Sets in Which $x y+k$ is Always a Square

By Ezra Brown

Abstract

A P_{k}-set of size n is a set $\left\{x_{1}, \ldots, x_{n}\right\}$ of distinct positive integers such that $x_{1} x_{j}+k$ is a perfect square, whenever $i \neq j$; a P_{h}-set X can be extended if there exists $y \notin X$ such that $X \cup\{y\}$ is still a P_{h}-set. The most famous result on P_{k}-sets is due to Baker and Davenport, who proved that the P_{1}-set $\{1,3,8,120\}$ cannot be extended. In this paper, we show, among other things, that if $k \equiv 2(\bmod 4)$, then there does not exist a P_{k}-set of size 4 , and that the P_{1}-set $\{1,2,5\}$ cannot be extended.

1. Introduction and Background. Let k be an integer. A P_{k}-set (of size n) is a set $\left\{x_{1}, \ldots, x_{n}\right\}$ of distinct positive integers for which $x_{i} x_{j}+k$ is the square of an integer, whenever $i \neq j$. Thus, $\{1,2,5\}$ is a P_{-1}-set of size $3,\{1,79,98\}$ is a P_{2}-set of size 3 and $\{51,208,465,19732328\}$ is a P_{1}-set of size 4 . A P_{k}-set X can be extended if there exists a positive integer $y \notin X$ such that $X \cup\{y\}$ is still a P_{k}-set.

The problem of extending P_{k}-sets is an old one, dating from the time of Diophantus (see Dickson [2, Vol. II, p. 513]). The most spectacular recent advance in this area was made by Baker and Davenport (see [1]) who proved that the P_{1}-set $\{1,3,8,120\}$ cannot be extended. Their proof used results from Diophantine approximation and involved calculating four real numbers to 600 decimal digits. This problem was intriguing enough for three more distinct methods of proof to appear over the next ten years, by Kanagasabapathy and Ponnudurai [5], Sansone [8] and Grinstead [3]. Recently, Mohanty and Ramasamy [6] have shown that the P_{-1}-set $\{1,5,10\}$ cannot be extended, and Thamotherampillai [9] proved that the P_{2}-set $\{1,2,7\}$ cannot be extended. (For more details on the history of this problem, see [4, especially the references] and [2, Vol. II, pp. 513-520].)

The aim of this paper is to prove the following theorems about the nonextendability of P_{k}-sets:

Theorem 1. If $k \equiv 2(\bmod 4)$, then there does not exist a P_{k}-set of size 4 . \{This greatly generalizes the theorem of [9].\}

Theorem 2. If $k \equiv 5(\bmod 8)$, then there does not exist a P_{k}-set of size 4 with an odd x_{j} or with some $x_{j} \equiv 0(\bmod 4)$.

Theorem 3. The following P_{-1}-sets cannot be extended:
(a) $\left\{n^{2}+1,(n+1)^{2}+1,(2 n+1)^{2}+4\right\}$ if $n \not \equiv 0(\bmod 4)$;
(b) $\{17,26,85\}$;
(c) $\left\{2,2 n^{2}+2 n+1,2 n^{2}+6 n+5\right\}$, if $n \equiv 1(\bmod 4)$.

[^0]Theorem 4. The P_{-1}-set $\{1,2,5\}$ cannot be extended.
We note that the proofs of Theorems 1, 2 and 3 are straightforward and elementary, relying on nothing stronger than the Quadratic Reciprocity Law and theorems on the group of units of a quadratic field. Theorem 4, however, is more subtle, using the results of Baker [1] and the techniques of Grinstead [3].
2. Nonexistence of P_{k}-Sets of Size 4 , for $k \equiv 2(\bmod 4)$.

Theorem 1. If $k \equiv 2(\bmod 4)$, then there does not exist a P_{k}-set of size 4 .
Proof. Suppose that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a P_{k}-set, with $k \equiv 2(\bmod 4)$. Then

$$
x_{i} x_{j}+k=y_{i j}
$$

say. Looking at the equation $(\bmod 4)$, we see that

$$
x_{i} x_{j}+k \equiv 0 \text { or } 1(\bmod 4)
$$

so that

$$
x_{i} x_{j} \equiv 2 \text { or } 3(\bmod 4)
$$

Hence, at most one of the x_{i} can be even; without loss of generality, we may assume that x_{1}, x_{2} and x_{3} are odd. This implies that

$$
x_{i} x_{j} \equiv 3(\bmod 4) \quad \text { for } 1 \leqslant i \neq j \leqslant 3 .
$$

Hence, no two of x_{1}, x_{2}, x_{3} have the same residue $(\bmod 4)$. As all three are odd, this is a contradiction. Thus, no P_{k}-set of size 4 can exist, if $k \equiv 2(\bmod 4)$.

Comment. This is a considerable generalization of the result in [9], and the proof is much more elementary.
3. Nonexistence of Certain P_{k}-Sets, for $k \equiv 5(\bmod 8)$.

Theorem 2. If $k \equiv 5(\bmod 8)$, then there does not exist a P_{k}-set of size 4 with an odd x_{j} or with some $x_{j} \equiv 0(\bmod 4)$.

Proof. Suppose that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a P_{k}-set of size 4 , with $k \equiv 5(\bmod 8)$. Then $x_{i} x_{j}+k=a^{2}$ implies that

$$
x_{i} x_{j} \equiv 3,4 \text { or } 7(\bmod 8)
$$

If x_{1} is odd and x_{2} is even, then we must have $x_{1} x_{2} \equiv 0(\bmod 4)$. In that case, x_{3} and x_{4} must be odd, else $x_{2} x_{3} \equiv 0(\bmod 8)$. Thus,

$$
\begin{aligned}
x_{1} x_{3} & \equiv x_{1} x_{4} \equiv 3(\bmod 4), \\
x_{3} & \equiv x_{4}(\bmod 4), \quad \text { and so } \\
x_{3} x_{4} & \equiv 1(\bmod 4),
\end{aligned}
$$

which is a contradiction. By the above reasoning, we see that a P_{k}-set can contain at most two odd x_{j} and one $x_{j} \equiv 0(\bmod 4)$. We conclude that if $k \equiv 5(\bmod 8)$, then a P_{k}-set of size 4 contains no odd x_{j} and no $x_{j} \equiv 0(\bmod 4)$. Thus, if $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a P_{k}-set, with $k \equiv 5(\bmod 8)$, then $x_{i} \equiv 2(\bmod 4)$ for all i.
4. Nonextendability of Certain P_{-1}-Sets. Suppose that $X=\{a, b, c\}$ is a P_{k}-set; if X can be extended, then there exist d, x, y and z such that

$$
a d+k=x^{2}, \quad b d+k=y^{2}, \quad \text { and } \quad c d+k=z^{2}
$$

These lead to the equations

$$
\left\{\begin{array}{l}
a y^{2}-b x^{2}=(a-b) k \tag{*}\\
a z^{2}-c x^{2}=(a-c) k, \quad \text { and } \\
b z^{2}-c y^{2}=(b-c) k
\end{array}\right.
$$

The degree of difficulty of showing that X cannot be extended depends upon whether the system (*) already has solutions that can be found by inspection. For example, if $k=1$, then there are the obvious solutions $x=y=z=1$. If $k=-1$ and $a=1$, then $\{1, b, c\}$ is a P_{-1}-set, so that

$$
b=n^{2}+1, \quad c=m^{2}+1
$$

and so the system $(*)$ has the solution $x=0, y=n, z=m$. If such solutions exist, then one must show that they are the only solutions. This is why Theorem 4 is a bit involved.

It is often easier if the aim is to show that the system (*) has no solutions at all; Theorem 1 is a good example of that, as is Theorem 3.

Theorem 3. The following P_{-1}-sets cannot be extended:
(a) $\left\{n^{2}+1,(n+1)^{2}+1,(2 n+1)^{2}+4\right\}$, if $n \neq 0(\bmod 4)$;
(b) $\{17,26,85\}$;
(c) $\left\{2,2 n^{2}+2 n+1,2 n^{2}+6 n+5\right\}$, if $n \equiv 1(\bmod 4)$.

Proof. (a) Suppose that $\left\{n^{2}+1,(n+1)^{2}+1,(2 n+1)^{2}+4, d\right\}$ is a P_{-1}-set. Then the equations (*) become

$$
\begin{align*}
\left(n^{2}+1\right) y^{2}-\left((n+1)^{2}+1\right) x^{2} & =2 n+1 \tag{1}\\
\left(n^{2}+1\right) z^{2}-\left((2 n+1)^{2}+4\right) x^{2} & =3 n^{2}+4 n+4, \quad \text { and } \tag{2}\\
\left((n+1)^{2}+1\right) z^{2}-\left((2 n+1)^{2}+4\right) y^{2} & =3 n^{2}+2 n+3 \tag{3}
\end{align*}
$$

First, suppose that n is odd; write $n=4 k+\varepsilon$, with $\varepsilon= \pm 1$. Then (1) becomes

$$
2 y^{2}-x^{2} \equiv \pm 1(\bmod 4)
$$

so that x is odd.
If $\varepsilon=1$, then

$$
\begin{aligned}
n^{2}+1 & \equiv 8 k+2(\bmod 16) \\
(n+1)^{2}+1 & \equiv 5(\bmod 16), \quad \text { and } \\
(2 n+1)^{2}+4 & \equiv 13(\bmod 16)
\end{aligned}
$$

Hence, (3) becomes

$$
5 z^{2}-13 y^{2} \equiv 8(\bmod 16)
$$

so that y and z are both odd. Then, (2) yields

$$
\begin{aligned}
(8 k+2) z^{2}-13 x^{2} & \equiv 8 k+11(\bmod 16) \\
2+3 x^{2} & \equiv 11(\bmod 16) \\
x^{2} & \equiv 3(\bmod 16)
\end{aligned}
$$

which is a contradiction.

If $\varepsilon=-1$, then

$$
\begin{aligned}
n^{2}+1 & \equiv 8 k+2(\bmod 16) \\
(n+1)^{2}+1 & \equiv 1(\bmod 16), \quad \text { and } \\
(2 n+1)^{2}+4 & \equiv 5(\bmod 16)
\end{aligned}
$$

Thus, (1) and (3) become

$$
\begin{aligned}
2 y^{2}-x^{2} & \equiv-1(\bmod 8) \\
z^{2}-5 y^{2} & \equiv 4(\bmod 16)
\end{aligned}
$$

Thus, y is even and z is even, but neither is divisible by 4. Putting $y=2 v, z=2 u$ with u and v odd yields

$$
u^{2}-5 v^{2} \equiv 1(\bmod 4)
$$

which is impossible with u and v odd.
Next, suppose that $n=2 k$ is even. Then (1) becomes

$$
y^{2}-2 x^{2} \equiv 1(\bmod 4)
$$

so that y is odd and x is even. Now (3) becomes

$$
2 z^{2}-5 y^{2} \equiv 4 k+3(\bmod 8)
$$

so that z is even. Putting $z=2 u$ and $x=2 v$ in (2) leads to the equation

$$
\left(4 k^{2}+1\right) u^{2}-\left(16 k^{2}+8 k+5\right) v^{2}=3 k^{2}+2 k+1
$$

If k is odd, this leads to the congruence

$$
u^{2}-5 v^{2} \equiv \pm 2(\bmod 8)
$$

which is impossible.
Thus, if $n \equiv 1,2$ or $3(\bmod 4)$, then the P_{-1}-set $\left\{n^{2}+1,(n+1)^{2}+1,(2 n+1)^{2}\right.$ $+4\}$ cannot be extended.
(b) The situation for $n \equiv 0(\bmod 4)$ is more complicated, and most likely will have to be studied on a case-by-case basis. One such case is $n=4$, which corresponds to the P_{-1}-set $\{17,26,85\}$. Equations (1) and (2) become

$$
\begin{array}{r}
17 y^{2}-26 x^{2}=9 \\
z^{2}-5 x^{2}=4 \tag{5}
\end{array}
$$

Modulo 16 , (4) implies that $y^{2}+6 x^{2} \equiv 9(\bmod 16)$, which implies that x is even. Hence, z is also even; putting $z=2 u$ and $x=2 v$ yields

$$
\begin{align*}
u^{2}-5 v^{2} & =1 \tag{6}\\
17 y^{2}-104 v^{2} & =9 \tag{7}
\end{align*}
$$

Now all solutions to (6) are given by $u_{n}+v_{n} \sqrt{5}=(9+4 \sqrt{5})^{n}$ for $n=0, \pm 1, \pm 2, \ldots$ (see Nagell [7, p. 197]). It is easy to show that

$$
\begin{array}{rlrl}
v_{0}=0, \quad v_{1}=4, & v_{n+1} & =18 v_{n}-v_{n-1} & \\
\text { for } n \geqslant 1, \quad \text { and } \\
v_{-n} & =-v_{n} & & \text { for } n \geqslant 1 ;
\end{array}
$$

so it follows that $v \equiv 0,4 \operatorname{or} 13(\bmod 17)$.
If we look at Eq. (7) mod 17, we see that

$$
\begin{aligned}
-2 v^{2} & \equiv 9(\bmod 17), \\
v^{2} & \equiv 4(\bmod 17), \\
v & \equiv \pm 2(\bmod 17) .
\end{aligned}
$$

Hence (6) and (7) have no common solution; we conclude that $\{17,26,85\}$ cannot be extended.
(c) Suppose that $\left\{2,2 n^{2}+2 n+1,2 n^{2}+6 n+5\right\}$ can be extended. Then, the equations (*) become

$$
\begin{align*}
2 y^{2}-\left(2 n^{2}+2 n+1\right) x^{2} & =2 n^{2}+2 n-1, \tag{8}\\
2 z^{2}-\left(2 n^{2}+6 n+5\right) x^{2} & =2 n^{2}+6 n+3, \quad \text { and } \tag{9}\\
\left(2 n^{2}+2 n+1\right) z^{2}-\left(2 n^{2}+6 n+5\right) y^{2} & =4 n+4 \tag{10}
\end{align*}
$$

Examining these equations $\bmod 4$ shows that

$$
\begin{aligned}
2 y^{2}-x^{2} & \equiv-1(\bmod 4) \\
2 z^{2}-x^{2} & \equiv 3(\bmod 4)
\end{aligned}
$$

so that x is odd, y is even and z is even. Putting $y=2 v, z=2 u$ into (10) yields

$$
u^{2}-v^{2} \equiv n+1(\bmod 4)
$$

which is impossible if $n \equiv 1(\bmod 4)$.
5. Nonextendability of the P_{1}-Set $\{1,2,5\}$. We follow the procedure outlined by Grinstead in [3]. If $\{1,2,5\}$ is extendable, then the equations (*) become

$$
y^{2}-2 x^{2}=1, \quad z^{2}-5 x^{2}=4, \quad 2 z^{2}-5 y^{2}=3
$$

so that the two equations

$$
\begin{align*}
& y^{2}-8 t^{2}=1 \tag{11}\\
& u^{2}-5 t^{2}=1 \tag{12}
\end{align*}
$$

(where $z=2 u, x=2 t$) have a common solution other than $t=0, y=u=1$. (The solution $t=0, y=u=1$ corresponds to the fact that $\{1,2,5\}$ is a P_{-1}-set.) We will now show that the equations (11) and (12) have no other common solution.

It is well-known (see Nagell [7, p. 197]) that the solutions to the equations

$$
\begin{array}{r}
y^{2}-8 v^{2}=1 \\
u^{2}-5 w^{2}=1 \tag{14}
\end{array}
$$

are given by

$$
\begin{aligned}
y_{n}+v_{n} \sqrt{8} & =(3+\sqrt{8})^{n-1}, \quad n \text { an integer, and } \\
z_{k}+w_{k} \sqrt{5} & =(9+4 \sqrt{5})^{k-1}, \quad k \text { an integer. }
\end{aligned}
$$

Without loss of generality, we may assume $v_{n} \geqslant 0, w_{k} \geqslant 0$; hence $n, k \geqslant 1$. We see that

$$
v_{n}=\frac{(3+\sqrt{8})^{n-1}-(3-\sqrt{8})^{n-1}}{2 \sqrt{8}} \text { and } w_{k}=\frac{(9+4 \sqrt{5})^{k-1}-(9-4 \sqrt{5})^{k-1}}{2 \sqrt{5}}
$$

Put

$$
P=(3+\sqrt{8})^{n-1} / \sqrt{8}, \quad Q=(9+4 \sqrt{5})^{k-1} / \sqrt{5} .
$$

If there is a common solution to (11) and (12) other than $t=0$, then there exist $n \geqslant 2$ and $k \geqslant 2$ such that $v_{n}=t=w_{k}$, in which case

$$
P-\frac{1}{8} P^{-1}=2 v_{n}=2 w_{k}=Q-\frac{1}{5} Q^{-1} .
$$

Hence,

$$
P-Q=\frac{1}{8} P^{-1}-\frac{1}{5} Q^{-1}<\frac{1}{5}\left(P^{-1}-Q^{-1}\right)=\frac{1}{5} P^{-1} Q^{-1}(Q-P) .
$$

Also, $P^{-1}<1$ and $Q^{-1}<1$ (because $n, k \geqslant 2$), so that

$$
P-Q<\frac{1}{5}(Q-P)
$$

It follows that $P-Q<0$, so that $P<Q$ and $Q^{-1}<P^{-1}$. Hence

$$
0<Q-P=\frac{1}{5} Q^{-1}-\frac{1}{8} P^{-1}<\left(\frac{1}{5}-\frac{1}{8}\right) P^{-1}=\frac{3}{40} P^{-1},
$$

so that

$$
\begin{equation*}
0<\frac{Q-P}{Q}<\frac{3}{40} P^{-1} Q^{-1}<\frac{3}{40} P^{-2}<1 . \tag{15}
\end{equation*}
$$

Hence,

$$
\log \left(1-\frac{Q-P}{Q}\right)=\log \frac{P}{Q}<0
$$

Thus,

$$
0<\log \frac{Q}{P}=-\log \frac{P}{Q}=-\log \left(1-\frac{Q-P}{Q}\right)
$$

Now if $0<r<1$, then

$$
\begin{aligned}
-\log (1-r) & =r+\frac{r^{2}}{2}+\frac{r^{3}}{3}+\frac{r^{4}}{4}+\cdots<r+\frac{r^{2}}{2}\left(1+r+r^{2}+\cdots\right) \\
& =r+\frac{r^{2}}{2} \cdot \frac{1}{1-r}
\end{aligned}
$$

Setting $r=(Q-P) / Q$, we have, from (15), that

$$
0<r<\frac{3}{40} P^{-2}<\frac{1}{10},
$$

so that

$$
\frac{1}{1-r}<\frac{10}{9} .
$$

Furthermore, $P>1$, so that $P^{-4}<P^{-2}$, and so finally

$$
\begin{aligned}
0 & <\log \frac{Q}{P}=-\log \left(1-\frac{Q-P}{Q}\right)<\frac{Q-P}{Q}+\frac{5}{9}\left(\frac{Q-P}{Q}\right)^{2} \\
& <\frac{3}{40} P^{-2}+\frac{5}{9} \cdot \frac{9}{1600} P^{-4}<\frac{3}{40} P^{-2}+\frac{1}{320} P^{-2} \\
& =\frac{5}{64} P^{-2}=\frac{5}{8} \cdot \frac{1}{(3+\sqrt{8})^{2 n-2}} .
\end{aligned}
$$

It is clear that $3+\sqrt{8}>e$, so that we obtain

$$
\begin{align*}
0 & <\log \frac{Q}{P}=\log \frac{\sqrt{8}(9+4 \sqrt{5})^{k-1}}{\sqrt{5}(3+\sqrt{8})^{n-1}} \\
& =(k-1) \log (9+4 \sqrt{5})-(n-1) \log (3+\sqrt{8})+\log \frac{\sqrt{8}}{\sqrt{5}} \tag{16}\\
& <\frac{5}{8} e^{-(n-1)}<e^{-(n-1)}
\end{align*}
$$

We now appeal to a deep theorem of Baker (see [1]), which says that if $m \geqslant 2$, and $\alpha_{1}, \ldots, \alpha_{m}$ are nonzero algebraic numbers of degrees $\leqslant d$ and heights $\leqslant A$, where $d \geqslant 4, A \geqslant 4$, and if the rational integers b_{1}, \ldots, b_{m} satisfy

$$
0<\left|b_{1} \log \alpha_{1}+\cdots+b_{m} \log \alpha_{m}\right|<e^{-\delta H}
$$

where $0<\delta \leqslant 1$ and $H=\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right)$, then

$$
\begin{equation*}
H<\left(4^{m^{2}} \delta^{-1} d^{2 m} \log A\right)^{(2 m+1)^{2}} . \tag{17}
\end{equation*}
$$

Here, $H=n-1$ (plainly $n \geqslant k$), $m=3$ and we can choose $\delta=1$ in (16). The equations for $\alpha_{1}=9+4 \sqrt{5}, \alpha_{2}=3+\sqrt{8}$ and $\alpha_{3}=\sqrt{1.6}$ are

$$
\alpha_{1}^{2}-18 \alpha_{1}+1=0, \quad \alpha_{2}^{2}-6 \alpha_{2}+1=0, \quad \text { and } \quad 5 \alpha_{3}^{2}-8=0
$$

This yields a maximum height of $A=18$, and we can choose $d=4$. Thus, (17) becomes

$$
n-1=H<\left(4^{9} \cdot 4^{6} \cdot \log 18\right)^{49}=4^{735}(\log 18)^{49}<4^{735} \cdot 3^{49}<10^{466}
$$

Hence, any n such that $v_{n}=w_{k}=t$ is a common solution to (11) and (12) satisfies $1 \leqslant n \leqslant 10^{466}$. To show that $n=1$ is the only solution in this range, it suffices to show $n \equiv 1(\bmod M)$, where M is any integer $\geqslant 10^{466}$. It happens that

$$
M=\prod_{p \leqslant 1103} p
$$

the product of all primes $\leqslant 1103$, is such an integer. The reason for choosing the M is clear: if, for all primes $p \leqslant 1103$, we can show that $n \equiv 1(\bmod p)$, then $n \equiv 1$ $(\bmod M)$ by the Chinese Remainder Theorem.

We adopt Grinstead's strategy [3] to fit our problem; let us outline the procedure here.

Let p be a prime $\leqslant 1103$, such that for all primes $r<p$, it has been shown that if $v_{n}=w_{k}$, then $n \equiv 1(\bmod r)$; also, we assume $n \equiv 1\left(\bmod 2^{2} \cdot 3^{3}\right)$, which takes 5 minutes with a pocket calculator to show (just examine $\left\{v_{n}\right\}$ and $\left\{w_{k}\right\} \bmod 8$ and 53).

It is easier to work with v_{n} and w_{k} when we realize that they are defined by the following recurrences:

$$
\begin{array}{ll}
v_{1}=0, & v_{2}=1 ; \quad v_{n+1}=6 v_{n}-v_{n-1} \quad \text { for } n \geqslant 2 \\
w_{1}=0, & w_{2}=4 ; \quad w_{k+1}=18 w_{k}-w_{k-1} \quad \text { for } k \geqslant 2
\end{array}
$$

If we define $L(q)$ to be the length of the period of the sequence $\left\{v_{n}\right\}(\bmod q)$, let us generate a sequence of primes q such that $L(q)$ is divisible only by primes not exceeding p, is power-free (except possibly for $2^{2}, 3^{2}$ and 3^{3}) and is divisible by p. By our previous assumption, $v_{n}=w_{k}$ implies that $n \equiv 1(\bmod L(q) / p)$, for each such q.

Choose the least such q, and consider $\left\{v_{n}\right\}$ and $\left\{w_{k}\right\} \bmod q$. By previous remarks, there are only p possible indices for which $v_{n} \equiv w_{k}(\bmod q)$: just those indices $\equiv 1$ $(\bmod L(q) / p)$. If a number v_{n} in one of those positions does not appear in the listing of $w_{k}(\bmod q)$, that position is deleted. If all such positions are deleted, except $n \equiv 1(\bmod L(q))$, then we have shown that $n \equiv 1(\bmod p)$, and we go on to the next p. If any positions are not eliminated, we note them and go on to the next q : at the next q, we only need to check those positions not previously eliminated. Eventually, all positions except $n \equiv 1(\bmod p)$ will be eliminated; in the actual running of this algorithm, no prime p required more than 10 values of q to be eliminated.

Let us demonstrate how this works with $p=11$. First, let $q=23$, because $L(23)=11$. The sequence $\left\{v_{n}\right\}(\bmod 23)$ is as follows:

$$
\{0,1,6,12,20,16,7,3,11,17,22\} .
$$

Now the sequence $\left\{w_{k}\right\}(\bmod 23)$ looks like this:

$$
\{0,4,3,4,0,19,20,19\} .
$$

Hence, all positions are eliminated except those corresponding to $v_{n} \equiv 0,3$ or 20 $(\bmod 23)$; thus, if $v_{n}=w_{k}$, then $n \equiv 1,5$, or $8(\bmod 11)$.

Next, let $q=43$, as $L(43)=44$. Then $\left\{v_{n}\right\}(\bmod 43)$ is as below:

$$
\begin{aligned}
& \{0,1,6,35,32,28,7,14,34,18,31,39,31,18,34,14, \\
& 7,28,32,35,6,1,0,42,37,8,11,15,36,29,9,25,12, \\
& 4,12,25,9,29,36,15,11,8,37,42\} .
\end{aligned}
$$

But we know that $n \equiv 1(\bmod 4(=44 / 11))$, so that we only need look at the positions corresponding to $n \equiv 1,5,9, \ldots, 37,41(\bmod 44)$. Furthermore, we saw from our work $(\bmod 23)$ that $n \equiv 1,5$ or $8(\bmod 11)$, so that we need only consider $n \equiv 1,5$ or $41(\bmod 44)$. This leaves the values

$$
v_{n} \equiv 0,32,11(\bmod 43)
$$

But $\left\{w_{k}\right\}(\bmod 43)$ looks like this:

$$
\begin{aligned}
& \{0,4,29,41,21,36,25,27,31,15,24,30,0,13,19,28, \\
& 12,16,18,7,22,2,14,39\} .
\end{aligned}
$$

Neither 32 nor 11 appears on this last list, so we have shown that $n \equiv 1(\bmod 11)$.
Curiously, $p=7$ needs three values of q to eliminate all but $n \equiv 1(\bmod 7)$, namely $q=13($ which eliminates $n \equiv 0,2(\bmod 7)), q=83($ which deletes $n \equiv 4,6$ $(\bmod 7)$) and $q=113($ which disposes of $n \equiv 3,5(\bmod 7)$). On the other hand, $p=31$ needs only $q=61$ to eliminate all but $n \equiv 1(\bmod 31)$.

It is not possible to predict $L(q)$ in advance, except that it can be shown that $L(q)$ is a factor of $q^{2}-1$. Moreover, if 2 is a quadratic residue of q, then $L(q) \mid q-1$.

Department of Mathematics
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia 24061-4097

1. A. Baker \& H. Davenport, "The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$," Quart. J. Math. Oxford Ser. (3), v. 20, 1969, pp. 129-137.
2. L. E. Dickson, History of the Theory of Numbers, vol. II, Carnegie Institute, Washington, 1920; reprinted, Chelsea, New York, 1966.
3. C. M. Grinstead, "On a method of solving a class of Diophantine equations," Math. Comp., v. 32, 1978, pp. 936-940.
4. P. Heichelheim, "The study of positive integers (a, b) such that $a b+1$ is a square," Fibonacci Quart., v. 17, 1979, pp. 269-274.
5. P. Kanagasabapathy \& T. Ponnudurai, "The simultaneous Diophantine equations $y^{2}-3 x^{2}=$ -2 and $z^{2}-8 x^{2}=-7, "$ Quart. J. Math. Oxford Ser. (3), v. 26. 1975, pp. 275-278.
6. S. P. Mohanty \& A. M. S. Ramasamy, "The simultaneous Diophantine equations $5 Y^{2}-20=X^{2}$ and $2 Y^{2}+1=Z^{2}$, , J. Number Theory, v. 18, 1984, pp. 356-359.
7. T. Nagell, Introduction to Number Theory, Wiley, New York, 1951.
8. G. SANSONE, "Il sistema diofanteo $N+1=x^{2}, 3 N+1=y^{2}, 8 N+1=z^{2}$," Ann. Mat. Pura Appl. (4), v. 111, 1976, pp. 125-151.
9. N. Thamotherampillai, "The set of numbers $\{1,2,7\}$," Bull. Calcutta Math. Soc., v. 72, 1980, pp. 195-197.

[^0]: Received November 7, 1984; revised February 19, 1985.
 1980 Mathematics Subject Classification. Primary 10B05, 10A10, 10A35.

