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SETS OF INTEGERS CLOSED UNDER AFFINE
OPERATORS-THE CLOSURE

OF FINITE SETS

D. G. HOFFMAN AND D. A. KLARNER

We continue investigation begun in 1974 of sets of
integers closed under operators of the form (x19 •• ,xr)->
m1xι + + mrxr + cf where mlf , mr are integers with
gcd(mlf •• ,mr) = 1. Our main goal here is to prove the
following.

THEOREM 12. Let r,mlf * ,mr be positive integers, let
T be a set of integers, let c be an integer such that
(m, + + mr — l)ί + c is positive for each 1e T. If
gcd(m19 - ,rar) = 1, and if T is closed under the operator
(xl9 >",xr) (x19 -' ,x^mxXχ,Λ l-mrxr+c, then the following
two statements are equivalent:

(1) T is a finite union of infinite arithmetic progres-
sions.

(2) T = ζmix1 + + mrxr + c \ A> for some finite set
A, where <m1a51 + * -f Wjrxr + c | A> denotes the "smallest"
set containing A, and closed under the operator (x19 •'•,#,•)-»
τnιx1 + + mrxr + c.

In fact, (1) and (2) are true under more general conditions; these
extensions are made in [1].

NOTATION. We denote by Z, N, and P the set of integers, the set
of nonnegative integers, and the set of positive integes, respectively.
If A, B £ Z, and ceZ, define A + c — {α + c |αe A}, cA — {ca\ae A}9

and A + B = {a + b\ae A, beB}. If a,beZ9 define [α, 6] = {ceZ\a<>
c ^ 6}. If A and 5 are sets, we write A £ J5 when A \ B is finite,
and A = S when A £ JB £ A.

We begin by discussing sets satisfying (1).
A subset A £ ^ is a periodic set if there exists a finite set I, and

for each i e I, an integer ai9 and a positive integer c£iy with A =

It is easy to see that A is periodic iff A is bounded below, and

( 3 ) A + d Q A for some d e P .

For the proofs of the elementary properties of periodic sets we shall
use, see [3], for though the "per-set" defined there is slightly dif-
ferent from the one defined here, the difference is not essential.

A d e P satisfying (3) is called a period of A. However, a d e P
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is an eventual period of a subset A £ Z if A is a periodic set, and
A + d g A

We state without proof the following elementary properties of
periodic sets and their eventual periods.

LEMMA 1.

( i ) If A is a periodic set, then for some de P, dP is the set
of eventual periods of A. Further, for some finite set K, both
A U K and A\K are periodic sets with periods dP.

(ii) // dλ is an eventual period of A19 and if d2 is an eventual
period of A2, then lcm(dι, d2) is an eventual period of Ax U A2 and
A1 Π A2f gcd(dίf d2) is an eventual period of Ax + A2f and d1 is an
eventual period of At\K for any finite set K.

(iii) (Ascending Chain Condition) Suppose for each i e P9 that
Ai is a periodic set with an eventual period d. Suppose further
that for some be Z, each Ai is bounded below by b. Then, for some
neP, UiepAi = \Ji=1Ai. In particular, \JiepAi is a periodic set
with an eventual period d.

We now consider sets defined by (2).

Let X be a set. For r eP, we say / is an r-ary operator on
X if /: Xr —> X. We say / is a finitary operator on X if / is
r-ary for some r e P, and we write p(f) = r. If A £ X, and / is
a finitary operator on X, let f(A) = {/(α) | a e Ap{f)}. If R is a set
of operators on X, let R(A) = \JfeRf(A). We say A is closed under
f {under R) if f{A) Q A (R(A) £ A).

If A £ X, and R is a set of finitary operators on X, let (R \ A}
be the intersection of all subsets of X containing A and closed
under R. Alternatively, define a sequence (An\neN), called the
construction sequence of the pair (R, A), inductively as follows: let
An = AU R(An^) for neP. It is easy to see (R\A) = \Jne*An, see
Theorem 2 of [3] for details, where the alternate recursion formula
An = A%_1 U R(An_^) is used.

We now give two fundamental theorems. The first is a special
case of Theorem 9 of [3]. For the second, we only sketch a proof,
as it is essentially Theorem 4 of [3].

THEOREM 1. Let R be a set of operators on Z of the form
(xlf ,xr)^m1x1H hm^r + c, let Ag=Z let a, beZ then a{R\A}J

Γb —
(S\aA+b), where S = {g\g(x)=f(x)-bf(l) + (a + b-ϊ)f(O) + b,feR},
and for t eZ, f(t) = f(t, t, , t).

THEOREM 2. Let beZ, let R be a set of operators on Z of the
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form (xί9 , xr) -» mxxλ + + mrxr + c, where r — 1, mlf , m r e P,
c e Z, gcd(mlf , m r) = 1, cmώ (mt + + mr — 1)6 + c e N. Let
A £ N + 6, and suppose A /ιas an eventual period de P. Then
(R\A) is a periodic set with eventual period d.

Proof. Let (Au\neN) be the construction sequence for (R, A).
It is easy to show by induction on n, that An has an eventual
period d, and that An £ JV + 6. But U eΛr-4. = <iϋ|A>, so the
ascending chain condition gives the result.

Now to get down to business! Our first task, the most difficult,
is to show that (mx + ny | 1) is a periodic set whenever m, ne P,
gcd(m, n) = 1. Curiously, we will first consider quite a different
condition, namely m = n.

For each leN, let Kx = {(c0, , cA)|Λ eiV, coe [0, 2Z], and ^ 6
[0, 2c<_J for i e [1, h]}, and let Γz = {c0 + c2m + + ehm

h \ (c0, , ch) e

THEOREM 3. Let meP, let S = (mx + my + l |0>. T/iβ^ S = Γo.

Proof. By the corollary to Theorem 3 of [3], we need only
show that To = {0} U (mTQ + mT0 + 1). It is easy to check that
{0} U (mΓ0 + mΓ 0 + 1) g To; for the reverse inclusion, let t e Γ0\{0}.
Then t = 1 + cxm + + C / ^ , where (1, cw , ch) e KQ. We need
only produce (dlf , dh), (e19 , eh) eK0, with dt + et = cέ for each
i G [1, Λ], for then u = dx + cί2m H V dhm

h~ι e TQJ v = eL + e2m -\ h
ehm

h~γ e T09 and hence t = mu + mv + 1 e mΓ 0 + mΓ 0 + 1.
We will show, by induction on s, that for all s e [1, /&], there

exists (di, , d8), (elf , es) e iί0, with d, + β, = ĉ  for i e [1, s].
Since cx e {0, 1, 2}, we can start the induction. Having found suitable
(d19 •• ,<Zβ_1) and (βx, •• ,βs_1) for se[29h], we need ds,eseN with
dg + βs = 6S, ds ^ 2^,-!, and βs <£ 2ββ_lβ Since cs ^ 2ds_! + 2βs_1, such
a selection of ds and βs is clearly possible, completing the induction.

THEOREM 4. Let I, m e P, wit/i 2Z-1 ^ m — 1.
&mι - 1)1 {2m - 1) + wΛZVC <mx + m?/ + l |0>.

Proo/. If (c0, , cΛ) 6 ίΓ,, then (1, 2, 4, , 21"1, c0, , c j 6 Ko,
thus (2W - l)/(2m - 1) + m^Γi £ Γo for all leN. But we claim
Tι = N for 2*~ι ^ m — 1; for if not, let y be the smallest integer
in N\Tt. By hypothesis, [2ι~\ 2ι] contains at least m consecutive
integers, thus y — mq + r for some q e Z, re [2ι~\ 21]. Since (c) e JBΓ,
for c e [0, 2ι], 2Z < ?/. Thus g e P . Certainly g < y, thus g e ^ by
our choice of y. Finally, if b e [2ι~~\ 2ι] and if (c0, ••, ch) eKly note



340 D. G. HOFFMAN AND D. A. KLARNER

that (6, c0, , ch) 6 Kΐ, thus, mTt + {2ι~~\ 2ι] £ Γ,; hence, y = rag +
r e Tlf a contradiction. Thus, no such $/ exists, so ϊ\ = iV.

THEOREM 5. Lei I, m, ne P, wiίft, 2'"1 ^ ww — 1. Then 1
((m + w)2 - l)(2mw - l)/(2mn - 1) + ((m + w)2 - ±)mιnιN £

Proof, (mx + wy 11> 2 (m(mxx + W2/J + w(m#2 + ^2/2) i 1) —
<m2xx + m^2/x + mnx2 + ^22/2 i 1> 2 <m^^ + m^?/ 4- m? + τι211> =
((m + n)2 — l){mnx + m^?/ + l |0> + 1, by Theorem 1. The result
now follows from Theorem 4.

COROLLARY 1. Let m, ne P, with gcd(m, n) = 1. Then, for some
a, de P with gcd(a, d) = 1,

( 4 ) a + dNQ (mx + ny \ 1> .

Proo/. Let α = 1 + ((m + ^) 2 - l)((2Wwι - l)/(2mn - 1)), let
d = ((m + ^)2 - l)mιnι, where i e P with 2*"1 ^ mw - 1, so that (4)
holds. But gcd(a, (m + rif — 1) = 1, and gcd(a, mn) = ^cd(l -f
(m + ^)2 — 1, mn) ~ gcd((m + ri)z, mn) = 1, since gcd(m, n) = 1.

We shall make no use of the following corollary to Theorem 5,
but it is of interest in its own right. We leave the proof as an
exercise.

COROLLARY 2. Let r eP, let mw , mr, c e Z , let Γ S Z,

m ^ + + mrT + c £ Γ. // α£ least two of the m's are nonzero
and if \T\ ^ 2, then a + dN£ T for some a,deZ, d Φ 0.

THEOREM 6. Let m,neP, with gcd(m, n) = 1. Γfeen T =
(mx + wy|l> ΐs α periodic set.

Proof. By Corollary 1, a + diV£ Γ for some a, deP with
(α, d) = 1. For each teT, let ^(ί) denote the smallest element

of T congruent to t modulo d. Then k = |^(Γ)| is finite; and further,
we may write φ(T) = {αw , ak}, where at = 1, and for each i 6 [2, &],
α, = ^tiα^ + nah for some ix, i 2 e [ l , i — 1].

We will show, by induction on j, that aaj + dN S Γ for each
i e [1, k]. Since αx = 1, aa1 + ώiVg T by hypothesis. If i e [2, A],
then ααy, + dN S T, and α%2 + diV g Γ by induction. By Lemma 5
of [3], m{aah + dN) + n{aah + dJV) g Γ; but mCαα^ + dJV) +
niaah + cϋiV) = aaά + d(miV + niV), completing the induction, since
mN + nN = iV.
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By Theorem 5 of [3], T is closed under multiplication, thus
aaά e T for each j e [1, k]. Since (α, d) = 1, the numbers aajf j e [1, k],
are distinct modulo d, and thus are congruent to the number ajf

j 6 [1, k]f in some order. Hence ak + dN == ααΛ + <ZJV £ T for each
k, so Γ has an eventual period d.

COROLLARY 3. Let m, neP, with gcd(m, n) = 1. Lei c,teZ

with (m + n — l)t -{- c e P. Then (mx + ny + c\t) is a periodic set.

Proof. By Theorem 1,

(mx + ny + c\t) = ̂ L±JLJΆ+Jl c

m Λ- n — 1 m + n — 1

With the grime still on our hands, we proceed to the next goal
which is to extend Corollary 3 to operators mιx1 + . . . + mrxr + c,
where gcd(mlf •••, mr) = 1. We begin with a reduction formula.

LEMMA 2. Let I, m, neZ, with I odd and gcd(l, m, n) — 1. Then,
for some aeP, ged(l, ma + na) = 1.

Proof. Let Q denote the finite set of primes dividing I, but not
dividing mn. For each p e Q, m"? = nβ*> = 1 (mod p), for some
αp, /S,, e P. Let α = lcm({ap \ p e Q} U {βv \ p e Q}), thus ma = wβ Ξ 1
(mod p) for each p e Q. Now we claim gcd(l, ma + na) = 1; if not,
let p divide gcd(i, mα + na) for some prime p. Since #cώ(£, m, ̂ ) = 1,
peQ. But then 0^maji-na = l~hl = 2 (mod p), so p = 2, contra-

dicting the assumption that I is odd.

THEOREM 7. Let r e N+2; let mu « , m r e P , with gcd(m19 , mr) =
1; ίβί c 6 Z, ίeί Γ £ Z with mγT + + mrT + c Q T. Then, for
some m,neP, with gcd(mf n) — 1, αwd /or some keZ, we have
mT + nT + fc S Γ.

Proof. Let JK" = {s e JV + 2 ] for some nlf , τιβ e P, with
gcd(ni9 —-, ns) = 1, and for some ifeeZ, ^ Γ + + wsT + k £ Γ}.
Thus iΓ Φ 0 , since r eK, and we must show 2 e K. Let s = min K,
and produce the appropriate nl9 ---,ns,k. We can assume that nx

is odd. If s ^ 3, let cί = gcd(nί9 n2, ns), let ^ = di, ^ 2 = dm, and
= dn. By Lemma 2, grcd(ί, ma + na) = 1 for some ae P, hence

(Z(?K n? + w? n n ) 1
We now prove, by induction on /S, that for all βeP, there is

a fc^ 6 Z such that ^ Γ + nξT + nfΓ + n,T + + n8T + kβ £ T.
This is true for β = 1, with ^ = fc; suppose ntT + nξT + nξT +
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n,T + + n8T + kβQ T. We can assume T Φ 0 , let t e T. Then

n , T + n β

z

+ ι T + nξ+1T + n , T + ••• + n s T + nξ((n1 + n 3 + ••• + ns)t + fc) +

wί((^i + ̂ 2 + ̂  + + ns)t + k) + kβ<^ n,T + nl(n,T + + wsT + k) +
nξfaT + + n8T + k) + w4T + + nsT + kβ £ ^ Γ + nξT + nξT +
n4T + + nsT + kβ £ ϊ7 by induction, thus we now only take
kβ+1 = w£(Oi + n3 + + w,)ί + fc) + ̂ f((^i + ̂ 2 + n4 H h w,)t + k) + kβ

to complete the induction.
In particular, n,T + (w? + n?)T + ̂ 4 T + + wsT + Λα C Γ, and

since ^J + w? ̂  0, s — 1 6 K, contradicting our choice of s. Thus
8=2.

THEOREM 8. Let r — 1, mlf , mr e P, with gcd(mlf , mr) = 1.
Let c,teZ with (m1 + + mr — l)ί + c e P. Then T = (m^ + +
mrxr + c\t) is a periodic set.

Proof. It is easy to check that N + t is closed under
m^i + + mrxr + c, so that T £ N + ί and Γ is bounded below.
By Theorem 7, for some m, neP, with gcd(m, n) = 1, and some
Λ eZ, mT + nT + kQ T. Since T Q N + t, (m + n - l)t + keN,
but a careful examination of the proof of Theorem 7 shows in fact
that m, w, and & may be chosen so that (m + n — l)t + keP. By
Corollary 3, S = (mx + ny + fc|ί> is a periodic set; but T =
(m^ + + mrxr + c\S), and so Γ is a periodic set by Theorem 2.

We are finally prepared to prove that statement (2) of Theorem
12 implies statement (1).

THEOREM 9. Let r — 1, mlf — , mre P, with gcd(m19 , mr) — 1.
Let ceZ, let AQ Z, with A finite, and with {mx + + mr — ΐ)a +
c e P/or all aeA. Then T = ( m ^ + + mrxr + c | A) is a periodic
set.

Proof. T = (m^i H h mra5r + c | A) = (m^ -{ h mrxr + c | AS>,
where S = \JaeA <^Ά + + mrxr + c\a). By Theorem 8, S is a
finite union of periodic sets, hence S is a periodic set. Thus T is
periodic by Theorem 2.

THEOREM 10. Let r — 1, ί e P , ίeί % , mr, ceZ,

gcd(d, m19 , mr) = 1. Lβί A £ Z, and suppose that for all
alf , ar e A, ίfcerβ βxisί a e A mίfo a = m ^ + + mrar + c (mod d).

Then, for all aeA, there exist au , areA with a = m^ + +
mrar + c (mod d).

Proof. For each ie[2,r], choose kt so large that nt = mt +
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k^ e P, and let t = gcd(n2, , nr) e P. By the Chinese remainder
theorem there is a solution ^ e Z to all the congruences.

fcx = 0 (mod p) if p is a prime divising t, but not mί ,

and

&! ΞΞ 1 (mod p) if p is a prime dividing gcd(t, mj .

Moreover, ^ can be chosen so large that n1 •=• mL + Ŝ d e P. Note
that gcd(n19 - -, nr) = 1.

Let α e i , choose & so large that (nx + + nr ~~ l)(α + fed) +
c e P . Then T = (nιxι + -. + nrxr + c \ a + ftcί> is a periodic set.
Let e be a period of T. Then α + (ft + e)d e Γ, so α + (ft + e)d =
nA + + nrtr + c for some ίlf , tr e T. But for each ί e [1, r],
ίt Ξ α, for some at e A, and a = m^ + + mrar + c (mod d)

THEOREM 11. Let r — l,m19 ,mreP, with gcd(mlf , mr) = 1.

Leέ c 6 Z, ίeί T £ Z, m£A (mx + + mr - l)t + c e P for each t e T,
and assume mγT + + mrT + c S= T. Then T = (m^ + +
mrxr + c\A) for some finite set A £ Z.

Proof. Let A = T^m^ + + mrT + c); by the corollary to
Theorem 3 of [3], T = ( m ^ + ••• + mrxr + c|A>, so we need only
show A is finite.

Let d be an eventual period of T, then d is also an eventual
period of m^T + + mrT + c. Moreover, by Theorem 10, the
residue classes modulo d containing elements of T are precisely the
residue classes containing elements of mλT + + mrT + c, thus
T — m^T -r + m r Γ + c. In particular, A is finite.

Theorems 9 and 11 together prove Theorem 12, our goal. We
continue these investigations in fl], where we prove the following
theorem.

THEOREM. Let r — 1 e JP, let mw , mr e Z\{0},
gcd(m19 " , mr) = 1, Zeί c e / , α^d Zβί Γ £ Z wiίλ m ^ + + m rΓ +
c £ T. Γ/iew Γ = <m1ίc1 + + mrxr + c | A) for some finite set A.
Further, if \T\ ^ 2, either T is a periodic set, or —T is a periodic
set, or T is a finite union of residue classes modulo some de P.
Finally, T is an affine transformation of a set S £ Z, with S +
θ £ S, where θ = gcd{mimj\ί, j e [1, r], i Φ j).

An earlier version [4] of this paper was submitted years ago to
Pacific Journal and was accepted subject to minor revision. Revision
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and strengthening of the results subsequently was carried out in
connection with dissertation work [2].
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