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Setting a baseline for global urban 
virome surveillance in sewage
David f. nieuwenhuijse1,82, Bas B. Oude Munnink1,82, My V. T. Phan1,82, the Global 
Sewage Surveillance project consortium*, Patrick Munk2, Shweta Venkatakrishnan1, 
Frank M. Aarestrup2, Matthew Cotten1 & Marion P. G. Koopmans1*

The rapid development of megacities, and their growing connectedness across the world is becoming 
a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and 
spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic 
sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics 
of viral pathogens circulating in a community irrespective of access to care, a potential which already 
has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of 
sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth 
assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show 
the ability to detect a wide range of viruses and geographical and seasonal differences for specific 
viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from 
urban sewage samples and place previous studies in a global perspective.

�e increasing connectivity of the modern world, changing demographics, and climate change increase the 
potential for novel and known viral pathogens to emerge and rapidly spread in new and unexpected areas, as 
could be seen during the emergence and global threat of Ebola virus in recent  outbreaks1. Early detection or 
ruling out of high impact (emerging) infections as causes of disease is a hallmark of preparedness, but research 
in response to recent outbreaks of Ebola, Zika and yellow fever has shown that these pathogens circulated for 
extended periods of time before being recognized, leading to costly delays in public health  response2–5. One of 
the key challenges is how to prioritize local investments in detection capacity, given the diversity of emerging 
diseases, the unpredictable nature of outbreaks, and the limited resources available for outbreak prepared-
ness. Understandably, surveillance of infectious diseases mainly targets common conditions and is scaled up in 
response to the emergence of pathogens and in particular disease outbreaks, rather than the costlier approach 
of broad range testing for any relevant infectious disease. �e changing dynamics of infectious diseases related 
to global change, however, require rethinking of this model for public health preparedness, as incidence-based 
surveillance provides a fragmented and limited scope of which pathogens are circulating in the general popula-
tion, particularly in low resource settings where access to healthcare and laboratory diagnostics is  restricted6,7. 
�erefore, in its reorganization in response to the West African Ebola outbreak, the World Health Organization 
has launched the term “Disease X” to call for novel ideas for preparedness to unpredictable disease  outbreaks8. 
�us, there is a need for novel approaches to viral surveillance providing a broader and less biased insight into 
the circulation of viral pathogens to supplement the more targeted surveillance. Genomic epidemiology using 
real-time pathogen sequencing has become part of the routine toolbox for outbreak tracking once the cause of 
the outbreak is  known9,10. In addition, metagenomic sequencing has been put forward as a potential catch-all 
surveillance tool, but the step from research to routine implementation is extremely  challenging11,12, and thus, 
careful validation is needed to avoid overpromise and wasting of resources.

Here, we set out to explore the potential use of metagenomic sequencing of urban sewage as an add-on 
strategy for global disease preparedness. One key driver of emergence is the ampli�cation of rare zoonotic and 
vector-borne diseases in densely populated regions where infrastructure needs are outpaced by rapid urban 
developments. �is leads to the formation of slums, favorable conditions for viral disease vectors, disparity 
in access to clean water, sanitation and healthcare, and an increase in close human-animal interaction due to 
 deforestation13,14. �e advantage of using sewage-based surveillance is that it represents the entire population of 
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the catchment area, sample collection is straightforward, and the anonymization by default makes it less challeng-
ing to use than patient-based surveillance regarding privacy laws. Using sewage to detect viruses with low case 
fatality rate but overall high population level impact has been tested successfully to monitor the progress of the 
global polio-elimination program, particularly in regions where non-replicating polio-virus vaccines are  used15,16. 
�e huge potential of environmental surveillance was illustrated when a silent epidemic of wild-poliovirus type 
1 in Israel was detected, which led to a mop-up vaccination campaign and resolution of the epidemic, without 
a single case of paralytic  poliomyelitis17. In addition, small-scale studies have already shown the potential for 
using metagenomic sequencing of sewage extracts for the detection of a range of virus  families18–20 (Table 1 in 
Appendix). While these studies have largely focused on viruses with a replication phase in the gastro-intestinal 
tract, the fecal and/or urinary shedding of, for instance, measles virus, yellow fever virus, Zika virus, West Nile 
virus, Ebola virus, SARS coronavirus, and MERS coronavirus suggests the potential utility of sewage testing 
to capture circulation of these pathogens as  well21–25. Moreover, metagenomic sequencing has the potential to 
detect any viral genomic material in the sample, without targeting a speci�c viral pathogen or limiting for only 
known viral pathogens. In this study, we pilot the use of metagenomics to describe a comparative snapshot of the 
virome from sewage samples of high-density urban areas across all continents. We provide a critical appraisal of 
technical and analytical biases and discuss the potential utility for human and animal disease monitoring and 
surveillance, as well as the additional steps needed to go towards routine implementation.

Results
Data quality evaluation. Urban sewage samples and associated metadata (Supp. File 1) were obtained 
from 62 countries across all continents between January and April 2016 from the in�uent of wastewater treatment 
plants prior to treatment or from open sewage systems in low- and middle-income countries. All samples were 
previously processed for the detection of bacterial antimicrobial resistance genes using DNA  metagenomics26. 
Here we focus solely on viral DNA and RNA metagenomics (methods) and the analysis of the viral data. Sewage 
samples are highly variable in terms of composition and DNA abundance and therefore potential biases that 
might impact the �nal read abundance and diversity of the sewage virome were evaluated. Initially, an extensive 
evaluation of the technical factors that may impact the resulting data to gain a deeper understanding of poten-
tial pitfalls was performed. First, read abundance was evaluated as a proxy for viral abundance. Sequencing 
protocols for virome analysis in sewage typically require an ampli�cation step to provide enough DNA input 
for sequencing, which can result in arti�cial duplication of sequence reads and thereby impact the quantitative 
interpretation of the data substantially (Fig. 1a). Indeed, the observed viral species richness was negatively cor-
related with the number of ampli�cation cycles needed to obtain enough DNA as input for sequencing (Fig. 1b), 
while the average fold replication of a read was positively correlated (Fig. 1c). �e impact of dereplication on the 
individual species level read counts varied greatly within a sample. Especially in samples with a low number of 
reads a�er dereplication (Fig. 1d) the decrease in read counts for a species ranges from 600 to �vefold . �ese 
di�erences have a profound e�ect on the species distribution within the sample, and thus the interpretation 
thereof. �e e�ect of dereplication is much less variable between species in samples with a high number of reads 
a�er dereplication (Fig. 1e). �erefore, the optimal use of virome sequencing depends on the initial abundance 
of viral sequences in the sample and extra ampli�cation may only increase the coverage of the same viruses, but 
does not increase the richness of the virome, which needs to be carefully considered when designing and inter-
preting sewage metagenomics studies.

Besides the in�uence of read replication on read abundance, the richness of the virome can be impacted by the 
presence of non-viral sequences. Typically, the metagenomic data contain a large fraction of unknown reads, and, 
despite the virus speci�c sample preparation, non-viral reads, including archaeal, bacterial, and eukaryote DNA.

While the overall proportion of reads for the di�erent domains was comparable in most samples, multidi-
mensional scaling of the non-viral read counts showed that some samples were very divergent from the central 
cluster and were manually marked as outliers (Fig. 2a, dashed line). Viral read abundance was low in these 
outlier samples (Fig. 2b, right panel). �ere was no signi�cant correlation between the concentration of human 
or bacterial read fractions with any of the measured sample characteristics, such as pH, conductivity, and type 
of sewer system.

exploration of the sewage virome. Based on the data quality assessment, we analyzed viral diversity in 
the samples a�er dereplication and following annotation by both Kajiu and Centrifuge as described. Between 
0.09% and 22% of the reads could be annotated as viral (median of 6%), with high abundances of bacteriophages, 
plant- and insect viruses (Fig. 3). Most abundant were bacteriophages, representing on average 77% (ranging 
from 9 to 94%) of the annotated viral reads in the sewage. In particular Microviridae (median of 18%, range 
0.5–51% of reads), Siphoviridae (median of 17%, range 0.22–67% of reads), Myoviridae (median of 9%, range 
0.08–41% of reads), and Podoviridae (median of 4%, range 0.02–25% of reads), were highly abundant. �ese 
bacteriophage families could be found around the globe without obvious regional di�erences when using read 
annotations at this taxonomic level. Although speci�c bacteriophages have been studied extensively as potential 
indicators of human fecal pollution, bacteriophage taxonomy is relatively poorly de�ned, making accurate clas-
si�cation challenging at genus and species  level27,28. Hence, geographical patterns at a more �ne-grained level of 
annotation may be lost in our analysis. Moreover, interpretation of patterns of bacteriophage abundance could 
be obscured by the fact that bacteriophages can encounter bacterial hosts in the sewage in which they can multi-
ply. As described elsewhere, the analysis of the bacterial resistomes of the same samples showed clear segregation 
of sequences from Africa and Asia versus those from Europe and the  US26. A more detailed analysis is needed to 
assess if there is a relation between speci�c bacteriophages and the resistomes, as environmental viromes have 
been shown to be a potential reservoir for antimicrobial resistance  genes29.
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Figure 1.  E�ect of read preprocessing on data interpretation. (a) Number of reads before preprocessing 
(blue bars) a�er quality control (red bars) and read dereplication (green bars). �e x axis shows sample 
identi�ers ordered by number of dereplicated reads. (b, c) E�ect of number of PCR replication cycles on library 
concentration (color), species diversity (b) and read replication rate (c). (d, e) Fold replication of raw reads by 
species level annotation (points). X axis separates superkingdom or “Unknown” annotations. (d) shows sample 
LVA_31 with a high replication rate and panel e shows sample MLT_63 with a low replication rate.
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Global patterns of viruses related to vegetable consumption and to insects detected in urban 
sewage. �e second largest fraction of the virome (0.02–69%, median 3.4%) consisted of plant-related 
viruses. On average, more than 84% of these reads belonged to the Virgaviridae family. Especially viral species 
related to infections of cucumber, tomato, tobacco and pepper plants could be detected in sewage, as indicated 
by species level taxonomy (Fig. 4b). Apart from a sample from Kenya, the abundance of vegetable-consumption-
related viruses was higher in samples from Europe and North America compared to samples from the rest of 
the world (Fig. 4a) (Welch’s t-test, p-value = 0.06). �e global presence and high abundance of plant viruses has 
led to the proposal that they may be good indicators for human fecal contamination alike speci�c bacteriophage 
 populations30. However, this remains to be validated given the geographic variation observed in our dataset, 
which could re�ect di�erences in diet and/or agricultural practices in these countries.

A median of 1.4% (ranging 0.1–74%) of the sewage virome consisted of viruses associated with insects, 
comprising mainly species from the genera Ambidensovirus, Cripavirus, and Brevidensovirus (Fig. 4d), known 
to infect a range of crickets, cockroaches, fruit �ies, and  mosquitos31. In the global distribution there was an 
increased abundance of insect viruses in samples from around the equator, mainly in samples from Africa 
(Fig. 4c) (Welch’s t-test, p-value = 0.0004). One exception was the sample from Finland, which had a high abun-
dance of insect virus reads (13.7%) in comparison with samples from other European countries (1.5%). Several 
reads were found to be annotated as “Aedes albopictus densovirus 2”, “Aedes aegypti �ai densovirus”, and 
“Anopheles gambiae densonucleosis virus”. �ere is some evidence that these densoviruses may be associated 
with Aedes aegypti, Aedes albopictus and Culex  mosquitos32,33. Current data are not su�cient to meet the require-
ments for sewage surveillance, but these �ndings show the potential to track mosquitos by looking for mosquito 
speci�c viruses.

Figure 2.  E�ect of non-viral background read abundances on viral read abundance and the chosen outlier 
samples in the sewage metagenome data. (a) A multidimensional scaling of Bray–Curtis dissimilarity between 
samples based on the normalized read counts of bacterial, archaeal, eukaryote (human), and viral content. 
“Unknown” indicates reads that could not be assigned any annotation. �e red labels indicate the e�ect of 
the di�erent annotations on the position of a sample in the plot. Gray circle indicates the samples that were 
manually assigned to be outliers. (b) A scaled bar chart of relative read abundance showing the outliers in a 
separate facet to the right.
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Figure 3.  Heatmap of the viral diversity at viral family level (when available) and non-viral fraction. �e read 
abundance a�er quality control and dereplication is shown ordered by total read abundance a�er preprocessing and 
facetted by continent. �e heatmap follows the same ordering. Color gradient represents log-transformed relative 
abundance of reads belonging to the taxonomic groups indicated. �e top four rows of the heatmap show read 
abundances of non-viral annotations, the other rows show read abundance by viral family, or “no family” if only genus 
or species level annotation was available. Vertical facets represent subdivision of the viral families based on their 
inferred host. Black arrows indicate outlier samples based on an overabundance of background sequences.
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Detection of vertebrate viruses and investigation of known human pathogens. About 1.7% 
(ranging 0.01–11%) of the virome consisted of vertebrate viruses. Most abundant were small ssDNA viruses 
from the families Circoviridae and Parvoviridae, and members of the Picornaviridae, Astroviridae and Adeno-
viridae families (Fig. 5a). Vertebrate viruses were detected widely across the samples, but did not show distinct 
geographical patterns of abundance. Circoviruses were especially highly abundant across most sewage samples 
and, as novel variants of circoviruses have been associated with several diseases in  pigs34. Further longitudinal 
sewage surveillance could potentially be used to detect epidemiological patterns of emerging circovirus variants.

a

b

c

d

Figure 4.  Overview of the global distribution and abundance of plant viruses and insect viruses in urban 
sewage (a) Global distribution of all plant viruses (b) �e four most abundant plant virus species and their 
global spread. (c) Global distribution of all insect related viruses. (d) Top 5 most abundant insect virus genera. 
Datapoints represent absolute read numbers and read fraction by varying size and color respectively. Viral 
species are ordered by summed read abundance across samples and samples are ordered by total read abundance 
from le� to right. Facets represent continent of sample origin.
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A selection of viral taxa was analyzed containing human pathogenic viruses from the Astro-, Entero- Noro-, 
Sapo-, Adeno- and Rotaviridae families that are known to be abundant across the world as causes of diarrheal dis-
ease (Fig. 5b). Most abundant and widespread were the astroviruses. Enteroviruses were present to a lesser extent 
but could be detected in sewage samples from across the globe as well. Members of the noro-, sapo-, adeno-, and 
rotaviruses were only sporadically detected. Further investigation of samples with high human astrovirus content 
showed mostly evidence of the classic Human Astrovirus 1, 2 and 4 that are common causes of diarrheal disease, 
and sporadic detection of other clades such as Human Astrovirus MLB and Human Astrovirus VA for which 
less is known regarding clinical  impact35. Mapping of human enterovirus reads resulted in 102 small contigu-
ous sequences which were typed using the enterovirus typing  tool36. Mainly Enterovirus C (46%) and B (9%) 
were detected. Further subtyping of for instance poliovirus was not possible because of a lack of coverage of the 
standardized genotyping region VP1. �e same mapping was done for norovirus, resulting in 13 contigs of 84 to 
962 nucleotides in length. Most norovirus sequences were typed as either GII, with capsid type 6, 10 and 17, and 

Norovirus Rotavirus

Astrovirus Enterovirus

1e−04

2e−04

3e−04

Read fraction

Total reads

100

200

Climate

Equatorial

Arid

Warm

Boreal

Polar

a

b

c

Figure 5.  Overview of the most abundant vertebrate viruses and speci�c human viruses and their distribution 
worldwide in urban sewage. (a) Distribution of the top ten most abundant vertebrate viral families. (b) Relative 
abundance of viruses encountered in clinical surveillance (c) World maps showing distribution of viruses 
encountered in clinical surveillance. Coloring of the maps delineates di�erences in climate by geographical 
location. Datapoints represent absolute read numbers and read fraction by varying size and color respectively. 
Viral families are ordered by summed read abundance across samples and samples are ordered by total read 
abundance from le� to right. Facets represent continent of sample origin.
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GIV, all viruses that are commonly found in outbreak based  surveillance37. Sapovirus sequences, all belonging 
to type GI, were found in seven of the samples. Adenovirus and rotavirus hits were sporadically detected across 
all sampling sites and upon further investigation showed mainly adenovirus C and rotavirus A hits.

It is known that noroviruses, astroviruses and rotaviruses follow a winter seasonality and enteroviruses fol-
lows a summer seasonality  pattern38–40. �e time of sampling of the sewage was in a 3-month timeframe between 
January and March, which corresponds to the winter period in the northern hemisphere, therefore a higher 
prevalence of winter seasonal viruses was expected in those. When looking at the global distribution of viruses, 
the average abundance of astro- and noroviruses was higher in the northern hemisphere, and the reverse pattern 
was observed for enteroviruses, with higher average abundance in the southern hemisphere during the sampling 
period (Fig. 5c). Given the cross-sectional nature of our study we acknowledge that these seasonal patterns will 
have to be con�rmed using longitudinal sampling which would allow for meaningful statistical analysis, but our 
�rst observations align with what is generally expected at that time of the year.

Discussion
�is global sewage study gives, for the �rst time, a catch-all metagenomic comparison of the urban sewage virome 
of major cities across the world. We show that it is possible to detect a wide diversity of viruses in sewage samples 
and we identify geographical and seasonal di�erences in abundance for speci�c viral groups, including those 
that are currently targeted by surveillance for diarrheal and neurological disease, as well as viruses that could be 
used as indicators for presence of speci�c mosquito species. In addition, we provide the global scienti�c com-
munity with a geographically very broad resource for searching for novel virus sequences as novel pathogens 
continue to emerge. �e pilot study also highlights some important challenges that need to be addressed to take 
the technology forward, such as how to deal with low input samples and the overabundance of phages, plant, 
and insect viruses in the sample. Metagenomic sequencing of viruses is a complex and evolving technology 
which is currently far from being standardized. Di�erences in sample preprocessing, sequencing technology, and 
data analysis can have a major impact on the viral read abundance, diversity, and the proportion of sequences 
that are  annotated41,42. In our study, we eliminated lab-to-lab variability by performing all sample preparation, 
sequencing and analysis at the same location, which, apart from the analysis, is obviously not feasible for global 
surveillance. Further work is ongoing, including the development of �eldable sample treatment and sequencing 
protocols, comparison of e�ects of sample preparation on viral richness and further exploration of applicability, 
by longitudinal sampling and sampling in the presence of known ongoing outbreaks.

A critical challenge of using metagenomic sequencing for surveillance purposes remains the interpretation 
of sequence annotations. With the development of high-speed k-mer based annotation tools such as the ones 
used in this study, annotation can be performed rapidly and with few false negatives. However, erroneous and 
mis-annotated entries in public databases, together with inconsistency in the sequence-based taxonomic clas-
si�cation of viruses, make annotation to the species level challenging. Major steps have been taken to create a 
more consistent sequence based viral  taxonomy27,43, but these approaches have not yet been integrated in fast 
viral annotation tools. Also, deposits of large volumes of virus sequences without a clear host association or 
pathogenicity data in public  databases44 make it di�cult to interpret the relevance of such �ndings. In our data, 
many of these “environmental viruses” could be identi�ed. Given the increase in virus diversity in reference 
databases, it is striking how many sequence reads can remain unclassi�ed with the currently used methods. �is 
is in line with previous observations, where 40–90% of the sequence reads could not be  classi�ed45. It can very 
well be that the currently unclassi�ed sequence reads represent potential new viruses, including novel pathogens.

In conclusion, we show the potential of global viral surveillance using metagenomic sequencing of sew-
age without ignoring the complexity of the approach. However, with improvements in sample preprocessing, 
sequencing methods and interpretability of viral sequence annotation this potential will increase.

Methods
Urban sewage sample and metadata collection. Samples were obtained from 62 countries from all 
continents as previously  described26. All samples were taken before wastewater treatment. A questionnaire was 
�lled in with information on sampling site, sample consistency and sample temperature, including transport 
time, storage time, and temperature before shipping. All samples were taken in a timeframe of 3 months from 
January until March 2016. In addition to sample speci�c data, additional metadata (Supp. File 1) was collected 
such as demographics, type of industry in the surrounding area, weather conditions and catchment area of 
the sewer. Upon arrival, samples were thawed at room temperature and 250 ml of the raw sewage was taken 
and centrifuged at 10,000 g for 10 min. �e pellet was removed for bacterial content determination and DNA 
metagenomic  sequencing26 and the supernatant was used to perform the virus speci�c sample pretreatment and 
sequencing.

Sample processing for sequencing. Viral extraction was performed on 40 ml of sewage supernatant as 
previously  described46. In short, the conductivity was measured to exceed 2000 µs and the pH of the samples 
was adjusted to pH 4. A�erwards 10 ml PEG 6,000 was added and the samples were incubated overnight at 4˚C 
under agitation.

A�er incubation the samples were centrifuged a 13,500 g for 1.5 h at 4 °C. �e supernatant was removed, the 
pellet was dissolved in warm glycine bu�er and 1 mL of chloroform-butanol (50/50) was added. A�er mixing, 
the sample was centrifuged for 5 min at 13,000 g at 4 °C. �e �ltrate was collected through a series of �lters with 
5 µm, 1.2 µm, 0.45 µm and 0.22 µm pore size.

Unprotected free DNA was removed by incubation with Ambion Turbo DNase for 30 min at 37 °C. Total 
nucleic acid content was extracted using Roche NA isolation kit and cDNA was made using superscript III 
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(Invitrogen) using random hexamers that avoids ampli�cation of human  rRNA47. dsDNA was made using Klenow 
(NEB) and samples were sheared using Ion Shear Plus Enzyme Mix II. Libraries were ampli�ed for 15 cycles using 
High Fidelity Platinum PCR reaction. �e library concentration was determined using Ion Torrent quanti�cation 
kit (�ermo Fisher). If the concentration was below 20 nM, extra ampli�cation cycles were performed. Sequenc-
ing was performed on the Ion Torrent S5XL platform to generate around 10 million sequence reads per sample.

Data preprocessing. Raw fastq �les were quality trimmed using  FastP48. Read ends were trimmed to mean 
quality 25 with a sliding window of 5. Reads were trimmed to 400 nucleotides by default because the chemistry 
of Ion Torrent sequencing technology allows for reads of maximally 400 nucleotides long and longer reads were 
observed to contain high Phred score non-sense repetitive patterns in the tail region. Reads shorter than 50 
nucleotides were discarded as well as reads with an average Phred score below 25. Duplicate reads were removed 
using CD-HIT49 by clustering reads that start at the exact same position in the genome and have over 90% 
sequence identity in the �rst 50 nucleotides of the read, because of variable read length and observed insertion 
and deletion errors in the beginning of the reads.

Read based analysis. Due to the expected high diversity of viruses present in the sewage samples, a read 
based annotation of the data was chosen, contrary to an assembly-based approach. Annotation was performed 
using two taxonomic annotation tools:  Kaiju50 and  Centrifuge51. Kaiju performs taxonomic annotation based on 
an amino acid (AA) level which provides a higher sensitivity. �is is especially important for the annotation of 
viral sequences given the high mutation rate of  viruses52 compared to other organisms. In parallel with Kaiju, 
Centrifuge was run, which uses nucleotide (nt) identity for taxonomic annotation. Combining a nucleotide and 
an amino acid based matching approach ensures that both coding and non-coding read sequences can be anno-
tated. In addition, the combination of two read annotation tools with di�erent annotation strategies was chosen 
to give more robust mapping results.

�e databases used for taxonomic annotation consisted of archaeal, bacterial and human RefSeq sequences 
and were extended with all viral and phage entries in GenBank version  23053 because of the limited viral and 
phage sequence diversity in the RefSeq database.

Recommended quality thresholds and parameters for metagenomic data were used for both Kaiju and Cen-
trifuge. Kaiju was run in greedy mode with a score cuto� of 70 and an error of 5. Centrifuge was run with a 
score threshold of 300 and a hit length cuto� of 50. If neither method produced a hit the read was annotated as 
“Unknown”.  BASTA54 was used to determine the last common ancestor (LCA) of each hit given by both methods 
without restrictions on hit quality.

�e �nal read counts passing QC were determined by the sum of read annotations at a certain taxonomic 
level and were normalized by total dereplicated read count to adjust for di�erences in sequencing depth and data 
 quality55–57. �e LCA taxon was used if the annotation at a certain taxonomic level was absent. Manual regroup-
ing of taxonomic levels was performed to calculate read counts of human pathogenic viruses and read counts by 
host group. For sample comparison, read counts were normalized by Hellinger  transformation58. Sample-wise 
comparison was done by calculating the Bray–Curtis dissimilarity between the normalized read counts using 
the R package  Vegan59. Further investigation of the annotation of speci�c viral species was performed by map-
ping the reads against a redundant set of reference genomes using KMA with default  parameters60. �e maps of 
global read distribution were created using the continent subdivision from the “rnaturalearthdata” R package 
and the Köppen-Geiger climate  classi�cation61.

Data availability
Raw sequence data that support the �ndings of this study have been deposited in the European Nucleotide 
Archive with the study accession code PRJEB23496.

Appendix
See Extended Data Table 1.
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