
ISSN 0381-9019 

SETS WITH NO EMPTY CONVEX 7 - G O N S 

BY 

J.D, HORTON 

TR82-021, SEPTEMBER 1982 



SETS WITH NO EMPTY CONVEX 7-GONS 

by 

J.D. Horton 

School of Computer Science 
University of New Brunswick 

P.O. Box 4400 
Fredericton, N.B. 

Canada 

TR82-021, September 1982 
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Abstract 

Er dos has defined g(n) as the smallest integer such that 

any set of g(n) points in the plane, no three collinear, contains the 

vertex set of a convex n-gon whose interior contains no point of this 

set. Arbitrarily large sets containing no empty convex 7-gon are 

constructed, showing that g(n) does not exist for η 7. Whether g(6) 

exi s t s is unknown. 
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Esther Klein raised the following combinatorial geometry problem 

[5]. For η >_ 3, let f(n) be the smallest integer such that for any set 

of f(n) points in the plane, no three collinear, contains the vertex 

set of a convex n-gon. Determine f(n). It is easy to show that f(3)=3 

and f(4)=5. That f(5)=9 was proved in [4]. Erdos and Szelceres determined 

that 2 n _ 2+l < f(n) < (2n"!b +1 [1],[2]. — — n-¿ 

Erdos has raised a similar question. For η > 3, define g(n) to 

be the smallest integer such that any set of g(n) points in the plane, no 

three collinear, contains the vertex set of a convex n-gon whose interior 

contains no point of the set. We call a n-gon, with no points of the set 

in its interior, empty. Again, g(3)=3 and g(4)=5. Harborth has proved 

that g(5)=10 [3]. However, it is not known whether g(6) exists. The main 

result of this note is that g(7), and hence g(n) for all η > 7, does not 

exist. 
k 

We construct, for any k, a set of 2 points with no empty convex 
k 

7-gon. Let a^^^.a^ be the binary expansion of the integer i,0 < i < 2 . 
k 1-1 

Note that leading 0Ts are not omitted. Let c=2 +1, and define d(i)=Za_, c , 
summing from j=l to j=k. Let p. be the point (i, d(i)), and define S to be the 

1 iC 
set of points {ρ |1=0,1,...,2^-1}. Observations: 

(a) {p.|i<2k"1} = the left half of S, = L. 
ι 1 k 

(b) {p.|i>2k_1} = the right half of S = R, which is a translate of L. 
1 Κ 

(c) {p. I i is even} = the bottom half of = B. 
1 Κ 

(d) {p.|i'is odd} = the top half of S = Τ, which is a translate of B. 
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(e) L,R,B, and Τ are all scaled translates of each other. For example, 

halving the first coordinate while multiplying the second coordinate 

by c, takes Β onto L. 

(f) The 180° rotation of the plane about ((2k-l)/2,Ec1/2) takes Τ onto B. 

(g) All points of Τ are above any line joining two points of B. The value 

of c was chosen large enough to make this true. Similarly, all points 

of Β are below any line joining two points of T. 

(h) If i and j both have the same last χ digits in their binary expansions, 

and h has a different sequence of χ rightmost digits, then whether p, 
h 

is above or below the line joining p^ and p_. is determined by the 

sequences of the last χ digits. 

Consider any empty convex n-gon A in S^. We may assume A is 

contained entirely in neither Τ nor B. Otherwise if A is contained in B, 

apply the linear transformation that takes Β onto L. A will be transformed 

into any empty convex n-gon in L. Similarly, if A is contained in T, apply 

the linear transformation that takes Τ onto L. Repeat this procedure until a 

transformed image of A meets both Τ and B. 

Next, consider how many points of A can be in B. Assume p^ and p. 

are in AnB. By (g) above, no point p^ of B, with i<h<j, can be above the line 

segment joining p^ and ρ ̂ , since otherwise no point of Τ could be in A. As 

well, I claim that d(h)<d(i) and d(h)<d(j). Since p^ is below the line joining 

p^ and ρ_. , clearly one of these statements is true. Assume d(h)<d(i), but 

d(h)>d(j). Let χ be the position of the right-most digit at which h and i 

differ in their binary expansions; let y be the position of the right-most 

digit at which h and j differ. In both cases, the number with the larger 

functional value must have a 1 in the position, and the other number a 0. If 

χ < y then p. must be below the line joining p. and ρ , by observation (h). 
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But then p^ is above the line joining p^ and p., a contradiction. Hence we 
k-x 

can assume that y < x. In this case, consider £ = j - 2 . The right-most 

position in which the binary expansions of £ and j differ is x, where £ has 

a 1 and j has a 0. On the other hand, £ and i must agree in the last k-x 

positions. By observation (h), p. is below the line joining p. and p0. But 
J  I X , 

since j-i > j-h 2 k~ y > 2 k X = j-£, i < £ < j. Then p^ must be both above 

and below the line joining p. and p_. , a contradiction. Similarly, 

d(j) < d(h) < d(i) leads to a contradiction. Therefore d(h) < d(i) and 

d(h) < d(j). 

If AnB contained four points i < h <£< j, then d(h) < d(£) and 

d(£) < d(h). Hence AnB cannot contain more than three points. By observation 

(f) above, AnT cannot contain more than three points either. Hence A has 

no more than 6 points. 

Whether g(6) exists is still unknown. However, I can give some 

indications that g(6) does exist. 

Lemma^l. Assume S is a set of η points with no empty convex hexagon, 

n>5. Then at most [(n+ll)/3] of the points are in the convex hull, n^8. 

Proof : Let S have χ points in its convex hull, (exterior points) and y 

points in its interior (interior points). 

If y>_2, consider any two points ρ and q on the convex hull of the 

set of interior points. There are at most 3 exterior points on the side of 

the line joining ρ and q away from the interior points of S. Throwing 

these points away, we get a set with at most y-2 interior points, and 

at least x-1 exterior points. This construction yields the induction step 

required to prove the lemma. 

Clearly if y=0, then x<5. If y=l, then we can only show that x<7, 

the exception mentioned in the lemma. If y=2, then x<6, using the induction 
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step. If y=3, then x<7, as is shown below, which completes the basis for 

the induction. 

Let P^»P2»P3 b e the three interior points of a set S of points 

with no empty convex hexagon. The line joining and ρ has at most 3 

exterior points on the side away from the third interior point, on the 

"outside", as noted above. But also, given two such lines, there are at 

most two exterior points on the "inside" of both lines. Otherwise the 

three exterior points in the intersection of the two "insides", together 

with Pj_>P2 an£* P^j would form an empty convex hexagon. Summing the 

number of exterior points in the three "outsides", and in the intersection 

of the three pairs of "insides", we can get at most 15. But each exterior 

point must be counted twice. Therefore x<7. 

A planar map is said to be cubic if all vertices are of degree 

3; a planar map is said to be convex if all interior faces are convex 

polygons. 

Proposition: If S is the vertex set of a cubic convex planar map with 54 

or more vertices, then S contains an empty convex hexagon. 

Proof : Let the map have η vertices, f faces, and e edges. Obviously, 

3n=2e, and Euler's formula applies, so f+n=e+2. Then f=(n/2)+2. 

The sum, over all faces, of the number of edges in each face, 

is 3n. We may assume that the outer face has at most (n+ll)/3 edges, 

by the lemma. Then the average interior face has (3n-(n+ll)/3)/((n/2)+l) 

edges. The value of this expression is greater than 5 if n>52. 

However, not any set S can be represented as the vertex set of 

a cubic convex planar map. Any set with an odd number of points is a 

simple counterexample. Por a more complicated example, consider 2n points 



-6-

at the corners of two regular n-gons, with one inside the other. If 

the inner n-gon's vertices are close enough to the middle of the outer 

n-gon1s edges, all the η outer vertices must have degree 4 to make a 

convex map. 

I wish to acknowledge D. Avis of McGill University who first 

mentioned this problem to me, and with whom I has some interesting 

discussions. 
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