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SETS   OF  POINTS  OF  DISCONTINUITY

RICHARD   BOLSTEIN

Abstract. In order that a subset F of a topological space

coincide with the set of points of discontinuity of a real-valued

function on the space, it is necessary that F be an Fff-set devoid of

isolated points. It is shown that this condition is also sufficient if the

space is "almost-resolvable", and in particular if the space is either

separable, first countable, locally compact Hausdorff, or topological

linear.

1. Introduction. It is well known that the set of points of discontinuity

of a real-valued function on a topological space X belongs to the class

Fa of countable unions of closed sets. An outline of the proof can be

found in Hewitt and Stromberg [3, p. 78]. It is obvious that such a set can

contain no isolated points of X. It is natural to ask this question: Does

every FCT-subset which contains no isolated points of X coincide with the

set of points of discontinuity of some real-valued function on XI

An affirmative answer to this question was given in the case of the real-

line by W. H. Young [4] in 1907. In 1932, H. Hahn [1, p. 193] showed
that in fact any metric space has this property. In this article we give an

affirmative answer to the question for a large class of topological spaces,

which includes, in particular, any space which is either first countable,

separable, locally compact Hausdorff, or topological linear. Moreover,

we characterize those /-"„-subsets of an arbitrary space which coincide

with the set of points of discontinuity of a function with countable range.

In the next section we introduce the concept of "almost-resolvable"

spaces, which is a generalization of the so-called resolvable spaces of

E. Hewitt. The main results appear in §3.

2. Almost-resolvable spaces. Hewitt [2] calls a topological space

resolvable if it is the union of two disjoint dense sets. In [2, p. 331] he

shows that

(a) a first countable space devoid of isolated points is resolvable, and

(b) a locally compact Hausdorff space devoid of isolated points is

resolvable.
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We can now show that

(c) a linear topological space over a nondiscrete valuated field is

resolvable.

For let K be a valuated field, that is, a field which admits an absolute

value function a—»-|fl| of K into the nonnegative reals such that |a+A|^

|a| + |6| and |a¿>| = |a| |6| for all a, b in K, and such that |«|=0 if, and only

if, a=0. Then (a, ¿>)—>-|a—b\ defines a metric on K, and if this metric is

nondiscrete, then K has no isolated points in the metric topology. So by

(a) above, Kis resolvable. Let ATj and K2 be disjoint dense sets in K. Let X

be a linear topological space over K, and B be any Hamel basis for X.

It follows from the continuity of addition and scalar multiplication that

the sets D1 and D2 of finite linear combinations of elements of B with

coefficients in Kx and K2, respectively, are disjoint and dense in X.

In Theorem 4 below we will require a slight generalization of resolva-

bility. We first give a new characterization of resolvability.

Theorem 1. A topological space is resolvable if, and only if, it is a finite

union of sets with void interiors.

Proof. The necessity is trivial. Assume now that Ar=D1u- ■ -UZ)„+1

where each Dk has void interior. On replacing each Z)3 by Dj\\<jk<j Dk

we can assume that the sets are pairwise disjoint. If n=\, then Dr and D2,

each having void interior, are dense, so X\s resolvable. Assume now that

any space which is the union of n sets with void interiors is resolvable. Let

i/<= X be any nonvoid open set. If Dn+1 is dense in U, then U is resolvable

(in the relative topology) since Dn+1dU has void interior in U. Otherwise,

there is a nonvoid open set K<= U disjoint from Dn+1. Since K=(D1n F)U

■••U(fl„nK), it is resolvable by the induction hypothesis. We have

shown that every nonvoid open set contains a nonvoid open resolvable

subset. By [2, Theorem 20], Xis resolvable.

Definition. A topological space will be called almost-resolvable if

it is a countable union of sets with void interiors.

Clearly, a resolvable space is almost-resolvable, and an almost-

resolvable space has no isolated points. Note that if a space X contains

a dense set which is a countable union of sets with void interiors, then X

is almost-resolvable. It follows that

(d) a separable space with no isolated points is almost-resolvable.

We now construct examples of almost-resolvable spaces which are

not resolvable. Following Hewitt [2], we call a topological space an 57-

space if it has no isolated points and if no nonempty subset is resolvable

in the relative topology.

Theorem 2. (A) There exists a separable Tx-space of any prescribed

infinite cardinality which has no isolated points but is not resolvable. (It is
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almost-resolvable by (d).) (B) There exists a completely regular Hausdorff

space of any prescribed infinite cardinality which is an Si-space but is

almost-resolvable.

Proof. First recall that if (Xx) is any family of pairwise disjoint

topological spaces, the free union of this family is the space X={J Xa

where a set U^Xis open if, and only if, Ur\Xa is open in Xx for every

a. Since each Xx is open in X, a set D c X is dense in X if, and only if,

D(~\XX is dense in Xx for every a. It follows that X is resolvable (almost-

resolvable) if, and only if, each Xa is resolvable (almost-resolvable). Also,

X is an S7-space if, and only if, each Xx is an S/-space.

(A) Let X1 be any infinite set, and let flcj be a countably infinite

subset. Define a topology on X1 by declaring a set to be open if, and only

if, it contains all but finitely many elements of D. It is clear that, in this

topology, X1 is a 7\-space devoid of isolated points, and since D is dense

by construction, Xt is separable.

Now let X2 be any countably infinite set disjoint from Xx. By [2,

Theorem 25], X2 can be endowed with a topology in which it is T2 and SI.

Let X be the free union of Xt and X2. Then card(X) = card(X^. X is

separable, 7\, and devoid of isolated points, because X1 and X2 have these

properties. Since X2 is not resolvable, X is not resolvable.

(B) Let / be any infinite set. For each a eJ, let Yx be a countably in-

finite set and let Xx={ol} X Yx. Then the sets Xx are countably infinite and

pairwise disjoint. By [2, Theorem 27], each Xx can be endowed with a

completely regular, Hausdorff, SI topology. Let A'be the free union of the

family (Xx)xeJ. Then card(T)=card(/). It is easy to verify that X is a

completely regular, Hausdorff space. Since each Xx is an SY-space, Ais an

57-space. Since each Xx, as a countable space with no isolated points, is

trivially almost-resolvable, X is almost-resolvable.

Remark. In part (A) of Theorem 2, we can replace 7\ by Hausdorff if

the prescribed cardinality is aleph null, c, or 2C. (It is well known that a

separable Hausdorff space has cardinality at most 2C.) For in the proof of

(A), one can take for X1, the rationals, [0, 1], or [0, 1][01] with the usual

topologies.

3. £>F„-spaces. We first characterize those F„-subsets of an arbitrary

space which coincide with the set of points of discontinuity of a function

with countable range.

Theorem 3. Let F be an Fa-subset of a topological space X. In order that

F coincide with the set of points of discontinuity of a real-valued function g on

X such that g(F) is countable, it is necessary and sufficient that F be a

countable union of sets with void interiors. In this case, the function g can

be chosen so that g(X) is countable.
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Proof. For the necessity, assume that there exists a function g on X

whose set of discontinuities is precisely F, and such that g(F) is countable.

Then if r e g(F), the set fng"'(r) has void interior (otherwise g would

have a point of continuity in F). Therefore

F= [){Fr\g-^r):reg(F)}

is a countable union of sets with void interiors.

For the sufficiency, first note that any i^-set .Fcan be written in the form

F=\J En, where {En:n= 1, 2, ■ • •} is a countably infinite collection of pair-

wise disjoint sets such that Fn = E1KJ- ■ -Uf,, is closed for every n. Since

we assume that F is a countable union of sets with void interiors, the same

is true for every subset of F. In particular, for each n there is a countable

collection {Emn:m=\, 2, • • •} of pairwise disjoint sets with void interiors

such that El=\Jm Emn. The required function g is defined by

g(x) = 0:    x$F,

= 1/b:   xeEn\E°n;   n ■» Í, 2, • • •,

= l/(n + m):   x£Em„;   m, n = 1, 2, • • •.

Now g is clearly continuous on X\F, for if x £ F then, for each n, X\Fn

is a neighborhood of x on which |g|<l/n.

Sinceg(F)c{l/«:«=l, 2, • • •} is discrete, to show that g is discontinuous

at every point of F it suffices to show that g is not constant on any open

set Vwhich meets F. Assume then that Fis open and Vr\Enj^0 for some

n.

If Fn£° # 0 , then since each Emn has void interior, V meets Emn for at

least two values of m, and hence g is not constant on V in this case. If

VC\E°n=0, then V contains a point x e EJ\E°n=EnC\bd(En). Since

Vr\{X\Fn_^ is a neighborhood of x, it must meet X\E„, and hence F

meets (jr\JF„_1)n(^\£n)=Z\(fB_1U£n)=X\FB. Since g<l/n on *\f»

andg=\/n on E,\E°n, g is not constant on Fin this case either, so the proof

is complete.

Corollary 1. In an arbitrary topological space X, any Fa-set of the

first category in X coincides with the set of points of discontinuity of some

real-valued function on X.

Corollary 2. A topological space X is almost-resolvable if, and only

if, there is an everywhere discontinuous function on X with countable range.

Definition. A topological space X will be called a DF„-space if every

/vsubset devoid of isolated points of X coincides with the set of points of

discontinuity of some real-valued function on X.
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Let S denote the set of isolated points of the space X, and let Y=X\S.

Then Y has no isolated points.

Theorem 4.   If Y is almost-resolvable, then X is a DFa-space.

Proof. Let F be an Fa-subset of X disjoint from S. Then F° C\S= 0,

so S<=X\F° and F°<= Y. Since an open subset of an almost-resolvable

space is almost-resolvable, F=F° U(F\F°) is a countable union of sets with

void interiors, so the result follows from Theorem 3.

Corollary 3.   If Y is of the first category in itself, then X is a DFa-space.

Corollary 4.    The class of DFa-spaces contains

(a) any first-countable space,

(b) any locally compact Hausdorff space,

(c) any separable space,

(d) any linear topological space.

Proof. This follows from Theorem 4 and (a)-(d) of §2, since the set Y

is open and therefore inherits properties (a), (b), or (c) from X.
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