SETS OF POINTS OF DISCONTINUITY

RICHARD BOLSTEIN

ABSTRACT. In order that a subset F of a topological space coincide with the set of points of discontinuity of a real-valued function on the space, it is necessary that F be an F_{σ} -set devoid of isolated points. It is shown that this condition is also sufficient if the space is "almost-resolvable", and in particular if the space is either separable, first countable, locally compact Hausdorff, or topological linear.

1. Introduction. It is well known that the set of points of discontinuity of a real-valued function on a topological space X belongs to the class F_{σ} of countable unions of closed sets. An outline of the proof can be found in Hewitt and Stromberg [3, p. 78]. It is obvious that such a set can contain no isolated points of X. It is natural to ask this question: Does every F_{σ} -subset which contains no isolated points of X coincide with the set of points of discontinuity of some real-valued function on X?

An affirmative answer to this question was given in the case of the realline by W. H. Young [4] in 1907. In 1932, H. Hahn [1, p. 193] showed that in fact any metric space has this property. In this article we give an affirmative answer to the question for a large class of topological spaces, which includes, in particular, any space which is either first countable, separable, locally compact Hausdorff, or topological linear. Moreover, we characterize those F_{σ} -subsets of an arbitrary space which coincide with the set of points of discontinuity of a function with countable range.

In the next section we introduce the concept of "almost-resolvable" spaces, which is a generalization of the so-called resolvable spaces of E. Hewitt. The main results appear in $\S3$.

2. Almost-resolvable spaces. Hewitt [2] calls a topological space *resolvable* if it is the union of two disjoint dense sets. In [2, p. 331] he shows that

(a) a first countable space devoid of isolated points is resolvable, and

(b) a locally compact Hausdorff space devoid of isolated points is resolvable.

© American Mathematical Society 1973

Received by the editors April 10, 1972.

AMS (MOS) subject classifications (1970). Primary 54-XX, 54C30, 26A15; Secondary 54C50

Key words and phrases. DF_{σ} -space, resolvable, almost-resolvable, SI-space.

We can now show that

(c) a linear topological space over a nondiscrete valuated field is resolvable.

For let K be a valuated field, that is, a field which admits an absolute value function $a \rightarrow |a|$ of K into the nonnegative reals such that $|a+b| \leq |a|+|b|$ and |ab|=|a||b| for all a, b in K, and such that |a|=0 if, and only if, a=0. Then $(a, b) \rightarrow |a-b|$ defines a metric on K, and if this metric is nondiscrete, then K has no isolated points in the metric topology. So by (a) above, K is resolvable. Let K_1 and K_2 be disjoint dense sets in K. Let X be a linear topological space over K, and B be any Hamel basis for X. It follows from the continuity of addition and scalar multiplication that the sets D_1 and D_2 of finite linear combinations of elements of B with coefficients in K_1 and K_2 , respectively, are disjoint and dense in X.

In Theorem 4 below we will require a slight generalization of resolvability. We first give a new characterization of resolvability.

THEOREM 1. A topological space is resolvable if, and only if, it is a finite union of sets with void interiors.

PROOF. The necessity is trivial. Assume now that $X = D_1 \cup \cdots \cup D_{n+1}$ where each D_k has void interior. On replacing each D_j by $D_j \setminus \bigcup_{k < j} D_k$ we can assume that the sets are pairwise disjoint. If n=1, then D_1 and D_2 , each having void interior, are dense, so X is resolvable. Assume now that any space which is the union of n sets with void interiors is resolvable. Let $U \subset X$ be any nonvoid open set. If D_{n+1} is dense in U, then U is resolvable (in the relative topology) since $D_{n+1} \cap U$ has void interior in U. Otherwise, there is a nonvoid open set $V \subset U$ disjoint from D_{n+1} . Since $V = (D_1 \cap V) \cup$ $\cdots \cup (D_n \cap V)$, it is resolvable by the induction hypothesis. We have shown that every nonvoid open set contains a nonvoid open resolvable subset. By [2, Theorem 20], X is resolvable.

DEFINITION. A topological space will be called *almost-resolvable* if it is a countable union of sets with void interiors.

Clearly, a resolvable space is almost-resolvable, and an almost-resolvable space has no isolated points. Note that if a space X contains a dense set which is a countable union of sets with void interiors, then X is almost-resolvable. It follows that

(d) a separable space with no isolated points is almost-resolvable.

We now construct examples of almost-resolvable spaces which are not resolvable. Following Hewitt [2], we call a topological space an *SI*space if it has no isolated points and if no nonempty subset is resolvable in the relative topology.

THEOREM 2. (A) There exists a separable T_1 -space of any prescribed infinite cardinality which has no isolated points but is not resolvable. (It is

almost-resolvable by (d).) (B) There exists a completely regular Hausdorff space of any prescribed infinite cardinality which is an SI-space but is almost-resolvable.

PROOF. First recall that if (X_{α}) is any family of pairwise disjoint topological spaces, the free union of this family is the space $X = \bigcup X_{\alpha}$ where a set $U \subseteq X$ is open if, and only if, $U \cap X_{\alpha}$ is open in X_{α} for every α . Since each X_{α} is open in X, a set $D \subseteq X$ is dense in X if, and only if, $D \cap X_{\alpha}$ is dense in X_{α} for every α . It follows that X is resolvable (almost-resolvable) if, and only if, each X_{α} is resolvable (almost-resolvable). Also, X is an SI-space if, and only if, each X_{α} is an SI-space.

(A) Let X_1 be any infinite set, and let $D \subseteq X$ be a countably infinite subset. Define a topology on X_1 by declaring a set to be open if, and only if, it contains all but finitely many elements of D. It is clear that, in this topology, X_1 is a T_1 -space devoid of isolated points, and since D is dense by construction, X_1 is separable.

Now let X_2 be any countably infinite set disjoint from X_1 . By [2, Theorem 25], X_2 can be endowed with a topology in which it is T_2 and SI. Let X be the free union of X_1 and X_2 . Then $card(X)=card(X_1)$. X is separable, T_1 , and devoid of isolated points, because X_1 and X_2 have these properties. Since X_2 is not resolvable, X is not resolvable.

(B) Let J be any infinite set. For each $\alpha \in J$, let Y_{α} be a countably infinite set and let $X_{\alpha} = \{\alpha\} \times Y_{\alpha}$. Then the sets X_{α} are countably infinite and pairwise disjoint. By [2, Theorem 27], each X_{α} can be endowed with a completely regular, Hausdorff, SI topology. Let X be the free union of the family $(X_{\alpha})_{\alpha \in J}$. Then card(X)=card(J). It is easy to verify that X is a completely regular, Hausdorff space. Since each X_{α} is an SI-space, X is an SI-space. Since each X_{α} , as a countable space with no isolated points, is trivially almost-resolvable, X is almost-resolvable.

REMARK. In part (A) of Theorem 2, we can replace T_1 by Hausdorff if the prescribed cardinality is aleph null, c, or 2^c . (It is well known that a separable Hausdorff space has cardinality at most 2^c .) For in the proof of (A), one can take for X_1 , the rationals, [0, 1], or $[0, 1]^{[0,1]}$ with the usual topologies.

3. DF_{σ} -spaces. We first characterize those F_{σ} -subsets of an arbitrary space which coincide with the set of points of discontinuity of a function with countable range.

THEOREM 3. Let F be an F_{σ} -subset of a topological space X. In order that F coincide with the set of points of discontinuity of a real-valued function g on X such that g(F) is countable, it is necessary and sufficient that F be a countable union of sets with void interiors. In this case, the function g can be chosen so that g(X) is countable.

PROOF. For the necessity, assume that there exists a function g on X whose set of discontinuities is precisely F, and such that g(F) is countable. Then if $r \in g(F)$, the set $F \cap g^{-1}(r)$ has void interior (otherwise g would have a point of continuity in F). Therefore

$$F = \bigcup \{F \cap g^{-1}(r) : r \in g(F)\}$$

is a countable union of sets with void interiors.

For the sufficiency, first note that any F_{σ} -set F can be written in the form $F = \bigcup E_n$, where $\{E_n: n=1, 2, \cdots\}$ is a countably infinite collection of pairwise disjoint sets such that $F_n = E_1 \cup \cdots \cup E_n$ is closed for every n. Since we assume that F is a countable union of sets with void interiors, the same is true for every subset of F. In particular, for each n there is a countable collection $\{E_{mn}: m=1, 2, \cdots\}$ of pairwise disjoint sets with void interiors such that $E_n^\circ = \bigcup_m E_{mn}$. The required function g is defined by

$$g(x) = 0: \quad x \notin F,$$

= 1/n: $x \in E_n \setminus E_n^\circ; \quad n = 1, 2, \cdots,$
= 1/(n + m): $x \in E_{mn}; \quad m, n = 1, 2, \cdots.$

Now g is clearly continuous on $X \setminus F$, for if $x \notin F$ then, for each n, $X \setminus F_n$ is a neighborhood of x on which |g| < 1/n.

Since $g(F) \subset \{1/n : n=1, 2, \dots\}$ is discrete, to show that g is discontinuous at every point of F it suffices to show that g is not constant on any open set V which meets F. Assume then that V is open and $V \cap E_n \neq \emptyset$ for some n.

If $V \cap E_n^{\circ} \neq \emptyset$, then since each E_{mn} has void interior, V meets E_{mn} for at least two values of m, and hence g is not constant on V in this case. If $V \cap E_n^{\circ} = \emptyset$, then V contains a point $x \in E_n \setminus E_n^{\circ} = E_n \cap bd(E_n)$. Since $V \cap (X \setminus F_{n-1})$ is a neighborhood of x, it must meet $X \setminus E_n$, and hence Vmeets $(X \setminus F_{n-1}) \cap (X \setminus E_n) = X \setminus (F_{n-1} \cup E_n) = X \setminus F_n$. Since g < 1/n on $X \setminus F_n$ and g = 1/n on $E_n \setminus E_n^{\circ}$, g is not constant on V in this case either, so the proof is complete.

COROLLARY 1. In an arbitrary topological space X, any F_{σ} -set of the first category in X coincides with the set of points of discontinuity of some real-valued function on X.

COROLLARY 2. A topological space X is almost-resolvable if, and only if, there is an everywhere discontinuous function on X with countable range.

DEFINITION. A topological space X will be called a DF_{σ} -space if every F_{σ} -subset devoid of isolated points of X coincides with the set of points of discontinuity of some real-valued function on X.

197

Let S denote the set of isolated points of the space X, and let $Y = X \setminus \overline{S}$. Then Y has no isolated points.

THEOREM 4. If Y is almost-resolvable, then X is a DF_{σ} -space.

PROOF. Let F be an F_{σ} -subset of X disjoint from S. Then $F^{\circ} \cap S = \emptyset$, so $\overline{S} \subset X \setminus F^{\circ}$ and $F^{\circ} \subset Y$. Since an open subset of an almost-resolvable space is almost-resolvable, $F = F^{\circ} \cup (F \setminus F^{\circ})$ is a countable union of sets with void interiors, so the result follows from Theorem 3.

COROLLARY 3. If Y is of the first category in itself, then X is a DF_{σ} -space.

COROLLARY 4. The class of DF_{σ} -spaces contains

(a) any first-countable space,

(b) any locally compact Hausdorff space,

(c) any separable space,

(d) any linear topological space.

PROOF. This follows from Theorem 4 and (a)–(d) of §2, since the set Y is open and therefore inherits properties (a), (b), or (c) from X.

The author wishes to thank B. J. Pettis for several helpful conversations.

References

1. H. Hahn, Reelle Funktionen, Akademie Verlagsgesellschaft, Leipzig, 1932; reprint, Chelsea, New York, 1948.

2. E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333. MR 5, 46.

3. E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 32 #5826.

4. W. H. Young, Über die Einteilung der unstetigen Funtionen und die Verteilung ihrer Stetigkeitspunkte, S.-B. Akad. Wiss. Wien Math.-Natur. K. Abt. IIA 112 (1907), 1307–1311.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, CHAPEL HILL, NORTH CAROLINA 27514