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SETS OF INTEGERS CLOSED UNDER AFFINE
OPERATORS-THE CLOSURE
OF FINITE SETS

D. G. HorFMAN AND D. A. KLARNER

We continue investigation begun in 1974 of sets of
integers closed under operators of the form (x,:--,2,)—
mx, + -+ +mx, + ¢, where m,, ---,m, are integers with
ged(my, +++,m,) =1. Our main goal here is to prove the
following.

THEOREM 12. Let 7,m,, -+, m, be pesitive integers, let
T be a set of integers, let ¢ be an integer such that
(m,+ ++++m,—1t+c is positive for each teT. If
ged(my, ---,m,) =1, and if T is closed under the operator
@y, -y 2,) (@4« -y 2, )M2,+ - - +m,2,+c, then the following
two statements are equivalent:

(1) T is a finite union of infinite arithmetic progres-
sions.

(2) T=<mx, + +++ +mx, +c| A> for some finite set
A, where {m,x, + +++ + m,x, + c| A> denotes the ‘‘smallest™
set containing A, and closed under the operator (x, -:--,x,) —
mx, + -+ + m,x, + c.

In fact, (1) and (2) are true under more general conditions; these
extensions are made in [1].

NoTAaTION. We denote by Z, N, and P the set of integers, the set
of nonnegative integers, and the set of positive integes, respectively.
If A, BC Z,and ce Z, define A + ¢ ={a +clac A}, cA ={calacil},
and A+ B={a+blacA,beB}. Ifa,beZ, definefa,b] ={ceZ|la=
¢ <b}. If A and B are sets, we write A & B when A\ B is finite,
and A = B when A S B& A.

We begin by discussing sets satisfying (1).

A subset AC Z is a periodic set if there exists a finite set I, and
for each 7e 1, an integer a,, and a positive integer d,, with A =
U.c: (a; + d,N).

It is easy to see that A is periodic iff A is bounded below, and

(3) A+dS A for some deP.

For the proofs of the elementary properties of periodic sets we shall
use, see [3], for though the “per-set” defined there is slightly dif-
ferent from the one defined here, the difference is not essential.

A d e P satisfying (3) is called a period of A. However, a de P
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is an eventual period of a subset A £ Z if A is a periodic set, and
A+ds A

We state without proof the following elementary properties of
periodic sets and their eventual periods.

LeMmA 1.

(i) If A is a periodic set, then for some de P, dP is the set
of eventual periods of A. Further, for some finite set K, both
A UK and ANK are periodic sets with periods dP.

(ii) If d, is an eventual period of A, and if d, is an eventual
period of A,, then lem(d, d,) is an eventual period of A, U A, and
A N A, gedld, d,) is an eventual period of A, + A,, and d, is an
eventual period of ANK for any finite set K.

(iii) (Ascending Chain Condition) Suppose for each i€ P, that
A,; is a periodic set with an eventual period d. Suppose further
that for some b€ Z, each A, is bounded below by b. Then, for some
neP, U;.r 4, = U 4. In particular, U;.r A; s a periodic set
with an eventual period d.

We now consider sets defined by (2).

Let X be a set. For re P, we say f is an r-ary operator on
X if 1 X"—>X. We say f is a finitary operator on X if f is
r-ary for some r e P, and we write o(f) =r. If AC X, and [ is
a finitary operator on X, let f(4) = {f(a)|ac A*Y’}). If R is a set
of operators on X, let R(A) = Uy f(4). We say A is closed under
f (under R) if f(A) S A (R(A) S A).

If AC X, and R is a set of finitary operators on X, let (R|A4)
be the intersection of all subsets of X containing A and closed
under R. Alternatively, define a sequence (4,|n € N), called the
construction sequence of the pair (R, A), inductively as follows: let
A, =AURA,.) for neP. It is easy to see (R|A) = U,.v 4., see
Theorem 2 of [3] for details, where the alternate recursion formula
A, =A, ,UR(A,_,) is used.

We now give two fundamental theorems. The first is a special
cagse of Theorem 9 of [3]. For the second, we only sketch a proof,
as it is essentially Theorem 4 of [3].

THEOREM 1. Let R be a set of operators on Z of the form
(g, +*, X,) — MX, 4+ =+« +m,2,+¢, let ASZ let a,be Z then a(R|A)+b=
(S|aA+b>, where S={g]|g(x)=f(x)—bf(1)+ (a +b—1)f(0)+ b, f e R},
and for teZ, f(t) = f(t, ¢, +«-, t).

THEOREM 2. Let be Z, let R be a set of operators on Z of the
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form (xy, +--, x,) — M2, + -+ + m2x, + ¢, wherer — 1, m,, «-+, m, € P,
ceZ, gedimy, +--,m,) =1, and (m,+ -+ +m, —1)b +ccN. Let
AC N+ b, and suppose A has an eventual period de P. Then
(R|A) is a periodic set with eventual period d.

Proof. Let (A,|meN) be the construction sequence for (R, A).
It is easy to show by induction on #, that A, has an eventual
period d, and that A, S N +b. But U..v4, = (R|A), so the
ascending chain condition gives the result.

Now to get down to business! Our first task, the most difficult,
is to show that {(mx + my|l) is a periodic set whenever m, ne P,
ged(m, n) = 1. Curiously, we will first consider quite a different
condition, namely m = n.

For each leN, let K, ={(c, -+, ¢c,)|heN,ce[0,2], and ¢ ¢
[0, 2¢,_,] for v e[1, h]}, and let T, = {¢, + c;m + -+« +e,m"|(cyy ==+, C1) €
K,}.

THEOREM 3. Let me P, let S = (max + my + 1|0). Then S = Ti.

Proof. By the corollary to Theorem 3 of [3], we need only
show that T, ={0}U(mT, + mT, +1). It is easy to check that
{0} U (mT, + mT, +1) < T,; for the reverse inclusion, let ¢ e T\{0}.
Then ¢t =1 +¢m + --- + c,m*, where (1,¢, --+,¢;) e K,. We need
only produce (d,, ---, d,), (e, ---, €,) € K,, with d, + ¢, = ¢; for each
1€[1, k], for thenu =d, +dym +---+dm'" e T, v=e¢ +em+---+
eem" e T, and hence t = mu + mv +lemT, + mT, + 1.

We will show, by induction on s, that for all se[l, k], there
exists (d, ---,d,), (e, ---,e)€K, with d, +e¢ =¢, for ie][l,s].
Since ¢, € {0, 1, 2}, we can start the induction. Having found suitable
@d, ---,d,_,) and (e, ---, e,_,) for se|2, h], we need d,, ¢e,€ N with
d, +e, =b, d, <2d,_,, and ¢, < 2¢,_,. Since ¢, < 2d,_, + 2¢,_,, such
a selection of d, and e, is clearly possible, completing the induction.

THEOREM 4. Let |, me P, with 2" = m — 1.
Then (2'm' — 1)/@2m — 1) + m'N S {mzx + my + 1]|0).

Proof. 1If (¢ -+, c,)eK,, then (1,2,4, ---,2"% ¢, -+, ¢,) € K,,
thus 2'm' — 1)/@2m — 1) + m!T, = T, for all le N. But we claim
T, = N for 27' = m — 1; for if not, let ¥ be the smallest integer
in N\T,. By hypothesis, [2'7, 2'] contains at least m consecutive
integers, thus ¥y = mq + = for some qge Z, rc[2', 2!]. Since (¢)e K,
for ce[0, 2], 28 <y. Thus qeP. Certainly q < vy, thus ge T, by
our choice of y. Finally, if be[2'7, 2'] and if (¢, ---, ¢;,) € K;, note
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that (b, ¢, ++-, ¢,) € K;; thus, mT, + [2", 2') & T,; hence, ¥y = mq +
re T,, a contradiction. Thus, no such y exists, so T, = N.

THEOREM 5. Let I, m,neP, with 2*=mn —1. Then 1+
((m + n)* — D@2mn — 1)/Cmn — 1) + ((m + n)? — Dm'»n'N < {(mx +
ny|l>.

Proof. {mx + ny|1l) 2 {m(mz, + ny,) + n(imx, + ny,)|1) =
{mix, + mny, + mux, + 2°Y,|1> 2 (max + mny + W’ + 0|1l =
((m + n)* — D{mnx + mny + 1|0> + 1, by Theorem 1. The result
now follows from Theorem 4.

COROLLARY 1. Let m, n € P, with ged(m, n) = 1. Then, for some
a, de P with ged(a, d) =1,

(4) a + dN  {mzx + ny|l)> .

Proof. Let a =14 ((m + n)?* — L)(2'm'n' — 1)/2mn — 1)), let
d = ((m + n)® — D)m'n', where e P with 2"' = mn — 1, so that (4)
holds. But ged(a, (m + n)* —1) =1, and ged(a, mn) = ged(l +
(m + n) — 1, mn) = ged((m + n), mn) = 1, since ged(m, n) = 1.

We shall make no use of the following corollary to Theorem 5,

but it is of interest in its own right. We leave the proof as an
exercise.

COROLLARY 2. Let reP, let my, -+, m,, ceZ, let TS Z, with
mT + -+« +m,T+cS T. If at least two of the m’s are nonzero
and if |T) = 2, then a + dN < T for some a,deZ, d + 0.

THEOREM 6. Let m,neP, with ged(m,n) =1. Then T =
{(mx + ny|1l) is a periodic set.

Proof. By Corollary 1, a +dN S T for some a,de P with
ged(a, d) = 1. For each te T, let ¢(t) denote the smallest element
of T congruent to ¢ modulo d. Then k = [¢(T)| is finite; and further,
we may write ¢(T) = {a,, ---, a;}, where a, = 1, and for each j €[2, k],
a; = ma; + na;, for some j, j,€[l, j — 1].

We will show, by induction on j, that aa; + AN S T for each
jell, k]. Since a, =1, aa, + dN S T by hypothesis. If jel[2, k],
then aa; + dN < T, and aa;, + dNE T by induction. By Lemma 5
of [3], m(aa; + dN)+ n(ea;, +dN)= T; but m(aa; + dN) +
n(aa;, + dN) = aa; + d(mN + nN), completing the induction, since
mN + nN = N.
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By Theorem 5 of [3], T is closed under multiplication, thus
aa;e T for each je[l, k]. Since (a, d) =1, the numbers aa;, j |1, k],
are distinect modulo d, and thus are congruent to the number a;,
Jjell, k], in some order. Hence a, + dN = aa, - dN & T for each
k, so T has an eventual period d.

COROLLARY 3. Let m,neP, with ged(m,n) =1. Let c,tcZ
with (m +n — 1)t +ceP. Then (mx + ny + ¢|t) is a periodic set.

Proof. By Theorem 1,

m+n—L0t+c¢
m+n—1

4

x +ny +c|t) = —_—,
(m Y R m+n—1

{(mx + ny|l> —

With the grime still on our hands, we proceed to the next goal
which is to extend Corollary 3 to operators m,x, + -+ + m,x, + c,
where ged(m,, ---, m,) = 1. We begin with a reduction formula.

LEMMA 2. Let I, m, n e Z, with l odd and ged(l, m, n) = 1. Then,
for some ac P, ged(l, m* + n*) = 1.

Proof. Let @ denote the finite set of primes dividing I, but not
dividing mn. For each peQ, m* = n’» =1 (mod p), for some
, B,eP. Let a=lem(a,|pe@U{B,|peR}), thus m*=n*=1
(mod p) for each p€@. Now we claim ged(l, m* + n%) = 1; if not,
let p divide ged(l, m* + n*) for some prime p. Since ged(l, m, n) = 1,
p€eQ. But then 0 =m*+n*=1+1=2(mod p), so p =2, contra-
dicting the assumption that ! is odd.

THEOREM 7. Let r € N+-2; let m,,++ -, m, € P, with ged(m,,---,m,)=
1; let ceZ, let TS Z with mT + «-- +m, T +¢ < T. Then, for
some m, n € P, with ged(m,n) =1, and for some ke Z, we have
mT + 2T+ kS T.

Proof. Let K={seN+ 2| for some n,---,n,¢P, with
ged(ny, -++,n,) =1, and for some keZ, m,T+ -+ +n,T+ k< T}.
Thus K=+ @, since r € K, and we must show 2¢ K. Let s = min K,
and produce the appropriate =, -+, n,, k. We can assume that =,
is odd. If s =3, let d = ged(n, n, n,), let n, =dl, n, = dm, and
7 =dn. By Lemma 2, ged(l, m* + n*) =1 for some ac P, hence
ged(n, ng + nf, vy -+ -, w,) = 1.

We now prove, by induction on £, that for all 8¢ P, there is
a k;eZ such that n, T+ nT+ 0T+ 0T+ --- + 0T+ k = T.
This is true for 8 =1, with k, = k; suppose #n,T + nfT + niT -~
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wT + -« +n,T+k;, = T. We can assume T # @, let te€ T. Then
nT+ 0T+ ntT+nT+ - +0,T+né((n, +n;+ -« +n)t + k) +
ni(n,+n+ 0+ - +n)t+k)+k=n,T+ni(nT+---+n,T+k)+
i, T+ -+ +n0,T+ k) +nT+ - +0,T+k =0T+ nT+ niT +
nTIT+ -+ +n,T+k;, T by induction, thus we now only take
Eppy=ni((n, +ng+ « o« + 0t + k) +ni((ny, +my +ny + - - - + 0t + k) + ky
to complete the induction.

In particular, »,T + (n; + 2HT + v, T + - + n,T + k, = T, and
since ny + nf # 0, s — 1 e K, contradicting our choice of s. Thus
s = 2.

THEOREM 8. Letr — 1, m,, -+, m, € P, with ged(m,, +--, m,) = 1.
Let e, te Z with (m;+ ++-+m,—1)t+ceP. Then T = {(mx, + --- +
m,x, + clty is a periodic set.

Proof. It is easy to check that N +¢ is closed under
max, + --+ +mx, +c¢, so that TS N + ¢ and T is bounded below.
By Theorem 7, for some m, ne€ P, with ged(m, n) =1, and some
keZ, mT+nT+k<=T. Since TC N+t (m+n—1)¢t+ keN,
but a careful examination of the proof of Theorem 7 shows in fact
that m, m, and ¥ may be chosen so that (m + n — 1)t + ke P. By
Corollary 3, S = (mx + ny + k|t) is a periodic set; but 7T =
{ma, + +-- + mx, + ¢|S), and so T is a periodic set by Theorem 2.

We are finally prepared to prove that statement (2) of Theorem
12 implies statement (1).

THEOREM 9. Let »—1, m,, ---, m, € P, with ged(m,, ---, m,) = 1.
Let ce Z, let A< Z, with A finite, and with (m, + -+ + m, — L)a +
cePforallacA. Then T = {mx, + -+ + m,x, + ¢|A) 1s a periodic
set.

Proof. T={mx, +--++ mx, +clA)={mx, + -+ +m,x, +c|S),
where S = U, . {m2x, + -+- + mx, + ¢clay). By Theorem 8, S is a
finite union of periodic sets, hence S is a periodic set. Thus T is
periodic by Theorem 2.

THEOREM 10. Let » —1, deP, let m, ---, m,, c€Z, with
ged(d, m,, -+, m,) =1. Let A Z, and suppose that for all
a, «-+, a, €A, there exist a € A with ¢ = m,a, + -+ + m,a, + ¢ (mod d).
Then, for all ac€ A, there exist a,, -++, a,.€ A with a = ma, + --- +
m,a, + ¢ (mod d).

Proof. For each i€[2, r], choose k;, so large that =, = m, +
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kde P, and let ¢t = ged(n, ---,n,) € P. By the Chinese remainder
theorem there is a solution %, € Z to all the congruences.

k., = 0 (mod p) if p is a prime divising ¢, but not m, ,
and
k, = 1(mod p) if p is a prime dividing ged(t, m,) .

Moreover, &, can be chosen so large that %, = m, + kde P. Note
that ged(n,, ---, n,) = 1.

Let ae A, choose k so large that (n, + -+ + n, — L)(a + kd) +
ceP. Then T={nz + --+ +n2, +c¢la + kd) is a periodic set.
Let ¢ be a period of 7. Then a + (k+e}deT, so a+ (k+ ed =
wit, + -+ + n,d. + ¢ for some t, ---,t,€T. But for each 1¢]1, 7],
t, = a, for some a;€ 4, and a = m,a, + -+ + m,a, + ¢ (mod d).

THROREM 11. Letr—1, m,, -+, m, € P, with ged(m,, -+, m,) = 1.
Let ceZ, let TS Z, with (m; + -+ +m, — 1)t + ce P for each te T,
and assume m,T + -+ +m,T +c<T. Then T=<{mzx + --+ +
m,x, + ¢l A) for some finite set A< Z.

Proof. Let A= T\(m, T + --- + m, T + ¢); by the corollary to
Theorem 38 of [3], T = (mx, + -+ + mx, + c|A), so we need only
show A is finite.

Let d be an eventual period of T, then d is also an eventual
period of m,T + -+ + m,T + ¢. Moreover, by Theorem 10, the
residue classes modulo d containing elements of T are precisely the
residue classes containing elements of m,T + --- + m,T + ¢, thus
T=mT-+ --- +m, T+ ¢. In particular, A is finite.

Theorems 9 and 11 together prove Theorem 12, our goal. We
continue these investigations in [1], where we prove the following
theorem.

THEOREM. Let » —1eP, let m,, -+, m.c Z\{0}, with
ged(my, <+, m,) =1, let ce Z, and let T = Z with m,T + --- + m, T +
c S T. Then T={mx, + -+ +mx, + clA) for some finite set A.
Further, if |T] = 2, either T is a periodic set, or —T 1s a periodic
set, or T is a finite union of residue classes modulo some d ¢ P.
Finally, T s an affine transformation of a set S < Z, with S +
0 < S, where 0 = ged{m,m;|i, j €[, r], i # J}.

An earlier version [4] of this paper was submitted years ago to
Pacific Journal and was accepted subject to minor revision. Revision
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and strengthening of the results subsequently was carried out in
connection with dissertation work [2].
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