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Abstract

Approachability has become a standard tool in analyzing learning algorithms in the ad-
versarial online learning setup. We develop a variant of approachability for games where
there is ambiguity in the obtained reward: it belongs to a set rather than being a single
vector. Using this variant we tackle the problem of approachability in games with par-
tial monitoring and develop a simple and generally efficient strategy (i.e., with constant
per-step complexity) for this setup. As an important example, we instantiate our general
strategy to the case when external regret or internal regret is to be minimized under partial
monitoring.
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1. Introduction

Blackwell’s approachability theory and its variants have become a standard and useful tool
in analyzing online learning algorithms (Cesa-Bianchi and Lugosi, 2006) and algorithms for
learning in games (Hart and Mas-Colell, 2000, 2001). The first application of Blackwell’s
approachability to learning in the online setup is due to Blackwell (1956b) himself. Nu-
merous other contributions are summarized in the monograph by Cesa-Bianchi and Lugosi
(2006). Blackwell’s approachability theory enjoys a natural geometric interpretation that
allows it to be used in situations where other learning methods (online convex optimization
or exponential weights) do not seem to be easily applicable. In some sense, it can be used to
go beyond the minimization of the regret to control quantities of a different flavor. Exam-
ples of such uses can be found in Mannor et al. (2009), which minimizes the regret together
with path constraints, and in Mannor and Shimkin (2008), which minimizes the regret in
games whose stage duration is not fixed. Recently, it has been shown by Abernethy et al.
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(2011) that approachability and low regret learning are equivalent in the sense that efficient
reductions exist from one problem to the other. Another recent paper by Rakhlin et al.
(2011) showed that approachability can be analyzed from the perspective of learnability
using tools from learning theory.

In this paper we consider approachability and online learning with partial monitoring
in games against an arbitrary opponent. That is, we will obtain worst-case performance
guarantees: guarantees that are valid for all strategies of the opponent. In partial monitoring
the decision maker does not know how much reward was obtained and only gets a (random)
signal whose distribution depends on the pair of actions taken by the decision maker and
the opponent. There are two extremes of this setup that are well studied. On the one
extreme we have the case where the signal includes the reward itself (or a signal that can be
used to unbiasedly estimate the reward), which is essentially the celebrated bandits setup.
The other extreme is the case where the signal is not informative (i.e., it tells the decision
maker nothing about the actual reward obtained); this setting then essentially consists of
repeating the same situation over and over again, as no information is gained over time. We
consider a setup encompassing these situations and more general ones, in which the signal
is indicative of the actual reward, but is not necessarily a sufficient statistic thereof. The
difficulty is that the decision maker cannot compute the actual reward obtained nor the
actions of the opponent.

Regret minimization with partial monitoring (defined in the general sense of Rustichini,
1999) has been studied in several papers in the learning theory community. Piccolboni and
Schindelhauer (2001), Mannor and Shimkin (2003), Cesa-Bianchi et al. (2006), Bartók et al.
(2010, 2011), Foster and Rakhlin (2012) study games in which an accurate estimation of the
rewards (or worst-case rewards) of the decision maker is possible thanks to some statistically
sufficient monitoring; in this case, the notion of regret with partial monitoring reduces to
the classical notion of regret with full monitoring. A general policy with vanishing external
regret with partial monitoring is presented by Lugosi et al. (2008). This policy is based
on exponential weights and a specific estimation procedure for the (worst-case) obtained
rewards.

In contrast, we devise a general (efficient) algorithm for the problem of approachabil-
ity under partial monitoring. We then apply it to the more restricted problem of regret
minimization. More precisely, we first define a new type of approachability setup, for set-
valued functions, which enables to re-derive the extension of approachability to the partial
monitoring vector-valued setting proposed by Perchet (2011a). More importantly, we pro-
vide concrete algorithms for this approachability problem that are more efficient in the
sense that, unlike previous works in the domain, their complexity is constant over all steps.
Moreover, their rates of convergence are independent of the game at hand, as in the seminal
paper by Blackwell (1956b) but for the first time in this general framework. For exam-
ple, the recent theoretical study of approachability by Perchet and Quincampoix (2011),
which is based on somehow related arguments, does neither provide rates of convergence
nor concrete algorithms.
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1.1 Outline and Comparison to Known Results

The paper is organized in three main parts. The first part consists of Section 2, where
we recall basic facts from approachability theory, when a decision maker faces an arbitrary
opponent in the standard vector-valued games setting.

The second part deals with our first contribution, a novel setup for approachability
termed “set-valued approachability”, where instead of obtaining a vector-valued reward,
the decision maker obtains a set, that represents the ambiguity concerning his reward. In
Section 3, we provide a simple characterization of approachable convex sets and an algorithm
for the set-valued reward setup under the assumption that the set-valued reward functions
are linear. In Section 4 we extend the set-valued approachability setup to problems where
the set-valued reward functions are not linear, but rather concave in the mixed action of
the decision maker and convex in the mixed action of the opponent. This new concept of
set-valued approachability is interesting on its own, as it cannot be directly encompassed
into classical vector-valued approachability; yet we retrieve several familiar results (char-
acterization of approachable convex sets, rates of convergence that are independent of the
dimension, and so on). More importantly, these results are the key tools for our second
series of contributions, which we describe now.

The third part studies approachability in repeated games with partial monitoring. Pre-
vious general results in this setup suffered from at least one of the following drawbacks.
They were either non-constructive (Rustichini, 1999) or were highly inefficient. The latter
drawback refers to strategies that relied on some sort of lifting to the space of probability
measures on mixed actions (see e.g., Lehrer and Solan, 2007 and Perchet, 2009, 2011a).
They then typically required a fine grid of elements in this lifted space, which had to be
progressively refined over time. This construction leads to two main issues: on the one hand,
the step complexity continuously increases and becomes prohibitive in the number T of past
steps. On the other hand, rates of convergence deteriorate and depend on the dimension.
Our aim is therefore to devise algorithms that are efficient (as long as the projection onto
some convex set can be done efficiently), with a constant step complexity (although it may
depend on parameters of the problem at hand), and with rates of convergence independent
of the ambient dimension. Our strategies are the first, to our knowledge, satisfying all of
these properties in the general approachability framework. They do so because they do not
rely on finer and finer grids; as a byproduct, they can also be considered more natural.
Section 5 discusses in greater detail all the points mentioned in this paragraph.

More precisely, we state in Section 5.1 the necessary and sufficient condition for ap-
proachability in games with partial monitoring and show in Section 5.2 how to apply set-
valued approachability framework to the repeated vector-valued games with partial moni-
toring. In Section 5.3 we then consider a specific type of games where the signaling structure
possesses a special property, called bi-piecewise linearity, that can be exploited to derive
simple, constructive and efficient strategies. This type of games is rich enough as it en-
compasses several useful special cases discussed in the later sections. In Section 5.4, we
mention the general signaling case and explain how it is possible to approach certain special
sets such as polytopes efficiently (thanks to a reduction to bi-piecewise linearity) with the
same dimension-independent rates of convergence—and even general convex sets, although
inefficiently in the latter case.
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As an important other example of a setting where bi-piecewise linearity holds, we apply
in Section 6 the results of Section 5.3 to both external-regret and internal-regret minimiza-
tion in repeated games with partial monitoring. In this specific case, our algorithms have
rates similar to the ones obtained by Lugosi et al. (2008) but slower than Perchet (2011b);
however our proof is direct and simpler and the strategy is efficient.

1.2 Mixed Actions versus Pure Actions

Most of Sections 2–4 (classical approachability and set-valued approachability) is concerned
with mixed actions, while Sections 5–6 (approachability in games with partial monitoring)
are focused on pure actions. The explanation for this is as follows. Even though pure
actions are inherent to the model of partial monitoring, the reduction from approachability
in games with partial monitoring to set-valued approachability, as described in Section 5.2,
is to set-valued approachability with mixed actions.

2. Some Basic Facts from Approachability Theory

In this section we recall the most basic version of Blackwell’s approachability theorem for
vector-valued payoff functions.

We consider a vector-valued game between two players, a decision maker (first player)
and an opponent (second player), with respective finite action sets A and B, whose cardi-
nalities are referred to as NA and NB. We denote by d the dimension of the reward vectors
and equip Rd with the `2–norm ‖ · ‖2. The payoff function of the first player is given by
a mapping m : A × B → Rd, which is multi-linearly extended to ∆(A) ×∆(B), the set of
product-distributions over A× B.

We consider a framework in which mixed actions are taken. We denote by x1, x2, . . .
and y1, y2, . . . the actions in ∆(A) and ∆(B) sequentially taken by each player. We assume
a full or bandit monitoring for the first player: at the end of round t, when receiving the
payoff m(xt,yt), either the mixed action yt (full monitoring) or only the indicated payoff
(bandit monitoring) is revealed to him.

Strategies of the players are defined as mappings associating the information available
at the beginning of each round t > 1 with a mixed action. In particular, strategies of the
first player in the case of full monitoring associate with x1, . . . , xt−1 and y1, . . . , yt−1 a
mixed action xt ∈ ∆(A), while in the case of bandit monitoring, they do this association
based on x1, . . . , xt−1 and m(x1,y1), . . . , m(xt−1,yt−1). We do not restrict the oppo-
nent and assume a full monitoring for him: his strategies associate with x1, . . . , xt−1 and
y1, . . . , yt−1 a mixed action yt ∈ ∆(B).

2.1 Necessary and Sufficient Condition for Approachability

Given a set C, the aim of the first player is to ensure that his average payoff converges to C,
while the second player wants to prevent it. This gives rise to Blackwell’s classical definition
of approachability. (Here, we state it as m–approachability to remind the reader, in the
notation, that the underlying payoff function is m.)
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Definition 1 Given a function m : A × B → Rd, a set C ⊆ Rd is m–approachable by the
first player if he has a strategy such that, for all ε > 0, there exists an integer Tε such that
for all strategies of the second player,

P

{
∀T > Tε, inf

c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6 ε

}
> 1− ε .

In particular, the first player has a strategy that ensures that the average of his vector-valued
payoffs converges almost surely to the set C, uniformly with respect to the strategies of the
second player.

As will be recalled below in Theorem 3, even stronger approachability guarantees can be
achieved. Indeed, the first player has deterministic strategies such that, for all (deterministic
or randomized) strategies of the second player, with probability 1, for all T > 1,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6 β(T ) ,

where β(·) is some decreasing mapping to 0 to be determined later.
For closed convex sets there is a simple characterization of approachability that is a

direct consequence of von Neumann’s minimax theorem.

Theorem 2 (see Blackwell, 1956a, Theorem 3) A closed convex set C ⊆ Rd is ap-
proachable if and only if

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ∈ C .

2.2 An Associated Strategy (whose Efficiency Depends on the Geometry of C)

Blackwell suggested a simple strategy with a geometric flavor; it only requires bandit mon-
itoring.

Play an arbitrary x1. For t > 1, given the vector-valued quantity

m̂t =
1

t

t∑
s=1

m(xs,ys) ,

compute the projection ct (in `2–norm) of m̂t on C. Find a mixed action xt+1 that solves
the minimax equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂t − ct, m(x,y)− ct

〉
, (1)

where 〈 · , · 〉 is the Euclidean inner product in Rd.
The stated minimax problem for determining xt+1 can be solved efficiently using, e.g.,

linear programming: the associated complexity is polynomial in NA and NB. This strat-
egy is efficient if computing the required projections onto C in `2–norm can be performed
efficiently.

The strategy presented above enjoys the following rates of convergence for approacha-
bility, which can be derived as a special case of the results stated and proved in Theorem 25
later in this paper.

3251



Mannor, Perchet and Stoltz

Theorem 3 (see Blackwell, 1956a, Theorems 1 and 3) We consider an approachable
closed convex set C ⊆ Rd and we denote by M a bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6M .

The above strategy ensures that for all strategies of the second player, with probability 1, for
all T > 1,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6
2M√
T
.

3. Set-Valued Approachability for Finite Games

In this section we extend the results from the previous section to set-valued payoff functions
in the case of full monitoring. We denote by S

(
Rd
)

the set of all subsets of Rd and consider
a set-valued payoff function m : A × B → S

(
Rd
)
. When the players choose respective

actions a ∈ A and b ∈ B, the first player gets the subset m(a, b) as a payoff. This models
the ambiguity or uncertainty associated with some true underlying payoff.

3.1 Mixed Actions Taken and Observed

For the moment, we only consider the case of mixed actions taken and observed, keeping
the same definition of a strategy as in the previous section. (The next subsection will briefly
explain, for the sake of completeness, how to deal with the case of pure actions taken and
observed.)

We extend m multi-linearly to ∆(A) × ∆(B) and even to ∆(A × B), the set of joint
probability distributions on A× B, as follows. Let

µ =
(
µa,b

)
(a,b)∈A×B

be such a joint probability distribution; then m(µ) is defined as a finite convex combination1

of subsets of Rd,
m(µ) =

∑
a∈A

∑
b∈B

µa,bm(a, b) .

The product-distribution of two elements x = (xa)a∈A ∈ ∆(A) and y = (yb)b∈B ∈ ∆(B)
will be denoted by x ⊗ y; it gives a probability mass of xayb to each pair (a, b) ∈ A × B.
When µ is such a product-distribution, we use the notation m(µ) = m(x,y).

We can now describe how the game proceeds. At each round t, the players choose
simultaneously respective mixed actions xt ∈ ∆(A) and yt ∈ ∆(B). Full monitoring takes
place for the first player: he observes yt at the end of round t and he gets the subset
m(xt,yt) as a payoff (which, again, accounts for the uncertainty).

1. For two sets S, T and α ∈ [0, 1], the convex combination αS + (1− α)T is defined as{
αs+ (1− α)t, s ∈ S and t ∈ T

}
.
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3.1.1 Definition of Set-Valued Approachability

We are interested in the behavior of

1

T

T∑
t=1

m(xt,yt) = m(νT ) , where νT :=
1

T

T∑
t=1

xt ⊗ yt

is the empirical joint distribution of mixed actions taken during the first T rounds.

The distance of this set m(νT ) to the target set C will be measured in a worst-case sense
(à la Hausdorff): we denote by

εT = sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2

the smallest value such that m(νT ) is included in an εT –neighborhood of C. Approachability
of a set C with the set-valued payoff function m then simply means that the sequence of
εT tends almost-surely to 0, uniformly with respect to the strategies of the second player.
This is made formal in the following definition.

Definition 4 Given a set-valued payoff function m : A × B → S
(
Rd
)
, a set C ⊆ Rd is

m–approachable by the first player if he has a strategy such that, for all ε > 0, there exists
an integer Tε such that for all strategies of the second player,

P

{
∀T > Tε, sup

ξ∈m(νT )
inf
c∈C
‖c− ξ‖2 6 ε

}
> 1− ε .

When the set-valued function m is clear from the context, we will simply say that C
is set-valued approachable. Actually, just as in the classical case of approachability, the
bounds exhibited below in Theorem 8 will be for deterministic strategies of the first player
and will read as follows: for all (deterministic or randomized) strategies of the second player,
with probability 1, for all T > 1,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 6 β(T ) ,

where β(·) is a mapping decreasing to 0 to be determined.

3.1.2 A Useful Continuity Lemma

Before proceeding we provide a continuity lemma. It can be reformulated as indicating that
for all joint distributions µ and ν over A×B, the set m(µ) is contained in an M ‖µ− ν‖1–
neighborhood of m(ν), where M is a bound in `2–norm on m. This is a result that we will
use repeatedly.

Definition 5 The set-valued function m : A× B → S
(
Rd
)

is bounded in `2–norm by M if

∀(a, b) ∈ A× B, sup
ξ∈m(a,b)

‖ξ‖2 6M .
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Lemma 6 Let µ and ν be two probability distributions over A × B. We assume that the
set-valued function m is bounded in `2–norm by M . Then

sup
ξ∈m(µ)

inf
c∈m(ν)

‖ξ − c‖2 6M ‖µ− ν‖1 6M
√
NANB ‖µ− ν‖2 ,

where the norms in the right-hand side are respectively the `1 and `2–norms between proba-
bility distributions.

Proof Let ξ be an element of m(µ); it can be written as

ξ =
∑
a∈A

∑
b∈B

µa,b ζa,b

for some elements ζa,b ∈ m(a, b). We consider

c =
∑
a∈A

∑
b∈B

νa,b ζa,b ,

which is an element of m(ν). Then by the triangle inequality,

‖ξ − c‖2 =

wwwww∑
a∈A

∑
b∈B

(
µa,b − νa,b

)
ζa,b

wwwww
2

6
∑
a∈A

∑
b∈B

∣∣µa,b−νa,b∣∣ ‖ζa,b‖2 6M
∑
a∈A

∑
b∈B

∣∣µa,b−νa,b∣∣ .
This entails the first claimed inequality. The second one follows from an application of the
Cauchy-Schwarz inequality.

Corollary 7 If the set-valued function m is bounded in norm, then for all y ∈ ∆(B), the
mappings Dy : ∆(A)→ R defined, for all x ∈ ∆(A), by

Dy(x) = sup
ξ∈m(x,y)

inf
c∈C
‖c− ξ‖2

are continuous.

Proof We show that for all x, x′ ∈ ∆(A), the condition ‖x′ − x‖1 6 ε implies that
Dy(x) −Dy(x′) 6 Mε, where M is the bound in `2–norm over m. Indeed, fix δ > 0 and
let ξδ,x ∈ m(x,y) be such that

Dy(x) 6 inf
c∈C

wwc− ξδ,xww2
+ δ . (2)

By Lemma 6 (with the choices µ = x⊗ y and ν = x′ ⊗ y),

inf
ξ′∈m(x′,y)

‖ξδ,x − ξ′‖ 6Mε ,

and therefore, there exists ξδ,x′ ∈ m(x′,y) such that
wwξδ,x−ξδ,x′ww2

6Mε+δ. The triangle
inequality entails that

inf
c∈C

wwc− ξδ,xww2
6 inf

c∈C

wwc− ξδ,x′ww2
+Mε+ δ .
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Substituting in (2), we get that

Dy(x) 6Mε+ 2δ + inf
c∈C

wwc− ξδ,x′ww2
6Mε+ 2δ +Dy(x′) ,

which, letting δ → 0, proves our continuity claim.

3.1.3 Necessary and Sufficient Condition for Set-Valued Approachability

This condition will be referred to as (SVAC), an acronym that stands for “set-valued ap-
proachability condition.”

Theorem 8 Suppose that the set-valued function m is bounded in norm. A closed convex
set C ⊆ Rd is m–approachable if and only if the following set-valued approachability condition
is satisfied,

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ⊆ C . (SVAC)

In this case, an m–approaching strategy for C is an m–approaching strategy of C̃ defined
below at (3) and (4). It satisfies, for all T > 1,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 6 2M

√
NANB
T

,

where M is a bound in `2–norm on m.

Proof [of the necessity of Condition (SVAC)] If the condition does not hold, then
there exists y0 ∈ ∆(B) such that for every x ∈ A, the set m(x,y0) is not included in C,
i.e., it contains at least one point not in C. We consider the mapping Dy0

defined in the
statement of Corollary 7. Since C is closed, distances of given individual points to C are
achieved; therefore, by the choice of y0, we get that Dy0

(x) > 0 for all x ∈ ∆(A). Now,
since Dy0

is continuous on the compact set ∆(A), as asserted by the indicated corollary, it
attains its minimum, whose value we denote by Dmin > 0.

Assume now that the second player chooses at each round yt = y0 as his mixed action.
Then, denoting

xT =
1

T

T∑
t=1

xt ,

we get that νT = xT ⊗ y0, and hence, for all strategies of the first player and for all T > 1,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 = Dy0

(xT ) > Dmin > 0 ,

which shows that C is not approachable.

We now prove in a constructive way, by exhibiting a suitable strategy (the one alluded at
in the statement of the theorem), that (SVAC) is sufficient for set-valued approachability.
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We identify probability distributions over A × B with vectors in RA×B and consider the
vector-valued payoff function

m : (a, b) ∈ A× B 7−→ δ(a,b) ∈ RA×B , (3)

where δ(a,b) is the point mass on (a, b). We extend m to ∆(A) × ∆(B) in a multi-linear
fashion. The target set will be

C̃ =
{
µ ∈ ∆(A× B) : m(µ) ⊆ C

}
. (4)

The linearity of the function m on ∆(A× B) entails that if C is a convex set (respectively,
a closed set, or a polyhedron), then C̃ is a convex set as well (respectively, a closed set, or
a polyhedron). In the case where C̃ is a polyhedron, it is actually a polytope (that is, a
compact polyhedron).

We then consider the m–approaching strategy of C̃ described in (1) and now prove that
it enjoys the convergence guarantees stated in Theorem 8.

Lemma 9 Condition (SVAC) is equivalent to the m–approachability of C̃.

Proof Since C and thus C̃ are closed and convex sets, we can resort to Theorem 2. The
latter states that the m–approachability of C̃ is equivalent to the fact that for all y ∈ ∆(B),
there exists some x ∈ ∆(A) such that µ = m(x,y) = x ⊗ y, the product-distribution
between x and y, belongs to C̃, i.e., satisfies m(µ) = m(x,y) ⊆ C.

The definition (3) of m entails the rewriting

νT =
1

T

T∑
t=1

xt ⊗ yt =
1

T

T∑
t=1

m(xt,yt) .

Let PC̃ denote the projection operator onto C̃; the quantities at hand in the definition of

m–approachability of C̃ are given by

εT =
wwwνT − PC̃(νT )

www
2

= inf
µ∈C̃
‖νT − µ‖2 .

We now relate them to the ones arising in the definition of m–approachability of C.

Lemma 10 The following upper bound holds,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 6M

√
NANB εT .

Proof Lemma 6 entails that the sets m(νT ) are included in M
√
NANB εT –neighborhoods

of m
(
PC̃(νT )

)
. Since by definition of C̃, one has m

(
PC̃(νT )

)
⊆ C, we get in particular

that the sets m(νT ) are included in M
√
NANB εT –neighborhoods of C, which is exactly the

statement of the lemma.
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Proof [of the sufficiency of Condition (SVAC)] First, Lemma 9 and Condition (SVAC)
entail, via Theorem 3, that the considered strategy m–approaches C̃, at the following rate:
εT 6 2/

√
T , with probability 1. Second, Lemma 10 indicates that this strategy also m–

approaches C, at the stated rate of 2M
√
NANB/T , with probability 1.

3.1.4 Remarks: on Efficiency; on Full versus Bandit Monitorings

Note that, as explained around (1), the considered strategy for m–approaching C̃, or equiva-
lently m–approaching C, is efficient as long as projections in `2–norm onto the set C̃ defined
in (4) can be computed efficiently. The latter depends on the respective geometries of m and
C. We will provide examples of favorable cases (see, e.g., Section 6.1 about minimization
of external regret under partial monitoring). In the sequel the notion of “efficiency up to a
projection oracle” will refer to this efficiency depending solely on the efficient computation
of the needed projections.

The proposed strategy does not require full monitoring, although it seems to rely on
the observation of the pair of played mixed actions m(xt,yt). With bandit monitoring,
only the played sets m(xt,yt) would be available, not the yt themselves; in that case, the
player can act as if the other player chose any y′t that generates this set, i.e., such that
m(xt,y

′
t) = m(xt,yt).

3.2 Pure Actions Taken and Observed

It is well-known that the basic results recalled in Section 2 extend to the case of pure
actions. We briefly explain here how the developed theory of set-valued approachability for
games with mixed actions extends as well to the case of pure actions taken (still under full
monitoring).

The game goes as follows. At each round t, the players choose simultaneously respective
pure actions At ∈ A and Bt ∈ B, possibly at random according to distributions xt and yt.
As a result, the first player gets the subset m(At, Bt) as a payoff and observes Bt. Strategies
for the players now associate with A1, . . . , At−1 and B1, . . . , Bt−1 mixed actions xt and
yt, according to which At and Bt are drawn independently.

We are interested in the behavior of

1

T

T∑
t=1

m(At, Bt) = m(πT ) , where πT :=
1

T

T∑
t=1

δ(At,Bt)

is the empirical distribution of the pairs (At, Bt) of actions taken during the first T rounds.
The definition of set-valued approachability extends as follows.

Definition 11 A set C ⊆ Rd is m–approachable by the first player with pure actions if he
has a strategy such that, for all ε > 0, there exists an integer Tε such that for all strategies
of the second player,

P

{
∀T > Tε, sup

ξ∈m(πT )
inf
c∈C
‖c− ξ‖2 6 ε

}
> 1− ε .
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The fact that Condition (SVAC) is still a necessary and sufficient condition for m–
approachability with pure actions of a closed convex set C ⊆ Rd (where m is bounded) can
be seen as follows.

Concerning the proof of the sufficiency of this condition, first recall that Lemma 9
indicates that Condition (SVAC) is equivalent to the m–approachability of C̃. In view of
a version of Theorem 3 for pure actions (e.g., Theorem II.4.3 of Mertens et al., 1994) the
strategy described around (3) and (4), with the replacement of the νT by the πT and extra
random draws of the pure actions At according to the mixed distributions xt thus computed,
is such that the quantities

ε′T =
wwwπT − PC̃(πT )

www
2

= inf
µ∈C̃
‖πT − µ‖2

satisfy the following convergence guarantees. For all δ ∈ (0, 1), there exists an integer Tδ
such that for all strategies of the second player,

P
{
∀T > Tδ, ε′T 6 δ

}
> 1− δ .

This shows that this strategy also m–approaches C since Lemma 10 is valid with the re-
spective replacements of νT and εT by πT and ε′T .

The proof of the necessity of the condition is the same as for mixed actions taken, with
the addition of a concentration argument. Indeed, by martingale convergence (e.g., repeated
uses of the Hoeffding-Azuma inequality together with an application of the Borel-Cantelli
lemma), δT = ‖πT − νT ‖1 converges to zero almost surely as T goes to infinity. By applying
Lemma 6 and by using the notation of the proof of Theorem 8, we get

sup
ξ∈m(πT )

inf
c∈C
‖c− ξ‖2 > sup

ξ∈m(νT )
inf
c∈C
‖c− ξ‖2 −MδT > Dmin −MδT ,

and we simply take the lim inf in the above inequalities to conclude the argument.

4. Set-Valued Approachability for Concave–Convex Set-Valued Games

We consider in this section the same setting of mixed actions taken and observed as in
Section 3.1, that is, we deal with set-valued payoff functions m : ∆(A) × ∆(B) → S

(
Rd
)

under full monitoring. However, in the previous section m was linear on ∆(A) × ∆(B),
an assumption that we now weaken while still having that (SVAC) is the necessary and
sufficient condition for set-valued approachability. The price to pay for this is the loss of
the exhibited efficiency (up to a projection oracle) of the approaching strategies and an
inferior convergence rate.

Formally, the functions m : ∆(A)×∆(B)→ S
(
Rd
)

that we will consider will satisfy one
or several of the following properties.

Definition 12 The set-valued function m : ∆(A)×∆(B)→ S
(
Rd
)

is bounded in `2–norm
by M if

∀(x,y) ∈ ∆(A)×∆(B), sup
ξ∈m(x,y)

‖ξ‖2 6M .
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Definition 13 A function m : ∆(A)×∆(B)→ S
(
Rd
)

is uniformly continuous in its first
argument if for every ε > 0, there exists η > 0 such that for all x,x′ ∈ ∆(A) satisfying
‖x− x′‖1 6 η and for all y ∈ ∆(B), the set m(x′,y) is included in an ε–neighborhood of
m(x,y) in the Euclidean norm. Put differently,

sup
ξ∈m(x′,y)

inf
c∈m(x,y)

‖ξ − c‖2 6 ε or m(x′,y) ⊆ m(x,y) + εB ,

where B is the unit Euclidean ball in Rd.

Uniform continuity in the second argument is defined symmetrically.

Definition 14 A function m : ∆(A) × ∆(B) → S
(
Rd
)

is concave in its first argument if
for all x,x′ ∈ ∆(A), all y ∈ ∆(B), and all α ∈ [0, 1],

m
(
αx+ (1− α)x′, y

)
⊆ αm(x,y) + (1− α)m(x′,y) .

A function m : ∆(A)×∆(B)→ S
(
Rd
)

is convex in its second argument if for all x ∈ ∆(A),
all y,y′ ∈ ∆(B), and all α ∈ [0, 1],

αm(x,y) + (1− α)m(x,y′) ⊆ m
(
x, αy + (1− α)y′

)
.

An example of such a concave–convex function m is discussed in Lemma 17.

The following theorem indicates that (SVAC) is the necessary and sufficient condition
for the m–approachability of a closed convex set C when the payoff function m satisfies all
four properties stated in Definitions 13 and 14. (Boundedness of m indeed follows from the
continuity of m in each variable.)

Theorem 15 If m is bounded, convex, and uniformly continuous in its second argument,
then (SVAC) entails that a closed convex set C is m–approachable.

If m is concave and uniformly continuous in its first argument, then a closed convex set
C is m–approachable only if (SVAC) is satisfied.

The proof of the necessity statement follows closely the arguments used in the proof
of Theorem 8. The sufficiency statement relies on the use of what is called a calibrated
strategy, where we define calibration in a (slightly) stronger way than Foster and Vohra
(1998) did. All the details, including the definition of the stronger notion of calibration and
the construction of an algorithm controlling it, can be found in Appendix A.

5. Approachability in Games with Partial Monitoring

A repeated vector-valued game with partial monitoring is described as follows (see, e.g.,
Mertens et al., 1994, Rustichini, 1999, and references therein). The players have respective
finite action sets I and J . We denote by r : I ×J → Rd the vector-valued payoff function
of the first player and extend it multi-linearly to ∆(I) × ∆(J ). At each round, players
simultaneously choose their actions It ∈ I and Jt ∈ J , possibly at random according to
probability distributions denoted by pt ∈ ∆(I) and qt ∈ ∆(J ). At the end of a round, the
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first player does not observe Jt nor r(It, Jt) but only receives a signal. There is a finite set
H of possible signals; the feedback St that is given to the first player is drawn at random
according to the distribution H(It, Jt), where the mapping H : I ×J → ∆(H) is known by
the first player. We will refer to H as the signaling structure.

Formally, strategies of the first player now associate with I1, . . . , It−1 and S1, . . . , St−1

a mixed action pt ∈ ∆(I), according to which It is drawn independently. We do not
impose any restriction on the opponent player, who enjoys a full monitoring: strategies of
his associate with I1, . . . , It−1, with J1, . . . , Jt−1 and with S1, . . . , St−1 a mixed action
qt ∈ ∆(I), according to which Jt is drawn independently.

Example 1 Examples of such partial monitoring games are provided by, e.g., Cesa-Bianchi
et al. (2006), among which we can cite the apple tasting problem, the label-efficient prediction
constraint, and the multi-armed bandit settings.

Some additional notation will be useful. We denote by R a bound on the norm of (the
linear extension of) r,

R = max
(i,j)∈I×J

wwr(i, j)ww
2
. (5)

The cardinalities of the finite sets I, J , and H will be referred to as NI , NJ , and NH.
The definition of approachability can be extended from the setting of full information

to the setting of partial monitoring as follows. The only new ingredient is the signaling
structure H, the aim is unchanged.

Definition 16 Let C ⊆ Rd be some set; C is r–approachable by the first player for the
signaling structure H if he has a strategy such that, for all ε > 0, there exists an integer Tε
such that for all strategies of the second player,

P

{
∀T > Tε, inf

c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 ε

}
> 1− ε .

In particular, the first player has a strategy that ensures that the sequence of his average
vector-valued payoffs converges almost surely to the set C (uniformly with respect to the
strategies of the second player), even if he only observes the random signals St as a feedback.

Here again, more precise approachability guarantees than the ones required by the def-
inition will be obtained. Indeed, Corollary 27 exhibits bounds of the following form, for a
suitable strategy of the first player. For all strategies of the second player and for all T > 1,
with probability at least 1− PT ,

sup
τ>T

inf
c∈C

wwwwwc− 1

τ

τ∑
t=1

r(It, Jt)

wwwww
2

6 RT ,

where PT = O(1/T ) and RT = O
(
T−1/5 lnT

)
.

Our contributions to approachability in games with partial monitoring : A necessary and
sufficient condition for r–approachability with the signaling structure H was already stated
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and proved by Perchet (2011a), together with an approaching strategy. We therefore need
to detail where our contribution lies.

First, our strategy is efficient (as long as some projection operator can be computed
efficiently, e.g., in the case when the target set is a polytope, see Sections 5.4.1–5.4.2 as well
as in the cases of external and internal regret minimization described below in Section 6).
In contrast, the one of Perchet (2011a) relies on auxiliary strategies that are calibrated
and that require a grid that is progressively refined (leading to a step complexity that is
prohibitive in the number T of past steps and to rates of convergence that become dependent
on the dimension). The latter construction is in essence the one used in Section 4.

Second, we are able, for the first time, to exhibit convergence rates that are independent
of the dimension (as is the case with full monitoring). A somehow related result appeared
in Perchet (2011b), but only for the special case of regret minimization. The proof tech-
niques used therein are involved and hold only for regret minimization, not for general
approachability.

Third, as far as elegance is concerned, our proof of the sufficiency of the condition for
r–approachability with the signaling structure H is short, compact, and more direct than
the one of Perchet (2011a) or even of Perchet (2011b), which relied on several layers of
concepts (for example, calibration or internal regret in games with partial monitoring).

5.1 Statement of the Necessary and Sufficient Condition for Approachability

To recall the mentioned approachability condition of Perchet (2011a) we need some addi-
tional notation. For all q ∈ ∆(J ), we denote by H̃(q) the element in ∆(H)I defined as
follows. For all i ∈ I, its i–th component is given by the convex combination of probability
distributions over H

H̃(q)i = H(i, q) =
∑
j∈J

qjH(i, j) .

Also, we denote by F the convex set of feasible vectors of probability distributions over H:

F =
{
H̃(q) : q ∈ ∆(J )

}
.

A generic element of F will be denoted by σ ∈ F and we define the set-valued function m,
for all p ∈ ∆(I) and σ ∈ F , by

m(p, σ) =
{
r(p, qeqv) : qeqv ∈ ∆(J ) such that H̃(qeqv) = σ

}
.

We use in qeqv the subscript “eqv” (standing for “equivalent”) as all considered qeqv vectors
induce the same distributions of signals σ and are thus equivalent from the monitoring
perspective.

The necessary and sufficient condition exhibited by Perchet (2011a) for the r–approacha-
bility of C with the signaling structure H can now be recalled. In the sequel we will refer
to this condition as Condition (APM), an acronym that stands for “approachability with
partial monitoring.”

Condition 1 [referred to as Condition (APM)] The signaling structure H, the vector-
payoff function r, and the set C satisfy

∀ q ∈ ∆(J ), ∃p ∈ ∆(I), ∀ q′ ∈ ∆(J ), H̃(q) = H̃(q′) ⇒ r(p, q′) ∈ C .
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The condition can be equivalently reformulated as

∀σ ∈ F , ∃p ∈ ∆(I), m(p, σ) ⊆ C . (APM)

The subsequent sections show (in a constructive way, with a strategy efficient up to a
projection oracle) that Condition (APM) is sufficient for r–approachability of closed convex
sets C given the signaling structure H. That this condition is necessary was already proved
in Section 3.1 of Perchet (2011a).

5.2 Links with Set-Valued Approachability

As will become clear in the proof of Theorem 24, the key in our problem will be to ensure
the set-valued approachability of C with the following non-linear set-valued payoff function,
that is however concave–convex in the sense of Definition 14.

Lemma 17 The function

(p, q) ∈ ∆(I)×∆(J ) 7−→ m
(
p, H̃(q)

)
is concave in its first argument and convex in its second argument.

Proof For the concavity part, we consider some pair p,p′ ∈ ∆(I), some q ∈ ∆(J ) and
some α ∈ [0, 1]. By the linearity of r, the elements of the set of interest can be written as

m
(
αp+ (1− α)p′, H̃(q)

)
=
{
α r(p, qeqv) + (1− α)r(p′, qeqv) : qeqv ∈ ∆(J ) such that H̃(qeqv) = H̃(q)

}
.

This set is therefore indeed included in (but in general, not equal to)

αm
(
p, H̃(q)

)
+ (1− α)αm

(
p, H̃(q)

)
= α

{
r(p, qeqv) : qeqv ∈ ∆(J ) such that H̃(qeqv) = H̃(q)

}
+ (1− α)

{
r(p, q′eqv) : q′eqv ∈ ∆(J ) such that H̃(q′eqv) = H̃(q)

}
.

Similarly, for the convexity part, we consider some pair q, q′ ∈ ∆(J ), some p ∈ ∆(I) and
some α ∈ [0, 1]. Elements of the convex combination of sets

αm
(
p, H̃

(
q
))

+ (1− α)m
(
p, H̃

(
q′
))

are of the form

α r(p, qeqv) + (1− α) r(p, q′eqv) = r
(
p, αqeqv + (1− α)q′eqv

)
,

where qeqv and q′eqv are such that

H̃(qeqv) = H̃(q) and H̃(q′eqv) = H̃(q′) . (6)
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In particular, by linearity of H̃, we have

H̃
(
αqeqv + (1− α)q′eqv

)
= H̃

(
αq + (1− α)q′

)
,

which shows that

r
(
p, αqeqv + (1− α)q′eqv

)
∈ m

(
p, H̃

(
αq + (1− α)q′

))
.

The desired inclusion

αm
(
p, H̃

(
q
))

+ (1− α)m
(
p, H̃

(
q′
))
⊆ m

(
p, H̃

(
αq + (1− α)q′

))
follows. Note that this inclusion is not an equality in general, as it cannot be guaranteed
that any q′′eqv such that

H̃
(
αq + (1− α)q′

)
= H̃(q′′eqv)

can be decomposed under the form αqeqv + (1− α)q′eqv, where qeqv and q′eqv satisfy (6).

Unfortunately, efficient strategies for set-valued approachability were only proposed in
the linear case (Section 3), not in the concave–convex case (Section 4), and the proof of
Lemma 17 shows that linearity cannot be guaranteed per se. However, we illustrate in the
next example (and provide a general theory in the next section) how working in lifted spaces
can lead to linearity and hence to efficiency.

Example 2 We consider a game in which the second player (the column player) can force
the first player (the row player) to play a game of matching pennies in the dark by choosing
actions L or M . More formally, in the matrix below, the real numbers denote the payoff
while ♣ and ♥ denote the two possible signals. The respective sets of actions are I = {T, B}
and J = {L, M, R}.

L M R

T 1 / ♣ −1 / ♣ 2 / ♥
B −1 / ♣ 1 / ♣ 3 / ♥

In this example we only study the mapping p 7→ m(p,♣) and show that it is piecewise
linear on ∆(I), thus, is induced by a linear mapping defined on a lifted space.

We introduce a set A = {pT , pB, p1/2} of possibly mixed actions extending the set
I = {T, B} of pure actions; the set A is composed of

pT = δT , pB = δB, and p1/2 =
1

2
δT +

1

2
δB .

Each mixed action in ∆(I) can be uniquely written as pλ = λ δB + (1 − λ) δT for some
λ ∈ [0, 1]. Now, for λ > 1/2, first,

pλ = (2λ− 1) δB +
(
1− (2λ− 1)

)
p1/2 ;
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second, by definition of m,

m
(
pλ, ♣

)
= [1− 2λ, 2λ− 1] ;

since in particular m
(
p1/2, ♣

)
= {0} and m(δB,♣) = [−1, 1], we have the convex decom-

position

m
(
pλ, ♣

)
= (2λ− 1)m(δB,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) ,

that can be restated as

m
(

(2λ− 1) δB +
(
1− (2λ− 1)

)
p1/2, ♣

)
= (2λ− 1)m(δB,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) .

That is, m( · , ♣) is linear on the subset of ∆(I) corresponding to mixed actions pλ with
λ > 1/2.

A similar property holds on the subset of distributions with λ 6 1/2, so that we proved
that m( · , ♣) is piecewise linear on ∆(I).

The linearity on a lifted space comes from the following observation: m is induced by
the linear extension to ∆(A) of the restriction of m to A (see Definition 21 for a more
formal statement).

5.3 A Particular Class of Games, Encompassing Regret Minimization

In this section we consider the case where the payoff function and the signaling structure
have some special properties described below (linked to linearity properties on lifted spaces
and called “bi-piecewise linearity”) and that can be exploited to get efficient strategies. The
case of general games with partial monitoring is then considered in Section 5.4 but the par-
ticular class of games considered here is already rich enough to encompass the minimization
of external and internal regret, as will be seen in Section 6.

To define bi-piecewise linearity of a game with partial monitoring, we start from a
technical lemma that shows that m(p, σ) can be written as a finite convex combination of
sets of the form m(p, b), where b belongs to some finite set B ⊆ F that depends on the
game. Under the additional assumption of the so-called piecewise linearity of the thus-
defined mappings m( · , b), we then describe an efficient strategy for approachability (up to
a projection oracle) followed by convergence rate guarantees.

Definition 18 Let P be a polytope and let X be a convex set. A mapping f : P → X is
piecewise linear if f is continuous and

– there exist finitely many sub-polytopes P1, . . . , PK covering P and such that two dif-
ferent sub-polytopes Pk, Pk′ have an intersection with empty interior; we call these
sub-polytopes a decomposition of P ;

– f is linear on each sub-polytope Pk.
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5.3.1 Bi-Piecewise Linearity of a Game — a Preliminary Technical Result

Lemma 19 For any game with partial monitoring, there exists a finite set B ⊂ F and a
piecewise-linear (injective) mapping Φ : F → ∆(B) such that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑
b∈B

Φb(σ)m(p, b) ,

where we denoted the convex weight vector Φ(σ) ∈ ∆(B) by
(
Φb(σ)

)
b∈B.

Proof H̃ is linear on the polytope ∆(J ); Proposition 2.4 in Rambau and Ziegler (1996)
thus implies that its inverse mapping H̃−1 is a piecewise linear mapping of F into the
set of the subsets of ∆(J ). (Note that the latter set has a structure of a convex set, see
Footnote 1.) This means by definition that there exists a finite decomposition of F into
polytopes P1, . . . , PK each on which H̃−1 is linear. Up to a triangulation (see, e.g., Goodman
and O’Rourke, 2004, Chapter 14), we can assume that each Pk is a simplex. Denote by
Bk ⊆ F the set of vertices of Pk; then, the finite subset stated in the lemma is

B =
K⋃
k=1

Bk ,

the set of all vertices of all the simplices.
Fix any σ ∈ F . It belongs to some simplex Pk, so that there exists a convex decompo-

sition σ =
∑

b∈Bk λb b; this decomposition is unique within the simplex Pk. If σ belongs to
two different simplices, then it actually belongs to their common face and the two possible
decompositions coincide (some coefficients λb in the above decomposition are null). All in
all, with each σ ∈ F , we can associate a unique decomposition in B,

σ =
∑
b∈B

Φb(σ) b ,

where the coefficients
(
Φb(σ)

)
b∈B form a convex weight vector over B, i.e., belong to ∆(B);

in addition, Φb(σ) > 0 only if b ∈ Bk, where k is such that σ ∈ Pk.
Since H̃−1 is linear on each simplex P1, . . . , PK , we therefore get

H̃−1(σ) =
∑
b∈B

Φb(σ) H̃−1(b) .

Finally, the result is a consequence of the fact that

m(p, σ) = r
(
p, H̃−1(σ)

)
= r

(
p,
∑
b∈B

Φb(σ) H̃−1(b)

)
,

that implies, by the linearity of r, that

m(p, σ) =
∑
b∈B

Φb(σ) r
(
p, H̃−1(b)

)
=
∑
b∈B

Φb(σ)m(p, b) ,

which concludes the proof.
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Remark 20 The proof shows that Φ is piecewise linear on a finite decomposition of F ;
it is therefore Lipschitz on F . We denote by κΦ its Lipschitz constant with respect to the
`2–norms.

The main contribution of this subsection (Definition 21) relies on the following additional
assumption.

Assumption 1 We assume that m( · , b) is piecewise linear on ∆(I) for every b ∈ B. We
then call the corresponding game (r,H) a bi-piecewise linear game.

Assumption 1 means that for each b ∈ B there exists a decomposition of ∆(I) into
polytopes each on which m( · , b) is linear. Since B is finite, there exist finitely many such
decompositions to consider, and thus there exists a decomposition to polytopes that refines
all of them. (The latter is generated by the intersection of all considered polytopes as b
varies.) By construction, every m( · , b) is linear on any of the polytopes of this common
decomposition. We denote byA ⊂ ∆(I) the finite subset of all their vertices. A construction
similar to the one used in the proof of Lemma 19 leads to a piecewise linear (injective)
mapping Θ : ∆(I) → ∆(A), where Θ(p) is the decomposition of p on the vertices of the
polytope(s) of the decomposition to which it belongs, satisfying

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) =
∑
a∈A

Θa(p)m(a, b) ,

where we denoted the convex weight vector Θ(p) ∈ ∆(A) by
(
Θa(p)

)
a∈A. This, Lemma 19,

and Assumption 1 show that on a lifted space, m coincides with a bi-linear mapping m, as
is made formal in the next definition.

Definition 21 For a bi-piecewise linear game, we denote by m the linear extension to
∆(A× B) of the restriction of m to A× B, so that for all p ∈ ∆(I) and σ ∈ F ,

m(p, σ) = m
(
Θ(p), Φ(σ)

)
.

5.3.2 Construction of a Strategy to Approach C

The approaching strategy for the original problem is based on a strategy Ψ form–approachability
of C, provided by Theorem 8; we therefore first need to prove the existence of such a Ψ.

Lemma 22 Under Condition (APM), the closed convex set C is m–approachable.

Proof We show that Condition (SVAC) in Theorem 8 is satisfied, that is, that for all
y ∈ ∆(B), there exists some x ∈ ∆(A) such that m(x,y) ⊆ C. With such a given y ∈ ∆(B),
we associate2 the feasible vector of signals σ =

∑
b∈B yb b ∈ F and let p be given by

Condition (APM), so that m(p, σ) ⊆ C. By linearity of m (for the first equality), by

2. Note, however, that we do not necessarily have that Φ(σ) and y are equal, as Φ is not a one-to-one
mapping (it is injective but not surjective).
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Approaching Strategy in Games with Partial Monitoring

Parameters: an integer block length L > 1, an exploration parameter γ ∈ [0, 1], a strategy Ψ for
m–approachability of C
Notation: u ∈ ∆(I) is the uniform distribution over I, PF denotes the projection operator in `2–
norm of RH×I onto F
Initialization: compute the finite set B and the mapping Φ : F → ∆(B) of Lemma 19, compute the
finite set A and the mapping Θ : ∆(I) → ∆(A) defined based on Assumption 1, pick an arbitrary
θ1 ∈ ∆(A)

For all blocks n = 1, 2, . . .,

1. define xn =
∑

a∈A θn,a a and pn = (1 − γ)xn + γ u; refer to the components of pn as
(pi,n)i∈I ;

2. for rounds t = (n− 1)L+ 1, . . . , nL,

2.1 draw an action It ∈ I at random according to pn;

2.2 get the signal St;

3. form the estimated vector of probability distributions over signals,

σ̃n =

 1

L

nL∑
t=(n−1)L+1

I{St=s}I{It=i}

pIt,n


(i,s)∈I×H

;

4. compute the projection σ̂n = PF
(
σ̃n
)
;

5. choose θn+1 = Ψ
(
θ1, Φ

(
σ̂1
)
, . . . , θn, Φ

(
σ̂n
))
.

Figure 1: The proposed strategy, which plays in blocks.

convexity of m in its second argument (for the first inclusion), by Lemma 19 (for the second
and fourth equalities), by construction of A (for the third equality),

m
(
Θ(p),y

)
=
∑
a∈A

Θa(p)
∑
b∈B

ybm(a, b) ⊆
∑
a∈A

Θa(p)m(a, σ) =
∑
a∈A

Θa(p)
∑
b∈B

Φb(σ)m(a, b)

=
∑
b∈B

Φb(σ)m(p, b) = m(p, σ) ⊆ C ,

which concludes the proof.

We consider the strategy described in Figure 1 (and the notation introduced therein).
It forces exploration at a γ rate, as is usual in situations with partial monitoring. One of
its key ingredients, that conditionally unbiased estimators are available, is extracted from
Lugosi et al. (2008, Section 6): in block n we consider sums of elements of the form

Ĥt =

(I{St=s}I{It=i}
pIt,n

)
(i,s)∈I×H

∈ RH×I .
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Averaging over the respective random draws of It and St according to pn and H(It, Jt), i.e.,
taking the conditional expectation Et with respect to pn and Jt, we get

Et
[
Ĥt

]
= H̃

(
δJt
)
. (7)

Indeed, the conditional expectation of the component i of Ĥt equals

Et
[(I{St=s}I{It=i}

pIt,n

)
s∈H

]
= Et

[
H(It, Jt) I{It=i}

pIt,n

]
=
H(i, Jt)

pi,n
Et
[
I{It=i}

]
= H(i, Jt) ,

where we first took the expectation over the random draw of St (conditionally on pn, Jt,
and It) and then over the one of It. Consequently, concentration arguments show that for
L large enough,

σ̃n =
1

L

nL∑
t=(n−1)L+1

Ĥt is close to H̃
(
q̂n
)
, where q̂n =

1

L

nL∑
t=(n−1)L+1

δJt . (8)

Actually, since F ⊆ ∆(H)I , we have a natural embedding of F into RH×I and we can define
PF , the convex projection operator onto F (in `2–norm). Instead of using directly σ̃n, we
consider in our strategy σ̂n = PF

(
σ̃n
)
, which is even closer to H̃

(
q̂n
)
.

More precisely, the following result can be extracted from the proof of Theorem 6.1
in Lugosi et al. (2008). For the convenience of the reader, a self-contained proof is provided
in Appendix C.

Lemma 23 For all δ ∈ (0, 1), for all blocks n > 1, with probability at least 1− δ,wwwσ̂n − H̃(q̂n)www
2
6
√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

)
.

5.3.3 A Performance Guarantee for the Strategy of Figure 1

For the sake of simplicity, we provide first a performance bound for fixed parameters γ and
L tuned as functions of a known horizon T . We then obtain a bound holding only for the
specific round T . Adaptation to T → ∞ (and the obtention of bounds for all T > 1) are
then described in the next section. We recall that R was defined in (5) as a bound in norm
on r.

Theorem 24 Consider a closed convex set C and a game (r,H) for which Condition (APM)
is satisfied and that is bi-piecewise linear in the sense of Assumption 1. Then, for all
strategies of the second player, the strategy of Figure 1, run with parameters γ ∈ [0, 1] and
L > 1 and fed with a strategy Ψ for m–approachability of C (provided by Lemma 22) is such
that, for all T > L+ 1, for all δ ∈ (0, 1), with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6
2L

T
R+4R

√
ln
(
2(T + L)/(Lδ)

)
T − L

+2γR+
2R√

T/L− 1

√
NANB

+RκΦ

√
NINHNA

(√
2NI
γL

ln
2NINH(T + L)

Lδ
+

1

3

NI
γL

ln
2NINH(T + L)

Lδ

)
.
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In particular, for all T > 1, the choices of L =
⌈
T 3/5

⌉
and γ = T−1/5 imply that for all

strategies of the second player, for all δ ∈ (0, 1), with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)

for some constant Ξ depending only on C and on the game (r, H) at hand.

The efficiency of the strategy of Figure 1 depends on whether it can be fed with an
efficient approaching strategy Ψ, which in turn depends on the respective geometries of m
and C, as was indicated at the end of Section 3.1. (Note that the projection onto F can be
performed in polynomial time, as the latter closed convex set is defined by finitely many
linear constraints, and that the computation of A, B, and m can be performed beforehand.)
In any case, the per-round complexity is constant (though possibly large).

Proof We write T as T = NL+ k where N is an integer and 0 6 k 6 L− 1 and will show
successively that (possibly with overwhelming probability only) the following statements
hold.

1

T

T∑
t=1

r(It, Jt) is close to
1

NL

NL∑
t=1

r(It, Jt) ; (9)

1

NL

NL∑
t=1

r(It, Jt) is close to
1

N

N∑
n=1

r
(
pn, q̂n

)
; (10)

1

N

N∑
n=1

r
(
pn, q̂n

)
is close to

1

N

N∑
n=1

r
(
xn, q̂n

)
; (11)

1

N

N∑
n=1

r
(
xn, q̂n

)
=

1

N

N∑
n=1

∑
a∈A

θn,a r
(
a, q̂n

)
belongs to the set

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))

;

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))

is equal to the set
1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

;

1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

is close to the set
1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))

; (12)

1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))

is close to the set C ; (13)

where we recall that the notation q̂n was defined in (8) and is referring to the empirical dis-
tribution of the Jt in the n–th block. Actually, we will show below the numbered statements
only. The first unnumbered statement is immediate by the definition of xn, the linearity of
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r, and the very definition of m; while the second one follows from Definition 21:

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))

=
1

N

N∑
n=1

∑
(a,b)∈A×B

θn,a Φb

(
H̃
(
q̂n
))
m(a, b)

=
1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

.

Step 1: Assertion (9). A direct calculation decomposing the sum over T elements
into a sum over the NL first elements and the k remaining ones shows thatwwwww 1

T

T∑
t=1

r(It, Jt)−
1

NL

NL∑
t=1

r(It, Jt)

wwwww
2

6 R

(
k

T
+

(
1

NL
− 1

T

)
NL

)
=

2k

T
R 6

2L

T
R .

Step 2: Assertion (10). We note that by defining Et as the conditional expecta-
tion with respect to (I1, S1, J1), . . ., (It−1, St−1, Jt−1) and Jt, which fixes the values of the
distribution p′t of It and the value of Jt, we have

Et
[
r(It, Jt)

]
= r(p′t, Jt) .

We note that by definition of the forecaster, p′t = pn if t belongs to the n–th block. By
a version of the Hoeffding-Azuma inequality for sums of Hilbert space-valued martingale
differences stated as3 Lemma 3.2 in Chen and White (1996), we therefore get that with
probability at least 1− δ,wwwww 1

NL

NL∑
t=1

r(It, Jt)−
1

N

N∑
n=1

r
(
pn, q̂n

)wwwww
2

6 4R

√
ln(2/δ)

NL
6 4R

√
ln(2/δ)

T − L
.

The second inequality comes from NL = T − k > T − L.
Step 3: Assertion (11). Since by definition pn = (1− γ)xn + γ u, we getwwwww 1

N

N∑
n=1

r
(
pn, q̂n

)
− 1

N

N∑
n=1

r
(
xn, q̂n

)wwwww
2

6 2γR .

Step 4: Assertion (12). We fix a given block n. Lemma 23 indicates that with
probability 1− δ,wwwσ̂n − H̃(q̂n)www

2
6
√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

)
. (14)

Since Φ is Lipschitz (see Remark 20), with a Lipschitz constant in `2–norms denoted by κΦ,
we get that with probability 1− δ,wwwΦ

(
σ̂n
)
− Φ

(
H̃
(
q̂n
))www

2
6 κΦ

√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

)
.

3. Note that the martingale increments are bounded in norm by 2R in our framework and that
√
u e−u 6

e−u/2 for all u > 0.
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By a union bound, the above bound holds for all blocks n = 1, . . . , N with probability at
least 1−Nδ. Finally, an application of Lemma 6 shows that

1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

is in a εT –neighborhood (in `2–norm) of

1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))
,

where

εT = R
√
NB

(
κΦ

√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

))
.

Step 5: Assertion (13). Since C is m–approachable and by definition of the choices
of the θn in Figure 1, we get by Theorem 8, with probability 1,

inf
c∈C

wwwwwc− 1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))wwwww

2

6
2R√
N

√
NANB 6

2R√
T/L− 1

√
NANB ,

since, as used already at the end of step 2, N > T/L− 1.
Conclusion of the proof. The proof is concluded by putting the pieces together,

thanks to a triangle inequality. By a union bound, the obtained bound holds however only
with probability at least 1− (N + 1)δ > 1−

(
(T + L)/L

)
δ, where we used N 6 T/L. The

stated bound follows by replacing all occurrences of δ in the previous steps by δL/(T+L).

5.3.4 Uniform Guarantees over Time

We present here a variant of the strategy of Figure 1 that r–approaches C for the signaling
structure H. This is achieved by making the strategy independent of the horizon T . (The
strategy of the previous section depended on the knowledge of T , via suitable choices for
L and γ.) Two options could have been worked out: resorting to some “doubling trick”
or having the parameters L and γ vary over time. In the latter option, the lengths Ln of
blocks n and the exploration rates γn used therein are no longer constant but of lengths
polynomial in n. We chose the latter option for the sake of elegance and because it relies
on a result of independent interest, namely a generalization of Theorem 3 to polynomial
averages. We only state this generalization for mixed actions taken and observed, but the
adaptation for pure actions follows easily.

Consider the setting of Theorem 3. The studied strategy relies on a parameter α > 0.
It plays an arbitrary x1. For t > 1, it forms at stage t + 1 the vector-valued polynomial
average

m̂α
t =

1

Tαt

t∑
s=1

sαm(xs,ys) where Tαt =

t∑
s=1

sα ,
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computes its projection cαt onto C, and resorts to a mixed action xt+1 solving the minimax
equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂α
t − cαt , m(x,y)− cαt

〉
.

Theorem 25 We denote by M a bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6M .

For all α > 0, when C is an approachable closed convex set, the above strategy ensures that
for all strategies of the second player, with probability 1, for all T > 1,

inf
c∈C

wwwwwc− 1∑T
t=1 t

α

T∑
t=1

tαm(xt,yt)

wwwww
2

6 2M

√∑T
t=1 t

2α∑T
t=1 t

α
6

2M(α+ 1)√
T

. (15)

It is interesting to note that the convergence rate is independent of α and is the same
as standard approachability (1/

√
T ). The proof of this theorem is a slight modification of

the proof of Theorem 3 and is hence deferred to Appendix D.

The extension to polynomially weighted averages can also be obtained in the context
of set-valued approachability. This is because the key to Theorem 8 is Lemma 10, which
indicates that to get set-valued approachability, it suffices to approach, in the usual sense,
C̃. Both can thus be performed with polynomially weighted averages.

Consider now the variant of the strategy of Figure 1 for which the length of the n-
th block, denoted by Ln, is equal to nα, the exploration rate on this block comes at a
rate γn = n−α/3, and Ψ is an m–approaching strategy of C with respect to polynomially
weighted averages with parameter α = 3/2. We call it a time-adaptive version of the
strategy of Figure 1; indeed, this choice of α ensures that there are roughly T 2/5 blocks
and that the length of the last one is of the order of T 3/5. Note that it does not depend
anymore on any time horizon T , hence guarantees can be obtained for all T .

Theorem 26 In the same setting and under the same assumptions as in Theorem 24, the
time-adaptive version of the strategy described in Figure 1 (with Ln = nα and γn = n−α/3

for α = 3/2) ensures that, for all strategies of the second player, for all T > 1 and all
δ ∈ (0, 1), with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)

for some constant Ξ depending only on C and on the game (r, H) at hand.

The proof follows closely the one of Theorem 24 and is presented in Appendix E.

Corollary 27 In the same setting and under the same assumptions as in Theorem 24, the
time-adaptive version of the strategy described in Figure 1 (with Ln = nα and γn = n−α/3

for α = 3/2) indeed r–approaches C for the signalling structure H.

3272



Approachability in Games with Partial Monitoring

Proof The strategy at hand is such that for all T > 1, with probability at least 1− 1/T 2,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 Ξ
(
T−1/5 lnT 3 + T−2/5 lnT 3

)
.

In particular, a union bound shows that for all T > 2,

sup
τ>T

inf
c∈C

wwwwwc− 1

τ

τ∑
t=1

r(It, Jt)

wwwww
2

6 RT
def
= sup

τ>T
Ξ
(
τ−1/5 ln τ3 + τ−2/5 ln τ3

)
,

with probability at least 1−PT , where PT =
∑

τ>T 1/τ2. We note that PT → 0 and RT → 0
as T →∞. To see that the definition of approachability is satisfied, given ε > 0, it suffices
to define Tε as the minimal T such that RT 6 ε and PT 6 ε.

5.4 Approachability in the Case of General Games with Partial Monitoring

Unfortunately, as is illustrated in the example below, there exist games with partial mon-
itoring that are not bi-piecewise linear. However, we will show that if Condition (APM)
holds there exist strategies with a constant per-round complexity that approach polytopes
even when the game is not bi-piecewise linear. That is, by considering simpler closed convex
sets C, no assumption is needed on the pair (r,H).

We will conclude this main part of the paper by re-proving, using a doubling trick, that
Condition (APM) is still sufficient for approachability in the most general case when no
assumption is made neither on (r,H) nor on C, at the cost of inefficiency.

Example 3 The following game (with the same action and signal sets as in Example 2) is
not bi-piecewise linear.

L M R

T (1, 0, 0, 0) / ♣ (0, 0, 1, 0) / ♣ (2, 0, 4, 0) / ♥
B (0, 1, 0, 0) / ♣ (0, 0, 0, 1) / ♣ (0, 3, 0, 5) / ♥

Proof We denote mixed actions of the first player by (p, 1 − p), where p ∈ [0, 1] denotes
the probability of playing T and 1− p is the probability of playing B. It is immediate that
m
(
(p, 1−p), ♣

)
can be identified with the set of all product distributions on 2×2 elements

with first marginal distribution (p, 1 − p). The proof of Lemma 19 shows that the set B
associated with any game always contains the Dirac masses on each signal; that is, δ♣ ∈ B.
But for p 6= p′ and λ ∈ (0, 1), denoting p = λ p+ (1− λ)p′, one necessarily has that

m
(
(p, 1− p), ♣

)
 λm

(
(p, 1− p), ♣

)
+ (1− λ)m

(
(p′, 1− p′), ♣

)
;

the inclusion ⊆ holds by concavity of m in its first argument (Lemma 17) but this inclusion
is always strict here since the left-hand side is formed by product distributions while the
right-hand side also contains distributions with correlations. Hence, bi-piecewise linearity
cannot hold for this game.
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5.4.1 Approachability of the Negative Orthant in General Games

For the sake of simplicity, we start with the case of the negative orthant Rd− and prove
the following result. Note that for the first time in this general framework, the rates for
approachability of polytopes are independent of the dimension (as is the case with full
monitoring).

Theorem 28 If Condition (APM) is satisfied for m and Rd−, then there exists a strategy for
(r,H)–approaching Rd− at a rate of the order of T−1/5, with a constant per-round complexity.

Our argument is based on Lemma 19; we use in the sequel the objects and notation
introduced therein. We denote by r = (rk)16k6d the components of the d–dimensional
payoff function r and introduce, for all k ∈ {1, . . . , d}, the set-valued mapping m̃k defined
by

m̃k : (p, b) ∈ ∆(I)× B 7−→ m̃k(p, b) =
{
rk(p, q) : q ∈ ∆(J ) such that H̃(q) = b

}
.

The mapping m̃ is then defined as the Cartesian product of the m̃k; formally, for all p ∈ ∆(I)
and b ∈ B,

m̃(p, b) =
{

(z1, . . . , zd) : ∀k ∈ {1, . . . , d}, zk ∈ m̃k(p, b)
}
.

We then linearly extend this mapping to a set-valued mapping m̃ defined on ∆(I)×∆(B)
and finally consider the set-valued mapping m̆ defined on ∆(I)×F by

∀σ ∈ F , ∀p ∈ ∆(I), m̆(p, σ) = m̃
(
p,Φ(σ)

)
=
∑
b∈B

Φb(σ) m̃(p, b) ,

where Φ refers to the mapping defined in Lemma 19 (based on m). The lemma below
indicates why m̆ is an excellent substitute to m in the case of the approachability of the
orthant Rd−.

Lemma 29 The set-valued mappings m̆ and m satisfy that for all p ∈ ∆(I) and σ ∈ F ,

1. the inclusion m(p, σ) ⊆ m̆(p, σ) holds;

2. if m(p, σ) ⊆ Rd−, then one also has m̆(p, σ) ⊆ Rd−.

The interpretation of these two properties is: 1. m̆–approaching a set C is more difficult
than m–approaching it; and 2. that if Condition (APM) holds for m and Rd−, it also holds
for m̆ and Rd−.

Proof For the first property, note that by the component-wise construction of m̃,

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) ⊆ m̃(p, b) .

Lemma 19, the linear extension of m̃, and the definition of m̆ then show that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑
b∈B

Φb(σ)m(p, b) ⊆ m̃
(
p, Φ(σ)

)
= m̆(p, σ) .
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As for the second property, it suffices to work component-wise. Note that (by Lemma 19
again) the stated assumption exactly means that

∑
b∈B Φb(σ)m(p, b) ⊂ Rd−. In particular,

rewriting the non-positivity constraint for each of the d components of the payoff vectors,
we get ∑

b∈B
Φb(σ) m̃k(p, b) ⊆ R− ,

for all k ∈ {1, . . . , d}; thus, in particular,
∑

b∈B Φb(σ) m̃(p, b) = m̆(p, σ) ⊆ Rd−.

We can then extend the result of the previous section without the bi-piecewise linearity
assumption.

Proof [of Theorem 28] The assumption of the theorem and the second property of
Lemma 29 imply that Condition (APM) holds for Rd− and m̆. Furthermore, the latter
corresponds to a bi-piecewise linear game, i.e., Assumption 1 is satisfied. Indeed, we show
below that each m̃k( · , b) is a piecewise linear function. As a consequence, each m̆( · , b) is
also a piecewise linear function.

Each m̃k( · , b) is piecewise linear since m̃k is based on the scalar payoff function rk.
Indeed, since H̃ is linear, the set{

q ∈ ∆(J ) such that H̃(q) = b
}

is a polytope, thus, the convex hull of some finite set {qb,1, . . . , qb,M} ⊂ ∆(J ). Therefore,
for every p ∈ ∆(I), by linearity of rk (and by the fact that it takes one-dimensional values),

m̃k(p, b) =
{
rk(p, q) : q ∈ ∆(J ) such that H̃(q) = b

}
= co

{
rk(p, qb,1), . . . , r(p, qb,M )

}
=

[
min

k∈{1,...,M}
rk(p, qb,k) , max

k′∈{1,...,M}
rk(p, qb,k′)

]
, (16)

where co stands for the convex hull. Since all mappings rk( · , qb,k) are linear, their minimum
and their maximum are piecewise linear functions, therefore m̃k( · , b) is also piecewise linear.

Therefore, the steps between Equations (11)–(13) of the proof of Theorem 24 (or the
corresponding statements in the proof of Theorem 26) can be adapted by replacing m and
m by, respectively, m̃, m̆, and its extension corresponding to Definition 21. The result about
approachability rates follows.

We now prove that the strategy constructed here is efficient. Indeed, recall that this is
always the case as long as the projection onto the associated convex set C̃ defined by (4)
with the linear function m is also efficient. But this follows from the fact that as Rd− is a

polyhedron, the set C̃ is a polytope.

We now generalize the above ideas to more complex sets.
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5.4.2 Approachability of Polytopes for General Games

If the target set C is a polytope, then C can be written as the intersection of a finite number
of half-planes, i.e., there exists a finite family

{
(ek, fk) ∈ Rd × R, k ∈ K

}
such that

C =
{
z ∈ Rd : 〈z, ek〉 6 fk, ∀ k ∈ K

}
.

Given the original (not necessarily bi-piecewise linear) game (r,H), we introduce another
game (rC , H), whose payoff function rC : I × J → RK is defined as

∀ i ∈ I, ∀ j ∈ J , rC(i, j) =
[
〈r(i, j), ek〉 − fk

]
k∈K

.

The following lemma is a mere exercise of rewriting.

Lemma 30 Given a polytope C, the (r,H)–approachability of C and the
(
rC , H

)
–approacha-

bility of Rd− are equivalent in the sense that every strategy for solving one problem translates
to a strategy for solving the other problem. In addition, Condition (APM) holds for (r,H)
and C if and only if it holds for

(
rC , H

)
and Rd−.

Via the lemma above, Theorem 28 indicates that Condition (APM) for (r,H) and C is a
sufficient condition for the (r,H)–approachability of C and provides an efficient strategy to
do so. (The per-round complexity of this strategy depends in particular at least linearly on
the cardinality of K.) Again, rates of convergence are also, for the first time, independent
of the dimensions (yet the question of their optimality remains open).

5.4.3 Approachability of General Convex Sets in the Case of General
Games

In the above, we provided efficient strategies in the following cases:

– Up to projection oracles, when the games (r,H) are bi-piecewise linear, with no as-
sumption on the target set C; see Section 5.3. This includes at least the minimization
of external and internal regret, for which the projections can indeed be performed
efficiently; see the upcoming Section 6.

– When the target set C is a polytope, with no assumption on the game (r,H); see
Sections 5.4.1 and 5.4.2.

We only mention the case of general games (r,H) and general closed convex target sets C
in this section to have a complete, self-contained, and constructive proof of the sufficiency
of Condition (APM) for (r,H)–approachability. (Perchet, 2011a already proved the latter.)

Theorem 15 and Lemma 17 show that Condition (APM) is indeed sufficient to (r,H)–
approach any general closed convex set C. However, the computational complexity of the
resulting strategy is much larger as the per-round complexity increases over time. Another
way to deal with a general closed convex set is based on the fact that it can be approximated
arbitrarily well by a polytope (where the number of vertices of the latter increases as the
quality of the approximation does). Playing in regimes approachability strategies of such
a sequence of approximations also gives an approachability strategy of the original set C.
However, the per-round complexity increases over time (as the numbers of vertices of the
approximating polytopes do).
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6. Application to Regret Minimization

In this section we analyze external and internal regret minimization in repeated games with
partial monitoring from the perspective of approachability. We show how to efficiently
minimize regret in both setups using the results developed for vector-valued games with
partial monitoring. To do so, we indicate why the assumption of bi-piecewise linearity
(Assumption 1) is satisfied.

The results instantiated below are not necessarily new in terms of efficiency or conver-
gence rates, and some are even slightly suboptimal. However, our point is that all previous
good strategies were specifically designed for the problem of regret minimization, while we
introduced above a general strategy for all approachability problems, including regret min-
imization. And what we gained in generality (the wider range of problems that we can deal
with) has no impact (or little impact only) on the efficiency or on the rates, which we think
is an important contribution.

6.1 External Regret

We consider in this section the framework and aim introduced by Rustichini (1999) and
studied, sometimes for restricted classes of games, by Piccolboni and Schindelhauer (2001),
Mannor and Shimkin (2003), Cesa-Bianchi et al. (2006), Lugosi et al. (2008), Bartók et al.
(2010, 2011), Foster and Rakhlin (2012). We show that our general strategy can be used
for regret minimization.

Scalar payoffs are obtained (but not observed) by the first player, i.e., d = 1: the payoff
function r is a mapping I ×J → R. We still denote by R a bound on |r|. We define in this
section

q̂T =
1

T

T∑
t=1

δJT

as the empirical distribution of the actions taken by the second player during the first T
rounds. (This is in slight contrast with the notation q̂n used in Section 5.3 to denote such
an empirical distribution, but only taken within regime n.)

The external regret of the first player at round T equals by definition

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt) ,

where ρ : ∆(I)×F is defined as follows: for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min
{
r(p, q) : q such that H̃(q) = σ

}
. (17)

The function ρ is continuous in its first argument and therefore the supremum in the defining
expression of Rext

T is a maximum.
We recall briefly why, intuitively, this is the natural notion of external regret to consider

in this case (more formal arguments are given in Rustichini, 1999). Indeed, the first term in
the definition of Rext

T is (close to) the worst-case average payoff obtained by the first player
when playing consistently a mixed action p against a sequence of mixed actions inducing
on average the same laws on the signals as the sequence of actions actually played.

3277



Mannor, Perchet and Stoltz

Rustichini (1999) calls the partial monitoring in the game (r,H) statistically sufficient
when

max
p∈∆(I)

r
(
p, q̂T

)
= max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
.

In general, only an inequality > holds between the two quantities. A line of research initiated
by Piccolboni and Schindelhauer (2001) first studied efficient strategies to minimize the
regret in the said case of a statistically sufficient monitoring.

6.1.1 A Strategy Minimizing External Regret

The following result is a consequence of Theorem 26, as its proof shows; it corresponds to
the main result of Lugosi et al. (2008), with the same convergence rate but with a different
strategy. (However, Perchet, 2011b, Section 2.3 exhibited an efficient strategy achieving a
convergence rate of order T−1/3, which is optimal; this strategy was an ad hoc strategy for
regret minimization. Nonetheless, a question that remains open is thus whether the rates
exhibited in Theorem 26 could be improved.)

Corollary 31 The first player can apply the strategy of Theorem 25 such that for all strate-
gies of the second player, for all T and all δ ∈ (0, 1), with probability at least 1− δ,

Rext
T 6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant Ξ depending only on the game (r, H) at hand.

The discussion about the efficiency of the strategy is postponed to the end of this section,
as it relies on some objects that will be introduced in the proof of the corollary. The latter
proof is an extension to the setting of partial monitoring of the original proof and strategy
of Blackwell (1956b) for the case of external regret under full monitoring: in the latter case
the vector-payoff function r and the set C considered in our proof are equal to the ones
considered by Blackwell.

Proof We embed F into RI×H so that in this proof we will be working in the vector space
Rd = R×RI×H. We consider the closed convex set C and the vector-valued payoff function
r respectively defined by

C =

{
(z, σ) ∈ R×F : z > max

p∈∆(I)
ρ(p, σ)

}
and r(i, j) =

[
r(i, j)

H̃(δj)

]
,

for all (i, j) ∈ I × J .
We first show that Condition (APM) is satisfied for the considered convex set C and

game (r,H). To do so, by continuity of ρ in its first argument, we associate with each
q ∈ ∆(J ) an element φ(q) ∈ ∆(I) such that

φ(q) ∈ argmax
p∈∆(I)

ρ
(
p, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), we have by
definition of ρ,

r
(
φ(q), q′

)
> ρ
(
φ(q), H̃(q′)

)
= max

p∈∆(I)
ρ
(
p, H̃(q′)

)
,
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which shows that r
(
φ(q), q′

)
∈ C. The required condition is thus satisfied.

We then show that Assumption 1 is satisfied. To do so, we will use the same arguments
as around (16) and actually prove the stronger property that the mappings m( · , σ) are
piecewise linear for all σ ∈ F ; we fix such a σ in the sequel. Only the first coordinate r of
r depends on p, so the desired property is true if and only if the mapping m1( · , σ) defined
by

p ∈ ∆(I) 7−→ m1(p, σ) =
{
r(p, q) : q ∈ ∆(J ) such that H̃(q) = σ

}
is piecewise linear. But this is true because r takes scalar values, as indicated around (16).

Theorem 26 can then be applied to exhibit the convergence rates; we simply need to
relate the quantity of interest here to the one considered therein. To that end we use the
fact that the mapping

σ ∈ F 7−→ max
p∈∆(I)

ρ(p, σ)

is Lipschitz, with Lipschitz constant in `2–norm denoted by Lρ; the proof of this fact is
detailed in the last paragraph of this proof.

Now, the regret is non-positive if
∑T

t=1 r(It, Jt)/T belongs to C; we therefore only need
to consider the case when this average is not in C. In the latter case, we denote by (r̃T , σ̃T )
its projection in `2–norm onto C. We have first that the defining inequality of C is an
equality on its border, so that

r̃T = max
p∈∆(I)

ρ
(
p, σ̃T

)
;

and second, that

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt)

6

∣∣∣∣ max
p∈∆(I)

ρ
(
p, H̃

(
q̂T
))
− max

p∈∆(I)
ρ
(
p, σ̃T

)∣∣∣∣+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6 Lρ

wwwσ̃T − H̃(q̂T )www
2

+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6
√

2 max
{
Lρ, 1

} wwwww
[
r̃T
σ̃T

]
− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

=
√

2 max
{
Lρ, 1

}
inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

.

The claimed rates are now seen to follow from the ones indicated in Theorem 26.
It only remains to prove the indicated Lipschitz continuity. (All Lipschitz continuity

statements that follow will be with respect to the `2–norms.) We have by Definition 21 that
for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min m1

(
p,Φ(σ)

)
,
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where the linear m1 indifferently either is relative to m1 or is the projection onto the first
component of the function m relative to m. By Remark 20 the mapping σ ∈ F 7→ Φ(σ) is
κΦ–Lipschitz; this entails, by Lemma 6, that for all p ∈ ∆(I), the mapping σ ∈ F 7→ ρ(p, σ)
is R
√
NB κΦ–Lipschitz. In particular, since the latter Lipschitz constant is independent of

p, the mapping
σ ∈ F 7−→ max

p∈∆(I)
ρ(p, σ)

is R
√
NB κΦ–Lipschitz as well, which concludes the proof.

6.1.2 Discussion about Efficiency

An argument similar to the one in Perchet (2011b) shows that the convex set C is de-
fined by a finite number of piecewise linear equations, it is therefore a polyhedron; so that
the projection onto it, as well as the computation of the strategy, can be done efficiently.
We only sketch here the argument. The argument used when referring to (16) indicates a
priori that for each σ ∈ F , there exist a finite number Kσ (depending on σ) of mixed actions
qσ,1, . . . , qσ,Mσ

such that for all p ∈ ∆(I), we have ρ(p, σ) = min
{
r(p, qσ,1), . . . , r(p, qσ,Mσ

)
}

.
But by an argument stated in Perchet (2011b),

σ 7−→
{
q ∈ ∆(J ) such that H̃(q) = σ

}
evolves in a piecewise linear way and thus there exist a finite number K of piecewise linear
functions σ 7→ q′σ,k, with k = 1, . . . ,K, such that, for all σ ∈ F ,{

qσ,1, . . . , qσ,Kσ
}

=
{
q′σ,1, . . . , q

′
σ,K

}
.

(There can be some redundancies between the q′σ,k.) Because of this, we have that for all
p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min
{
r(p, q′σ,1), . . . , r(p, q′σ,K)

}
.

Each function σ 7→ q′σ,k being piecewise linear, one can construct a finite set {p1, . . . ,pK̃} ⊂
∆(I) such that, for any σ ∈ F , the mapping p 7→ ρ(p, σ) is maximized at one of these pk.
The convex set C is therefore defined by a finite number of piecewise linear equations, it is
a polyhedron. Its lifted image C̃ is a then a polytope: thus, the projection onto it, hence
the computation of the proposed strategy, can be done efficiently.

6.2 Internal / Swap Regret

Foster and Vohra (1999) defined internal regret with full monitoring as follows. A player
has no internal regret if, for every action i ∈ I, he has no external regret on the stages when
this specific action i was played (if there are enough such stages). In other words, i is the
best response to the empirical distribution of actions of the other player on these stages.

With partial monitoring, the first player evaluates his payoffs in a pessimistic way
through the function ρ defined in (17). This function is not linear over ∆(I) in general
(it is concave), so that the best responses are not necessarily pure actions i ∈ I but mixed
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actions, i.e., elements of ∆(I). Following Lehrer and Solan (2007) one therefore can parti-
tion the stages not depending on the pure actions actually played but on the mixed actions
pt ∈ ∆(I) used to draw them. To this end, it is convenient to assume that the strategies of
the first player need to pick these mixed actions in a finite grid of ∆(I), which we denote
by
{
pg, g ∈ G

}
, where G is a finite set. At each round t, the first player picks an index

Gt ∈ G and uses the distribution pGt to draw his action It. A discussion about the choice of
G is provided below. For now, we define formally G–internal regret as internal regret with
respect to the set of mixed actions G.

Up to a standard concentration-of-the-measure argument, we will measure the payoff at
round t with r

(
pGt , Jt

)
rather than with r(It, Jt). For each g ∈ G, we denote by NT (g) the

number of stages in {1, . . . , T} for which we had Gt = g and, whenever NT (g) > 0,

q̂T,g =
1

NT (g)

∑
t:Gt=g

δJt .

We define q̂T,g in an arbitrary way when NT (g) = 0. The G–internal regret of the first
player at round T is measured as

Rint
T = max

g,g′∈G

NT (g)

T

(
ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Actually, our proof technique rather leads to the minimization of some G–swap regret (see
Blum and Mansour, 2007, for the definition of swap regret in full monitoring):

Rswap
T =

∑
g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
+

.

At first sight, to handle all possible alternatives one should take G as a thin grid in
∆(I), i.e., some ε–discretization of the latter. This is what Lehrer and Solan (2007) do.
However, Perchet (2011b) showed that there exists a finite subset G0 of ∆(I) such that G0

contains a best response to any mixed action of the second player: for all q ∈ ∆(J ),(
argmin
p∈∆(I)

ρ
(
p, H̃(q)

))
∩ G0 6= ∅ .

The strategy we discuss below will have a complexity polynomial in the size of G. We thus
advise to take G = G0 for the sake of efficiency.

Again, the following bound on the swap regret easily follows from Theorem 24. The
latter constructs a simple and direct strategy to control the swap regret, thus also the
internal regret. It therefore improves on the results of Lehrer and Solan (2007) and Perchet
(2009, 2011b), three papers that presented more involved and less efficient strategies to do
so. These strategies were indeed based on auxiliary strategies using thin grids that need
to be refined over time; this resulted in complexities that were at least exponential in the
number of rounds. (The ideas used therein bear some resemblance with what is done in
calibration, see the references provided in Section 4.) In contrast, our strategy can have a
constant per-round complexity (when used with the grid G0). This is a major improvement
in efficiency. However, as far as convergence rates are concerned, we must note that again,
as in the case of external regret, Perchet (2011b) obtained rates of the faster order T−1/3,
for an ad hoc (inefficient) strategy. We thus sacrifice efficiency for rates.
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Corollary 32 The first player has an explicit strategy such that for all strategies of the
second player, for all T and all δ ∈ (0, 1), with probability at least 1− δ,

Rswap
T 6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant Ξ depending only on the game (r, H) at hand and on the size of the finite
grid G.

Proof The proof of this corollary is based on ideas similar to the ones used in the proof
of Corollary 31; G will play the role of the action set of the first player. The proof pro-
ceeds in four steps. In the first step, we construct an approachability setup and show that
Condition (APM) applies. In the second step, we show that Assumption 1 is satisfied. In
the third step we analyze the convergence rates of the swap regret. In the fourth and final
step, we show that the set we are approaching possesses some smoothness properties by
providing a uniform Lipschitz bound on certain functions.

Step 1: We denote by

Fcone =
{
λσ, σ ∈ F , λ ∈ R+

}
the cone generated by F and extend linearly ρ : ∆(I) × F → R into a mapping ρ :
∆(I)×Fcone → R as follows: for all p ∈ ∆(I), for all λ > 0 with λ 6= 1, and all σ ∈ F ,

ρ(p, λσ) =

{
0 if λ = 0,
λ ρ(p, σ) if λ > 0.

In the sequel, we embed Fcone into RI×H.
The closed convex set C and the vector-valued payoff function r are then respectively

defined by

C =

{
(zg,vg)g∈G ∈

(
R×Fcone

)G
: ∀ g ∈ G, zg > max

g′∈G
ρ
(
pg′ ,vg

)}
and, for all (g, j) ∈ G × J ,

r(g, j) =

[
r
(
pg, j

)
I{g′=g}

H̃(δj) I{g′=g}

]
g′∈G

.

To show that C is r–approachable, we associate with each q ∈ ∆(J ) an element g?(q) ∈ G
such that

g?(q) ∈ argmax
g∈G

ρ
(
pg, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), the components
of the vector r

(
g?(q), q′

)
are all null but the ones corresponding to g?(q), for which we have

r
(
pg?(q), q

′)
> ρ
(
pg?(q), H̃

(
q′
))

= ρ
(
pg?(q), H̃

(
q
))

= max
g′∈G

ρ
(
pg′ , H̃

(
q
))

= max
g′∈G

ρ
(
pg′ , H̃

(
q′
))
,
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where the first inequality is by definition of ρ. Therefore, r
(
g?(q), q′

)
∈ C. Condition (APM)

in Lemma 22 and Theorem 24 is thus satisfied, so that we have approachability.
Step 2: We then show that Assumption 1 is satisfied. It suffices to show that for all

σ ∈ F , the mapping

π = (πg)g∈G ∈ ∆(G) 7−→ m1(π, σ) =
{(
πg r(pg, q)

)
g∈G : q ∈ ∆(J ) such that H̃(q) = σ

}
is piecewise linear (as the other components in the definition of m are linear in π). This is
the case since for each g, the mapping

π ∈ ∆(G) 7−→
{
πg r(pg, q) : q ∈ ∆(J ) such that H̃(q) = σ

}
is seen to be piecewise linear, by using the same one-dimensional argument as the one stated
around (16) and also used in the proof of Corollary 31.

Step 3: We now exhibit the convergence rates. In view of the form of the defining
set of constraints for C, the coordinates of the elements in C can be grouped according to
each g ∈ G and projections onto C can therefore be done separately for each such subset of
coordinates. The subset of coordinates of

∑T
t=1 r(Gt, Jt)/T corresponding to a given g is

formed by
NT (g)

T
r
(
pg, q̂T,g

)
and

NT (g)

T
H̃
(
q̂T,g

)
.

When
NT (g)

T
r
(
pg, q̂T,g

)
> max

g′∈G
ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
,

we denote these quantities by r̃T,g and ṽT,g. Otherwise, we project this pair on the set

Cg =

{
(zg,vg) ∈ R×Fcone : zg > max

g′∈G
ρ
(
pg′ ,vg

)}
and denote by r̃T,g and ṽT,g the coordinates of the projection; they satisfy the defining
inequality of Cg with equality,

r̃T,g = max
g′∈G

ρ
(
pg′ , ṽT,g

)
.

By distinguishing for each g according to which of the two cases above arose (for the
first inequality), we may decompose and upper bound the swap regret as follows,

Rswap
T

=
∑
g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
+

=
∑
g∈G

(
max
g′∈G

ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
− NT (g)

T
r
(
pg, q̂T,g

))
+

6
∑
g∈G

∣∣∣∣max
g′∈G

ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
−max

g′∈G
ρ
(
pg′ , ṽg,T

)∣∣∣∣+
∑
g∈G

∣∣∣∣r̃T,g − NT (g)

T
r
(
pg, q̂T,g

)∣∣∣∣
6

∑
g∈G

Lρ

wwwwNT (g)

T
H̃
(
q̂T,g

)
− ṽg,T

wwww
2

+
∑
g∈G

∣∣∣∣r̃T,g − NT (g)

T
r
(
pg, q̂T,g

)∣∣∣∣ ,
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where we used a fact proved in step 4, that the mapping

v ∈ Fcone 7−→ max
g′∈G

ρ
(
pg′ ,v

)
(18)

is Lρ–Lipschitz. In the last inequality we had a sum of `2–norms, which can be bounded by
a single `2–norm,

Rswap
T 6 max

{
Lρ, 1

}√
2NG

wwwwww
[
r̃T,g

ṽT,g

]
g∈G

− 1

T

T∑
t=1

r(It, Jt)

wwwwww
2

6 max
{
Lρ, 1

}√
2NG inf

c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

,

where we denoted by NG the cardinality of G. Resorting to the convergence rate stated in
Theorem 26 concludes the proof.

Step 4: It only remains to prove the claimed Lipschitzness of the mapping (18). (All
Lipschitzness statements that follow will be with respect to the `2–norms.) To do so, it
suffices to show that for all fixed elements p ∈ ∆(I), the functions v ∈ Fcone 7→ ρ(p,v)
are Lipschitz, with a Lipschitz constant Lρ that is independent of p. Note that we already
proved at the end of the proof of Corollary 31 that σ ∈ F 7→ ρ(p, σ) is Lipschitz, with a
Lipschitz constant Lρ independent of p. Consider now two elements v, v′ ∈ Fcone, which we
write as v = λσ and v′ = λ′σ′, with σ, σ′ ∈ F and λ, λ′ ∈ R+. Using triangle inequalities,
the Lipschitzness of ρ on F , and the fact that r thus ρ are bounded by R,∣∣ρ(p, λσ)− ρ(p, λ′σ′)

∣∣ 6
∣∣λ(ρ(p, σ)− ρ(p, σ′)

)∣∣+
∣∣(λ− λ′)ρ(p, σ′)

∣∣
6 λLρ

wwσ − σ′ww
2

+R
∣∣λ− λ′∣∣

6 Lρ
wwλσ − λ′σ′ + (λ′ − λ)σ′

ww
2

+R
∣∣λ− λ′∣∣

6 Lρ
wwλσ − λ′σ′ww

2
+
(
R+ LρNI

) ∣∣λ− λ′∣∣ ,
where we used also for the last inequality that since σ is a vector of NI probability distri-
butions over the signals, ‖σ‖2 6 ‖σ‖1 = NI . To conclude the argument, we simply need to
show that

∣∣λ− λ′∣∣ can be bounded by
wwλσ − λ′σ′ww

2
up to some universal constant, which

we do now. We resort again to the fact that ‖σ‖1 = ‖σ′‖1 = NI and can thus write, thanks
to a triangle inequality and assuming with no loss of generality that λ′ < λ, that

∣∣λ− λ′∣∣ =
1

NI

(
λ ‖σ‖1 − λ

′wwσ′ww
1

)
6

1

NI

wwλσ − λ′σ′ww
1
6

√
NHNI
NI

wwλσ − λ′σ′ww
2
,

where we used the Cauchy-Schwarz inequality for the final step. One can thus take, for
instance,

Lρ = Lρ +
(
R+ LρNI

)√NH
NI

.

This concludes the proof.
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7. Summary of the Results

This paper extended Blackwell’s classical approachability theory to the case where set-
valued functions are considered, which models ambiguity in the obtained reward. In the
case of mixed actions taken, this extension was provided in the case of linear (Section 3) and
concave–convex (Section 4) set-valued functions; only in the former case efficient strategies
(up to a projection oracle) could be constructed.

The second part of this paper (Section 5) applies this theory of set-valued approachability
to approachability with partial monitoring. The necessary and sufficient Condition (APM)
for this was exhibited by Perchet (2011a) and was recalled in Section 5.1; its link with the
necessary and sufficient condition for set-valued approachability was discussed in Section 5.2.
Then, under a so-called assumption of bi-piecewise linearity of the game (r,H) at hand,
an efficient strategy (up to a projection oracle) was constructed and studied in Section 5.3,
for the approachability of any closed convex set C. Alternatively, Section 5.4 showed that
for any game (r,H) at hand but under the constraint that the target set C is a polytope,
the above efficient construction could still be used. In both cases, the novelty also relies
not only the gained efficiency with respect to the construction by Perchet (2011a) but
also on getting for the first time rates of convergence that are independent of the ambient
dimension. The case of any game (r,H) and any closed target set C was discussed, for
the sake of completeness, at then end of Section 5.4, so that the present article contains a
complete and self-contained constructive proof of the sufficiency of Condition (APM).

Finally, Section 6 showed that the well-studied case of regret minimization, a special
case of approachability, could fall under the umbrella of bi-piecewise linearity, and hence be
performed efficiently, as was already known.

Acknowledgments

Shie Mannor was partially supported by the ISF under contract 890015 and the Google
Inter-university center for Electronic Markets and Auctions. Vianney Perchet benefited
from the support of the ANR under grants ANR-10-BLAN 0112 and ANR-13-JS01-0004-
01. Gilles Stoltz acknowledges support from Investissements d’Avenir (ANR-11-IDEX-
0003/Labex Ecodec/ANR-11-LABX-0047).

An extended abstract of this paper appeared in the Proceedings of the 24th Annual
Conference on Learning Theory (COLT’11), JMLR Workshop and Conference Proceedings,
Volume 19, pages 515–536, 2011.

Appendix A. Proof of Theorem 15

Proof [of the second statement of Theorem 15] The proof of Corollary 7 extends to
the case considered here and shows, thanks to the ad hoc consideration of the result stated
in Lemma 6 as following from Definition 13, that for all y ∈ ∆(B), the mapping Dy is still
continuous over ∆(A). We now proceed by contradiction and assume that (SVAC) is not
satisfied. The first part of the proof of the necessity of (SVAC) in Theorem 8 also applies
to the present case: there exists y0 such that Dy0

> Dmin > 0 over ∆(A). It then suffices
to note that whenever the second player resorts to yt = y0 at all rounds t > 1, then for all
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strategies of the first player, the quantity of interest in the set-valued approachability can
be lower bounded as follows. Thanks to the concavity in the first argument,

sup

{
inf
c∈C
‖ξ − c‖2 : ξ ∈ 1

T

T∑
t=1

m(xt,y0)

}

> sup

{
inf
c∈C
‖ξ − c‖2 : ξ ∈ m

(
1

T

T∑
t=1

xt, y0

)}
= Dy0

(
1

T

T∑
t=1

xt

)
> Dmin > 0 .

Therefore, C is m–approachable by no strategy of the first player.

The proof of the first statement of Theorem 15 relies on the use of approximately
calibrated strategies of the first player, as introduced and studied (among others) by Dawid
(1982), Foster and Vohra (1998), Mannor and Stoltz (2010). Formally, given η > 0, an
η–calibrated strategy of the first player considers some finite covering of ∆(B) by Nη balls
of radius η and abides by the following constraints. Denoting by y1, . . . ,yNη the centers of
the balls in the covering (they form what will be referred to later on as an η–grid), such a
strategy chooses only forecasts in

{
y1, . . . ,yNη

}
. We thus denote by Lt the index chosen

in
{

1, . . . , Nη

}
at round t and by

NT (`) =
T∑
t=1

I{Lt=`}

the total number of rounds within the first T ones when the element ` of the grid was
chosen. We denote by ( · )+ the function that gives the nonnegative part of a real number.
The final condition to be satisfied is that for all δ ∈ (0, 1), there exists an integer Tδ such
that for all strategies of the second player, with probability at least 1− δ, for all T > Tδ,

Nη∑
`=1

NT (`)

T

(wwwwwy` − 1

NT (`)

T∑
t=1

ytI{Lt=`}

wwwww
1

− η

)
+

6 δ . (19)

This calibration criterion is slightly stronger than the classical η–calibration score usually
considered in the literature, which consists of omitting nonnegative parts in the criterion
above and ensuring that for all strategies of the second player, with probability at least
1− δ, for all T > Tδ,

Nη∑
`=1

NT (`)

T

wwwwwy` − 1

NT (`)

T∑
t=1

ytI{Lt=`}

wwwww
1

6 η + δ . (20)

The existence of a calibrated strategy in the sense of (19) however follows from the same
approachability-based construction studied in Mannor and Stoltz (2010) to get (20) and
is detailed below in Section B. In the sequel we will only use the following consequence of
calibration: that for all strategies of the second player, with probability at least 1 − δ, for
all T > Tδ,

max
`=1,...,Nη

NT (`)

T

(wwwwwy` − 1

NT (`)

T∑
t=1

ytI{Lt=`}

wwwww
1

− η

)
+

6 δ . (21)
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Proof [of the first statement of Theorem 15] The insight of this proof is similar to the
one illustrated in Perchet (2009). We first note that it suffices to prove that for all ε > 0, the
set Cε defined as the ε–neighborhood of C is m–approachable. This is so up to proceeding
in regimes r = 1, 2, . . . each corresponding to a dyadic value εr = 2−r and lasting for a
number of rounds carefully chosen in terms of the length of the previous regimes.

Therefore, we fix ε > 0 and associate with it a modulus of continuity η > 0 given by the
uniform continuity of m in its second argument. We consider an η/2–calibrated strategy of
the first player, which we will use as an auxiliary strategy. Since (SVAC) is satisfied, we
may associate with each element y` of the underlying η/2–grid a mixed action x` ∈ ∆(A)
such that m

(
x`,y`

)
⊆ C. The main strategy of the first player then prescribes the use

of xt = xLt at each round t > 1. The intuition behind this definition is that if yLt is
forecasted by the auxiliary strategy, then since the latter is calibrated, one should play as
good as possible against yLt . In view of the aim at hand, which is approaching C, such a
good reply is given by xLt .

To assess the constructed strategy, we group rounds according to the values ` taken by
the Lt. To that end, we recall that NT (`) denotes the number of rounds in which y` was
forecasted and x` was played. The average payoff up to round T is then rewritten as

1

T

T∑
t=1

m(xt,yt) =

Nη/2∑
`=1

NT (`)

T

(
1

NT (`)

T∑
t=1

m
(
x`,yt

)
I{Lt=`}

)
.

We denote for all ` such that NT (`) > 0 the average of their corresponding mixed actions
yt by

y`T =
1

NT (`)

T∑
t=1

ytI{Lt=`} .

The convexity of m in its second argument leads to the inclusion

1

T

T∑
t=1

m(xt,yt) =

Nη/2∑
`=1

NT (`)

T

(
1

NT (`)

T∑
t=1

m
(
x`,yt

)
I{Lt=`}

)
⊆

Nη/2∑
`=1

NT (`)

T
m
(
x`,y`T

)
.

We recall that B denotes the unit Euclidean ball in Rd. To show that the above-defined
strategy m–approaches Cε = C + εB, it suffices to show that for all δ ∈ (0, 1), there exists
an integer T ′δ such that for all strategies of the second player,

P

∀T > T ′δ,

Nη/2∑
`=1

NT (`)

T
m
(
x`,y`T

)
⊆ C + (ε+ δ)B

 > 1− δ .

We denote by M a bound in `2–norm on m, i.e., for all x ∈ ∆(A) and y ∈ ∆(B), the
inclusion m(x,y) ⊆ MB holds. We let δ′ = δ(η/2)

/(
M Nη/2

)
and define T ′δ as the time

Tδ′ corresponding to (21). All statements that follow will be for all strategies of the second
player and with probability at least 1−δ′ > 1−δ, for all T > T ′δ, as required. For each index
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` of the grid, either δ′T/NT (`) 6 η/2 or δ′T/NT (`) > η/2. In the first case, following (21),wwy` − y`Tww 6 η/2 + δ′T/NT (`) 6 η; since η is the modulus of continuity for ε, we get that

NT (`)

T
m
(
x`,y`T

)
⊆ NT (`)

T

(
m
(
x`,y`

)
+ εB

)
⊆ NT (`)

T

(
C + εB

)
,

where we used the definition of x` to get the second inclusion. In the second case, using
the boundedness of m, we simply write

NT (`)

T
m
(
x`,y`T

)
⊆ NT (`)

T
MB ⊆ δ′

η/2
MB .

Summing these bounds over ` yields

Nη/2∑
`=1

NT (`)

T
m
(
x`,y`T

)
⊆ C + εB +

Nη/2δ
′

η/2
M B = C + (ε+ δ)B ,

where we used the definition of δ′ in terms of δ. This concludes the proof.

Appendix B. An Auxiliary Result of Calibration

We prove here (19) for a given η > 0 and do so by following closely the methodology
of Mannor and Stoltz (2010). (Note that this result is of independent interest.)

We actually assume that the covering y1, . . . ,yNη is slightly finer than what was required
around (19) and that it forms an η/NB–grid of ∆(B), i.e., that for all y ∈ ∆(B), there exists
` ∈ {1, . . . , Nη} such that

wwy − y`ww
1
6 η/NB.

We recall that elements y ∈ B are denoted by y = (yb)b∈B and we identify ∆(B) with a
subset of RNB . In particular, Ib, the Dirac mass on a given b ∈ B, is a binary vector whose
only non-null component is the one indexed by b. Finally, we denote by

0 = (0, . . . , 0) and 1 = (1, . . . , 1)

the elements of RB respectively formed by zeros and ones only.
We consider a vector-valued payoff function C : {1, . . . , Nη} × B → R2NηNB defined as

follows; for all ` ∈ {1, . . . , Nη} and for all b ∈ B,

C(`, b) =

(
0, . . . , 0, y` − Ib −

η

NB
1, Ib − y` −

η

NB
1, 0, . . . , 0

)
,

which is a vector of 2Nη elements of RB composed by 2(Nη − 1) occurrences of the zero
element 0 ∈ RB and two non-zero elements, located in the positions indexed by 2`− 1 and
2`.

We now show that the closed convex set (R−)2NηNB is C–approachable; to do so, we
resort to the characterization stated in Theorem 2. To each y ∈ ∆(B) we will associate
a pure action `y in {1, . . . , Nη} so that C

(
`y,y

)
∈ (R−)2NηNB ; note that to satisfy the

necessary and sufficient condition, it is not necessary here to resort to mixed actions of the
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first player. The index `y is any index ` such that
wwy − y`ww

1
6 η/NB; such an index always

exists as noted at the beginning of this proof. Indeed, one then has in particular that for
each component b ∈ B, ∣∣y`yb − yb∣∣ 6 wwwy`y − ywww

1
6 η/NB .

A straightforward adaptation of the proof of Theorem 3 (see, e.g., Mertens et al., 1994)
then yields a strategy such that for all δ ∈ (0, 1) and for all strategies of the second player,
with probability at least 1− δ,

sup
τ>T

inf
c∈(R−)2NηNB

wwwwwc− 1

τ

τ∑
t=1

C(Lt,yt)

wwwww
2

6 2M

√
2

δT
, (22)

where M is a bound in Euclidean norm over C, e.g., M = 4 + 2η. The quantities of interest
can be rewritten as

1

τ

τ∑
t=1

C(Lt,yt) =

(
Nτ (`)

τ

(
y` − y`τ

)
− Nτ (`)

τ

η

NB
1,

Nτ (`)

τ

(
y`τ − y`

)
− Nτ (`)

τ

η

NB
1

)
`∈{1,...,Nη}

,

where we recall that we denoted for all ` such that Nτ (`) > 0 the average of their corre-
sponding mixed actions yt by

y`τ =
1

Nτ (`)

τ∑
t=1

ytI{Lt=`} .

The projection in `2–norm of quantity of interest onto (R−)2NηNB is formed by its non-
positive components, so that its square distance to (R−)2NηNB equals

inf
c∈(R−)2NηNB

wwwwwc− 1

τ

τ∑
t=1

C(Lt,yt)

wwwww
2

2

=

Nη∑
`=1

(
Nτ (`)

τ

)2∑
b∈B

((
y`b − y`τ,b −

η

NB

)2

+

+

(
y`τ,b − y`b −

η

NB

)2

+

)
︸ ︷︷ ︸

=
(
|y`τ,b−y

`
b|−η/NB

)2
+

.

Therefore, our target is achieved: using the fact that ( · )+ is subadditive first, and then
applying the Cauchy-Schwarz inequality,

Nη∑
`=1

Nτ (`)

τ

(wwwy` − yτwww
1
− η
)
+

6
Nη∑
`=1

Nτ (`)

τ

∑
b∈B

(∣∣y`b − y`τ,b∣∣− η

NB

)
+

6
√
NηNB

√√√√ Nη∑
`=1

(
Nτ (`)

τ

)2∑
b∈B

(∣∣y`b − y`τ,b∣∣− η

NB

)2

+

6 2M
√
NηNB

√
2

δT
,
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where the last inequality holds, by (22), for all τ > T with probability at least 1 − δ.
Choosing an integer Tδ sufficiently large so that

2M
√
NηNB

√
2

δ Tδ
6 δ

concludes the proof of the property stated in (19).

Appendix C. Proof of Lemma 23

Proof For all (i, j) ∈ I ×J , the quantity H(i, j) is a probability distribution over the set
of signals H; we denote by Hs(i, j) the probability mass that it puts on some signal s ∈ H.

Equation (7) indicates that for each pair (i, s) ∈ I ×H,

nL∑
t=(n−1)L+1

(I{St=s}I{It=i}
pIt,n

−Hs(i, Jt)

)
is a sum of L elements of a martingale difference sequence, with respect to the filtration
whose t-th element is generated by pn, the pairs (Is, Ss) for s 6 t, and Js for s 6 t + 1.
The conditional variances of the increments are bounded by

Et

[(I{St=s}I{It=i}
pIt,n

)2
]
6

1

p2
i,n

Et
[
I{It=i}

]
=

1

pi,n
;

since by definition of the strategy, pn = (1− γ)xn + γ u, we have that pi,n > γ/NI , which
shows that the sum of the conditional variances is bounded by

nL∑
t=(n−1)L+1

Vart

(I{St=s}I{It=i}
pIt,n

)
6
LNI
γ

.

The Bernstein-Freedman inequality (see Freedman, 1975 or Cesa-Bianchi et al., 2006, Lemma
A.1) therefore indicates that with probability at least 1− δ,∣∣∣∣∣ 1L

nL∑
t=(n−1)L+1

I{St=s}I{It=i}
pIt,n

− 1

L

nL∑
t=(n−1)L+1

Hs(i, Jt)︸ ︷︷ ︸
= Hs(i, q̂n)

∣∣∣∣∣ 6
√

2
NI
γL

ln
2

δ
+

1

3

NI
γL

ln
2

δ
.

Therefore, by summing the above inequalities over i ∈ I and s ∈ H, we get (after a union
bound) that with probability at least 1−NINHδ,wwwσ̃n − H̃(q̂n)www

2
6
√
NINH

(√
2NI
γL

ln
2

δ
+

1

3

NI
γL

ln
2

δ

)
.

Finally, since σ̂n is the projection in the `2–norm of σ̃n onto the convex set F , to which
H̃
(
q̂n
)

belongs, we have thatwwwσ̂n − H̃(q̂n)www
2
6
wwwσ̃n − H̃(q̂n)www

2
,

and this concludes the proof.
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Appendix D. Proof of Theorem 25

Proof We denote by dαt the squared distance of m̂α
t to C,

dαt = inf
c∈C

wwc− m̂α
t

ww2
=
wwcαt − m̂α

t

ww2

and use the shortcut notation mt = m(xt,yt) for all t > 1. Then,

dαt+1 6
wwm̂α

t+1 − cαt
ww2

=

wwwwm̂α
t − cαt +

(t+ 1)α

Tαt+1

(
mt+1 − m̂α

t

)wwww2

6
wwm̂α

t − cαt
ww2

+
2(t+ 1)α

Tαt+1

〈
m̂α
t − cαt , mt+1 −mα

t

〉
+

(
(t+ 1)α

Tαt+1

)2wwmt+1 − m̂α
t

ww2

6 dαt +
2(t+ 1)α

Tαt+1

( 〈
m̂α
t − cαt , mt+1 − cαt

〉︸ ︷︷ ︸
60

+
〈
m̂α
t − cαt , cαt −mα

t

〉)
+

(
(t+ 1)α

Tαt+1

)2

4M2

6 dαt

(
1− 2(t+ 1)α

Tαt+1

)
+

(
(t+ 1)α

Tαt+1

)2

4M2,

where we used in the third inequality the same convex projection inequality as in the proof
of Theorem 3.

The first inequality in (15) then follows by induction: the bound 2M for t = 1 is by
boundedness of m. If the stated bound holds for dαt , then

dαt+1 6

2M

√∑t
s=1 s

2α∑t
s=1 s

α

2(
1− 2(t+ 1)α

Tαt+1

)
+

(
(t+ 1)α

Tαt+1

)2

4M2 6 4M2

∑t+1
s=1 s

2α(
Tαt+1

)2 ,

as desired, since

1(
Tαt
)2 (1− 2(t+ 1)α

Tαt+1

)
=
Tαt − (t+ 1)α

Tαt+1

(
Tαt
)2 =

1

Tαt+1

(
Tαt
)2
(
Tαt
)2 − (t+ 1)2α

Tαt + (t+ 1)α
6

1(
Tαt+1

)2 .
The second inequality in (15) is straightforward for α = 0 and is proved for α > 0 as

follows. First, by comparing sums and integrals, we get that for all t > 1,

tα+1

α+ 1
=

∫ t

0
sα ds 6

t∑
s=1

sα 6 t× tα = tα+1 .

Therefore, √∑t
s=1 s

2α∑t
s=1 s

α
6 (α+ 1)

√
t2α+1

tα+1
=
α+ 1√

t
.

This concludes the proof. Note for later purposes that upper bounding above the sum of
the sα as

t∑
s=1

sα 6 tα +

∫ t

1
sα ds 6 tα +

tα+1

α+ 1
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shows that
t∑

s=1

sα ∼ tα+1

α+ 1
.

Appendix E. Proof of Theorem 26

Proof The proof follows closely the proof of Theorem 24. We choose N so as to write
T = TαN + k where 0 6 k 6 LN+1 − 1. We adapt step 1 as follows,wwwwww 1

T

T∑
t=1

r(It, Jt)−
1

TαN

TαN∑
t=1

r(It, Jt)

wwwwww
2

6 R

(
k

T
+

(
1

TαN
− 1

T

)
TαN

)
=

2k

T
R 6

2LN+1

T
R .

Second, as in step 2, we resort again to the Hoeffding-Azuma inequality for sums of Hilbert
space-valued martingale differences; with probability at least 1− δ,wwwwww 1

TαN

TαN∑
t=1

r(It, Jt)−
1

TαN

N∑
n=1

nα r
(
pn, q̂n

)wwwwww
2

6 4R

√
ln(2/δ)

TαN
.

In view of the choice γn = n−α/3, step 3 translates here towwwww 1

TαN

N∑
n=1

nα r
(
pn, q̂n

)
− 1

TαN

N∑
n=1

nα r
(
xn, q̂n

)wwwww
2

6 2R

∑N
n=1 n

αγn
TαN

= 2R

∑N
n=1 n

2α/3

TαN
= 2R

T
(2α/3)
N

TαN
.

The same argument as the one at the beginning of the proof of Theorem 24 shows that

1

TαN

N∑
n=1

nα r
(
xn, q̂n

)
∈ 1

TαN

N∑
n=1

nαm

(
θn, Φ

(
H̃
(
q̂n
)))

.

Step 4 starts also by an application of Lemma 23 together with the Lipschitzness of Φ to
get that for all regimes n = 1, . . . , N , with probability at least 1− δ,

wwwΦ
(
σ̂n
)
− Φ

(
H̃
(
q̂n
))www

2
6 κΦ

√
NINH

(√
2NI
γnLn

ln
2NINH

δ
+

1

3

NI
γnLn

ln
2NINH

δ

)
.

By a union bound, the above bound holds for all regimes n = 1, . . . , N with probability at
least 1−Nδ. Then, an application of Lemma 6 shows that

1

TαN

N∑
n=1

nαm

(
θn, Φ

(
H̃
(
q̂n
)))

is in a εN–neighborhood of
1

TαN

N∑
n=1

nαm
(
θn, Φ

(
σ̂n
))
,
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where, substituting the values of Ln = nα and γn = n−α/3,

εN = R
√
NB

(
κΦ

√
NINH

1

TαN

N∑
n=1

nα

(√
2NI
γnLn

ln
2NINH

δ
+

1

3

NI
γnLn

ln
2NINH

δ

))

= R
√
NB

(
κΦ

√
NINH

(
T

(2α/3)
N

TαN

√
2NI ln

2NINH
δ

+
T

(α/3)
N

TαN

NI
3

ln
2NINH

δ

))
.

It then suffices, as in step 5 of the original proof, to write the convergence rates for set-
valued approachability guaranteed by the strategy Ψ. By combining the result of Lemma 10
with Theorem 25 and Lemma 6, we get

inf
c∈C

wwwwwc− 1

Tαn

N∑
n=1

nαm
(
θn, Φ

(
σ̂n
))wwwww

2

6
2R (α+ 1)√

N

√
NANB .

Putting all things together and applying a union bound, we obtain that with probability at
least 1− (N + 1)δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

= O

(
(N + 1)α

T
+

√
ln(1/δ)

TαN
+
T

(2α/3)
N

TαN
+
T

(2α/3)
N

TαN

√
ln

1

δ
+
T

(α/3)
N

TαN
ln

1

δ
+

1√
N

)
.

Since (as proved at the end of the proof of Theorem 25) T βN ∼ Nβ+1/(β + 1) for all β > 0,
we get that

N ∼
(
(α+ 1)T

)1/(α+1)
and T βN ∼

Nβ+1

β + 1
∼ κα,β T (β+1)/(α+1) ,

where κα,β is a constant that only depends on α and β. Replacing δ by δ/(N + 1) as we did
in step 5 of the proof of Theorem 24, choosing α = 3/2 and substituting the equivalences
above ensures the result.
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