
Setting an Optimal a That Minimizes Errors in Null
Hypothesis Significance Tests
Joseph F. Mudge*, Leanne F. Baker, Christopher B. Edge, Jeff E. Houlahan

Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada

Abstract

Null hypothesis significance testing has been under attack in recent years, partly owing to the arbitrary nature of setting a
(the decision-making threshold and probability of Type I error) at a constant value, usually 0.05. If the goal of null hypothesis
testing is to present conclusions in which we have the highest possible confidence, then the only logical decision-making
threshold is the value that minimizes the probability (or occasionally, cost) of making errors. Setting a to minimize the
combination of Type I and Type II error at a critical effect size can easily be accomplished for traditional statistical tests by
calculating the a associated with the minimum average of a and b at the critical effect size. This technique also has the
flexibility to incorporate prior probabilities of null and alternate hypotheses and/or relative costs of Type I and Type II errors,
if known. Using an optimal a results in stronger scientific inferences because it estimates and minimizes both Type I errors
and relevant Type II errors for a test. It also results in greater transparency concerning assumptions about relevant effect
size(s) and the relative costs of Type I and II errors. By contrast, the use of a = 0.05 results in arbitrary decisions about what
effect sizes will likely be considered significant, if real, and results in arbitrary amounts of Type II error for meaningful
potential effect sizes. We cannot identify a rationale for continuing to arbitrarily use a = 0.05 for null hypothesis significance
tests in any field, when it is possible to determine an optimal a.
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Introduction

A well-known problem associated with null hypothesis

significance tests (NHST) is the arbitrariness of the chosen

experimental significance level, alpha (a). Yet the practice of

comparing an observed p-value to an arbitrary a, usually a = 0.05,

remains widespread as ‘‘methodological orthodoxy’’ in science

[1,2]. There is large body of literature that advocates for the

abandonment of NHST [1–5], and although we recognize that

NHST is frequently misused, we do not wish to contribute to the

bashing that is unlikely to garner much attention or end such a

deeply entrenched practice among scientists. Instead, we posit

that ‘‘abuses non toll it sum’’, that abuse does not preclude proper

use. The ease with which a correctly-interpreted null hypothesis

significance test can be used as a decision-making tool causes it to

continue to be favoured in most scientific fields. The goal of these

tests should be to provide us with conclusions in which we have

the highest possible confidence. Thus, the logical decision-making

significance threshold, a, should be the value that minimizes the

probability, or occasionally, the cost of making any relevant error.

In the former case, this would make the goal of the statistical test

to avoid making an erroneous conclusion, while in the latter it

would make the goal of the statistical test to avoid making a costly

erroneous conclusion. We feel that doing statistics for purposes

other than these would be outside the realms of pure and applied

science.

The Case for a New Approach to Setting a
In traditional NHST there are two types of errors, rejecting the

null hypothesis when it is true (Type I error) and failing to reject

the null when the alternate hypothesis is true (Type II error).

Alpha is set to address the Type I error rate – it is the probability

of making a Type I error that we are willing to accept in a

particular experiment. The choice of an a level will determine the

probability of a Type II error (b) for a study with a given sample

size and critical effect size. Decreasing the probability of Type I

error increases the probability of Type II error and vice-versa

(Figure 1). Because a determines the power (1 - b) to detect effects

of specified sizes, then using the standard a = 0.05 makes implicit

decisions about the effect sizes a researcher will be likely to

consider significant, if they exist. The standard a = 0.05 also

arbitrarily determines the chance of Type II error relative to Type

I error for meaningful potential effect sizes. These implicit

decisions associated with using a = 0.05 are often both unrealized

and unrealistic. Appropriate conclusions from statistical tests

should involve explicit considerations about the magnitude of

effect that would be important to be able to detect, if it were real,

and whether the probabilities of Type I and Type II error reflect

the relative seriousness of the consequences of a Type I vs. Type II

error. Considering critical effect sizes and the relative consequenc-

es of Type I and Type II errors should not be perceived as an

unnecessary extra step of statistical testing that can be avoided,

because decisions about these factors are unwittingly made using
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the traditional approach of setting a = 0.05. For a given study, it

will not be possible to detect some effect sizes at a = 0.05, and

when the researcher simply fails to consider how setting a = 0.05

can affect b for a meaningful potential effect size, they are

unknowingly providing a study-specific cost ratio that may be

heavily weighted in favour of reducing Type I errors, at the

expense of experimental power, or vice versa, depending on the

sample size of the study. Turning a blind eye to Type II errors, in

favour of controlling a Type I error rate, allows b to fluctuate as a

function of the sample size and variability. Although the

traditional approach of ignoring Type II error probabilities may

be easy, it can result in poor decisions. Our goal is to improve

upon an obviously flawed hypothesis-testing system while working

under the constraints of that system, because we acknowledge that

researchers are not very likely to abandon an approach that is so

easy to use and so widely understood.

Current practice involves a bias against accepting a falsehood

(Type 1 error), where rejecting a truth (Type II error) is regarded

as ‘‘healthy scepticism’’ [6], implying that there is much lower cost

associated with Type II errors relative to the cost associated with

Type I error [7]. We set a at a value other than zero because,

while we want to limit our probability of falsely concluding there is

an effect (Type I error), we also want to limit the probability of

missing a real effect (Type II error). If one does not care at all

about missing real effects (Type II errors), then a b level of 1

becomes acceptable and Type I error can be minimized by simply

setting a = 0. The acceptability or magnitude of the potential for

Type II errors should be an area of concern for all researchers, no

matter the type of study performed. There are many cases where

we believe that failing to detect a real effect, should be considered

at least as serious, if not more serious than falsely detecting a non-

existent effect. Should natural resource industries be encouraged

to design low power environmental impact studies that would

never have any chance of detecting anything but extreme

environmental impacts using a = 0.05? In this case, a Type I

error would result in loss of economic opportunity, while Type II

error would result in environmental damage and associated

economic costs [8]. We feel that, despite the difficulty in its

quantification, the ratio of the importance of Type I vs. Type II

errors should always be discussed, rather than disregarded.

Arguments for using a single, arbitrary value of a for all studies

include: i) that it provides a consistent approach to statistical

analysis and; ii) that it an objective approach that avoids value

judgements; and iii) that it is easy to use. Arguments i) and ii) are

incorrect because p-values are dependent on sample size. Setting

a = 0.05 is not a truly consistent approach among studies because

as sample size increases, the observed effect size required to

produce a significant result using a = 0.05 decreases, so studies

with different sample sizes require different observed effect sizes to

yield a significant result. Because of this, consistently using a = 0.05

is not an objective approach. Subjectivity is merely shifted away

from the choice of a to the choice of sample size, such that if a

researcher wants to find statistical significance using a = 0.05 they

should conduct a test with a large sample size (while small sample

sizes could be used in the same way for cases in which the desired

result is non-significance). While argument iii), the ease of use of

a = 0.05 is certainly a benefit of using an arbitrary a, it is not

necessarily good science. Given the absence of a strong rationale

for continuing to use a single, arbitrary value for a among studies,

what should be the basis for setting a in individual studies?

We argue that, in almost all contexts, the goal of statistical

testing is to aid us in making conclusions that limit the probabilities

of making mistakes, whether they be Type I or II errors. We think

a strong case can be made that in most studies (and perhaps all) a
should be set with the objective of either minimizing the combined

probabilities of making Type I or Type II errors at a critical effect

size, or minimizing the overall cost associated with Type I and

Type II errors given their respective probabilities. This can be

done rather simply if researchers explicitly consider the relative

importance of avoiding Type I vs. II errors and estimate, a priori,

what would constitute a relevant critical effect size. This makes it

possible to set a study-specific optimal a level that can minimize

either the average of the probabilities of Type I and Type II error

at the critical effect size, or instead minimize the cost-weighted

average of Type I and Type II errors. The optimal a approach can

prevent the inflated overall error rates (combined probability of

either a Type I or Type II error) that result from arbitrarily using

a = 0.05, and requires that the user be transparent concerning

detectability of a priori critical effect sizes and the relative

importance of avoiding Type I and II errors. We describe a

straightforward and flexible method for setting study-specific

optimal a levels that is easily applicable in all pure and applied

areas of scientific research and leads to optimal, evidence-based

conclusions. We propose an approach to setting an optimal a level

that has the flexibility to minimize either the combined

probabilities of Type I errors and relevant Type II errors, or the

minimize the relative cost of errors, and can incorporate specified

or unknown critical effect sizes, relative costs of Type I and Type

II errors or prior probabilities of hypotheses. This simple method

can be used to derive an optimal a level that can be used by any

researcher, setting NHST on a course of scientifically valid use and

in a manner that leads to better decisions.

The optimal a level for any null hypothesis significance test

depends on i) the prior probabilities that the null and alternate

hypotheses are true, which are typically unknown but can

therefore be assumed to be equal under Laplace’s principle of

indifference [9], ii) the relative costs of Type I and II errors, which

are also often unknown but are assumed equal when the goal is to

minimize combined probabilities of Type I and Type II error, iii)

the critical effect size, iv) the sample size of the study, and v) the

variability in the data. The remainder of this paper describes how

the optimal a approach deals with prior probabilities, costs of

Type I and II errors, and critical effect size estimation, provides a

list of steps required to calculate an optimal a for any NHST. Case

studies of the optimal a approach applied to previously published

data [10–12] are also provided.

Optimal a – the basic approach
The combined probability of making a Type I error or a

relevant Type II error for a particular study (v) is the average of a

Figure 1. The non-linear relationship between a and b. The
relationship between a and b for an independent 2-sample, 2-tailed t-
test with n1 = n2 = 10, and critical effect size = 1 s.
doi:10.1371/journal.pone.0032734.g001

Optimizing a for Statistical Hypothesis Tests
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and b if we assume that the prior probabilities of the alternate and

the null hypotheses to be equal (Equation 1).

v~
azb

2
ð1Þ

In the absence of reliable information concerning prior probabil-

ities (as is often the case in science), the assumption of equal prior

probabilities is the only rational assumption [9]. However, if the

probabilities of the alternate and null hypotheses are known and

unequal, the probabilities of Type I and Type II error should still

be averaged as in Equation 1, but with a and b each multiplied by

their relative prior probabilities of the null and alternate

hypotheses being true, respectively.

Due to the nonlinear but negative and monotonic nature of the

relationship between a and b (Figure 1), it is possible, through

iterative examination of v over a range of a values, to identify a

unique combination of a and b that minimizes the combined

probability of Type I and Type II error (v) for a desired critical

effect size, in a study with a given sample size (Figure 2).

Incorporating unequal costs of Type I and Type II errors
Although minimizing the combined probabilities of Type I and

Type II errors is likely the main goal of statistical testing for

situations of pure scientific inquiry, research in the applied sciences

may be more interested in statistical testing for the purpose of

minimizing the overall costs of error (Figure 3). Overall costs of

error can be minimized by choosing the a level associated with the

minimum average of a and b weighted by the relative costs of

Type I and Type II errors, vc (Equation 2).

vc~
CI=II � a
� �

zb

CI=IIz1
ð2Þ

Where CI/II is the relative cost of Type I/Type II errors. In some

cases it may be clear that one type of error is more serious than the

other, either in terms of financial cost (e.g. when looking at the

effects of a particular level of catch on an economically important

fish population), human health (e.g. when screening for side effects

of cancer treatment drugs), or research progress (e.g. any ‘basic’

science question). In these cases, optimal a level should be set to

minimize the probability-weighted average of the relative costs of

Type I and Type II errors (or equivalently, minimizing the cost-

weighted average of a and b) instead of minimizing the combined

probabilities Type I and Type II error. Setting decision-making

thresholds in a way that accounts for the relative costs of Type I

and Type II errors is an area of enquiry that has been largely

unexplored in many scientific fields and it is particularly relevant

to research where the costs of Type I and II errors are seen as

potentially ‘estimable’ (e.g. environmental effects monitoring,

pharmaceutical testing, or disease treatment efficacy). Minimizing

overall cost of error implies that while making conclusions based

on evidence is still a priority, some of the overall confidence in the

conclusion should be sacrificed to make it more likely that when

errors do occur, they are the least costly type of error (see Field et

al. [13] for a discussion of this technique for environmental

monitoring and management). If there are known financial costs

associated with Type I and Type II errors, then calculating the

relative cost of Type I/Type II error is simple (divide the cost of

Type I error by the cost of Type II error), but we acknowledge that

Figure 2. Determination of optimal a from the a priori
combined probabilities of Type I and Type II error. a and v
(the average of Type I and Type II error) for independent, 2-tailed, 2-
sample t-tests (n1 = n2). Data are for 3 (dotted line), 10 (solid line), and
30 (double line) samples per group, with critical effect sizes of 1 SD of
either group. Drop lines indicate the minimum average of Type I and
Type II error and its associated value of a.
doi:10.1371/journal.pone.0032734.g002

Figure 3. The average of the probabilities of Type I and Type II
error, v (a) and the cost-weighted probability of errors, vc (b).
The combined probabilities of Type I and Type II error, v (a), and the
cost-weighted probability of errors, vc (b). The a level at i) minimizes
average error (assuming a Type I/Type II error cost ratio of 1), while the
a level at ii) minimizes the cost-weighted probability of errors at a Type
I/Type II error cost ratio of 4.
doi:10.1371/journal.pone.0032734.g003

Optimizing a for Statistical Hypothesis Tests
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financial costs associated with one or both types of error are often

unknown. In some cases it maybe be possible for consensus about

the relative seriousness (i.e. cost) of Type I/Type II errors to be

reached among stakeholders, and where dollar values cannot be

used to quantify relative cost of error (e.g. an agreement that the

consequences of Type I error are twice as serious as the

consequences of Type II error). Methods for quantifying the

relative costs of Type I/Type II error will therefore be study

specific and will not be discussed further here, although we hope

this work will generate more exploration of the relative costs of

error in scientific research. Our opinion is that unless there is a

strong justification for unequal costs of Type I and Type II errors,

statistical testing in science should remain unbiased by costs of

error and Type I and Type II errors should be treated as equally

serious, allowing for the minimization of combined probabilities of

Type I and Type II error.

Determining a critical effect size
A critical effect size is the magnitude of effect in the response

variable that would be considered important to detect if it exists,

and can be determined prior to conducting an NHST. All studies

ought to include some discussion of what size of an effect would

constitute a meaningful difference from the null hypothesis [14]. It

has been argued that researchers should be far more interested in

the size of the effect observed than in its statistical significance [15]

and we would agree that effect sizes are often not given enough

attention in science. There is a vast body of literature that argues

for the use of an effect size statistic [16], and ,60 different effect

sizes measures have been described [17]. Calculating b requires an

explicit decision about the ‘critical’ effect size that a researcher

would want to be able to detect, if real, and this must be decided

upon, a priori. We do not advocate a researcher use the observed

effect size in a study to determine the optimal a and b, this is

acknowledged as a misleading, and completely confounded use of

power analysis [18]. Many researchers have, and will continue to,

struggle with setting a critical effect size because in basic science

(and often in applied science) there is no completely objective

rationale for choosing a critical effect size, and there is often no

consensus among researchers concerning what magnitude of effect

would be considered meaningful. Nonetheless, most researchers do

have opinions about what effect sizes would be too small to be

considered significant and what effect sizes would be too large to

be considered non-significant. Devising a study-specific critical

effect size and incorporating it into the calculation of a enables

researchers to be transparent about these opinions and lowers the

probability that the choice of a does not result in relevant effect

sizes leading to ‘non-significant’ conclusions and irrelevant effect

sizes leading to ‘significant’ conclusions. If there is no clear

rationale for a specific effect size, multiple critical effect sizes could

be used and results could be presented for ‘small’, ‘intermediate’

and ‘large’ critical effect sizes.

Sample size and variability
This paper describes how to determine the optimal a after data

have been collected, such that the sample size and estimated

population variability are inherent and immutable characteristics

of the experimental design. Contrary to the case with critical effect

size, we think that it is most appropriate to use the observed

variability and sample size of your data set, in order to yield the

best estimate of power. This would be an appropriate and

informative use of a power analysis; using the achieved sample

size, a priori critical effect size and estimated variability, in order to

most accurately determine Type II error probability. The optimal

a can also play an important role in experimental design if used

before data are collected (i.e. to determine the minimum sample

size required to achieve a desired overall probability of error), in

much the same way that one would use a prospective power

analysis to design an experiment.

Results and Discussion

To provide examples of how the optimal a approach can be

applied for actual scientific research, we decided to re-analyse the

results of two simple, typical null hypothesis significance tests from

high-profile journals and one null hypothesis significance test used

as an example in a statistics textbook. These examples will show

how the optimal a approach affects data interpretation for

different types of statistical tests in different fields, under

circumstances of high and low statistical power.

Case study 1: t-test with low power
First, consider a study comparing mountain yellow-legged frog

(Rana muscosa) tadpole densities between naturally fishless lakes and

lakes that had undergone complete removal of previously

introduced rainbow trout (Oncorynchus mykiss) and brook trout

(Salvelinus fontinalis) three years before sampling the tadpole

population [10]. One of the study objectives was to test whether

the effects of previously introduced fish on amphibian abundance

were still present 3 years after the removal of the introduced

species. The author tested the hypotheses, HO: there is no

difference in mean number of tadpoles/10 m of shoreline between

naturally fishless and fish removal lakes (m1 = m2), and HA: there is

a difference in mean number of tadpoles/10 m of shoreline

between naturally fishless and fish removal lakes (m1?m2). The

number of tadpoles/10 m of shoreline was measured in 8 naturally

fishless lakes and 3 lakes that had undergone removal of previously

introduced fish (i.e. n1 = 8 and n2 = 3). The mean numbers of

tadpoles/10 m of shoreline observed were 29.62 and 10.1 at

fishless control lakes and fish removal lakes, respectively, with an

observed pooled standard deviation of 17.27 tadpoles/10 m of

shoreline. The author performed an independent, 2-sample, 2-

tailed t-test on these data, reported a p-value of 0.14, and

considered the result non-significant, presumably using the

standard a of 0.05 (although their choice of a was not explicitly

stated).

The conclusion of the t-test depends on the method used to

choose a and the desired critical effect size (Table 1). As there was

no justification for unequal prior probabilities of hypotheses or

costs of Type I and Type II errors apparent in the introduction of

the paper, we assumed equal prior probabilities and costs of errors.

In the absence of a strong rationale for any particular critical effect

size, we chose to calculate optimal a levels for 3 different potential

critical effect sizes; an effect size we consider to be ‘large’,

representing a difference equal to 1.5 s or a 690% difference from

the control mean, and 2 smaller effect sizes representing

differences equal to 1s and 0.5s or 660% and 630% difference

from the control mean, respectively. Using the traditional a of

0.05, the averages of Type I and Type II error at the critical effect

size were 0.272, 0.394, and 0.474, for the large, medium and small

effect sizes, respectively. Using the ‘optimal a’ approach, the

averages of Type I and Type II errors were smaller, at 0.202,

0.319, and 0.443, for the large, medium and small effect sizes,

respectively. The associated optimal a levels were 0.191, 0.266,

and 0.323, so using optimal a has increased the probability of

making a Type I error in all cases but dramatically lowered the

probability of making Type II errors. In fact, for a = 0.05, using a

small or medium critical effect size resulted in a .75% probability

of failing to detect a true difference. Even when the critical effect

Optimizing a for Statistical Hypothesis Tests
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size was 690% difference from the control mean there was almost

a 50% chance of missing a real effect of that size. This is a special

concern when the major conclusion is one of ‘no effect’ as was the

case in this paper. Using the optimal a method, we would

conclude that the experimental design was not appropriate for

detecting a small effect size – the minimum chance of making a

mistake using optimal a is 44.3%, which is not substantially

different than a coin toss (note: the probability of making a mistake

using a = 0.05 was 47.4%). However, the minimum probability of

making an error was 31.9% for a medium effect size and 20.2%

for a large effect size and in both cases using the optimal a
approach would have resulted in reaching the opposite conclusion

(i.e. there was a significant difference in tadpole density between

fishless lakes and fish-removed lakes). So, if the objective is to

minimize the probability of making an error (Type I or II) – and

there is rarely, if ever, a different and rational objective – then the

author made the wrong conclusion regardless of his choice of effect

size, and should have concluded that there was an insufficient

number of samples to be able to make any strong conclusion, but

that there was better evidence to for a difference between lake

types than for no difference between lake types.

Case study 2: regression with high power
Now consider a study examining expression of a priori defined

gene sets within human diabetic muscle tissue to determine

whether there are sets of genes whose expression is correlated with

insulin resistance and aerobic capacity [11]. One of the gene sets

examined was a co-regulated set of genes involved in oxidative

phosphorylation (OXPHOS-CR), and the authors wanted to test

whether there was a relationship between the mean expression of

this gene set in the muscle tissue of individuals and the total-body

aerobic capacity of individuals (VO2max). The authors tested the

hypotheses HO: there is no relationship between mean expression

of OXPHOS-CR genes and VO2max of individuals, and HA:

there is a relationship between mean expression of OXPHOS-CR

genes and VO2max of individuals. The mean expression of

OXPHOS-CR genes and the VO2max was measured in 43 age-

matched male individuals with different levels of glucose tolerance

(i.e. N = 43). The authors performed a simple linear regression

analysis on the data, using the clinical variable (VO2max) as the

dependent variable and mean gene expression as the predictor

variable. They found that 22% of the variability in VO2max could

be explained by mean OXPHOS-CR gene expression

(R2
adj = 0.22), and the relationship had a p-value of 0.0012, which

was considered significant by the authors, using a = 0.05.

Despite the small p-value (0.0012), the significance of the

regression depends on the method used to choose a and the

desired critical effect size (Table 2). As there was no justification

for unequal prior probabilities of hypotheses or costs of Type I and

Type II errors apparent in the introduction of the paper, we

assumed equal prior probabilities and costs of errors. In the

absence of a strong rationale for any particular critical effect size,

we chose to calculate optimal a levels for 3 different potential

critical effect sizes; an effect size we consider to be ‘large’

(R2$0.75), where the independent variable explains 75% of the

variability in the dependent variable (representing a strong

relationship between the dependent and independent variables),

and 2 smaller effect sizes (R2$0.5 and R2$0.25) where 50% and

25% of the variability in the dependent variable could be

explained by the variability in the independent variable (repre-

senting weaker relationships between the dependent and indepen-

dent variables). Using the traditional a of 0.05, the averages of

Type I and Type II error at the critical effect sizes were 0.0250,

0.0251, and 0.0568, for the large, medium and small effect sizes,

respectively. Using the optimal a approach, the averages of Type I

and Type II errors were smaller, (0.0000383, 0.00381 and 0.0567,

for the large, medium and small effect sizes, respectively) and had

optimal a levels of 0.0000286, 0.00378 and 0.0531 and for the

large, medium and small critical effect sizes, respectively. The

conclusions reached using the optimal a approach are consistent

with the conclusions reached by the authors using a = 0.05, except

in the case of the large critical effect size, which represents a

situation where the authors would only be interested in detecting a

strong relationship between the dependent and independent

variables. If detecting only strong relationships between variables

is important then for 43 samples, a can be set at a very low level

and there will still be very high statistical power to detect a strong

relationship. The use of a = 0.05 for this test in cases where only

strong relationships would be important to detect if they exist

results in an unnecessarily high level of Type II error and keeps the

average of a and b unnecessarily high - holding a at 0.05 makes

0.025 the smallest possible average of a and beta, when beta

approaches 0. If relationships as weak as R2 = 0.25 are important

to be able to detect for this test, then the optimal a level is close to

a = 0.05, and results in both methods concluding that the observed

relationship of R2 = 0.22 is significantly different from no

Table 1. Probabilities of Type I (a), Type II (b) and average
error (v), with corresponding test conclusions for large,
medium and small effect sizes (d) using standard a levels and
by setting a to minimize combined probabilities of Type I and
Type II error.

Critical Effect Size Choice of a a b v Resulta

large (d$1.5 sp) Standard 0.05 0.493 0.272 non-significant

Optimal 0.191 0.212 0.202 significant

medium (d$sp) Standard 0.05 0.738 0.394 non-significant

Optimal 0.266 0.372 0.319 significant

small (d$0.5 sp) Standard 0.05 0.898 0.474 non-significant

Optimal 0.323 0.563 0.443 significant

ap-value used for significance testing is 0.14 [10].
Probabilities are calculated for a two-sample t-test (two-tailed) with n1 = 3,
n2 = 8, and sp = 17.27, from [10].
doi:10.1371/journal.pone.0032734.t001

Table 2. Probabilities of Type I (a), Type II (b) and average
error (v), with corresponding test conclusions for large,
medium and small effect sizes (d) using standard a levels and
by setting a to minimize combined probabilities of Type I and
Type II error.

Critical Effect
Size

Choice
of a a b v Resulta

large (R2$0.75) Standard 0.05 7.37*10211 0.0250 significant

Optimal 0.0000286 0.0000266 0.0000276 non-significant

medium (R2$0.5) Standard 0.05 0.000136 0.0251 significant

Optimal 0.00378 0.00384 0.00381 significant

small (R2$0.25) Standard 0.05 0.0635 0.0568 significant

Optimal 0.0531 0.0603 0.0567 significant

ap-value used for significance testing is 0.0012 [11].
Probabilities are calculated for a simple linear regression with N = 43, from [11].
doi:10.1371/journal.pone.0032734.t002
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relationship. It would be unusual to set a critical effect size at a

value as large as R2 = 0.75 without a very strong rationale and so

optimal a would have lead to similar conclusions as using

traditional a = 0.05 in most cases.

Case study 3: analysis of variance with unequal cost
ratios

Third, consider a study examining differences in crop yields

among three soil types, sand, clay and loam [12]. The authors

tested the hypotheses Ho: there are no differences in mean crop

yield among the three soil types (m1 = m2 = m3), and Ha: there are

differences in mean crop yield among the three soil types

(m1?m2?m3). Crop yields were measured in 10 randomly selected

fields for each of the 3 soil types (i.e. N = 30, k = 3). The mean

observed crop yields were 9.9, 11.5 and 14.3 units for sand, clay

and loam, respectively, and the observed within-group pooled

standard deviation was 3.4. The researchers performed a one-way

ANOVA on these data, and reported a p-value of 0.02495, which

would be considered significant at a = 0.05.

The significance of these data depend on the method used to

choose a, the critical effect size and relative seriousness of Type I

vs. Type II errors (Table 3). For simplicity, we have assumed that

the researchers would consider it important to be able to detect a

standard deviation among group means that is at least as large as

the standard deviation within-groups (i.e. critical effect size of

SDamong groups/SDwithin groups = 1). We assumed equal prior

probabilities of null and alternate hypotheses and examined the

influence of 3 different Type I/Type II error cost ratios, a situation

where the cost of a Type I error is 4 times as serious as the cost of a

Type II error; a situation where the relative cost of Type I and

Type II error are equal, and a situation where the cost of a Type I

error is 1/4 the cost of a Type II error. Using the traditional a of

0.05, b and the average of the probabilities of Type I and Type II

error remain constant for the different Type I/Type II error cost

ratios. This is not ideal because there is no logical rationale for

maintaining the same willingness to make a Type I error as the

relative costs of Type I and II errors change. However, using

optimal a results in a, b and the cost-weighted average of the

probabilities of Type I and Type II error changing under different

cost ratio scenarios. For the critical effect size we assumed in this

example, the optimal a results in the test being considered non-

significant (contrary to the outcome using a = 0.05) except for the

case where the cost of Type I error is considered to be one quarter

the cost of Type II error. When costs of Type I and Type II error

are considered equal in order to minimize the average of both

Type I and Type II error, the optimal a is 0.0142, making the

optimal conclusion ‘non-significant’ for this critical effect, with

98.8% power. For each scenario, the conclusion reached using an

optimal a was most appropriate for the data, given the differing

relative costs of Type I and Type II error.

Conclusion
There is a growing consensus that a = 0.05 is not an ideal

method for statistical decision-making, and we have developed an

approach to setting a that improves our ability to reach

appropriate conclusions. Setting an optimal a does require the

careful consideration of critical effect size, costs of Type I and II

error and prior probabilities but these characteristics of any study

always warrant consideration. Setting a at any particular value

(including using a = 0.05) implies specific critical effect sizes and

relative costs of Type I and II errors. The only difference between

using an optimal a or a standard a is whether critical effect sizes

and relative costs are thoughtfully considered and stated, or

implied and unstated. The standard a approach has, therefore, not

served science well; resulting in mistaken conclusions more often

than necessary and allowing scientists to have the standard a level

arbitrarily determine the size of effect that they are likely to

consider significant, if the effect is real, and to have this arbitrary a
level determine the relative chance of Type I vs. Type II error for

meaningful potential effect sizes. We have described a rigorous

approach to setting a that addresses both of these important

(albeit, difficult) decisions and has an explicit and defensible

objective, minimizing the combined probabilities or costs of

making errors, and we recommend that this approach be applied

in any field where null hypothesis significance tests are being used.

More research is needed concerning how to estimate and properly

incorporate appropriate critical effect sizes and relative costs of

Type I and II errors into decision-making thresholds for pure and

applied research questions. We are optimistic that the use of the

optimal a approach will spur research in these areas and hope that

these research gaps do not prevent the implementation of a

technique that, even in its most basic form, offers strong

improvements in probability of errors and decision-making

transparency, over the arbitrary standard a approach. We

acknowledge that the optimal a approach to null hypothesis

significance testing is not without drawbacks and shortcomings,

the traditional approach of setting a = 0.05 has these same

drawbacks and shortcomings, but does a much worse job of

addressing them. When the weaknesses of our approach are

weighed against the weaknesses of the traditional a = 0.05

approach, it is impossible to ignore that our approach is a

dramatic improvement, even if it is not perfect. Our goal is to

Table 3. Probabilities of Type I (a), Type II (b) cost-weighted average error (vc), and average error (v), with corresponding test
conclusions for Type I/Type II error cost ratios of 4, 1, and 0.25 using standard a levels and by setting a to minimize cost-weighted
average of probabilities of Type I and Type II error.

Type I/Type II error cost ratio Choice of a a b vc v Resulta

4 Standard 0.05 0.00213 0.0404 0.0261 significant

Optimal 0.00658 0.0274 0.0107 0.0170 non-significant

1 Standard 0.05 0.00213 0.0261 0.0261 significant

Optimal 0.0142 0.0121 0.0132 0.0132 non-significant

0.25 Standard 0.05 0.00213 0.0117 0.0261 significant

Optimal 0.0282 0.00506 0.00967 0.0166 significant

ap-value used for significance testing is 0.02495 [12].
Probabilities are calculated for a one-way ANOVA with N = 30, k = 3, and sp (within groups) = 3.4, and critical effect size = sp (within groups) from [12].
doi:10.1371/journal.pone.0032734.t003
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improve upon an obviously flawed hypothesis-testing system while

working under the constraints of that system, because we

acknowledge that researchers are not very likely to abandon an

approach that is so easy-to-use and so widely understood.

Analysis

How to calculate the optimal a (post data collection, pre-
NHST)

1. Determine critical effect size. This must be determined

a priori, and is the magnitude of the effect that would be considered

important to detect, if real. The type of effect size will be

dependent on the type of NHST to be conducted. We suggest a

value that is meaningful for the study, and is based on knowledge

of the system or what other studies have observed to be important

in your system. For more information on choosing and calculating

a critical effect size, we recommend the reviews [14, 15 and 17]. If

you choose an absolute (i.e. unstandardized) critical effect size, a

measure of variability must also be provided.
2. Choose whether to minimize combined probabilities of

Type I and Type II error (v) or relative cost of errors

(vc). If the average of the probabilities of Type I and Type II

error is to be minimized, then the relative costs of Type I and

Type II errors can be ignored and Equation 1 should be used. If

cost of errors is to be minimized, then an estimate of the Type I/

Type II error cost ratio is needed and Equation 2 should be used.

Equations can also be weighted by the prior probabilities of null

and alternate hypotheses at this stage, for special cases where prior

probabilities are known with some degree of confidence.
3. Calculate optimal a. Using the chosen equation of v

(average error) from step 2, calculate v for a range of a levels. For

each a level chosen, the associated b is 1 minus statistical power,

calculated using the chosen a level, the study sample size and the

critical effect size chosen in step 1. Look at the v levels calculated

for the range of a levels and find the value for a that results in the

lowest resulting v. This is the optimal a that minimizes the

probability/cost of making a wrong conclusion. We have

developed R code that will conduct this iterative process of

determining the optimal a through examination of v over a range

of a levels (Text S1, Text S2, Text S3).
4. Report all of the following values for each

NHST. Sample size, chosen critical effect size(s), chosen

relative cost of Type I to Type II error (if applicable), optimal a,

optimal b, and v (average of Type I and Type II error).

Supporting Information

Text S1 R code to calculate an optimal a for one-
sample, two-sample, or paired t-tests for one or two
tailed hypotheses is provided as supplementary infor-
mation. This will perform the iterative optimization steps for

choosing an optimal a based on sample size(s) and Cohen’s d

critical effect size provided by the user.

(TXT)

Text S2 R code to calculate an optimal a for two-tailed
simple linear correlation and regression tests is provid-
ed as supplementary information. This will perform the

iterative optimization steps for choosing an optimal a based on

sample size and correlation coefficient critical effect size provided

by the user.

(TXT)

Text S3 R code to calculate an optimal a for ANOVA is
provided as supplementary information. This will perform

the iterative optimization steps for choosing an optimal a based on

the numerator degrees of freedom, denominator degrees of

freedom and Cohen’s f2 critical effect size provided by the user.

(TXT)
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