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Setting Reserve Requirements to Approximate the
Efficiency of the Stochastic Dispatch

Vladimir Dvorkin Jr., Student member, IEEE, Stefanos Delikaraoglou, Member, IEEE,

and Juan M. Morales, Senior member, IEEE

Abstract—This paper deals with the problem of clearing
sequential electricity markets under uncertainty. We consider the
European approach, where reserves are traded separately from
energy to meet exogenous reserve requirements. Recently pro-
posed stochastic dispatch models that co-optimize these services
provide the most efficient solution in terms of expected operating
costs by computing reserve needs endogenously. However, these
models are incompatible with existing market designs. This paper
proposes a new method to compute reserve requirements that
bring the outcome of sequential markets closer to the stochastic
energy and reserves co-optimization in terms of cost efficiency.
Our method is based on a stochastic bilevel program that
implicitly improves the inter-temporal coordination of energy
and reserve markets, but remains compatible with the European
market design. We use two standard IEEE reliability test cases
to illustrate the benefit of intelligently setting operating reserves
in single and multiple reserve control zones.

Index Terms—Bilevel optimization, electricity markets, market
clearing, reserve requirements, stochastic programming.

NOMENCLATURE

The main notation used in this paper is stated below.

Additional symbols are defined in the paper where needed. All

symbols are augmented by index t when referring to different

time periods.

A. Sets and Indices

Λ Set of transmission lines.

ω ∈ Ω Set of wind power production scenarios.

i ∈ I Set of conventional generation units.

j ∈ J Set of loads.

k ∈ K Set of wind power units.

n ∈ N Set of nodes.

z ∈ Z Set of reserve control zones.

{}n Mapping of {} into the set of nodes.

{}z Mapping of {} into the set of reserve control zones.
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B. Decision variables

δDA
n Day-ahead voltage angle at node n [rad].

δRT
nω Real-time voltage angle at node n in scenario ω [rad].

DU/D
z Up-/Downward reserve requirement in zone z [MW].

Lsh
jω Shedding of load j in scenario ω [MW].

PC
i Day-ahead dispatch of conventional unit i [MW].

PW
k Day-ahead dispatch of wind power unit k [MW].

PW,sp
kω Wind spillage of unit k in scenario ω [MW].

RU/D
i Up-/Downward reserve provision from unit i [MW].

rU/D
iω Up-/Downward reserve deployment of unit i in sce-

nario ω [MW].

C. Parameters

πω Probability of occurrence of wind power production

scenario ω.

Ci Day-ahead price offer of unit i [$/MWh].

CU/D
i Up-/Downward reserve price offer of unit i [$/MWh].

CVoLL Value of lost load [$/MWh].

Fnm Capacity of transmission line (n,m) [MW].

Lj Demand of load j [MWh].

P i Day-ahead quantity offer of unit i [MW].

R
U/D

i Up-/Downward reserve capacity offer of unit i [MW].

Ŵk Expected generation of wind power unit k [MW].

Wkω Wind power realization of unit k in scenario ω [MW].

Xnm Reactance of transmission line (n,m) [p.u.].

I. INTRODUCTION

ELECTRICITY markets are commonly organized in a

sequence of trading floors in which different services

are traded in various time-frames. According to the Euro-

pean market architecture, this sequence consists of reserve

and day-ahead markets that are cleared 12-36 hours before

actual power system operation and pertain to trading reserve

capacity and energy services, respectively. Getting close to

actual delivery of electricity, a real-time market is organized

to balance deviations from the initial schedule. This market

design has been established following a conventional view

of power system operation, where uncertainty was induced

by equipment contingencies or minor forecast errors of elec-

tricity demand. However, considering the increasing shares of

renewable generation, this design has limited ability to cope

with variable and uncertain energy sources, while maintaining

a sufficient level of reliability at a reasonable cost [1].

To account for the uncertain nature of renewable generation,

recent literature proposes economic dispatch models [2], [3]
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and unit commitment formulations [4]–[6] based on stochastic

optimization. Unlike the conventional market design, which

downplays the cost of uncertainty, the stochastic model makes

use of a probabilistic description of uncertainty and dispatches

the system accounting for plausible forecast errors. In this

case, reserve requirements are computed endogenously, instead

of relying on rule-of-thumb methods such as as the N-

1 security criterion. Although the resulting stochastic ideal

schedule provides the most efficient solution in terms of

expected operating system costs, this design is not adopted

in practice due to still unresolved issues like the violation of

the least-cost merit-order principle [7].

There are several research contributions devoted to approx-

imating the stochastic ideal solution, i.e., approaching the

expected operating cost provided by the stochastic dispatch

model while sidestepping its theoretical drawbacks, namely,

the violation of cost recovery and revenue adequacy for certain

realizations of the random variables. The cost recovery prop-

erty guarantees that the profit of each conventional producer

is greater than or equal to its operating costs. The revenue

adequacy property requires that the payments that the system

operator must make to and receive from the participants do

not cause it to incur a financial deficit. Authors in [8] propose

a new market-clearing procedure according to which wind

power is dispatched to a value different than its forecast

mean, such that the expected system cost is minimized. This

procedure respects the merit order of the day-ahead market and

thus ensures cost recovery of the flexible units. An enhanced

stochastic dispatch that guarantees both cost recovery and

revenue adequacy for every uncertainty realization is intro-

duced in [9]. The main obstacle preventing the implementation

of these two models is that they require changing the state

of affairs of conventional market structures. Finally, authors

in [10] propose a stochastic dispatch model that aims at

generating proper price signals that incentivize generators

to provide reliability services akin to reserves. This model

also guarantees cost recovery and revenue adequacy for every

uncertainty realization, but in the meantime it does also require

significant changes in market design as well as in the offering

strategies of the renewable power producers.

More in line with the current practices of the European

market design, [11] proposes a systematic method to adjust

available transfer capacities in order to bring operational effi-

ciency of interconnected power systems closer to the stochastic

solution. In the US electricity markets, several Independent

System Operators (ISOs), e.g., the California ISO (CAISO)

and Midcontinent ISO (MISO) are implementing new ramping

capacity products to increase the ramping ability of the system

during the real-time re-dispatch in order to cope with steep

ramps of net load [12]. Essentially, these flexibility products

aim to resemble the stochastic dispatch, which inherently finds

the optimal allocation of flexible resources between energy

and ramping services. In the same vein, several US ISOs,

as for instance the New York ISO, the ISO New England,

the MISO, and the Pennsylvania-New Jersey-Maryland (PJM)

market, have introduced an operating reserve demand curve

(ORDC) in their real-time market [13]. Motivated by the

two-stage stochastic dispatch model, the ORDC mechanism

adjusts electricity prices to reflect the scarcity value of reserves

for the system operator and incentivize market players to

dispatch their units according to a socially optimal schedule.

The price adjustment through ORDC leads theoretically to

perfect arbitrage between energy and reserves in case these

two products are co-optimized [14]. However, in the European

market that separates energy and reserve capacity trading this

arbitrage is inefficient per se, since market players have to

value reserves prior to the energy-only market clearing.

This paper proposes an alternative approach to approximate

the stochastic ideal dispatch solution through an intelligent

setting of zonal reserve requirements in sequentially cleared

electricity markets akin to the European architecture. Here,

we solely focus on operating reserves, i.e., generation that is

dispatched to respond to net load variations based on economic

bids, rather than on regulating services that are activated by

automatic generation control. Traditionally, requirements for

operating reserves are defined based on deterministic security

criteria, such as N-1 security constraint violations, where

reserves are dimensioned to cover the largest contingency

in the system [15], or based on a mean forecast load error

and forced outage rate of system components over a certain

horizon, as in the PJM market [16]. The main drawback

of those approaches is that they ignore the probabilistic

nature of renewable generation and neglect the economic

impact of reserve needs on subsequent operations. In order

to account for the operational uncertainty, recent literature

proposes reserve dimensioning methods based on probabilistic

criteria, according to which reserve requirements are drawn

from the probabilistic description of uncertainties [17]–[26].

For example, [17] suggests to define the reserve needs such

that they cover 97.7% (3σ) of the total variation of a Gaus-

sian distribution modeling the joint wind-load uncertainty,

disregarding the fact that wind power forecast errors are

described by non-Gaussian distributions [24]. As a remedy to

this drawback, [25] proposed a method for setting the reserve

requirements using non-parametric probabilistic wind power

forecasts. Flying brick and probability box methods in [20] and

[21], respectively, compute robust envelopes that enclose the

net load with a specified probability level. The recent extension

of these methods called flexibility envelopes was suggested in

[22]. These envelopes are based on the same principles but

evolve in time to respect the temporal evolution of reserve

requirements. As demonstrated in [20], [21] and [23], the

probabilistic reserve concepts might be integrated into the

actual energy management system and derive requirements for

capacity, ramping capability and ramping duration of flexible

units. In contrast to the deterministic practices, the benefit

of these methods is that reserve requirements, drawn from

accurately predicted distributions, minimize extreme balancing

actions provoked by under- or over-procurement of reserves.

However, probabilistic requirements are still an exogenous

input to the power dispatch, which disregards their potential

impact on expected cost.

To this end, we propose a model to determine reserves based

on a stochastic bilevel programming problem, which provides

the cost-optimal reserve quantities for a European-type market

structure. In line with the stochastic dispatch mechanism, our
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model computes the reserve requirements that minimize the

expected system cost, anticipating their projected impact on

the subsequent operations. Additionally, these requirements

are defined accounting for the actual decision-making process,

i.e., the sequence of market-clearing procedures, zonal repre-

sentation of the power network and the least-cost merit-order

principle in all trading floors. As a result, the implementa-

tion of these requirements in a conventional market setting,

results in a compromise solution between traditional reserve

dimensioning practices and the stochastic dispatch model in

terms of expected operating cost. Naturally, our approach

has limitations: we consider a simplified market setup with

a strictly convex representation. Nevertheless, our results do

indicate that the intelligent setting of reserve requirements

can enhance the short-run cost efficiency of the conventional

market with large shares of renewable generation.

The proposed model can be used as an analytic tool to

provide technical and economic insights about the efficacy of

different reserve capacity quantification methods, while it can

be also used as a decision-support tool by system operators

during the reserve setting process. In the latter case, this model

can be presumably executed before the day-ahead reserve

capacity auction in order to define the reserve requirements

that will be used as input in the actual market-clearing

process. Nevertheless, the incorporation of this method in the

operational strategy of the system operator does not entail

any changes in the existing market setup, since the model

output is solely under the discretion of the system operator

and decoupled from market operations.

The reminder of this paper is organized as follows. Section

II describes the conventional market design and its counter-

factual stochastic representation. Section III introduces the

proposed stochastic bilevel programming problem to compute

the optimal reserve requirements that approximate the ideal

stochastic solution maintaining the sequential market structure.

Section IV explains the solution strategy based on the multi-

cut Bender’s algorithm for large-scale applications. Section V

provides applications of the proposed model to the IEEE-24

and IEEE-96 reliability test systems. Section VI concludes the

paper.

II. ELECTRICITY MARKET CLEARING MODELS

In this section, we first describe the conventional market

structure and the stochastic dispatch model. We then introduce

the necessary modeling assumptions and provide the mathe-

matical formulations of both models.

A. Conventional market and stochastic dispatch framework

In Europe, power markets are cleared in sequential and

independent auctions which can be represented by the sim-

plified decision-making process illustrated in Fig. 1(a), which

is referred to as the conventional market-clearing model. First,

the system operator defines zonal reserve requirements D
based on certain security standards. Then, the reserve capacity

market is cleared based on the offer prices and quantities

submitted by the flexible producers to find the optimal upward

and downward reserve allocation ΦR∗

that minimizes reserve

d
ay

-a
h
ea

d

re
al

-t
im

e

Reserve requirements

determination

D

Reserve procurement

min
ΦR

CR(ΦR)

s.t. QR(ΦR,D)

D

Day-ahead market

min
ΦD

CD(ΦD)

s.t. QD(ΦD,ΦR∗

)

ΦR∗

Real-time re-dispatch

min
ΦB

ω′

CB(ΦB
ω′)

s.t. QB(ΦB
ω′ ,ΦR∗

,ΦD∗

)

ΦD∗

ΦR∗

(a) Conventional market-clearing model

d
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h
ea

d

re
al

-t
im

e

Probabilistic

wind forecast

Look-ahead energy and reserve scheduling

min
ΦR,ΦD,ΦB

ω

CR(ΦR) + CD(ΦD) + E
ω
[CB(ΦB

ω)]

s.t. Q(ΦR,ΦD,ΦB
ω), ∀ω

{Wω;πω}

Real-time re-dispatch

min
ΦB

ω′

CB(ΦB
ω′)

s.t. QB(ΦB
ω′ ,ΦR∗

,ΦD∗

)

ΦR∗

ΦD∗

(b) Stochastic dispatch model.

Fig. 1. Decision sequences in conventional (a) and stochastic (b) dispatch
models.

procurement costs CR. This allocation accounts for upward

and downward reserve requirement constraints included in

the set QR. At the next stage, power producers submit their

price-quantity offers to the day-ahead market that provides the

optimal energy schedule ΦD∗

that minimizes the day-ahead

energy cost CD. The set of day-ahead market constraints QD

takes into account the reserve capacity ΦR∗

procured at the

previous stage. Closer to delivery time, when realization of

uncertainty ω′ is known, the system operator runs the real-time

market to define a set of optimal re-dispatch actions ΦB
ω′ that

minimizes the balancing cost CB, considering the previously

procured reserve ΦR∗

. In this conventional market design, the

choice of reserve requirements D has a direct impact on the

total expected system cost. In fact, the choice of D influences

reserve procurement decisions ΦR, which in turn affect day-

ahead ΦD and real-time ΦB energy dispatch decisions.

An alternative model for reserves and energy scheduling

is the stochastic dispatch model outlined in Fig. 1(b). This

is a two-stage stochastic programming model in which first-

stage decisions pertain to reserve procurement and day-ahead

energy schedule, whereas the second stage models the recourse

actions that restore power balance during real-time operation.

The stochastic dispatch model takes as input a probabilistic

wind power forecast in the form of a scenario set Ω and

endogenously computes reserve needs. This way, it naturally

coordinates all trading floors by co-optimizing reserve (ΦR)

and energy (ΦD) schedules, anticipating their impact on the

subsequent expected balancing cost E
ω
[CB(ΦB

ω)] estimated over

the scenario set Ω. It should be noted that the co-optimization

of reserve procurement and energy schedules is a requirement

for the implementation of this ideal coordination between the

different trading floors.

In the stochastic dispatch, reserve requirements are a

byproduct of the energy and reserve co-optimization problem,

resulting in the most efficient solution in terms of total

expected operating cost. Moreover, unlike the conventional
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market model that schedules reserve and day-ahead energy

quantities according to the least-cost merit-order principle,

the stochastic model schedules generation capacity accounting

for potential network congestion during real-time operations,

which may lead to expensive balancing actions [2]. This way

generators may be scheduled out-of-merit, i.e., more expensive

units are dispatched over less expensive ones, in order to

minimize the expected costs.

Despite its superiority in terms of cost efficiency, the

stochastic model suffers from several drawbacks preventing

its practical implementation. As already mentioned, the vi-

olation of the merit-order principle results in cost recovery

and revenue adequacy only in expectation, while for some un-

certainty realizations these two essential economic properties

may not hold [2]. This issue disputes the well-functioning of

electricity markets in long term, since flexible producers may

end up in loss-making positions in one or more scenarios,

despite the fact that their expected profit is non-negative.

Therefore, these market participants may opt out of the short-

run electricity markets or even be discouraged to perform

new investments if they are exposed to significant financial

risks. In the meantime, the fact that revenue adequacy is only

guaranteed in expectation exposes the market operator to the

risk of financial deficit. Therefore, a realistic implementation

of this market model would require the establishment of out-

of-the-market mechanisms, akin to the uplift payments used

in the US markets, to provide an ex-post compensation of

potential economic deficits. In view of this practical caveats,

we do not foresee an actual market clearing implementation of

the stochastic dispatch model. Moreover, the co-optimization

of day-ahead energy and capacity reserve markets is not

compatible with the European market structure, which dictates

that the trading of reserves and energy products is organized

in independent sequential auctions. However, in this work, we

show that the stochastic dispatch solution can be approximated

in the conventional market-clearing model by intelligently

setting the reserve requirements D, sidestepping the drawbacks

of the stochastic model and improving the efficiency of the

existing market setup.

B. Modeling assumptions

We use the following set of assumptions to derive compu-

tationally tractable yet sensible formulations of the different

dispatch models. Following the European practice, we consider

a zonal representation of the network for reserve procurement.

In an attempt to build a more generic model, the network topol-

ogy is included in the day-ahead and real-time dispatch models

considering a DC approximation of power flows. Reserve

and energy supply functions are linear, and all generators are

considered to behave as price takers. System loads are inelastic

with a large value of lost load. This way, the maximization of

the social welfare is equivalent to cost minimization. Flexible

units deploy operating reserves with marginal costs of produc-

tion. The incentive to provide flexibility services is accounted

for in reserve offering prices. Following the prevailing portfo-

lio bidding adopted in the European markets [27], we consider

that all unit commitment and inter-temporal constraints are

integrated into the bidding strategies of the generating units.

For instance, the commitment of thermal units in practice

might be controlled by market participants when offering at

either zero price or market price cap. Similarly, offering a

part of capacity at zero and even negative price ensures the

compliance with the technical minimum constraint of thermal

units. This approach is compatible with the European market

structure and preserves the convexity of the reserve capacity

and day-ahead market-clearing algorithms. In principle, the

proposed model can be also applied to market designs that

involve non-convex constraints, as for instance the majority of

electricity markets in the US, using tight convex relaxations of

the unit commitment binary variables. However, this approach

lies out of scope of this paper, but we refer the interested

reader to [28], [29] for further discussion. Finally, uncertainty

is described by a finite set of scenarios and solely induced by

stochastic wind power production.

C. Mathematical formulation

1) Conventional market-clearing model: The sequential

procedure, sketched in Fig. 1(a), for each hour of the next

day is modeled by the following three linear optimization

problems.
The reserve procurement problem writes as:

min
ΞOR

∑

i∈I

(
CU

i R
U
i + CD

i R
D
i

)
(1a)

s.t.
∑

i∈Iz

RU
i = DU

z ,
∑

i∈Iz

RD
i = DD

z , ∀z ∈ Z, (1b)

RU
i +RD

i ≤ P i, ∀i ∈ I, (1c)

0 ≤ RU
i ≤ R

U

i , 0 ≤ RD
i ≤ R

D

i , ∀i ∈ I, (1d)

where ΞOR = {RU
i , R

D
i , ∀i} is the set of optimization variables

comprising the upward and downward reserve schedule per

each flexible generator. Optimal ΞOR* minimizes the reserve

procurement cost given by (1a). Equality constraints (1b)

ensure that zonal reserve upward and downward requirements,

denoted as DU
z and DD

z , respectively, are fulfilled, whereas

inequality constraints (1c) - (1d) account for the quantity offers

of each flexible generator.
Once reserve allocation {RU∗

i , RD∗
i , ∀i} is determined, the

least-cost day-ahead energy schedule is computed solving the

following optimization problem:

min
ΞDA

∑

i∈I

CiP
C
i (2a)

s.t.
∑

i∈In

PC
i +

∑

k∈Kn

PW
k −

∑

j∈Jn

Lj

−
∑

m:(n,m)∈Λ

δDA
n − δDA

m

xnm

= 0, ∀n ∈ N, (2b)

RD∗
i ≤ PC

i ≤ P i −RU*
i , ∀i ∈ I, (2c)

0 ≤ PW
k ≤ Ŵk, ∀k ∈ K, (2d)

δDA
n − δDA

m

xnm

≤ Fnm, ∀(n,m) ∈ Λ, (2e)

where ΞDA = {PC
i , ∀i;P

W
k , ∀k; δDA

n , ∀n} is the set of variables

including day-ahead energy quantities for each conventional
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and stochastic generator as well as voltage angles at each

node. The objective function (2a) to be minimized is the day-

ahead energy cost, subject to nodal power balance constraints

(2b), offering limits of conventional and stochastic generators

(2c)-(2d) and transmission capacity limits (2e). Note that

the reserve procurement decisions from the previous stage

limit the dispatch of flexible generators at the day-ahead

stage. In this design, stochastic production is bounded by the

conditional expectation Ŵk.

Getting closer to real-time operation, any deviation from

the optimal day-ahead dispatch {PC∗
i , ∀i;PW∗

k , ∀k; δDA∗
n , ∀n}

has to be covered by proper balancing actions. For a specific

realization of stochastic production Wkω′ , the optimal re-

dispatch is found solving the following linear programming

problem:

min
ΞRT

∑

i∈I

Ci

(
rU
iω′ − rD

iω′

)
+
∑

j∈J

CVoLLLsh
jω′ (3a)

s.t.
∑

i∈In

(
rU
iω′ − rD

iω′

)
+

∑

k∈Kn

(
Wkω′ − PW*

k − PW,sp
kω′

)

+
∑

j∈Jn

Lsh
jω′ −

∑

m:(n,m)∈Λ

δRT
nω′ − δDA*

n − δRT
mω′ + δDA*

m

xnm

= 0, ∀n ∈ N, (3b)

0 ≤ rU
iω′ ≤ RU∗

i , 0 ≤ rD
iω′ ≤ RD∗

i , ∀i ∈ I, (3c)

δRT
nω′ − δRT

mω′

xnm

≤ Fnm, ∀(n,m) ∈ Λ, (3d)

0 ≤ PW,sp
kω′ ≤ Wkω′ , ∀k ∈ K, (3e)

0 ≤ Lsh
jω′ ≤ Lj , ∀j ∈ J, (3f)

where ΞRT = {rU
iω′ , rD

iω′ , ∀i;Lsh
jω′ , ∀j;P

W,sp
kω′ , ∀k; δRT

nω′ , ∀n} is

the set of re-dispatch decisions, comprising activation of

operating reserves, load shedding, wind spillage and real-time

voltage angles. The objective function (3a) to be minimized is

the balancing cost. Equality constraints (3b) ensure the real-

time nodal power balance. Inequalities (3c) limit activation

of upward and downward reserves considering the procured

reserve quantities. Constraints (3d) account for the power

capacity of transmission lines. Finally, inequalities (3e) and

(3f) limit wind spillage and load shedding actions to the actual

realization of production and system demand, respectively.

2) Stochastic dispatch model: Assuming that wind power

uncertainty is described by a finite set of outcomes Wkω

with corresponding probabilities πω , the stochastic dispatch

procedure outlined in Fig. 1(b) writes as follows:

min
ΞSD

∑

i∈I

(
CU

i R
U
i + CD

i R
D
i + CiP

C
i

)
+

∑

ω

πω

(∑

i∈I

Ci

(
rU
iω − rD

iω

)
+
∑

j∈J

CVoLLLsh
jω

)
(4a)

s.t. constraints (1b) - (1d) (4b)

constraints (2b) - (2e) (4c)

constraints (3b) - (3f), ∀ω ∈ Ω (4d)

where ΞSD = {ΞOR ∪ ΞDA ∪ ΞRT, ∀ω ∪ (DU, DD)} is the

set of stochastic dispatch variables. The objective function

(4a) to be minimized is the reserve and day-ahead energy

cost as well as the expectation of the real-time cost, i.e., the

expected cost over the entire decision sequence. Note, that

upward and downward reserve requirements DU
z and DD

z in

(1b) are decision variables and only used to reveal optimal

reserve requirements in a stochastic programming sense.

After the optimal reserve procurement and day-ahead energy

schedule are obtained, the system operator solves the real-time

re-dispatch problem for a specific realization of the stochastic

production ω′ using formulation (3).

III. APPROXIMATING THE STOCHASTIC IDEAL

On the one hand, the conventional procedure has limited ca-

pability to accommodate large shares of stochastic production

in a cost efficient manner compared to the stochastic dispatch.

On the other hand, the adoption of the stochastic procedure

appears to be unrealistic because it does not guarantee revenue

adequacy and cost recovery for every uncertainty realization;

these are important properties that, in contrast, hold in the

sequential market structure [2], [8]. For this reason, our

motivation is to enhance the cost-efficiency of the conven-

tional market-clearing procedure without changing the market

structure. In this line, we introduce a model that approximates

the ideal stochastic solution within the conventional dispatch

model by the appropriate setting of zonal reserve requirements.

In essence, we aim at finding the reserve requirements that

plugged into the conventional market-clearing model (1)-(3)

will yield the minimum total expected system cost. To compute

them, we use the bilevel programming problem illustrated in

Fig. 2.

This model comprises two levels. The objective function of

the upper level is the same as (4a) in the stochastic model (4)

and aims at minimizing the total expected system cost. The

upper-level constraints enforce real-time re-dispatch limits.

The lower level consists of two optimization problems, namely,

the reserve procurement and day-ahead market clearing prob-

lems, which are identical to the corresponding optimization

problems (1) and (2) of the conventional model. However,

in this bilevel structure, reserve requirements D are decision

variables of the upper-level problem, entering as parameters in

the lower-level reserve procurement problem. Hence, reserve

requirements D are not an exogenous input to this model

but are internally optimized, accounting for their impact in

all three trading floors. As shown in Fig. 2, the upper-level

decision on D affects the reserve procurement schedule in the

first lower-level problem, which in turn impacts the day-ahead

clearing obtained from the second lower-level problem. In

addition, the reserve and energy schedules ΦR and ΦD enter the

upper level, constraining the real-time re-dispatch decisions.

The structure of this stochastic bilevel model guarantees

that the temporal sequence of the different markets follows the

existing European paradigm. Having the reserve capacity and

day-ahead market clearings as two independent lower-level

problems, ensures that reserves and day-ahead schedules are

optimized separately, i.e., there is no co-optimization of energy

and reserves, while none of these markets have information

about the future re-dispatch actions. This property suffices to

reproduce the real-time re-dispatch for each scenario indepen-
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dently by including the corresponding constraints only in the

upper-level problem.

Compared to the stochastic model, the main advantage of

this bilevel scheme is that it respects the merit-order principle

in the reserve capacity and day-ahead energy markets. In fact,

given the same reserve requirements, the solutions of both

lower-level problems are identical to the solutions of problems

(1) and (2). Nonetheless, the upper-level problem can still

anticipate the impact of reserve requirements on all trading

floors and consequently on the total expected cost.

Since this model is solved prior to any market-clearing

procedure, we assume that the system operator can gather

information on the price-quantity offers of market participants.

Even in the case of having to use an estimation of price-

quantity offers similar to the ORDC mechanism, our approach

accounts systematically for the impact of reserve procurement

and the structure of forecast errors in all three trading floors. In

a more realistic setup, this information can be obtained using

inverse optimization techniques as proposed in [30] and [31].

Mathematically, the proposed reserve determination model

writes as the following stochastic bilevel programming prob-

lem:

min
ΞRT,DU

z
,DD

z

(4a) (5a)

s.t. constraints (3b) - (3f), ∀ω ∈ Ω, (5b)

DU
z , D

D
z ≥ 0, ∀z ∈ Z, (5c)

(RU
i , R

D
i ) ∈ arg

{
min
ΞOR

(1a)

s.t. constraints (1b) - (1d)

}
, (5d)

(
P C

i
,PW

k
,

δDA
n

)
∈ arg

{
min
ΞDA

(2a)

s.t. constraints (2b) - (2e)

}
. (5e)

According to the mathematical structure of model (5),

the lower-level problems (5d) and (5e) guarantee that the

reserve capacity and day-ahead energy markets are serially

and independently optimized. This property is in accordance

with the time-line of these trading floors in the European

market framework. This temporal sequence is accomplished

considering that upward RU*
i and downward RD*

i reserve

schedules are variables of the reserve capacity market (5d)

but enter as parameters in the day-ahead energy market (5e).

Moreover, neither problem (5d) nor (5e) can foresee the

outcome of the balancing market, which is included in the

upper level of model (5). As a result, both markets have no

information about the effect of their decisions on the real-

time market. In turn, constraints (5b)-(5c) and the third term

of the objective function (4a) clear the real-time market of the

conventional model (1)-(3), independently for each scenario

ω ∈ Ω, considering that the real-time re-dispatch cannot

impact the previous trading floors which are ‘fixed’ to the

conventional market solution through the lower-level problems

(5d) and (5e).

This formulation is computationally intractable, since it

consists of an upper-level optimization problem constrained by

two lower-level optimization problems. However, since both

lower-level problems are convex with linear objective func-

tions and constraints, they can be replaced by their Karush-

min
ΦB

ω
,D

CR(ΦR) + CD(ΦD) + E
ω
[CB(ΦB

ω)]

s.t. Q(ΦB
ω,D), ∀ω

Reserve procurement

min
ΦR

CR(ΦR)

s.t. QR(ΦR,D)

Day-ahead market

min
ΦD

CD(ΦD)

s.t. QD(ΦD,ΦR)

D

Φ
R

ΦR
Φ D

Fig. 2. Bilevel structure of the proposed reserve determination model.

Kuhn-Tucker optimally conditions, such that the problem can

be recast as as a single-level mathematical program with equi-

librium constraints (MPEC). The resulting model includes a set

of nonlinear complementary slackness constraints, which can

be linearized using disjunctive constraints or SOS1 variables,

transforming the MPEC problem into a mixed-integer linear

program (MILP) [32].

IV. SOLUTION STRATEGY

The set of integer variables used to linearize the comple-

mentarity constraints of the lower-level problems (5d) and (5e)

limits the application of the proposed reserve quantification

model to power systems of moderate scale. For the large-scale

applications, we propose an iterative solution strategy based

on the multi-cut Bender’s algorithm [33]. For a fixed reserve

and day-ahead dispatch, the set of real-time constraints (3b)

- (3f) is independent per scenario. This allows for Bender’s

decomposition where each subproblem solves a scenario-

specific real-time re-dispatch problem. The subproblems at

iteration ν write as follows:
{

min
ΞRT,B

s

CRT(ν)
ω :=

∑

i∈I

Ci

(
rU
iω − rD

iω

)
+
∑

j∈J

CVoLLLsh
jω (6a)

s.t. RU
i = R̃

U(ν)
i : θ

RU
i
(ν)

iω , ∀i ∈ I, (6b)

RD
i = R̃

D(ν)
i : θ

RD
i
(ν)

iω , ∀i ∈ I, (6c)

PW
k = P̃

W(ν)
k : θ

PW
k
(ν)

kω , ∀k ∈ K, (6d)

δDA
n = δ̃DA(ν)

n : θ
δDA
n

(ν)
nω , ∀n ∈ N, (6e)

constraints (3b) - (3f)

}
∀ω ∈ Ω,

where ΞRT,B
s = ΞRT ∪ {RU

i , R
D
i , ∀i;P

W
k , ∀k; δDA

n , ∀n} is the

set of decision variables of each subproblem of the Bender’s

algorithm. Constraints (6b) - (6e) fix the first-stage decisions to

their optimal values obtained at the previous iteration, and the

corresponding dual variables yield sensitivities of the reserve

and day-ahead decisions used in Bender’s cuts.

The master problem of the Bender’s algorithm at iteration

ν writes as follows:

min
ΞM,B

∑

i∈I

(
CU

i R
U
i + CD

i R
D
i + CiP

C
i

)
+

∑

ω∈Ω

πωα
(ν)
ω (7a)

s.t. α(ν)
ω ≥ CRT(ρ)

ω +
∑

i∈I

θ
RU

i
(ρ)

iω

(
RU

i −R
U(ρ)
i

)
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+
∑

i∈I

θ
RD

i
(ρ)

iω

(
RD

i −R
D(ρ)
i

)

+
∑

k∈K

θ
PW

k
(ρ)

kω

(
PW
k − P

W(ρ)
k

)

+
∑

n∈N

θ
δDA
n

(ρ)
nω

(
δDA
n − δDA(ρ)

n

)
,

ρ = 1 . . . ν − 1, ∀ω ∈ Ω, (7b)

α(ν)
ω ≥ α, ∀ω ∈ Ω, (7c)

DU
z , D

D
z ≥ 0, ∀z ∈ Z, (7d)

Linearized KKT conditions of (5d), (7e)

Linearized KKT conditions of (5e), (7f)

where ΞM,B = ΞOR ∪ ΞDA ∪ αω is the set of decisions

variables of the master problem, and index ρ is used to

integrate the fixed values of the corresponding variables at

previous iterations. The Bender’s cuts are updated at each

iteration by (7b) using sensitivities from all previous itera-

tions, while (7c) imposes a lower bound α on the auxiliary

variable α. Since the subproblems allow for load shedding,

they are always feasible, requiring no feasibility cuts in the

master problem. The algorithm converges at iteration ν if∣∣∣
∑

ω∈Ω πω

(
α
(ν)
ω − C

RT(ν)
ω

)∣∣∣ ≤ ǫ, where ǫ is a predefined

tolerance.

V. CASE STUDY

In this section, we first describe the test system in Section

V-A. In Section V-B and Section V-C we study the impact

of reserve requirements on expected operating costs and we

assess the remaining efficiency gap of our model with respect

to the stochastic solution for a single reserve control zone. In

Section V-D we extend our analysis to the case of multiple

reserve control zones. In Section V-E we assess the model’s

performance in the presence of non-convex technical con-

straints. Finally, in Section V-F we demonstrate the scalability

of the model using the proposed Bender’s decomposition

algorithm.

A. Description of the test system

To assess the performance of the different reserve determi-

nation models, a modified version of the IEEE 24-Bus RTS

[34] is employed. The system consists of 34 transmission

lines, 17 loads and 12 conventional generation units. The

total generation capacity amounts to 3,375 MW, from which

1,100 MW is flexible generation that can provide upward

and downward reserves. We set upward reserve capacity price

offers to be 30% of the marginal costs. Price offers for

downward reserve capacity price offers are selected such that

they compensate for the potential financial deficit induced by a

loss-making position in the day-ahead market. We should note

that this is only a heuristic approach to address the possibility

that some flexible producers incur financial losses due to their

combined positions in the reserve capacity and day-ahead

energy markets. This situation may emerge if the downward

reserve capacity RD∗
i awarded to a generator, and in turn

imposed as a lower bound in the day-ahead market constraint

(2c), forces this unit to produce even if the day-ahead energy

price is lower than its marginal production cost. This pitfall

results from the separation of reserve capacity and energy

markets in the European framework. In turn, the physical

coupling of these two products is accounted for internally

in the trading strategies of the market participants when they

submit their price-quantity offers in the corresponding markets

according to their risk appetite. A detailed study of this issue

constitutes a separate research topic and lies out of the scope of

this work, but the interested reader is referred to [35] and [36]

for further information on this topic. Apart from conventional

generators, there are six wind farms bidding at zero marginal

cost and sited as explained in [34]. We consider a 24-hour

load profile with a peak value of 2,650 MW obtained from

[34]. The loads are assumed to be inelastic with the value

of lost load equal to $500/MW for all operating hours. The

relevant GAMS codes and simulation data are provided in the

electronic companion of the paper [37].

All simulations are carried out using a standard PC with

Intel Core i5 CPU with a clock rate of 2.7 GHz requiring no

more than 8GB of RAM. The CPU time required to solve the

conventional model (1)-(3), stochastic model (4) and bilevel

model (5) in Sections V-B–V-D is kept below 30s when

solving per operating hour. The sequential market with unit

commitment and inter-temporal constraints is solved in less

than a minute in Section V-E. The CPU time corresponding

to the last case study is reported separately in Section V-F.

B. Impact of reserve requirements on expected system cost

In this section we assess the expected cost of operating

the power system under the conventional market setup (1)-(3),

when this is fed with the reserve requirements determined by

different approaches for reserve dimensioning, including our

proposal. To this end, we consider the time period correspond-

ing to the peak-load hour. Besides, the capacity of each wind

power farm is set to 100 MW. Next we discuss the results

linked to each reserve dimensioning approach:

1) The probabilistic approach defines the reserve require-

ments from the predictive cumulative distribution func-

tion (CDF) F of the total wind power portfolio, as the

distance between the expected wind power production Ŵ
and a specified quantile q(α) = F−1(α) with nominal

proportion α ∈ [0, 1]. This approach resembles the state-

of-the-art reserve-dimensioning processes employed by

European system operators using probabilistic forecast

information [26]. For a reliability level ξ = α − α, the

upward and downward reserve needs are dimensioned as

follows:

DU = Ŵ − F−1(α), (8a)

DD = F−1(α)− Ŵ . (8b)

We initially consider α = 5% and α = 1 − α = 95%
corresponding to a reliability level ξ = 90%. The result-

ing requirements amount to 127.9 MW and 89.1 MW for

upward and downward reserves, respectively.
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Fig. 3. Impact of downward DD and upward DU operating reserve requirements on the reserve (a), day-ahead (b), expected re-dispatch (c) and expected
total (d) costs in the conventional procedure (1)-(3). The color density indicates the cost at the considered trading floor.

2) The stochastic approach derives the reserve requirements

from the stochastic dispatch model (4). These require-

ments are equal to 214.3 MW for upward and 65.0 MW

for downward reserves, respectively.

3) The enhanced approach computes the reserve require-

ments using the proposed reserve determination model

(5). Resulting reserve needs amount to 282.9 MW and

42.6 MW for upward and downward reserves, respec-

tively.

The expected total system costs resulting from the imple-

mentation of the probabilistic, stochastic and enhanced oper-

ating reserve approaches are $25,890, $24,531 and $24,408,

respectively. The total cost break-down is shown in Fig. 3,

which demonstrates the impact of the reserve requirements

on the cost of the different trading floors in the conventional

dispatch procedure. Figure 3(a) shows that the reserve needs

computed using the proposed model result in the highest

reserve procurement cost among the different approaches,

mainly due to a larger volume of upward reserve provision.

In turn, efficient flexible generation that could be scheduled

in the day-ahead market is now set aside to provide upward

reserves. Considering that the price offers for upward reserve

are proportional to the day-ahead price offers, the withdrawal

of these resources increases the day-ahead energy cost, as

shown in Fig. 3(b). Nonetheless, the benefits of the enhanced

approach realize in real-time operation as the re-dispatch cost

is lower compared to that yielded by the probabilistic and

stochastic approaches as illustrated in Fig. 3(c). As a result,

the minimum of the expected total costs is achieved with the

enhanced approach as demonstrated by Fig. 3(d).

Increasing the reliability level ξ in the the probabilistic

approach may have a positive impact on the performance of

the conventional model. However, Table I shows that this

approach never yields the expected cost provided by the

proposed model, since the probabilistic approach sets the

requirements disregarding their impact on the subsequent op-

TABLE I
COST BREAK-DOWN RESULTING FROM THE IMPLEMENTATION OF A

RANGE OF PROBABILISTIC REQUIREMENTS AND ENHANCED

REQUIREMENTS.

Approach
Probabilistic approach

Enhanced
approachQuantiles q(α,α) of wind CDF

q(05/95) q(04/96) q(03/97) q(02/98) q(01/99)

Requirements DU/D [MW] 128/89 168/91 205/93 210/94 283/169 283/43
Exp. total cost [$1000] 25.89 24.99 24.62 24.61 24.78 24.40
– Reserve 0.69 0.84 0.99 1.01 1.70 1.24
– Day-ahead 22.24 22.43 22.70 22.74 22.99 22.99
– Real-time 2.96 1.72 0.93 0.86 0.88 0.18

erations, including potential wind spillage and load shedding.

On the contrary, the proposed model finds the optimal trade-

off between reserve procurement and real-time re-dispatch

decisions that minimizes the total expected system cost. In

this particular case, our model allows more wind curtailment

to reduce downward reserve procurement cost.

Regarding the stochastic model, it should be noted that even

though reserve requirements are set anticipating the real-time

cost, reserve procurement and day-ahead energy schedules

are obtained by a co-optimization of these products that is

incompatible with the European market structure. As a result,

the requirements provided by the stochastic approach lead to

larger amounts of load shedding, highlighting that they are

practically sub-optimal in a sequential dispatch procedure.

C. Approximating the stochastic dispatch solution

We now investigate to what extent the reserve requirements

computed with the proposed model are capable of approximat-

ing the ideal stochastic solution within the sequential dispatch

procedure. To this end, we compare expected daily system

cost of three optimization models for different wind power

penetration levels, defined as the ratio between the installed

capacity of the entire wind power portfolio and the peak load.

The first model represents the sequential market clearing (1)-
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Fig. 4. Expected daily operating cost as a function of wind penetration.
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Fig. 5. Reserve procurement from nine flexible generating units for the peak-
load hour and different wind penetration levels. Color density ranks generation
units according to the reserve capacity price offers.

(3) with reserve requirements computed with the probabilistic

approach for a range of reliability levels ξ ∈ [0.9, 1]. The

second model also follows the sequential market procedure

with reserve requirements computed with the proposed model

(5). The third one is the stochastic ideal dispatch model (4) that

theoretically attains maximum cost-efficiency, and therefore

it is used as a lower bound of the expected system cost. It

is worth noting the different role that the stochastic dispatch

model plays in this part of the case study, compared to the

previous Section V-B. Here, we assume that the solution of

the stochastic dispatch model will be implemented as the ac-

tual system schedule, presuming that the conventional market

setup is replaced with its ideal stochastic counterpart. This is

different from the application of the stochastic dispatch model

(4) as a reserve-dimensioning approach in Section V-B, where

we considered that all trading floors are settled according to

the prevailing European market model.

Figure 4 depicts the daily operating cost as a function of the

wind power penetration level for the three models. The setting

of the reserve requirements provided by the proposed model

always results in a lower expected cost than the implemen-

tation of the requirements under the probabilistic approach.
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Fig. 6. IEEE 24-Bus reliability test system layout with three reserve control
zones.

This figure further indicates that these reserve requirements

efficiently approximate the stochastic ideal solution even for

a high penetration of wind power.

Figure 5 provides further insights on the difference between

the solutions of the three models. Particularly, it shows the

procurement of upward and downward reserves from specific

flexible units ranked according to their reserve capacity price

offers, i.e., from cheap to more expensive units distinguished

by increasing color densities. The proposed model controls

the trade-off between reserve and real-time costs, ensuring

adequate upward reserves to minimize the amount of load

shedding and enough downward reserves to prevent wind

spillage. In contrast, the probabilistic approach underestimates

upward reserve needs, while it overestimates downward re-

serve requirements.

The enhanced solution for the reserve requirements deviates

significantly from the ideal solution given that the stochastic

model has more degrees of freedom, i.e., it controls not

only the sufficiency of the reserve requirements but also

their allocation among the flexible generators. This results in

reserve procurement being ‘generator-specific’ which prevents

network congestion within the reserve control area. In attempt

to minimize expensive balancing actions, the stochastic model

may allocate reserves to more expensive units over cheaper

providers, violating the least-cost merit-order principle that is

inherent in the conventional market design. As a consequence,

the requirement imposed in our enhanced approach to respect

the merit-order principle in the reserve capacity and day-ahead

markets restricts the degree of approximation of the stochastic

solution.

D. Optimal zonal reserve requirements allocation

We now consider the optimal reserve dimensioning in a

multi-zone setting. For this purpose, the IEEE 24-Bus system

is split into three reserve control zones as depicted in Fig. 6.

This zonal layout corresponds to the one proposed in [11]. In

each control zone there are at least one wind power unit with

capacity of 100 MW and at least two flexible generation units.

Unlike in the previous instance, the requirements computed

with the probabilistic approach are now set for each reserve

control zone independently considering the distribution of
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Fig. 8. Approximation gap of the sequential market with probabilistic and
enhanced reserve requirements compared to stochastic dispatch.

wind power production of each zone. The reliability level ξ is

set to 0.98.

The resulting allocation for upward and downward reserve

requirements among control zones is summarized in Fig. 7,

indicating that the probabilistic approach sets the reserve

needs proportionally to the amount of stochastic in-feed in

the respective control zone. On the other hand, the proposed

model defines the requirements considering not only the zonal

wind power in-feed, but also the cost implications of procuring

reserve in a specific zone. As a result, the model finds it more

efficient to constantly procure upward reserve from the third

zone and obtain the remaining upward reserve that is needed

either from the first or the second zone depending on the

operating hour. In addition, this reserve allocation indicates

that it is never optimal to procure downward reserve from the

second zone in terms of expected system cost.

This optimal reserve allocation among control zones is

supported by the approximation gap depicted in Fig. 8, show-

ing the relative cost difference of the sequential market with

respect to the ideal solution. The requirements provided by

the proposed model efficiently approximate the ideal solution

with nearly zero gap over the first operating hours, and this gap

remains relatively small for the subsequent hours as opposed to

the large gap when probabilistic requirements are used. The

definition of multiple control zones allows to set enhanced

reserve requirements that are closer to the ‘generator-specific’

reserve allocation of the stochastic model. Indeed, compared

to the single-zone setup in section V-B, the operating cost

reduces by 2.5%, from $24,408 to $24,034, after the definition

of three control zones.
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Fig. 9. Expected operating cost yielded by the implementation of the
probabilistic and enhanced reserve requirements in the conventional market-
clearing problem (1)-(3) including the unit commitment constraints (9a)-(9g).

E. Assessing enhanced reserve requirements in the presence

of non-convexities

To assess the performance for the proposed reserve quan-

tification model as a proxy model for the power markets with

a more comprehensive and non-convex representation of tech-

nical constraints, we use the enhanced reserve requirements

provided by the proposed model (5) as inputs to the sequential

market-clearing problem (1)-(3) with unit commitment and

ramping constraints integrated in the day-ahead auction as

explained in Appendix A.

Figure 9 shows the hourly profile of expected operating

system cost resulting from the implementation of the enhanced

requirements in the system with full representation of the

technical constraints. This profile is compared against those

obtained by setting probabilistic reserve requirements with

reliability levels of 98% and 90%. The reserve requirements

provided by the proposed model always attain better cost

efficiency than the probabilistic requirements, even though the

proposed model does not account for the whole set of technical

limits of power plants. In the first case in Fig.9 (a), the model

allows savings of $23,746 that nearly equal to the cost of peak-

hour operation, and it allows even larger savings of $28,845

in the second case in Fig.9 (b).

F. Application to the IEEE-96 RTS

We now consider the modernized version of the IEEE-96

RTS Test System proposed in [38] to assess the scalability of

the proposed model. The test system includes three control

zones interconnected by six tie-lines. The system demand

follows a 24-hour profile with a peak load of 7.5 GW. The

conventional generation is represented by 6 nuclear power

plants serving the base load, 3 coal power plants that offer

40% of their capacities for the reserve needs, and 87 gas-

fired power plants offering 100% of their capacities to the

reserve procurement auction. The reserve offering prices of
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TABLE II
CPU PERFORMANCE OF THE BENDER’S ALGORITHM.

Wind penetration [%] 13.8 23.0 36.8

CPU time [min] 32.1 33.5 58.6

TABLE III
DAILY OPERATING COST WITH PROBABILISTIC AND ENHANCED ZONAL

RESERVE REQUIREMENTS IN COMPARISON WITH THE STOCHASTIC IDEAL

SOLUTION [$1000].

Wind penetration
[%]

Probabilistic
solution

Enhanced
solution

Ideal
solution

ξ = 90% ξ = 98%

13.8 1,912.4 1,888.8 1,877.3 1,850.0
23.0 1,760.8 1,719,3 1,700.8 1,660.5
36.8 1,550.7 1,482.3 1,446.0 1,402.8

flexible units are set to 25% of marginal production cost for

both upward and downward reserve needs. There are 19 wind

farms distributed among the control zones with the overall

capacity of 2.76 GW. Their stochastic output is described

by 100 equiprobable scenarios obtained from [39]. The input

data and the corresponding GAMS codes are provided in the

electronic companion of the paper [37].

The test case is solved for wind penetration levels of 13.8%,

23.0%, and 36.8% of the peak-hour load by implementing

the multicut Bender’s algorithm explained in Section IV. The

tolerance of the algorithm is set to 0.02% requiring three to

eight iterations depending on the operating hour. The resulting

CPU time is reported in Table II. The CPU time in all

three cases is kept below one hour allowing timely day-ahead

planning with the proposed model. It is worth mentioning that

the CPU time can be reduced at the expense of a marginal

deviation from the global optimum with higher tolerance.

The daily operating cost resulting from the implementation

of the enhanced zonal reserve requirements computed by the

proposed model is always lower than those provided by the

probabilistic approach with reliability levels of 90% and 98%,

as demonstrated in Table III. The difference in operating cost

is explained by the anticipated cost of procuring upward and

downward reserves from a specific control zone, while the

probabilistic requirements are solely obtained proportionally to

the amount of stochastic in-feed in control zones. As a result,

the relative cost savings provided by the model increases with

the wind penetration level and ranges between 0.6% and 7.2%.

Further cost savings towards the ideal solution provided by the

stochastic model is limited due to the enforced merit order in

both reserve and day-ahead markets. Finally, Table IV illus-

trates the economic benefit that the proposed model yields as a

proxy for the system with the full network representation and

technical constraints of power plants described in Appendix A.

The results show that in spite of the incomplete description of

technical constraints in the lower level of the proposed bilevel

model, it still provides a feasible input with a sensible cost

reduction for the markets with non-convexities. The economic

benefit provided by the model ranges from 0.5% to 1.6%.

Moreover, the proposed approach further outperforms the

probabilistic one for the largest wind penetration level, where

the overestimated requirements provided by the probabilistic

approach lead to a reserve schedule that results in an infeasible

TABLE IV
DAILY OPERATING COST WITH PROBABILISTIC AND ENHANCED ZONAL

RESERVE REQUIREMENTS WITH FULL REPRESENTATION OF TECHNICAL

CONSTRAINTS [$1000].

Wind penetration
[%]

Probabilistic
solution

Enhanced
solution

ξ = 90% ξ = 98%

13.8 2,072.2 2,073.4 2,061.5
23.0 1,947.9 1,949.1 1,928.6
36.8 1,764.4 infeas. 1,735.9

day-ahead operation.

VI. CONCLUSION

This paper considers the optimal setting of reserve require-

ments in a European market framework. We propose a new

method to quantify reserve needs that brings the sequence of

the reserve, day-ahead and real-time markets closer to the ideal

stochastic energy and reserves co-optimization model in terms

of total expected cost. The proposed model is formulated as

a stochastic bilevel problem, which is eventually recast as a

MILP problem. To reduce the computational burden of this

model, we apply an iterative solution approach based on the

multi-cut Bender’s decomposition algorithm.

Our numerical studies demonstrate the benefit of properly

setting reserve requirements. Our reserve quantification model

outperforms both the probabilistic and the stochastic reserve

setting approaches due to its preemptive ability to anticipate

the impact of day-ahead decisions on the real-time opera-

tion, while taking into account the actual market structure.

Considering the increasing penetration of stochastic power

producers, we show that the reserve requirements provided

by the proposed model take the expected system operating

cost closer to that given by the ideal energy and reserve

co-optimization model, but the degree of this approximation

is limited due to the sequential scheduling of reserve and

energy in European electricity markets. However, our analysis

further indicates that the definition of multiple reserve control

zones allows for a more efficient spatial allocation of reserves,

which reduces the approximation gap with respect to the

ideal stochastic model. Finally, the efficiency of the proposed

reserve dimensioning model was tested against market designs

whose clearing process explicitly account for inter-temporal

and non-convex constraints, i.e. ramping limits and unit com-

mitment constraints. Even though the proposed model does

not account for the whole set of technical constraints of such

markets, the enhanced reserve requirements still bring the cost

of sequential market operation closer to the stochastic ideal,

highlighting the importance of the intertemporal coordination

between the three trading floors through the intelligent setting

of reserve needs.

Future research may focus on the consideration of the tight

relaxations of the unit commitment constraints to achieve bet-

ter approximations for the case of non-convex market designs,

and the corresponding tuning of the Bender’s decomposition

algorithm to better cope with the intertemporal constraints.
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APPENDIX

A. Incorporation of unit commitment and ramping constraints

In contrast to the prevailing approach of the European

market design, other electricity markets, e.g., the majority of

US markets, explicitly model unit commitment constraints and

thermal limits of power plants in the market-clearing problem.

To assess the performance of the proposed reserve quantifica-

tion model in markets with unit commitment constraints, the

following set of constraints are integrated in the day-ahead

market-clearing problem:

uitP i ≤ PC
it ≤ uitP i, ∀i ∈ I, ∀t ∈ T, (9a)

SUit ≥ CSU
i (uit − ui(t−1)), ∀i ∈ I, ∀t > 1, (9b)

SUit ≥ CSU
i (uit − u0

i ), ∀i ∈ I, t = 1, (9c)

PC
it − PC

i(t−1) ≤ R+
i , ∀i ∈ I, ∀t > 1, (9d)

PC
it − PC,0

i ≤ R+
i , ∀i ∈ I, t = 1, (9e)

PC
i(t−1) − PC

it ≤ R−

i , ∀i ∈ I, ∀t > 1, (9f)

PC,0
i − PC

it ≤ R−

i , ∀i ∈ I, t = 1, (9g)

where t ∈ T is the set of operating hours, CSU
i is a start-

up cost of unit i, R+
i and R−

i are the ramp-up and ramp-

down limits, P i is a minimum power output limit, and PC,0
i

and u0
i are the initial power output and commitment status of

unit i. The set of decision variables of the original problem

is supplemented with variable uit ∈ {0, 1} that denotes the

commitment status of generating units, and variable SUit

that computes the cost induced by the start-up of generating

units. Now, the generating limits of each unit are additionally

enforced by commitment decisions of the system operator by

(9a). Binary logic is controlled by (9b) and (9c) and activated

by augmenting SUit into the original objective function of

problem (2). The ramp limits of generators are accounted for

through (9d)-(9g).
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