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Sets in Which xy + k is Always a Square

By Ezra Brown

Abstract. A Pk-set of size n is a set { x¡.x„ } of distinct positive integers such that x, x¡ + k
is a perfect square, whenever i i= j: a Pk-set X can be extended if there exists v £ X such that
X U { v} is still a Pk-set. The most famous result on /\.-sets is due to Baker and Davenport,
who proved that the ^-set (1, 3, 8, 120} cannot be extended. In this paper, we show, among
other things, that if k = 2 (mod 4), then there does not exist a Pk-se\ of size 4, and that the
P_,-set {1, 2. 5} cannot be extended.

1. Introduction and Background. Let k be an integer. A Pk-set (of size n) is a set
(xx,...,x„) of distinct positive integers for which x,xj + k is the square of an
integer, whenever i + j. Thus, {1, 2, 5} is a P rset of size 3, {1, 79, 98} is a P2-set of
size 3 and {51, 208, 465, 19732328} is a Px-set of size 4. A Pk-set X can be extended
if there exists a positive integer y £ X such that X U {y } is still a Pk-set.

The problem of extending Pk-scts is an old one, dating from the time of
Diophantus (see Dickson [2, Vol. II, p. 513]). The most spectacular recent advance in
this area was made by Baker and Davenport (see [1]) who proved that the Px-sct
[1, 3, 8, 120} cannot be extended. Their proof used results from Diophantine
approximation and involved calculating four real numbers to 600 decimal digits.
This problem was intriguing enough for three more distinct methods of proof to
appear over the next ten years, by Kanagasabapathy and Ponnudurai [5], Sansone
[8] and Grinstead [3]. Recently, Mohanty and Ramasamy [6] have shown that the
P^j-set {1, 5, 10} cannot be extended, and Thamotherampillai [9] proved that the
P2-sct {1, 2, 7} cannot be extended. (For more details on the history of this problem,
see [4, especially the references] and [2, Vol. II, pp. 513-520].)

The aim of this paper is to prove the following theorems about the nonextendabil-
ity of i^-sets:

Theorem 1. If k = 2 (mod 4), then there does not exist a Pk-set of size 4. {This
greatly generalizes the theorem of [9].}

Theorem 2. If k = 5 (mod 8), then there does not exist a Pk-set of size 4 with an odd
Xj or with some x  = 0 (mod 4).

Theorem 3. The following P^x-sets cannot be extended:
(a) [n2 + l,(n + l)2 + 1, (2n + l)2 + 4} if n m 0 (mod4);
(b){17, 26, 85};
(c) {2, 2n2 + 2n + 1, 2«2 + 6n + 5}, if n = 1 (mod4).
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614 EZRA BROWN

Theorem 4. The P  x-set (1, 2, 5} cannot be extended.

We note that the proofs of Theorems 1, 2 and 3 are straightforward and
elementary, relying on nothing stronger than the Quadratic Reciprocity Law and
theorems on the group of units of a quadratic field. Theorem 4, however, is more
subtle, using the results of Baker [1] and the techniques of Grinstead [3].

2. Nonexistence of i^-Sets of Size 4, for k = 2 (mod 4).

Theorem 1. Ifk = 2 (mod 4), then there does not exist a Pk-set of size 4.

Proof. Suppose that [xx, x2, x3, x4) is a /'¿-set, with k = 2 (mod4). Then

x.Xj + k = yu,

say. Looking at the equation (mod 4), we see that

XjXj + k = 0 or 1 (mod 4)

so that
xtXj = 2 or 3 (mod 4).

Hence, at most one of the x¡ can be even; without loss of generality, we may assume
that xx, x2 and x3 are odd. This implies that

x¡Xj = 3 (mod 4)    for 1 < i ¥= j < 3.

Hence, no two of xx, x2, x3 have the same residue (mod 4). As all three are odd, this
is a contradiction. Thus, no Pk-set of size 4 can exist, if k = 2 (mod 4).

Comment. This is a considerable generalization of the result in [9], and the proof is
much more elementary.

3. Nonexistence of Certain Pk-Sets, for k = 5 (mod 8).

Theorem 2. If k = 5 (mod 8), then there does not exist a Pk-set of size 4 with an odd
x! or with some Xj =■ 0 (mod 4).

Proof. Suppose that [xx, x2, x3, x4} is a Pk-set of size 4, with k = 5 (mod 8). Then
x¡Xj + k = a2 implies that

XjXj = 3,4 or 7 (mod 8).

If xx is odd and x2 is even, then we must have xxx2 = 0 (mod 4). In that case, x3 and
x4 must be odd, else x2x3 = 0 (mod 8). Thus,

xxx3 = xxx4 = 3 (mod 4),

x3 = x4 (mod 4),    and so

x3x4 = 1 (mod 4),

which is a contradiction. By the above reasoning, we see that a Pk-set can contain at
most two odd x¡ and one x} = 0 (mod4). We conclude that if k = 5 (mod 8), then a
P^-set of size 4 contains no odd x] and no x ■ = 0 (mod 4). Thus, if {xx, x2, x3, x4} is
a Pk-sct, with k = 5 (mod 8), then xi = 2 (mod 4) for all i.

4. Nonextendability of Certain -P_rSets. Suppose that X = [a, b, c) is a Pk-sct; if
X can be extended, then there exist d, x, y and z such that

ad+k = x2,    bd+k=y2,    and    cd + k = z2.
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These lead to the equations

(ay2 - bx2= (a- b)k,

(*) < az2 - cx2 = (a - c)k,   and

\bz2 - cy2 = (b- c)k.

The degree of difficulty of showing that X cannot be extended depends upon
whether the system (*) already has solutions that can be found by inspection. For
example, if k = 1, then there are the obvious solutions x=y = z = 1. If k=-l
and a = 1, then {1, b, c) is a P_x-set, so that

b = n2 + 1,       c = m2 + 1,
and so the system (*) has the solution x = 0, y = n, z = m. If such solutions exist,
then one must show that they are the only solutions. This is why Theorem 4 is a bit
involved.

It is often easier if the aim is to show that the system (*) has no solutions at all;
Theorem 1 is a good example of that, as is Theorem 3.

Theorem 3. The following P_x-sets cannot be extended:
(a) {n2 + 1, (n + l)2 + 1, (2n + l)2 + 4), if n * 0 (mod4);
(b) {17, 26, 85};
(c) {2, 2n2 + 2n + 1, 2n2 + 6n + 5}, if n = 1 (mod4).

Proof, (a) Suppose that {n2 + 1, (n + l)2 + 1, (2n + l)2 + 4, d) is a P_x-stt.
Then the equations (*) become

(1) (n2+l)y2-((n + l)2+ l)x2 = 2n + l,

(2) (n2 + l)z2 - ((2n + I)2 + 4)x2 = 3«2 + 4« + 4,   and

(3) ((« + l)2 + l)z2-((2n + l)2 + 4)y2 = 3n2 + 2n + 3.

First, suppose that n is odd; write n = 4k + e, with e = +1. Then (1) becomes

2v2-x2= ±1 (mod 4),

so that x is odd.
If e = 1, then

n2 + 1 = 8A: + 2 (mod 16),

(n + l)2 + 1 = 5 (mod 16),    and

(2« + l)2 + 4 = 13 (mod 16).

Hence, (3) becomes

5z2- 13y2 = 8 (mod 16),

so that y and z are both odd. Then, (2) yields

(8* + 2)z2 - 13x2 = M + 11 (mod 16),

2 + 3x2 = 11 (mod 16),

x2 = 3 (mod 16),

which is a contradiction.
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616 EZRA BROWN

If e = —1, then
n2 + 1 = 8Â: + 2 (mod 16),

(n + I)2 + 1 = 1 (mod 16),    and

(2n + l)2 + 4 = 5 (mod 16).
Thus, (1) and (3) become

2y2- x2= -1 (mod8),

z2 - 5y2 = 4 (mod 16).
Thus, y is even and z is even, but neither is divisible by 4. Putting y = 2v, z = 2u
with u and v odd yields

u2 - 5u2 = 1 (mod4),
which is impossible with u and v odd.

Next, suppose that n = 2kis even. Then (1) becomes
y2 -2x2 = \ (mod4),

so that y is odd and x is even. Now (3) becomes
2z2- 5y2 = 4k + 3 (mod8),

so that z is even. Putting z = 2u and x = 2t; in (2) leads to the equation
(4Â:2 + \)u2-(16k2 + %k + 5)v2 = 3k2 + 2k + 1.

If k is odd, this leads to the congruence
u2 - 5v2= ±2(mod8),

which is impossible.
Thus, if n s 1, 2 or 3 (mod4), then the P_x-sct {n2 + 1, (n + l)2 + 1, (2n + I)2

+ 4} cannot be extended.
(b) The situation for n = 0 (mod 4) is more complicated, and most likely will have

to be studied on a case-by-case basis. One such case is n = 4, which corresponds to
the -P_j-set {17, 26, 85}. Equations (1) and (2) become
(4) lly2 - 26x2 = 9,

(5) z2-5x2 = 4.
Modulo 16, (4) implies that y2 + 6x2 = 9 (mod 16), which implies that x is even.
Hence, z is also even; putting z = 2u and x = 2v yields

(6) M2-5i>2=l,

(7) lly2 - 104d2 = 9.
Now all solutions to (6) are given by un + vj5 = (9 + 4^)" for n = 0, ±l, ±2,...
(see Nagell [7, p. 197]). It is easy to show that

t;0 = 0,    vx = 4,   vn + x = 18vn - vn_x     for« ^ 1,    and

v_n = -v„ for« > 1;

so it follows that v = 0, 4 or 13 (mod 17).
If we look at Eq. (7) mod 17, we see that

-2v2 = 9 (mod 17),

u2 = 4(modl7),

v = ±2 (mod 17).
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SETS IN WHICH xy + A IS ALWAYS A SQUARE 617

Hence (6) and (7) have no common solution; we conclude that {17, 26, 85} cannot
be extended.

(c) Suppose that {2, 2«2 + 2« + l,2«2 + 6n + 5} can be extended. Then, the
equations (*) become

(8) 2y2-(2n2 + 2n + l)x2 = 2n2+ 2n-l,

(9) 2z2-(2n2 + 6n +5)x2 = 2n2 + 6n + 3,    and

(10) (2«2 + 2« + l)z2 -(2n2 + 6n + 5)y2 = 4n + 4.

Examining these equations mod 4 shows that

2y2- x2= -1 (mod4),

2z2-x2 = 3(mod4),

so that x is odd, y is even and z is even. Putting)' = 2v,z = 2u into (10) yields

u2 - v2 = n + 1 (mod4),

which is impossible if n = 1 (mod 4).

5. Nonextendability of the Px-Set {1, 2, 5}. We follow the procedure outlined by
Grinstead in [3]. If (1, 2, 5} is extendable, then the equations (*) become

>'2-2x2 = l, z2-5x2 = 4,   2z2-5j2 = 3,

so that the two equations

(11) j2-8/2=l,

(12) u2-5t2 = l

(where z = 2u, x = 2t) have a common solution other than t = 0, y = u = 1. (The
solution / = 0, y = u = 1 corresponds to the fact that {1, 2, 5} is a P_rset.) We will
now show that the equations (11) and (12) have no other common solution.

It is well-known (see Nagell [7, p. 197]) that the solutions to the equations

(13) y2-8v2 = l,

(14) w2-5w2 = l,

are given by

yn + vj% = (3 + i/&)"~ ,   n an integer,   and

zk + w¡j5 = (9 + 4^)      ,    k an integer.

Without loss of generality, we may assume vn > 0, wk > 0; hence n, k > 1. We see
that

(3 + /8 )"~1 -(3 - /8)""1 (9 + 4v/5)*-1 -(9 - 4^)^'v"=-^- and **--27f-•

Put

P=(3 + ]fc\)"~1/]f8,       Ô=(9 + 4v/5y-1/v/5\
If there is a common solution to (11) and (12) other than t = 0, then there exist
n > 2 and k > 2 such that vn = t = wk, in which case

P - Ii»"1 = 2v„ = 2wk = g - iß"1.
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618 EZRA BROWN

Hence,

P - Q = \P~l - \Ql < H^1 - ß-1) = \P-lQ-\Q - P).
Also, Pl < 1 and Q~l < 1 (because n, k > 2), so that

P-Q< \(Q-P)-
It follows that P - Q < 0, so that P < ß and ß"1 < P~l. Hence

0 < ß - P = \Ql - IP"1 <(\~ \)P~l = ¿P"1,

so that

Q-P ^   3 „_!„_,       3 D ;(15) °<^<4ÖP"1Ö"1<4Ö/>"<1-

Hence,

Thus,

P ß \ Q
Now if 0 < r < 1, then

2 3 4 2
-log(l -/-) = r+y + y+y +   •••   < r + y (1 + r + r2 +  ■■■)

r2        1
= r + —

log(l-^) = log^<0.

0<log^ = -log£ = -logfl

2    1 -r"
Setting /• = (ß - P)/ß, we have, from (15), that

0 < r < ¿P-2 < TFJ,

so that
1 10<

1 - r      9 '
Furthermore, P > 1, so that P~4 < P~2, and so finally

n     ,     Q        ,   L     Q- p\     Q-p ,  5/ß- p\2

< — p-2 + - • -?-p-4 < — p-2 + — p-2
40            9    1600            40 320

-AP-2_1-1-
64 8    (3 + yg}2«-2-

It is clear that 3 + v7^ > e, so that we obtain

0 < log ^ = log JL-i-    ;   ,
p ^5(3 + /8 )""1

(16) = (A: - 1) log(9 + 4&)-(n - 1) log(3 + \/8 ) + log^

< Je-(»-i)<e-(»-D.
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We now appeal to a deep theorem of Baker (see [1]), which says that if m > 2, and
ax,...,am are nonzero algebraic numbers of degrees < d and heights < A, where
d > 4, A > 4, and if the rational integers bx,...,bm satisfy

0 < \bx log ax +  ■■■ + bmlogam\<e-SH,

where 0 < 8 < 1 and H = max(|è,|,...,\bm[), then

(17) //<(4m25-1i/2mlog^)<2m+1)2.

Here, H = n - 1 (plainly n > k), m = 3 and we can choose 5 = 1 in (16). The
equations for ax = 9 + 4v/5', a2 = 3 + \/8~ and a3 = /1.6 are

a2 - 18«! + 1=0,    a^ - 6a2 + 1 = 0,    and    5a2 - 8 = 0.
This yields a maximum height of /I = 18, and we can choose d = 4. Thus, (17)
becomes

„ - l = H < (49 • 46 • loglS)49 = 4735(logl8)49 < 4735 • 349 < 10466.

Hence, any « such that u„ = wk = t is a common solution to (11) and (12) satisfies
1 < « < 10466. To show that « = 1 is the only solution in this range, it suffices to show
« = 1 (mod M), where M is any integer > 10466. It happens that

a/= n p>
/>«1103

the product of all primes < 1103, is such an integer. The reason for choosing the M
is clear: if, for all primes p < 1103, we can show that n = 1 (mod p), then n = 1
(mod M) by the Chinese Remainder Theorem.

We adopt Grinstead's strategy [3] to fit our problem; let us outline the procedure
here.

Let p be a prime < 1103, such that for all primes r < p, it has been shown that if
v„ = wk, then n = 1 (mod r); also, we assume n = 1 (mod22 • 33), which takes 5
minutes with a pocket calculator to show (just examine {vn} and {wk } mod 8 and
53).

It is easier to work with v„ and wk when we realize that they are defined by the
following recurrences:

vx = 0,    v2 = l;    v„+x = 6v„ - v„_x    for« ^2;
wx = 0,    w2 = 4;    wk + x = lSwk — wk_x    for k > 2.

If we define L(q) to be the length of the period of the sequence {vn ) (mod q), let
us generate a sequence of primes q such that L(q) is divisible only by primes not
exceeding/?, is power-free (except possibly for 22, 32 and 33) and is divisible by/). By
our previous assumption, vn = wk implies that « = 1 (mod L(q)/p), for each such q.

Choose the least such q, and consider {v„} and {wk} mod q. By previous remarks,
there are only p possible indices for which vn = wk (mod q): just those indices = 1
(mod L(q)/p). If a number vn in one of those positions does not appear in the
listing of wk (mod q), that position is deleted. If all such positions are deleted, except
« = 1 (mod L(q)), then we have shown that « = 1 (mod p), and we go on to the
next p. If any positions are not eliminated, we note them and go on to the next q: at
the next q, we only need to check those positions not previously eliminated.
Eventually, all positions except n = 1 (mod/7) will be eliminated; in the actual
running of this algorithm, no prime p required more than 10 values of q to be
eliminated.
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Let us demonstrate how this works with p = 11. First, let q = 23, because
L(23) =11. The sequence {vn} (mod 23) is as follows:

{0,1,6,12,20,16,7,3,11,17,22}.
Now the sequence {wk ) (mod 23) looks like this:

{0,4,3,4,0,19,20,19}.
Hence, all positions are eliminated except those corresponding to vn = 0, 3 or 20
(mod 23); thus, if vn = wk, then n = 1, 5, or 8 (mod 11).

Next, let q = 43, as L(43) = 44. Then {v„} (mod43) is as below:
{0, 1, 6, 35, 32, 28, 7,14, 34, 18, 31, 39, 31, 18, 34, 14,
7, 28, 32, 35, 6,1, 0, 42, 37, 8,11,15, 36, 29, 9, 25,12,
4,12,25,9,29,36,15,11,8,37,42}.

But we know that n = 1 (mod 4 (= 44/11)), so that we only need look at the
positions corresponding to n = 1,5,9,_37, 41 (mod 44). Furthermore, we saw
from our work (mod 23) that « = 1, 5 or 8 (mod 11), so that we need only consider
n = 1, 5 or 41 (mod 44). This leaves the values

i>„=s0,32,11 (mod 43).
But {wk} (mod 43) looks like this:

{0, 4, 29, 41, 21, 36, 25, 27, 31,15, 24, 30, 0, 13, 19, 28,
12,16,18,7,22,2,14,39}.

Neither 32 nor 11 appears on this last list, so we have shown that « = 1 (mod 11).
Curiously, p = 7 needs three values of q to eliminate all but « = 1 (mod 7),

namely q = 13 (which eliminates n = 0, 2 (mod 7)), q = 83 (which deletes n = 4, 6
(mod 7)) and q = 113 (which disposes of n = 3, 5 (mod 7)). On the other hand,
p = 31 needs only q = 61 to eliminate all but n = 1 (mod 31).

It is not possible to predict L(q) in advance, except that it can be shown that
L(q) is a factor of q2 - 1. Moreover, if 2 is a quadratic residue of q, then
L(q)\q-1.
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