this experiment only,

1The point-cloud dataset used in this experiment was obtained
directly from the authors of Zaheer et al. (2017).

they augmented data (scaling, rotation) and used a differ-

ent optimizer (Adamax) and learning rate schedule. Set

Transformers were superior when given small sets, but were

outperformed by ISAB (16) + Pooling on larger sets. First

note that classification is harder when given fewer points.

We think Set Transformers were outperformed in the prob-

lems with large sets because such sets already had sufficient

information for classification, diminishing the need to model

complex interactions among points. We point out that PMA

outperformed simple pooling in all other experiments.

6. Conclusion

In this paper, we introduced the Set Transformer, an

attention-based set-input neural network architecture. Our

proposed method uses attention mechanisms for both en-

coding and aggregating features, and we have empirically

validated that both of them are necessary for modelling

complicated interactions among elements of a set. We also

proposed an inducing point method for self-attention, which

makes our approach scalable to large sets. We also showed

useful theoretical properties of our model, including the fact

that it is a universal approximator for permutation invariant

functions. An interesting future work would be to apply

Set Transformers to meta-learning problems. In particular,

using Set Transformers to meta-learn posterior inference in

Bayesian models seems like a promising line of research.

Another exciting extension of our work would be to model

the uncertainty in set functions by injecting noise variables

into Set Transformers in a principled way.
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