
Sets of Finite Perimeter and Geometric

Variational Problems

An Introduction to Geometric Measure Theory

FRANCESCO MAGGI
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Preface

Everyone talks about rock these days;

the problem is they forget about the roll.

Keith Richards

The theory of sets of finite perimeter provides, in the broader framework of

Geometric Measure Theory (hereafter referred to as GMT), a particularly well-

suited framework for studying the existence, symmetry, regularity, and struc-

ture of singularities of minimizers in those geometric variational problems in

which surface area is minimized under a volume constraint. Isoperimetric-type

problems constitute one of the oldest and more attractive areas of the Calcu-

lus of Variations, with a long and beautiful history, and a large number of still

open problems and current research. The first aim of this book is to provide a

pedagogical introduction to this subject, ranging from the foundations of the

theory, to some of the most deep and beautiful results in the field, thus provid-

ing a complete background for research activity. We shall cover topics like the

Euclidean isoperimetric problem, the description of geometric properties of

equilibrium shapes for liquid drops and crystals, the regularity up to a singular

set of codimension at least 8 for area minimizing boundaries, and, probably for

the first time in book form, the theory of minimizing clusters developed (in a

more sophisticated framework) by Almgren in his AMS Memoir [Alm76].

Ideas and techniques from GMT are of crucial importance also in the study

of other variational problems (both of parametric and non-parametric charac-

ter), as well as of partial differential equations. The secondary aim of this book

is to provide a multi-leveled introduction to these tools and methods, by adopt-

ing an expository style which consists of both heuristic explanations and fully

detailed technical arguments. In my opinion, among the various parts of GMT,
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the theory of sets of finite perimeter is the best suited for this aim. Compared

to the theories of currents and varifolds, it uses a lighter notation and, virtually,

no preliminary notions from Algebraic or Differential Geometry. At the same

time, concerning, for example, key topics like partial regularity properties of

minimizers and the analysis of their singularities, the deeper structure of many

fundamental arguments can be fully appreciated in this simplified framework.

Of course this line of thought has not to be pushed too far. But it is my convic-

tion that a careful reader of this book will be able to enter other parts of GMT

with relative ease, or to apply the characteristic tools of GMT in the study of

problems arising in other areas of Mathematics.

The book is divided into four parts, which in turn are opened by rather de-

tailed synopses. Depending on their personal backgrounds, different readers

may like to use the book in different ways. As we shall explain in a moment, a

short “crash-course” is available for complete beginners.

Part I contains the basic theory of Radon measures, Hausdorffmeasures, and

rectifiable sets, and provides the background material for the rest of the book.

I am not a big fan of “preliminary chapters”, as they often miss a storyline,

and quickly become boring. I have thus tried to develop Part I as independent,

self-contained, and easily accessible reading. In any case, following the above

mentioned “crash-course” makes it possible to see some action taking place

without having to work through the entire set of preliminaries.

Part II opens with the basic theory of sets of finite perimeter, which is pre-

sented, essentially, as it appears in the original papers by De Giorgi [DG54,

DG55, DG58]. In particular, we avoid the use of functions of bounded vari-

ation, hoping to better stimulate the development of a geometric intuition of

the theory. We also present the original proof of De Giorgi’s structure theorem,

relying on Whitney’s extension theorem, and avoiding the notion of rectifiable

set. Later on, in the central portion of Part II, we make the theory of rectifiable

sets from Part I enter into the game. We thus provide another justification of

De Giorgi’s structure theorem, and develop some crucial cut-and-paste com-

petitors’ building techniques, first and second variation formulae, and slicing

formulae for boundaries. The methods and ideas introduced in this part are fi-

nally applied to study variational problems concerning confined liquid drops

and anisotropic surface energies.

Part III deals with the regularity theory for local perimeter minimizers, as

well as with the analysis of their singularities. In fact, we shall deal with the

more general notion of (Λ, r0)-perimeter minimizer, thus providing regular-

ity results for several Plateau-type problems and isoperimetric-type problems.

Finally, Part IV provides an introduction to the theory of minimizing clusters.

These last two parts are definitely more advanced, and contain the deeper ideas
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and finer arguments presented in this book. Although their natural audience

will unavoidably be made of more expert readers, I have tried to keep in these

parts the same pedagogical point of view adopted elsewhere.

As I said, a “crash-course” on the theory of sets of finite perimeter, of about

130 pages, is available for beginners. The course starts with a revision of the

basic theory of Radon measures, temporarily excluding differentiation the-

ory (Chapters 1–4), plus some simple facts concerning weak gradients from

Section 7.2. The notion of distributional perimeter is then introduced and used

to prove the existence of minimizers in several variational problems, culminat-

ing with the solution of the Euclidean isoperimetric problem (Chapters 12–14).

Finally, the differentiation theory for Radon measures is developed (Chapter 5),

and then applied to clarify the geometric structure of sets of finite perimeter

through the study of reduced boundaries (Chapter 15).

Each part is closed by a set of notes and remarks, mainly, but not only,

of bibliographical character. The bibliographical remarks, in particular, are not

meant to provide a complete picture of the huge literature on the problems con-

sidered in this book, and are limited to some suggestions for further reading.

In a similar way, we now mention some monographs related to our subject.

Concerning Radon measures and rectifiable sets, further readings of excep-

tional value are Falconer [Fal86], Mattila [Mat95], and De Lellis [DL08].

For the classical approach to sets of finite perimeter in the context of func-

tions of bounded variation, we refer readers to Giusti [Giu84], Evans and

Gariepy [EG92], and Ambrosio, Fusco, and Pallara [AFP00].

The partial regularity theory of Part III does not follow De Giorgi’s origi-

nal approach [DG60], but it is rather modeled after the work of authors like

Almgren, Allard, Bombieri, Federer, Schoen, Simon, etc. in the study of area

minimizing currents and stationary varifolds. The resulting proofs only rely

on direct comparison arguments and on geometrically viewable constructions,

and should provide several useful reference points for studying more advanced

regularity theories. Accounts and extensions of De Giorgi’s original approach

can be found in the monographs by Giusti [Giu84] and Massari and Miranda

[MM84], as well as in Tamanini’s beautiful lecture notes [Tam84].

Readers willing to enter into other parts of GMT have several choices. The

introductory books by Almgren [Alm66] and Morgan [Mor09] provide initial

insight and motivation. Suggested readings are then Simon [Sim83], Krantz

and Parks [KP08], and Giaquinta, Modica, and Souček [GMS98a, GMS98b],

as well as, of course, the historical paper by Federer and Fleming [FF60]. Con-

cerning the regularity theory for minimizing currents, the paper by Duzaar and

Steffen [DS02] is a valuable source for both its clarity and its completeness.

Finally (and although, since its appearance, various crucial parts of the theory



xvi Preface

have found alternative, simpler justifications, and several major achievements

have been obtained), Federer’s legendary book [Fed69] remains the ultimate

reference for many topics in GMT.

I wish to acknowledge the support received from several friends and col-

leagues in the realization of this project. This book originates from the lecture

notes of a course that I held at the University of Duisburg-Essen in the Spring

of 2005, under the advice of Sergio Conti. The successful use of these unpub-

lished notes in undergraduate seminar courses by Peter Hornung and Stefan

Müller convinced me to start the revision and expansion of their content. The

work with Nicola Fusco and Aldo Pratelli on the stability of the Euclidean

isoperimetric inequality [FMP08] greatly influenced the point of view on sets

of finite perimeter adopted in this book, which has also been crucially shaped

(particularly in connection with the regularity theory of Part III) by several,

endless, mathematical discussions with Alessio Figalli. Alessio has also lec-

tured at the University of Texas at Austin on a draft of the first three parts, sup-

porting me with hundreds of comments. Another important contribution came

from Guido De Philippis, who read the entire book twice, giving me much

careful criticism and many useful suggestions. I was lucky to have the oppor-

tunity of discussing with Gian Paolo Leonardi various aspects of the theory of

minimizing clusters presented in Part IV. Comments and errata were provided

to me by Luigi Ambrosio (his lecture notes [Amb97] have been a major source

of inspiration), Marco Cicalese, Matteo Focardi, Nicola Fusco, Frank Morgan,

Matteo Novaga, Giovanni Pisante and Berardo Ruffini. Finally, I wish to thank

Giovanni Alberti, Almut Burchard, Eric Carlen, Camillo de Lellis, Michele

Miranda, Massimiliano Morini, and Emanuele Nunzio Spadaro for having ex-

pressed to me their encouragement and interest in this project.

I have the feeling that while I was busy trying to talk about the rock with-

out forgetting about the roll, some errors and misprints made their way to the

printed page. I will keep an errata list on my webpage.

This work was supported by the European Research Council through the

Advanced Grant n. 226234 and the Starting Grant n. 258685, and was com-

pleted during my visit to the Department of Mathematics and the Institute for

Computational Engineering and Sciences of the University of Texas at Austin.

My thanks to the people working therein for the kind hospitality they have

shown to me and my family.

Francesco Maggi



PART ONE

Radon measures on Rn

Synopsis

In this part we discuss the basic theory of Radon measures on Rn. Roughly

speaking, if P(Rn) denotes the set of the parts of Rn, then a Radon measure µ

on Rn is a function µ : P(Rn) → [0,∞], which is countably additive (at least)

on the family of Borel sets of Rn, takes finite values on bounded sets, and is

completely identified by its values on open sets. The Lebesgue measure on

Rn and the Dirac measure δx at x ∈ Rn are well-known examples of Radon

measures on Rn. Moreover, any locally summable function on Rn, as well as

any k-dimensional surface in Rn, 1 ≤ k ≤ n − 1, can be naturally identified

with a Radon measure on Rn. There are good reasons to look at such familiar

objects from this particular point of view. Indeed, the natural notion of con-

vergence for sequences of Radon measures satisfies very flexible compactness

properties. As a consequence, the theory of Radon measures provides a unified

framework for dealing with the various convergence and compactness phenom-

ena that one faces in the study of geometric variational problems. For example,

a sequence of continuous functions on Rn that (as a sequence of Radon mea-

sures) is converging to a surface in Rn is something that cannot be handled

with the notions of convergence usually considered on spaces of continuous

functions or on Lebesgue spaces. Similarly, the existence of a tangent plane

to a surface at one of its points can be understood as the convergence of the

(Radon measures naturally associated with) re-scaled and translated copies of

the surface to the (Radon measure naturally associated with the) tangent plane

itself. This peculiar point of view opens the door for a geometrically meaning-

ful (and analytically powerful) extension of the notion of differentiability to

the wide class of objects, the family of rectifiable sets, that one must consider

in solving geometric variational problems.

Part I is divided into two main portions. The first one (Chapters 1–6) is de-

voted to the more abstract aspects of the theory. In Chapters 1–4, we introduce

the main definitions, present the most basic examples, and prove the fundamen-

tal representation and compactness theorems about Radon measures. (These

results already suffice to give an understanding of the basic theory of sets of fi-

nite perimeter as presented in the first three chapters of Part II.) Differentiation
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theory, and its applications, are discussed in Chapters 5–6. In the second

portion of Part I (Chapters 7–11), we consider Radon measures from a more

geometric viewpoint, focusing on the interaction between Euclidean geometry

and Measure Theory, and covering topics such as Lipschitz functions, Haus-

dorff measures, area formulae, rectifiable sets, and measure-theoretic differen-

tiability. These are prerequisites to more advanced parts of the theory of sets

of finite perimeter, and can be safely postponed until really needed. We now

examine more closely each chapter.

In Chapters 1–2 we introduce the notions of Borel and Radon measure. This

is done in the context of outer measures, rather than in the classical context of

standard measures defined on σ-algebras. We simultaneously develop both the

basic properties relating Borel and Radon measures to the Euclidean topology

of Rn and the basic examples of the theory that are obtained by combining

the definitions of Lebesgue and Hausdorff measures with the operations of

restriction to a set and push-forward through a function.

In Chapter 3 we look more closely at Hausdorff measures. We establish

their most basic properties and introduce the notion of Hausdorff dimension.

Next, we show equivalence between the Lebesgue measure on Rn and the n-

dimensional Hausdorff measure on Rn, and we study the relation between the

elementary notion of length of a curve, based on the existence of a parametriza-

tion, and the notion induced by one-dimensional Hausdorff measures.

In Chapter 4 we further develop the general theory of Radon measures. In

particular, the deep link between Radon measures and continuous functions

with compact support is presented, leading to the definition of vector-valued

Radon measures, of weak-star convergence of Radon measures, and to the

proof of the fundamental Riesz’s representation theorem: every bounded lin-

ear functional on C0
c (Rn;Rm) is representable as integration with respect to an

Rm-valued Radon measure on Rn. This last result, in turn, is the key to the

weak-star compactness criterion for sequences of Radon measures.

Chapters 5–6 present differentiation theory and its applications. The goal is

to compare two Radon measures ν and µ by looking, as r → 0+, at the ratios

ν(B(x, r))

µ(B(x, r))
,

which are defined at those x where µ is supported (i.e., µ(B(x, r)) > 0 for every

r > 0). The Besicovitch–Lebesgue differentiation theorem ensures that, for µ-

a.e. x in the support of µ, these ratios converge to a finite limit u(x), and that

restriction of ν to the support of µ equals integration of u with respect to µ.

Differentiation theory plays a crucial role in proving the validity of classical

(or generalized) differentiability properties in many situations.
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In Chapter 7 we study the basic properties of Lipschitz functions, proving

Rademacher’s theorem about the almost everywhere classical differentiability

of Lipschitz functions, and Kirszbraun’s theorem concerning the optimal ex-

tension problem for vector-valued Lipschitz maps.

Chapter 8 presents the area formula, which relates the Hausdorff measure

of a set in Rn with that of its Lipschitz images into any Rm with m ≥ n. As a

consequence, the classical notion of area of a k-dimensional surface M in Rn

is seen to coincide with the k-dimensional Hausdorff measure of M. Some ap-

plications of the area formula are presented in Chapter 9, where, in particular,

the classical Gauss–Green theorem is proved.

In Chapter 10 we introduce one of the most important notions of Geometric

Measure Theory, that of a k-dimensional rectifiable set in Rn (1 ≤ k ≤ n − 1).

This is a very broad generalization of the concept of k-dimensional C1-surface,

allowing for complex singularities but, at the same time, retaining tangential

differentiability properties, at least in a measure-theoretic sense. A crucial re-

sult is the following: if the k-dimensional blow-ups of a Radon measure µ con-

verge to k-dimensional linear spaces (seen as Radon measures), then it turns

out that µ itself is the restriction of the k-dimensional Hausdorff measure to a

k-dimensional rectifiable set.

In Chapter 11, we introduce the notion of tangential differentiability of a

Lipschitz function with respect to a rectifiable set, extend the area formula to

this context, and prove the divergence theorem on C 2-surfaces with boundary.



PART TWO

Sets of finite perimeter

Synopsis

The starting point of the theory of sets of finite perimeter is a generalization

of the Gauss–Green theorem based on the notion of vector-valued Radon mea-

sure. Precisely, we say that a Lebesgue measurable set E ⊂ Rn is a set of locally

finite perimeter if there exists a Rn-valued Radon measure µE on Rn, called the

Gauss–Green measure of E, such that the generalized Gauss–Green formula
∫

E

∇ϕ =
∫

Rn

ϕ dµE , ∀ϕ ∈ C1
c (Rn) , (1)

holds true. The total variation measure |µE | of µE induces the notions of relative

perimeter P(E; F) of E with respect to a set F ⊂ Rn, and of (total) perimeter

P(E) of E, defined as

P(E; F) = |µE |(F) , P(E) = |µE |(Rn) .

In particular, E is a set of finite perimeter if and only if P(E) < ∞. These

definitions are motivated by the classical Gauss–Green theorem, Theorem 9.3.

Indeed, if E is an open set with C1-boundary with outer unit normal νE ∈
C0(∂E; S n−1), then Theorem 9.3 implies

∫

E

∇ϕ =
∫

∂E

ϕ νE dHn−1 , ∀ϕ ∈ C1
c (Rn) , (2)

and thus E is a set of locally finite perimeter with

µE = νEHn−1
�∂E , |µE | = Hn−1

�∂E , (3)

P(E; F) = Hn−1(F ∩ ∂E) , P(E) = Hn−1(∂E) , (4)

for every F ⊂ Rn; see Figure 1. One of the main themes of this part of the book

is showing that these definitions lead to a geometrically meaningful general-

ization of the notion of open set with C1-boundary, with natural and powerful

applications to the study of geometric variational problems.

We start this programme in Chapter 12, where the link with the theory of

Radon measures established by (1) is exploited to deduce some basic lower

semicontinuity and compactness theorems for sequences of sets of locally fi-

nite perimeter; see Sections 12.1 and 12.4. In particular, these results make it
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E
F

Figure 1 The perimeter P(E; F) of E relative to F is the (n − 1)-dimensional
measure of the intersection of the (reduced) boundary of E with F.

possible to apply the Direct Method in order to prove the existence of mini-

mizers in several geometric variational problems, see Section 12.5.

In Chapter 13 we discuss the possibility of approximating sets of finite

perimeter by sequences of open sets with smooth boundary. The resulting ap-

proximation theorems appear often as useful technical devices, but also possess

another merit. Indeed, generally speaking, they imply the coincidence of the

minimum values of the different formulations of the same variational problems

that are obtained by minimizing either among sets of finite perimeter or among

open sets with C1-boundary. Another relevant content of Chapter 13 is the

coarea formula, which is a generalization of Fubini’s theorem of ubiquitous

importance in Geometric Measure Theory.

In Chapter 14 we study the Euclidean isoperimetric problem: given m > 0,

minimize perimeter among sets of volume m, namely

inf
{

P(E) : |E| = m
}

.

Exploiting the lower semicontinuity, compactness, and approximation theo-

rems developed in the two previous chapters, together with the notion of Steiner

symmetrization, we shall characterize Euclidean balls as the (unique) mini-

mizers in the Euclidean isoperimetric problem. A remarkable feature of this

result and, more generally, of the results from the first three chapters of this

part, is that they are only based on the tools from basic Measure Theory and

Functional Analysis set forth in Chapters 1–4, and that they are obtained with-

out any knowledge on the geometric structure of arbitrary sets of finite

perimeter.

We next turn to the following, fundamental question: does the validity of (1)

imply a set of locally finite perimeter E to possess, in some suitable sense, a

(n − 1)-dimensional boundary and outer unit normal allowing us, for example,

to generalize (2), (3), and (4)? The first important remark here is that the no-

tion of topological boundary is of little use in answering this question. Indeed,

if E is of locally finite perimeter and E′ is equivalent to E (i.e., |E∆E′| = 0),

then, as the left-hand side of (1) is left unchanged by replacing E with E ′, we
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have that E′ is a set of locally finite perimeter too, with µE = µE′ . Of course,

the topological boundaries of E and E′ may be completely different (for ex-

ample, even if E is an open set with C1-boundary, we may take E′ = E ∪ Qn,

and have ∂E′ = Rn, µE′ = νEHn−1
�∂E). For this reason, when dealing with

sets of finite perimeter, it is always useful to keep in mind the possibility of

making modifications on and/or by sets of measure zero to find a representa-

tive which “minimizes the size of the topological boundary”. In other words,

if E is of locally finite perimeter, then we always have spt µE ⊂ ∂E, and we

can always find E′ equivalent to E such that spt µE′ = ∂E
′; see Proposition

12.19. But even with these specifications in mind, we have to face the exis-

tence of sets of finite perimeter E ⊂ Rn, n ≥ 2, with |E| < ∞, |spt µE | > 0,

and thus, in particular, Hn−1(spt µE) = ∞; see Example 12.25. In conclusion,

even after the suitable “minimization of size”, the topological boundary of

a set of finite perimeter may have Hausdorff dimension equal to that of its

ambient space!

The key notion to consider in order to understand the geometric structure of

sets of finite perimeter is that of reduced boundary, which may be explained as

follows. If E is an open set with C1-boundary, then the continuity of the outer

unit normal νE allows us to characterize νE(x) in terms of the Gauss–Green

measure µE = νEHn−1
�∂E as

νE(x) = lim
r→0+

�
B(x,r)∩∂E

νE dHn−1 = lim
r→0+

µE(B(x, r))

|µE | (B(x, r))
, ∀x ∈ ∂E .

If now E is a generic set of locally finite perimeter, then |µE | (B(x, r)) > 0 for

every x ∈ spt µE and r > 0, and thus it makes sense to define the reduced

boundary ∂∗E of E as the set of those x ∈ spt µE such that the limit

lim
r→0+

µE(B(x, r))

|µE | (B(x, r))
exists and belongs to S n−1. (5)

In analogy with the regular case, the Borel vector field νE : ∂∗E → S n−1 de-

fined in (5) is called the measure-theoretic outer unit normal to E. The re-

duced boundary and the measure-theoretic outer unit normal depend on E only

through its Gauss–Green measure, and are therefore left unchanged by modi-

fications of E on and/or by a set of measure zero. It also turns out that ∂∗E has

the structure of an (n− 1)-dimensional surface, that νE has a precise geometric

meaning as the outer unit normal to E, and that (3) and (4) hold true on generic

sets of finite perimeter by replacing topological boundaries and classical outer

unit normals with reduced boundaries and measure-theoretic outer unit nor-

mals. Precisely, the following statements from De Giorgi’s structure theory,

presented in Chapter 15, hold true:
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(i) The Gauss–Green measure µE is obtained by integrating νE against the

restriction ofHn−1 to ∂∗E, that is,

µE = νEHn−1
�∂∗E , |µE | = Hn−1

�∂∗E ,

P(E; F) = Hn−1(F ∩ ∂∗E) , P(E) = Hn−1(∂∗E) ,

for every F ⊂ Rn, and the Gauss–Green formula (1) takes the form
∫

E

∇ϕ =
∫

∂∗E
ϕ νE dHn−1 , ∀ϕ ∈ C1

c (Rn) .

(ii) If x ∈ ∂∗E, then νE(x) is orthogonal to ∂∗E at x, in the sense that

Hn−1
�

(

∂∗E − x

r

) ∗
⇀ Hn−1

� νE(x)⊥ as r → 0+,

and it is an outer unit normal to E at x, in the sense that

E − x

r

loc→
{

y ∈ Rn : y · νE(x) ≤ 0
}

as r → 0+ .

(iii) The reduced boundary ∂∗E is the union of (at most countably many) com-

pact subsets of C1-hypersurfaces is Rn; more precisely, there exist at most

countably many C1-hypersurfaces Mh and compact sets Kh ⊂ Mh with

TxMh = νE(x)⊥ for every x ∈ Kh, such that

∂∗E = N ∪
⋃

h∈N
Kh , Hn−1(N) = 0 .

Statement (iii) implies of course that the reduced boundary of a set of locally

finite perimeter is a locally Hn−1-rectifiable set. In Chapter 16 we undertake

the study of reduced boundaries and Gauss–Green measures in the light of the

theory of rectifiable sets developed in Chapter 10. We prove Federer’s theo-

rem, stating theHn−1-equivalence between the reduced boundary of E, the set

E(1/2) of its points of density one-half, and the essential boundary ∂eE, which

is defined as the complement in Rn of E(0)∪E(1). This result proves a powerful

tool, as sets of density points are much more easily manipulated than reduced

boundaries. For example, it is starting from Federer’s theorem that in Section

16.1 we prove some representation formulae for Gauss–Green measures of

unions, intersections, and set differences of two sets of locally finite perimeter.

These formulae allow us to easily “cut and paste” sets of finite perimeter, an

operation which proves useful in building comparison sets for testing minimal-

ity conditions. As an application of these techniques, in Section 16.2 we prove

upper and lower density estimates for reduced boundaries of local perimeter

minimizers, which, combined with Federer’s theorem, imply a first, mild, reg-

ularity property of local perimeter minimizers: theHn−1-equivalence between
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the reduced boundary and the support of the Gauss–Green measure, that is, as

said, the topological boundary of “minimal size”.

In Chapter 17 we apply the area formula of Chapter 8 to study the behavior

of sets of finite perimeter under the action of one parameter families of diffeo-

morphisms. We compute the first and second variation formulae of perimeter,

and introduce distributional formulations of classical first order necessary min-

imality conditions, like the vanishing mean curvature condition.

In Chapter 18 we present a refinement of the coarea formula from

Chapter 13, which in turn allows us to discuss slicing of reduced boundaries. In

particular, slicing by hyperplanes is discussed in some detail in Section 18.3.

We close Part II by briefly introducing two important examples of geomet-

ric variational problems which can be addressed in our framework. Precisely,

in Chapter 19 we discuss the equilibrium problem for a liquid confined inside

a given container, while in Chapter 20 we consider anisotropic surface ener-

gies and address the so-called Wulff problem, originating from the study of

equlibrium shapes of crystals.



PART THREE

Regularity theory and analysis of singularities

Synopsis

In this part we shall discuss the regularity of boundaries of those sets of finite

perimeter which arise as minimizers in some of the variational problems con-

sidered so far. The following theorem exemplifies the kind of result we shall

obtain. We recall from Section 16.2 that E is a local perimeter minimizer (at

scale r0) in some open set A, if spt µE = ∂E (recall Remark 16.11) and

P(E; A) ≤ P(F; A) , (1)

whenever E∆F ⊂⊂ B(x, r0) ∩ A and x ∈ A.

Theorem If n ≥ 2, A is an open set in Rn, and E is a local perimeter min-

imizer in A, then A ∩ ∂∗E is an analytic hypersurface with vanishing mean

curvature which is relatively open in A ∩ ∂E, while the singular set of E in A,

Σ(E; A) = A ∩ (∂E \ ∂∗E) ,

satisfies the following properties:

(i) if 2 ≤ n ≤ 7, then Σ(E; A) is empty;

(ii) if n = 8, then Σ(E; A) has no accumulation points in A;

(iii) if n ≥ 9, thenH s(Σ(E; A)) = 0 for every s > n − 8.

These assertions are sharp: there exists a perimeter minimizer E in R8 such

that H0(Σ(E;R8)) = 1; moreover, if n ≥ 9, then there exists a perimeter mini-

mizer E in Rn such thatHn−8(Σ(E;Rn)) = ∞.

The proof of this deep theorem, which will take all of Part III, is essentially

divided into two parts. The first one concerns the regularity of the reduced

boundary in A and, precisely, it consists of proving that the locally Hn−1-

rectifiable set A ∩ ∂∗E is, in fact, a C1,γ-hypersurface for every γ ∈ (0, 1).

(As we shall see, its analiticity will then follow rather straightforwardly from

standard elliptic regularity theory.) The second part of the argument is devoted

to the analysis of the structure of the singular set Σ(E; A). By the density esti-

mates of Theorem 16.14, we already know thatHn−1(Σ(E; A)) = 0. In order to

improve this estimate, we shall move from the fact that, roughly speaking, the

blow-ups Ex,r of E at points x ∈ Σ(E; A) will have to converge to cones which
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are local perimeter minimizers in Rn, and which have their vertex at a singular

point. Starting from this result, and discussing the possible existence of such

singular minimizing cones, we shall prove the claimed estimates.

In fact, we shall not confine our attention to local perimeter minimizers, but

we shall work instead in the broader class of (Λ, r0)-perimeter minimizers. This

is a generalization of the notion of local perimeter minimizer, which allows for

the presence on the right-hand side of the minimality inequality (1) of a higher

order term of the form Λ |E∆F|. The interest of this kind of minimality con-

dition, originally introduced in a more general context and form by Almgren

[Alm76], lies in the fact that, contrary to local perimeter minimality, it is satis-

fied by minimizers in geometric variational problems with volume-constraints

and potential-type energies. At the same time, the smaller the scale at which

the competitor F differs from E, the closer (Λ, r0)-perimeter minimality is to

plain local perimeter minimality, and thus the regularity theory and the analysis

of singularities may be tackled in both cases with essentially the same effort.

In Chapter 21 we thus introduce (Λ, r0)-perimeter minimality, we discuss

its applicability in studying minimizers which arise from the variational prob-

lems presented in Part II, and prove the compactness theorem for sequences

of (Λ, r0)-perimeter minimizers. In Chapter 22 we introduce the fundamental

notion of excess e(E, x, r), which is used to measure the integral oscillation of

the measure-theoretic outer unit normal to E over B(x, r) ∩ ∂∗E. We discuss

the basic properties of the excess and prove that its smallness at a given point

x and scale r implies the uniform proximity of B(x, r) ∩ ∂E to a hyperplane.

Starting from this result, in Chapter 23, we show that the Hn−1-rectifiable set

B(x, r)∩ ∂E can always be covered by the graph of a Lipschitz function u over

an (n − 1)-dimensional ball Dr of radius r, up to an error which is controlled

by the size of e(E, x, r). Moreover, again in terms of the size of e(E, x, r), the

function u is in fact close to minimizing the area integrand
∫

Dr

√

1 + |∇′u|2, and
∫

Dr
|∇′u|2 is close to zero, so that, by Taylor’s formula

∫

Dr

√

1 + |∇′u|2 = Hn−1(Dr) +
1

2

∫

Dr

|∇′u|2 + . . . ,

u is in fact close to minimizing the Dirichlet integral
∫

Dr
|∇′u|2; that is, u is al-

most a harmonic function. Through the use of the reverse Poincaré inequality

(Chapter 24), and exploiting some basic properties of harmonic functions, in

Chapter 25 we use this information to prove some explicit decay estimates for

the integral averages of ∇u which, in turn, are equivalent in proving the uni-

form decay of the excess e(E, x, r) in r. In Chapter 26 we exploit the decay of

the excess to prove the C1,γ-regularity of A ∩ ∂∗E. As a by-product we obtain



Synopsis 277

a characterization of the singular set Σ(E; A) in terms of the excess, as well as

a powerful C1-convergence theorem for sequences of (Λ, r0)-perimeter min-

imizers. The exposition of the regularity theory is concluded in Chapter 27,

where the connection with elliptic equations in divergence form is used to im-

prove the C1,γ-regularity result on minimizers of specific variational problems.

Finally, Chapter 28 is devoted to the study of singular sets and singular mini-

mizing cones. We refer to the beginning of that chapter for a detailed overview

of its contents.

NOTATION WARNING: Throughout this part we shall continuously

adopt Notation 4. Moreover, we shall denote by C(x, r, ν) the cylinder

C(x, r, ν) = x +
{

y ∈ Rn : | y · ν| < r , | y − (y · ν)ν| < r
}

,

where x ∈ Rn, r > 0 and ν ∈ S n−1.



PART FOUR

Minimizing clusters

Synopsis

A cluster E in Rn is a finite disjoint family of sets of finite perimeter E =
{E(h)}N

h=1
(N ∈ N, N ≥ 2) with finite and positive Lebesgue measure (note:

the chambers E(h) of E are not assumed to be connected/indecomposable).

By convention, E(0) = Rn \ ⋃N
h=1 E(h) denotes the exterior chamber of E.

The perimeter P(E) of E is defined as the total (n − 1)-dimensional Hausdorff

measure of the interfaces of the cluster,

P(E) =
∑

0≤h<k≤N

Hn−1
(

∂∗E(h) ∩ ∂∗E(k)
)

.

Denoting by m(E) the vector in RN
+ whose hth entry agrees with | E(h)|, we

shall say that E is a minimizing cluster in Rn if spt µE(h) = ∂E(h) for every

h = 1, . . . ,N, and, moreover, P(E) ≤ P(E′) whenever m(E′) = m(E). By a

partitioning problem in Rn, we mean any variational problem of the form

inf
{

P(E) : m(E) = m
}

,

corresponding to the choice of some m ∈ RN
+ . Proving the following theorem

will be the main aim of Part IV. The existence and regularity parts will be

addressed, respectively, in Chapter 29 and Chapter 30.

Theorem (Almgren’s theorem) If n ,N ≥ 2 and m ∈ RN
+ , then there exist

minimizers in the partitioning problem defined by m. If E is an N-minimizing

cluster in Rn, then E is bounded. If 0 ≤ h < k ≤ N, then ∂∗E(h) ∩ ∂∗E(k) is

an analytic constant mean curvature hypersurface in Rn, relatively open inside

∂E(h) ∩ ∂E(k). Finally,

N
∑

h=0

Hn−1
(

∂E(h) \ ∂∗E(h)
)

= 0 .

This existence and almost everywhere regularity theorem is one of the main

results contained in the founding work for the theory of minimizing clusters

and partitioning problems, that is Almgren’s AMS Memoir [Alm76]. This the-

ory, despite the various beautiful results which have been obtained since then,

still presents many interesting open questions. We aim here to provide the
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reader with the necessary background to enter into these problems. Indeed,

the techniques and ideas introduced in the proof of Almgren’s theorem prove

useful also in its subsequent developments, and are likely to play a role in

possible further investigations in the subject.

Slightly rephrasing Almgren’s words [Alm76, VI.1(6)], the aims of the the-

ory are: (i) to show the existence of minimizing clusters; (ii) to prove the regu-

larity of their interfaces outside singular closed sets; (iii) to describe the struc-

ture of these interfaces close to their singular sets, as well as the structure of

the singular sets themselves; (iv) to construct examples of minimizing clus-

ters; (v) to classify “in some reasonable way” the different minimizing clusters

corresponding to different choices of m ∈ RN
+ ; and (vi) to extend the analysis

of these questions to multi-phase anisotropic partitioning problems (which are

introduced below). We will deal with part (i) and (ii) of this programme in the

case of mono-phase isotropic problems. We now provide a brief and partial

review on the state of the art concerning Almgren’s programme, and refer the

reader to Morgan’s book [Mor09, Chapters 13–16] for further references and

information.

Planar minimizing clusters In the planar case, the constant mean curvature

condition satisfied by the interfaces

E(h, k) = ∂∗E(h) ∩ ∂∗E(k) , 0 ≤ h < k ≤ N ,

implies that each E(h, k) is a countable union of circular arcs, all with the same

curvature κh k ∈ R (here, a straight segment is a circular arc with zero curva-

ture); moreover, the blow-up clusters Ex,r = (E−x)/r of E at a point x belonging

to the singular set Σ(E) of E,

Σ(E) =
⋃

0≤h<k≤N

(

∂E(h) ∩ ∂E(k)
)

\ E(h, k) =

N
⋃

h=0

(

∂E(h) \ ∂∗E(h)
)

,

have the planar Steiner partition (see Figure 30.2) as their unique (up to rota-

tions) possible limit in local convergence. Exploiting these two facts, in The-

orem 30.7 we shall prove that the singular set is discrete, that every point

x ∈ Σ(E) is the junction of exactly three different interfaces, that the three

circular arcs meeting at x form three 120-degree angles, and that each inter-

face is made up of finitely many circular arcs (all with the same curvature); see

Figure 1 and Section 30.3.

These general rules which planar minimizing clusters have to obey provide

the starting point for attempting their characterization, at least in some spe-

cial cases. For example, planar double bubbles have been characterized as

the only planar minimizing 2-clusters in [FAB+93], and as the only stable

(vanishing first variation and non-negative second variation) 2-clusters

in [MW02]. There also exists a characterization of planar 3-clusters,
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x

N = 2 N = 3

Figure 1 For planar clusters, the singular set is discrete, and the interfaces are
circular arcs meeting in threes at singular points forming 120 degree angles.
Starting from this information it is possible to characterize planar minimizing
clusters with two and three chambers (the picture refers to the case in which
the various chambers have equal areas).

≈
√

N

≈
√

N

Figure 2 The honeycomb inequality: symmetric honeycombs (with unit area
cells) provide the sharp asymptotic lower bound on the ratio perimeter over
number of chambers for planar clusters with unit area chambers.

obtained in [Wic04]. Interestingly, no example of planar minimizing N-clusters

is known if N ≥ 4, although a list of possible candidates has been proposed in

[CF10].

Describing the asymptotic properties of planar minimizing N-clusters as

N → ∞ provides another source of interesting questions. In this way, an inter-

esting result is the so-called honeycomb theorem [Hal01]. A possible formula-

tion of this result is as follows: if E is an N-cluster in R2 with | E(h)| = 1 for

every h = 1, . . . ,N, then

P(E)

N
> 2(12)1/4 . (1)

This lower bound is sharp: if {EN}N∈N denotes a sequence of planar N-clusters

obtained by piling up approximately
√

N rows consisting of approximately√
N many regular hexagons of unit area, then P(EN)/N → 2(12)1/4 as N → ∞;

see Figure 2. Moreover, in a sense that can be made precise, this is essentially

the unique type of sequence {EN}N∈N which asymptotically saturates (1).
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T Y

0
0

Figure 3 The only two possible tangent clusters at a singular point of a min-
imizing cluster in R3. The cone-like cluster T has as its interfaces three half-
planes meeting along a line at 120 degree angles. The cone-like clusterY has
as its interfaces six planar angles of about 109 degrees of amplitude, which
form the cone generated by the center of a regular tetrahedron and its edges.
In a neighborhood of any of its singular points, a minimizing cluster in R3 is
a C1,α-diffeomorphic image of either B ∩ T or B ∩ Y.

Structure of singularities in higher dimension The analysis of singular sets of

three-dimensional minimizing clusters was settled by Taylor in [Tay76]. This

is considered a historical paper, since it provided the first complete mathemat-

ical justification of the equilibrium laws governing soap bubbles stated by the

Belgian physicist Plateau in the nineteenth century. There it is proved that if

x is a singular point for a minimizing cluster E in R3, then, up to rotations,

the blow-up clusters Ex,r = (E − x)/r of E at x locally converge as r → 0+

either to the 3-cluster T or the 4-cluster Y depicted in Figure 3. (Of course,

according to our terminology, T and Y are not properly “clusters” as their

chambers have infinite volumes.) Moreover, there exist an open neighborhood

A of x in R3, α ∈ (0, 1), and a C1,α-diffeomorphism f : R3 → R3, such that

either

A ∩ E = f
(

B ∩ T
)

or A ∩ E = f
(

B ∩ Y
)

,

where, as usual, B is the Euclidean unit ball in R3 centered at the origin. It

should also be noted that Taylor’s theorem actually applies to describe the

singularities of (roughly speaking) anyH2-rectifiable set M in R3 satisfying a

suitably perturbed area minimality condition. In this way, Taylor’s result has

been extended to two-dimensional almost minimal rectifiable sets inRn (n ≥ 3)

by David [Dav09, Dav10]. The extension of Taylor’s theorem to the case of

minimizing clusters in higher dimensions has been announced by White [Whi].

We finally remark that not much is known about general qualitative properties

of minimizing clusters in dimension n ≥ 3. For example, Tamanini [Tam98]

has proved the existence of a constant k(n) bounding the number of chambers
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Figure 4 Conjectured minimizing clusters with 4 and 7 chambers which pos-
sess discrete groups of symmetries.

of a minimizing N-cluster which may meet at a given point of Rn. However,

no explicit bound on k(n) is presently known.

Symmetry properties of minimizing clusters If n ≥ 2 and N ≤ n − 1, then,

given N sets in Rn with finite Lebesgue measure, we may find n − (N − 1)

mutually orthogonal hyperplanes which cut each of the given sets into two

halves of equal measure (this, by repeatedly applying a Borsuk–Ulam type

argument). Notice that the intersection of n − (N − 1) mutually orthogonal hy-

perplanes in Rn defines a (N − 1)-dimensional plane in Rn. In this way, by

standard reflection arguments (see, e.g., Section 19.5), we see that if m ∈ RN
+

and n − 1 ≥ N, then there always exists a minimizing N-cluster E in Rn with

m(E) = m, which is symmetric with respect to an suitable (N−1)-dimensional

plane of Rn. Developing an idea due to White, Hutchings [Hut97] has actually

proved that if N ≤ n − 1, then every minimizing N-cluster in Rn is symmet-

ric with respect to an (N − 1)-dimensional plane of Rn (a proof of this re-

sult in the language of sets of finite perimeter is presented in [Bon09]). The

Hutchings–White theorem is the only general symmetry result for minimizing

clusters known at present, although it is reasonable to expect that symmetries

should appear also for special values of N and n outside the range N ≤ n − 1;

see Figure 4.

The double bubble theorem In dimension n ≥ 3, the only characterization re-

sult for minimizing N-clusters concerns the case N = 2. The starting point is

the Hutchings–White theorem, which guarantees minimizing 2-clusters in Rn

(n ≥ 2) to be axially symmetric. In particular, the interfaces of a minimizing

2-cluster are constant mean curvature surfaces of revolution. This piece of in-

formation allows us to restrict the focus, so to say, on the mutual position of

the various connected components of the chambers. Then, by careful first and

second variations arguments, one comes to exclude all the alternative possi-

bilities to the case of a double bubble, which is therefore the only minimizing
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Figure 5 The topological boundary of a double bubble consists of three
spherical caps which meet in a (n − 2)-dimensional sphere forming three an-
gles of 120 degrees.

2-cluster; see Figure 5. This beautiful result has been obtained by Hutchings,

Morgan, Ritoré, and Ros in [HMRR02] in R3, and has been later extended to

higher dimensions by Reichardt and collaborators [RHLS03, Rei08]. It should

be noted that, at present, no characterization result for minimizing clusters is

available in dimension n ≥ 3 if N ≥ 3. Another difficult problem is that of

extending the honeycomb theorem (1) to higher dimensions. Following a con-

jecture by Lord Kelvin, it was believed for a long time that the asymptotic

optimal tiling in R3 should be the one obtained by piling layers of relaxed

truncated octahedra. Weaire and Phelan [WP94], however, disproved Kelvin’s

conjecture by showing a better competitor; see [Mor09, Chapter 15] for pic-

tures and details.

Multi-phase anisotropic partition problems Finally, Almgren’s existence and

partial regularity theory applies to a wide class of partitioning problems, in-

cluding the volume-constrained minimization of functionals of the

type
∑

0≤h<k≤N

ch k

∫

E(h,k)

Φ
(

x, νE(h)(x)
)

dHn−1(x) ,

under suitable assumptions on the coefficients ch k > 0 and on the anisotropy

Φ : Rn × S n−1 → [0,∞). Given m ∈ RN
+ , the volume-constrained minimization

of this energy in the isotropic case leads to the immiscible fluids

problem,

inf

{

∑

0≤h<k≤N

ch kHn−1
(

E(h, k)
)

: E is an N-cluster, m(E) = m

}

.

We thus see the different chambers of the clusters as the regions occupied by

possibly different fluids. The relative strengths of the mutual interactions be-

tween these different fluids are then weighted by the positive constants ch k.
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The lower semicontinuity of the multi-phase interaction energy is equivalent

to the validity of the triangular inequality ch k ≤ ch i + ci k (Ambrosio and

Braides [AB90], White [Whi96]). Assuming the strict triangular inequality

ch k < ch i + ci k, the regularity of the interfaces for minimizers is then ad-

dressed by reduction to the regularity theory for volume-constrained perime-

ter minimizers. The key tool to obtain this reduction is an infiltration lemma

[Whi96, Leo01], which will be discussed (in the simple case when the ch k are

all equal) in Section 30.1.
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[Spe11] D. Spector. Simple proofs of some results of Reshetnyak. Proc. Amer.

Math. Soc., 139:1681–1690, 2011.

[Spi65] M. Spivak. Calculus on Manifolds. A Modern Approach to Classical The-

orems of Advanced Calculus. New York, Amsterdam, W. A. Benjamin,

Inc., 1965. xii+144 pp.

[SS82] R. Schoen and L. Simon. A new proof of the regularity theorem for rec-

tifiable currents which minimize parametric elliptic functionals. Indiana

Univ. Math. J., 31(3):415–434, 1982.

[SSA77] R. Schoen, L. Simon, and F. J. Almgren Jr. Regularity and singularity

estimates on hypersurfaces minimizing parametric elliptic variational in-

tegrals. i, ii. Acta Math., 139(3–4):217–265, 1977.

[Str79] K. Stromberg. The Banach–Tarski paradox. Amer. Math. Monthly, 86(3):

151–161, 1979.



452 References

[SZ98] P. Sternberg and K. Zumbrun. A Poincaré inequality with applications
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