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ABSTRACT

In this paper, we propose an analytic analogue to the simulation procedure
described in Taylor (1997). We apply the formulas to a Belgian data set and
discuss the interaction between a priori and a posteriori ratemakings.
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1. INTRODUCTION AND MOTIVATION

One of the main tasks of the actuary is to design a tariff structure that will
fairly distribute the burden of claims among policyholders. To this end, he
often has to partition all policies into homogeneous classes with all policy-
holders belonging to the same class paying the same premium. The classifica-
tion variables introduced to partition risks into cells are called a priori variables
(as their values can be determined before the policyholder starts to drive).
In motor third-party liability (MTPL, in short) insurance, they include age,
gender and occupation of the policyholders, type and use of their car, place
where they live and sometimes even number of cars in the household or mar-
ital status. It is convenient to achieve a priori classification by resorting to gen-
eralized linear models (e.g. Poisson regression).

However, many important factors cannot be taken into account at this
stage; think for instance of swiftness of reflexes, aggressiveness behind the
wheel or knowledge of the highway code. Consequently, risk classes are still
quite heterogeneous despite the use of many a priori variables. But it is rea-
sonable to believe that these hidden factors are revealed by the number of
claims reported by the policyholders over the successive insurance periods.
Hence the amount of premium is adjusted each year on the basis of the indi-
vidual claims experience in order to restore fairness among policyholders.

Rating systems penalizing insureds responsible for one or more accidents
by premium surcharges (or maluses), and rewarding claim-free policyholders
by awarding them discounts (or bonuses) are now in force in many developed
countries. This a posteriori ratemaking is a very efficient way of classifying
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policyholders according to their risk. Besides encouraging policyholders to
drive carefully (i.e. counteracting moral hazard), they aim to better assess indi-
vidual risks. Such systems are called no-claim discounts, experience rating,
merit rating, or Bonus-Malus systems (BMS, in short). We will adopt here the
latter terminology. For a thorough presentation of the techniques relating to
BMS, see Lemaire (1995).

When a BMS is in force, the amount of premium paid by the policyholder
depends on the rating factors of the current period but also on claim history. In
practice, a BMS consists of a finite number of levels, each with its own relative
premium. New policyholders have access to a specified class. After each year, the
policy moves up or down according to transition rules and to the number of
claims at fault. The premium charged to a policyholder is obtained by applying
the relative premium associated to his current level in the BMS to a base pre-
mium depending on his observable characteristics incorporated into the price list.

The problem addressed in this paper is the determination of the relative
premiums attached to each of the levels of the BM scale when a priori classi-
fication is used by the company. The severity of the a posteriori corrections must
depend on the extent to which amounts of premiums vary according to observ-
able characteristics of policyholders. The key idea is that both a priori classi-
fication and a posteriori corrections aim to create tariff cells as homogeneous
as possible. The residual heterogeneity inside each of these cells being smaller
for insurers incorporating more variables in their a priori ratemaking, the a pos-
teriori corrections must be softer for those insurers.

This paper is not conceptually innovating. All the ideas are contained in the
seminal work by Taylor (1997). Our only contribution is to show how it is pos-
sible to avoid simulations by providing analytical formulas for the relative pre-
miums attached to each level of the BM scale.

Our work is organized as follows. In Section 2, we briefly present the mod-
elling used to compute pure premiums. Section 3 describes BM scales and their
representation as Markov chains. Section 4 explains how to determine the rel-
ative premiums when a priori classification is in force or not. Section 5 describes
several numerical illustrations. In Section 6, we show that it is possible to apply
different a posteriori corrections according to a priori characteristics. The final
Section 7 discusses some possible improvements and concludes.

2. CREDIBILITY UPDATING FORMULAS

Let , , , ,N t 1 2it f= represent the number of claims incurred by policyholder i
in period t. The annual expected claim frequency for policy i in year t is

[ ]� Nit it=m . It is expressed as the exponential transform of some predictor
involving the characteristics of policyholder i in period t. Of course, all the risk
factors cannot be taken into account at this stage.

Risk classes remain heterogeneous despite the use of many a priori risk
characteristics. This residual heterogeneity can be represented by a random
effect Qi superposed to the annual expected claim frequency. Specifically, given
Qi = q the annual numbers of claims Nit are assumed to be independent and
to conform to a Poisson distribution with mean itm i, i.e.
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Moreover, all the Qi’s are assumed to be independent and to follow a standard
Gamma distribution with probability density function

( ) ( ) ( ), .exp �u a a aG
1 a a 1 != -i i i i- + (2.1)

The latter is often referred to as the structure function of the portfolio. Since
[ ]� 1Qi = we have that [ ] ;� Nit it it= m m is the expected claim number for a poli-

cyholder for which no information about past claims is available.
The premium is then adjusted over time with the help of credibility techni-

ques. We assume that each policyholder has an unknown expected claim fre-
quency ‡i, constant over time. Following the seminal work of Dionne and
Vanasse (1989), the company approaches this unknown value with annual pre-
dictions of the form ‡̂i1 = li1 and for t ≥ 2,
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The latter Bayesian credibility estimator cannot be enforced in practice for
MTPL, essentially due to commercial reasons and legal constraints. Instead,
companies resort to BM scales, that may be considered as simplified versions
of credibility theory formulas. Those are presented in the next section.

3. MARKOV MODELS FOR PRACTICAL BMS

3.1. BMS as Markov chains

In practice, insurance companies often resort to BM scales similar to those in
Tables 5.4-5.6-5.8 and not on credibility coefficients like those of (2.2). Such
scales possess a number of levels, s + 1 say, numbered from 0 to s. A specified
level is assigned to a new driver (often according to the use of the vehicle). Each
claim free year is rewarded by a bonus point (i.e. the driver goes one level
down). Claims are penalized by malus points (i.e. the driver goes up a certain
number of levels each time he files a claim). We assume that the penalty is a
given number of classes per claim. This facilitates the mathematical treatment
of the problem but more general systems could also be considered. After suf-
ficiently many claim-free years, the driver enters level 0 where he enjoys the
maximal bonus.

In commercial BMS, the knowledge of the present level and of the num-
ber of claims of the present year suffice to determine the next level. This
ensures that the BMS may be represented by a Markov chain: the future (the
class for year t + 1) depends on the present (the class for year t and the num-
ber of accidents reported during year t) and not on the past (the complete
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claim history and the levels occupied during years , , , )t1 2 1f - . Sometimes,
fictitious classes have to be introduced in order to meet this memoryless prop-
erty. Indeed, in some BMS, policyholders occupying high levels are sent to the
starting class after a few claimless years.

The relativity associated to level , is denoted as ,r ; the meaning is that an
insured occupying that level pays an amount of premium equals to ,r % of the
a priori premium determined on the basis of his observable characteristics.

3.2. Transient distributions

Let p,1,2
(‡) be the probability of moving from level ,1 to level ,2 for a policy-

holder with mean frequency ‡. Further, M(‡) is the one-step transition
matrix, i.e. M(‡) = {p,1,2

(‡)}, ,1, ,2 = 0,1,…,s. Taking the nth power of M(‡)
yields the n-step transition matrix whose element (,1,2), denoted as p(n)

,1,2
(‡), is

the probability of moving from level ,1 to level ,2 in n transitions.

3.3. Stationary distribution

All BMS in practical use have a “best” level, with the property that a policy
in that level remains in the same level after a claim-free period. In the follow-
ing, we restrict attention to such non-periodic bonus rules. The transition
matrix ( )M j associated to such a BMS is regular, i.e. there exists some inte-
ger 10$p such that all entries of ( )M 0j p

! + are strictly positive. Consequently,
the Markov chain describing the trajectory of a policyholder with expected
claim frequency j accross the levels is ergodic and thus possesses a stationary
distribution ( ) ( ( ), ( ), , ( )) ; ( )s

t
0 1 f=j r j r j r j r jr , is the stationary probabil-

ity for a policyholder with mean frequency j to be in level , i.e.

( ) ( ).lim p( )
2 1 2

=r j j
"

,
3 , ,+o

o

Note that ( )jr does not depend on the starting class.
Let us now recall how to compute the ( )r j, ’s. The vector ( )jr is the solu-

tion of the system 

( ) ( ) ( ),
( )

M
e 1

t t

t
=

=

j j j
j

r r
r
)

where e is a column vector of 1’s. Let E be the ( ) ( )s s1 1#+ + matrix all of
whose entries are 1, i.e. consisting of s 1+ column vectors e. Then, it can be
shown that 

( ) ( ) ,Ie M Et t 1= - +j jr -
^ h

which provides a direct method to get ( )jr . For a derivation of the latter result,
see e.g. Rolski et al. (1999).
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4. DETERMINATION OF THE RELATIVITIES

4.1. Interaction between the BM scale and a priori ratemaking

Since the relativities attached to the different levels are the same whatever the
risk class to which the policyholders belong, those scales overpenalize a priori
bad risks. Let us explain this phenomenon, put in evidence by Taylor (1997).
Over time, policyholders will be distributed over the levels of the bonus-malus
scale. Since their trajectory is a function of past claims history, policyholders
with low a priori expected claim frequencies will tend to gravitate in the low-
est levels of the scale. Conversely for individuals with high a priori expected
claim frequencies. Consider for instance a policyholder with a high a priori
expected claim frequency, a young male driver living in a urban area, say. This
driver is expected to report many claims (this is precisely why he has been
penalized a priori) and so to be transferred to the highest levels of the BM scale.
On the contrary, a policyholder with a low a priori expected claim frequency,
a middle-aged lady living in a rural area, say, is expected to report few claims
and so to gravitate in the lowest levels of the scale. The level occupied by the
policyholders in the BM scale can thus be partly explained by their observable
characteristics included in the price list. It is thus fair to isolate that part of
the information contained in the level occupied by the policyholder that does
not reflect observables characteristics. A posteriori corrections should be only
driven by this part of the BM information.

Let us try to quantify these findings. To this end, we introduce the random
variable Lj valued in { , , , }s0 1 f such that Lj conforms to the distribution

( )jr i.e.

[ ] ( ), , , , .Pr L s0 1, , f= = =r j,j

The variable Lj thus represents the level occupied by a policyholder with annual
expected claim frequency j once the steady state has been reached.

Let us now pick at random a policyholder from the portfolio. Let us denote
as L his (unknown) a priori expected claim frequency and as Q the residual
effect of the risk factors not included in the ratemaking. The actual (unknown)
annual expected claim frequency of this policyholder is then LQ. Since the
random effect Q represents residual effects of hidden covariates, the random
variables L and Q may reasonably be assumed to be mutually independent. Let
wk be the weight of the kth risk class whose annual expected claim frequency
is km . Clearly, [ ]Pr wk k= =mK .

Now, let L be the BM level occupied by this randomly selected policyholder
once the steady state has been reached. The distribution of L can be written
as 

[ ] ( ) ( ) ;Pr L w u d
>k k

k 0
,= = r m i i i,i

#! (4.1)

[ ]Pr L ,= represents the proportion of the policyholders in level ,.
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4.2. Norberg’s predictive accuracy in segmented tariffs

Predictive accuracy is a useful measure of the efficiency of a BMS. The idea
behind this notion is as follows. A BMS is good at discriminating among
the good and the bad risks if the premium they pay is close to their “true”
premium. According to Norberg (1976), once the number of classes and the
transition rules have been fixed, the optimal relativity r, associated to level , is
determined by maximizing the asymptotic predictive accuracy.

As above, let LQ be the true (unknown) expected claim frequency of a
policyholder picked at random from the portfolio, where Q admits the pdf
(2.1) and [ ]Pr wL k k= =m , with � L = m6 @ . Our aim is to minimize the expected
squared difference between the “true” relative premium Q and the relative
premium rL applicable to this policyholder (after the stationary state has been
reached), i.e. the goal is to minimize
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It is easily seen that [ ] ,� r 1L = resulting in financial equilibrium once steady
state is reached.

To end with, let us mention that if the insurance company does not enforce any
a priori ratemaking system, all the lk’s are equal to l and reduces to the formula 

( ) ( )

( ) ( )
r

u d
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>
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that has been derived in Norberg (1976).
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5. NUMERICAL ILLUSTRATIONS

5.1. A priori ratemaking

The data used to illustrate this paper relate to a Belgian MTPL portfolio
observed during the year 1997. The data set comprises 158,061 policies.
The claim number distribution in the portfolio is described in Table 5.1. The
overall mean claim frequency is 11.25%.

TABLE 5.1

OBSERVED CLAIMS DISTRIBUTION IN THE BELGIAN MTPL PORTFOLIO.

Number k Observed number of policies
of claims reported having reported k claims

0 140 276
1 16 085
2 1 522
3 159
4 17
5 2

6$ 0

The following information is available on an individual basis: in addition to the
number of claims filed by each policyholder and the exposure-to-risk from
which these claims originate (i.e. the number of days the policy has been in force
during 1997), we know the age of the policyholder in 1997 (18-21 years, 22-
30, 31-55 or above 56), his/her gender (male-female), the kind of district where
he/she lives (rural or urban), the fuel oils of the vehicle (gasoline or diesel), the
power of the vehicle in kilowatts (less than 40 Kw, between 40 and 70 Kw or
more than 70Kw), the use of the vehicle (leisure and commuting only, or also
professionnal use), whether the vehicle has been classified as a sportscar by the
company, whether the policyholder splits the payment of the premium (premium
paid once a year versus premium splitted up), whether the policyholder sub-
scribed other guarantees than MTPL (for instance material damage, theft, or
comprehensive coverage in addition to MTPL).

A segmented tariff has been built on the basis of a Poisson regression
model. Afterwards, geographical ratemaking has been performed following the
method proposed by Boskov and Verrall (1994); see also Brouhns, Denuit,
Masuy and Verrall (2002). This resulted in the definition of four zones. The
final model was fitted by Poisson regression with the four zones that can be
seen in Figure 5.1. A backward-type selection procedure eliminated some risk
factors: use and sport were considered as non significant and were excluded
from the Poisson model. This resulted in 1536 risk classes, each with its own
a priori annual expected claim frequency. Table 5.2 displays the point estimates
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Figure 5.1: The four zones obtained with the Boskov-Verrall method.

of the regression coefficients b0, b1, … together with confidence intervals and
p-values of test for the null hypothesis bj = 0. Table 5.2 has been obtained with
the SAS/STAT procedure GENMOD. Table 5.3 gives a part of the resulting
price list. A “1” indicates the presence of the characteristic corresponding to
the column. For a thorough description of the tariff construction, we refer
the interested reader to Brouhns and Denuit (2003).

TABLE 5.2

SUMMARY OF THE POISSON FIT TO THE BELGIAN MTPL PORTFOLIO

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 
0

b 1 –1.7326 0.0197 –1.7713 –01.6939 7701.76 <.0001
AGE 18-21 1 0.8219 0.0578 0.7086 0.9352 202.26 <.0001
AGE 22-30 1 0.3996 0.0184 0.3636 0.4357 472.45 <.0001
AGE >56 1 –0.2254 0.0185 – 0.2618 –0.1891 147.92 <.0001
AGE 31-55 0 0 0 0 0 . .
GENDER woman 1 0.066 0.0165 0.0338 0.0983 16.1 <.0001
GENDER man 0 0 0 0 0 . .

426 SANDRA PITREBOIS, MICHEL DENUIT, JEAN-FRANÇOIS WALHIN

https://doi.org/10.1017/S0515036100013544 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100013544


Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

DISTRICT urban 1 0.2439 0.0153 0.214 0.2738 255.06 <.0001
DISTRICT rural 0 0 0 0 0 . .
FUEL diesel 1 0.2074 0.0158 0.1764 0.2383 172.21 <.0001
FUEL gasoline 0 0 0 0 0 . .
PAYMENT yearly 1 –0.2487 0.0147 – 0.2776 –0.2198 284.53 <.0001
PAYMENT splitted 0 0 0 0 0 . .
GARACCESS 
MTPL+ 1 –0.1701 0.015 – 0.1994 –0.1407 128.97 <.0001

GARACCESS 
MTPL only 0 0 0 0 0 . .

POWER $>$70 1 0.1243 0.0198 0.0855 0.1631 39.38 <.0001
POWER $<$40 1 –0.0925 0.0185 – 0.1288 –0.0562 24.95 <.0001
POWER 40-70 0 0 0 0 0 . .
ZONE 1 1 –0.5492 0.0225 – 0.5933 –0.5051 594.8 <.0001
ZONE 2 1 –0.3525 0.0199 – 0.3916 –0.3135 313.2 <.0001
ZONE 3 1 –0.2301 0.0178 – 0.2649 –0.1952 167.63 <.0001
ZONE 4 0 0 0 0 0 . .

5.2. Scale –1/top

In this BM scale, the policyholders are classified according to the number of
claim-free years since their last claim (0, 1, 2, 3, 4 or at least 5). After a claim
all premiums reductions are lost. The transition rules are described in Table 5.4.
Specifically, the starting class is the highest level 5. Each claim-free year is
rewarded by one bonus class. In case an accident is reported, all the discounts
are lost and the policyholder is transferred to level 5.

TABLE 5.4

TRANSITION RULES FOR THE BMS –1/TOP.

Starting Level occupied if
level 0 1$

claim is reported

0 0 5
1 0 5
2 1 5
3 2 5
4 3 5
5 4 5
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Note that the philosophy behind such a BMS is different from credibility
theory. Indeed, this BMS only aims to counteract moral hazard: it is in fact
more or less equivalent to a deductible which is not paid at once but smoothed
over the time needed to go back to the lowest class. Note however that this
smoothed deductible only applies to the first claim.

The transition matrix M(‡) associated to this BMS is given by 
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It is easily checked that p(5)
5, (‡) = p,(‡) for ,= 0,1,…,5, so that the system needs

5 years to reach stationarity (i.e. the time needed by the best policyholders
starting from level 5 to arrive in level 0).

TABLE 5.5

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/TOP

Level , [ ]Pr L ,= Relativity Relativity Average a priori
[ | ]�r LQ ,= =, [ | ]�r LQ ,= =, expected claim frequency in level ,,

without a priori with a priori [ | ]� LL ,=

ratemaking ratemaking with a priori ratemaking

5 10.2% 166.6% 142.7% 12.8%
4 8.6% 154.4% 135.3% 12.5%
3 7.2% 143.8% 128.9% 12.2%
2 6.2% 134.6% 123.3% 12.0%
1 5.3% 126.5% 118.3% 11.8%
0 62.4% 70.8% 80.5% 10.6%

The results for the BM scale –1/top are displayed in Table 5.5. Specifically, the
values in the third column are computed with the help of (4.3) with .a 1 3671=
and .0 1125=m

t Those values were obtained by fitting a Negative Binomial
distribution to the portfolio observed claim frequencies given in Table 5.1.
Integrations have been performed numerically with the QUAD procedure of
SAS/IML. The fourth column is based on (4.2) with .a 2 1368= and the km

t ’s
obtained from a priori risk classification (i.e. from the bj’s displayed in Table 5.2).
Once the steady state has been reached, the majority of the policies (62.4%)
occupy level 0 and enjoy the maximum discount. The remaining 47.6% of
the portfolio are distributed over levels 1-5, with about 10% in level 5 (those
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policyholders who just claimed). Concerning the relativities, the minimum
percentage of 70.8% when the a priori ratemaking is not recognized becomes
80.5% where the relativities are adapted to the a priori risk classification.
Similarly, the relativity attached to the highest level of 166.6% gets reduced
to 142.7%. The severity of the a posteriori corrections is thus weaker once
the a priori ratemaking is taken into account in the determination of the
r,’s. The last column of Table 5.5 indicates the extent to which a priori and
a posteriori ratemakings interact. The numbers in this column are computed
as

[ | ] [ | ]
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(5.1)

If [ | ]� LL ,= is indeed increasing in the level ,, those policyholders who have
been granted premium discounts at policy issuance (on the basis of their
observable characteristics) will be also rewarded a posteriori (because they
occupy the lowest levels of the BM scale). Conversely, the policyholders who
have been penalized at policy issuance (because of their observable character-
istics) will cluster in the highest BM levels and will consequently be penalized
again. The average a priori expected claim frequency clearly increases with the
level , occupied by the policyholder.

5.3. Soft Taylor’s scale (–1/+2)

Let us now consider the soft experience rating system defined in Taylor (1997).
There are 9 BM levels. Level 6 is the starting level. A higher level number indi-
cates a higher premium. If no claims have been reported by the policyholder
then he moves one level down. If a number of claims, nt > 0, has been reported
during year t then the policyholder moves 2nt levels up. The transition rules
are described in Table 5.6.

Results are displayed in Table 5.7 which is the analogue of Table 5.5 for the
BMS –1/+2. The BMS is perhaps too soft since the vast majority of the port-
folio (about 75%) clusters in the super bonus level 0. The higher levels are
occupied by a very small minority of drivers. Such a system does not really dis-
criminate between good and bad drivers. Consequently, only those policy-
holders in level 0 get some discount whereas occupancy of any level 1-8 implies
some penalty. Again, the a posteriori corrections are softened when a priori risk
classification is taken into account in the determination of the r,’s. The comments
made for the scale –1/top still apply to this BMS.
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TABLE 5.6

TRANSITION RULES FOR THE BMS –1/+2

Starting Level occupied if
level 0 1 2 3 4$

claim(s) is/are reported

8 7 8 8 8 8
7 6 8 8 8 8
6 5 8 8 8 8
5 4 7 8 8 8
4 3 6 8 8 8
3 2 5 7 8 8
2 1 4 6 8 8
1 0 3 5 7 8
0 0 2 4 6 8

TABLE 5.7

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/+2

Level , [ ]Pr L ,= Relativity Relativity Average a priori
[ | ]�r LQ ,= =, [ | ]�r LQ ,= =, expected claim frequency in level ,

without a priori with a priori [ | ]� LL ,=

ratemaking ratemaking with a priori ratemaking

8 1.1% 325.3% 238.1% 17.2%
7 1.1% 294.0% 220.9% 16.2%
6 1.4% 258.0% 200.6% 15.2%
5 1.6% 234.0% 187.0% 14.5%
4 2.6% 194.5% 163.0% 13.5%
3 2.9% 179.2% 153.9% 13.1%
2 7.9% 133.9% 124.1% 12.0%
1 6.8% 127.2% 119.9% 11.8%
0 74.7% 75.6% 84.4% 10.7%

5.4. Severe Taylor’s scale (-1/+4)

Let us finally consider the severe experience rating system defined in Taylor
(1997). Again, there are 9 BM levels. Level 6 is the starting level. A higher
level number indicates a higher premium. If no claims have been reported by
the policyholder then he moves down one level. Each claim is now penalized
by 4 levels (instead of 2 in the soft Taylor’s scale). The transition rules are
described in Table 5.8.
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TABLE 5.8

TRANSITION RULES FOR THE BMS –1/+4.

Starting Level occupied if
level 0 1 ≥ 2

claim is reported

8 7 8 8
7 6 8 8
6 5 8 8
5 4 8 8
4 3 8 8
3 2 7 8
2 1 6 8
1 0 5 8
0 0 4 8

Results are displayed in Table 5.9, the analogue of Tables 5.5 and 5.7. The inter-
esting point is to compare results for the scale –1/+2 to those obtained for the
scale –1/+4. The higher severity of the –1/+4 system results in more important
premium discounts in the lowest part of the scale, and in reduced penalties
for those occupying the highest levels. Similarly, the average a priori expected
claim frequency for each level diminishes when the claims are more heavily
penalized.

TABLE 5.9

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/+4

Level , [ ]Pr L ,= Relativity Relativity Average a priori
[ | ]�r LQ ,= =, [ | ]�r LQ ,= =, expected claim frequency in level ,

without a priori with a priori [ | ]� LL ,=

ratemaking ratemaking with a priori ratemaking

8 4.6% 225.1% 180.7% 14.3%
7 4.3% 203.0% 167.3% 13.7%
6 4.0% 185.7% 156.9% 13.2%
5 3.8% 171.7% 148.6% 12.9%
4 7.0% 130.0% 121.1% 11.9%
3 6.1% 123.0% 116.8% 11.7%
2 5.3% 116.7% 112.8% 11.6%
1 4.7% 111.1% 109.2% 11.5%
0 60.3% 64.9% 76.5% 10.5%
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6. A POSTERIORI CORRECTIONS DEPENDING ON A PRIORI CHARACTERISTICS

We know from credibility theory that the a posteriori corrections are functions
of the a priori characteristics; see (2.2). On the contrary, when a BMS is in force,
the same a posteriori corrections apply to all policyholders, whatever their a
priori expected claim frequency. This of course induces unfairness in the port-
folio.

In order to reduce the unfairness of the tariff, we could propose several BM
scales, according to the a priori characteristics. Table 6.1 describes such a sys-
tem where the company differentiates policyholders according to the type of
district where they live (urban or rural). People living in urban areas have
higher a priori expected claim frequencies. Thus, they should be more rewarded
in case they do not file any claim and less penalized when they report accidents
compared to people living in rural zones. This is indeed what we observe
when we compare the relative premiums obtained for the system –1/+4: the
maximal discount is 73.1% for urban policyholders, compared to 77.7% for
rural ones. Similarly, the highest penalty is 176.6% for urbans against 183.0%
for rurals.

TABLE 6.1

NUMERICAL CHARACTERISTICS FOR THE SYSTEM –1/+4 WITH THE DICHOTOMY URBAN/RURAL.

Urban Rural

Level , Relativity Average a priori Relativity Average a priori
[ | ]�r LQ ,= =, expected claim frequency [ | ]�r LQ ,= =, expected claim frequency in

with a priori level , with a priori in level ,
ratemaking [ | ]� LL ,= ratemaking [ | ]� LL ,=

with a priori ratemaking with a priori ratemaking

8 176.6% 16.5% 183.0% 13.0%
7 162.5% 15.8% 169.8% 12.5%
6 151.6% 15.3% 159.6% 12.2%
5 142.9% 14.9% 151.4% 11.9%
4 116.8% 13.8% 122.9% 11.1%
3 112.2% 13.6% 118.7% 10.9%
2 108.1% 13.4% 114.8% 10.8%
1 104.3% 13.3% 111.2% 10.7%
0 73.1% 12.2% 77.7% 9.8%

7. DISCUSSION

All the techniques used in this paper resort to the stationary distribution of the
scale. Therefore they can only be recommended if the steady state is reached
after a relatively short period, as it is the case for the BM scale –1/top. It is
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worth mentioning that for the scale –1/top, the use of the stationary distribu-
tion for the computation yields higher premiums than those obtained using
transient distributions, with the method of Børgan, Hoem and Norberg (1981).

The method described in the present paper can be extended to transient dis-
tributions, in the spirit of Børgan, Hoem and Norberg (1981). This may be
interesting when a new scale is introduced or for BMS needing many years to
reach their stationay regime.

If on a given market companies start to compete on the basis of BMS
many policyholders could leave the portfolio after the occurrence of an acci-
dent, in order to avoid the resulting penalties. Those attritions can be incor-
porated in the model by adding an additional level to the Markov chain (in the
spirit of Centeno and Silva (2001)). Transitions from a level of the BMS to
this state represents a policyholder leaving the portfolio whereas transitions
from this state to any level of the BMS means that a new policy enters the port-
folio.

It has been assumed throughout this paper that the unknown expected
claim frequencies were constant and that the random effects representing hid-
den characteristics were time-invariant. Dropping these assumptions makes
the determination of the relativities much harder. We refer the interested reader
to Brouhns, Guillén, Denuit and Pinquet (2003) for a thorough study of this
general situation.
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