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Abstract This paper considers the problem of determining safety stocks in multi-item
multi-stage inventory systems that face demand uncertainties. Safety stocks are nec-
essary to make the supply chain, which is driven by forecasts of customer orders,
responsive to (demand) uncertainties and to achieve predefined target service levels.
Although there exists a large body of literature on determining safety stock levels,
this literature does not provide an effective methodology that can address complex
multi-constrained supply chains. In this paper, the problem of determining safety
stocks is addressed by a simulation based approach, where the simulation studies are
based on solving the supply chain planning problem (formulated as a mathematical
programming model) in a rolling horizon setting. To demonstrate the utility of the
proposed approach, an application of the approach at Organon, a worldwide operating
biopharmaceutical company, will be discussed.

Keywords Safety stocks · Advanced planning and scheduling · Simulation · Supply
chain planning · Organon

1 Introduction

Supply chains are exposed to different types of uncertainties that stem from random
yields, processing times or forecast errors. These uncertainties can be covered to a
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large extent by mechanisms like safety time, safety stocks or combinations of these
(Whybark and Williams 1976; Wijngaard and Wortmann 1985). This paper focuses on
the determination of safety stocks in multi-item multi-stage inventory systems that face
demand uncertainties. We assume that the inventory system is planned and controlled
by a central decision authority that plans the supply chain based on deterministic math-
ematical programming models. However, demand uncertainty is an important factor
to be considered in supply chain planning. Planning systems based on mathematical
programming models are widely implemented in so-called Advanced Planning and
Scheduling systems (APS) (Stadtler and Kilger 2005).

When a particular supply chain is facing demand uncertainties, stock outs can occur
at all stages in the supply chain. A stock out may cause lost sales, emergency ship-
ments, or loss of goodwill. Therefore, safety stocks should be kept to increase the
service levels. Traditionally, safety stocks are determined in advance based on models
from inventory theory (Silver et al. 1998). However, it is not obvious how to determine
safety stock levels that cover demand uncertainties in complex supply chains that face
several constraints such as batch sizes, capacity constraints, non-stationary demand
process or forecast errors.

The approach proposed in this paper enables the determination of safety stocks
in multi-item multi-stage inventory systems that face demand uncertainties. This
approach considers all kinds of constraints that are also considered in supply chain
planning practice such as batch sizes and capacity and materials constraints. The
approach is based on a simulation of the supply chain planning model in a rolling
horizon setting. Based on target service levels, safety stocks are determined after per-
forming simulations, assuming that the demand process and replenishment decisions
are independent of the safety stock levels.

The core of the approach is solving the supply chain planning problem very fre-
quently, where the safety stocks are excluded from the supply chain planning model
or by setting them equal to zero. Since we assume that all unsatisfied demand is back-
ordered at all stages in the supply chain, backorder quantities are recorded after each
solving round. The safety stock level is an increasing function of the target service
level, which we measure by the fill rate, i.e. the long-run fraction of demand satisfied
routinely from the shelf (Silver et al. 1998). Based on the stored backorder quantities
and the target service levels, safety stock levels can be determined.

The proposed approach is suitable for companies that have implemented an APS.
APS systems are planning systems that are based on cost minimization models that
ensure that, given the resource and material availability constraints of the produc-
tion system and given certain service level constraints, the best possible quantity of a
certain item is released at the lowest value of the objective function. These planning
systems are based on mathematical programming models that are solved in a rolling
horizon setting (Spitter et al. 2005).

The proposed approach has been applied successfully at Organon, a worldwide
operating biopharmaceutical company with production sites, warehouses, and distri-
bution centers spread all over the world.

The remainder of this paper is organized as follows. Section 2 discusses a literature
review on this topic. Next, Sect. 3 discusses the problem definition and thereafter,
Sect. 4 discusses the proposed approach. The approach has been applied in a real-life
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situation, which is discussed in Sect. 5. Finally, Sect. 6 draws some conclusions about
the approach.

2 Literature review

There is an extensive amount of literature available on inventory control models in
multi-stage or multi-echelon inventory systems incorporating uncertainties. We refer
the reader to survey articles by Van Houtum et al. (1996) and Diks et al. (1996).
Our research is within the field of Supply Chain Operations Planning (De Kok and
Fransoo 2003). The objective of Supply Chain Operations Planning is to coordinate
the release of materials and resources in a supply chain network such that customer
service constraints are met at minimal costs (De Kok and Fransoo 2003). Two different
approaches exist for modelling the Supply Chain Operations Planning problem.

One approach is based on multi-echelon stochastic inventory theory. In this ap-
proach, demand that is faced by the supply chain is modelled as a stochastic variable.
The key decisions of this approach are the inventory positioning at the various stock-
points in the supply chain, the allocation of quantities at inventory points where the
product flow diverges, and the determination of safety stock levels at the several stock-
points. Therefore, the determination of safety stocks is defined as part of the problem.
Lead times are (deterministic) input variables to the model and capacity is assumed to
be controlled through a combination of order acceptance in the demand management
function and a workload control function in the production department. The logic is
based on a line of research that has been initiated by Clark and Scarf (1960).

The alternative approach is based on mathematical programming principles. In this
approach, demand is inserted into the model as forecasts for every period in the plan-
ning horizon. Safety stocks are input parameters to the model and the key decisions
are the allocation of inventory quantities at the stockpoints in the supply chain. Lead
times are either modelled as deterministic input variables (e.g., Spitter et al. 2005)
or are observed as output variables of the model (e.g., Stadtler 2003). Capacity con-
straints are modelled explicitly as aggregate constraints. The principles are based on
research stemming from advanced MRP modelling (Billington et al. 1983) or from
multi-period lot sizing problems (Tempelmeier and Derstroff 1996; Stadtler 2003).
The principles have been implemented in commercial software, mostly using CPLEX
solving logic (See also Stadtler and Kilger 2005).

The two approaches differ also from a safety stock perspective. In this first approach,
safety stocks are defined as part of the problem, whereas in the second approach
safety stocks are input parameters to the planning model, which have to be determined
externally.

This paper focuses on the determination of safety stocks for the latter type of plan-
ning approaches. A lot of papers appeared in the last decades on determining safety
stocks in multi-stage or multi-echelon inventory models for covering demand uncer-
tainties. We mention a set of papers that are related to our work.

Inderfurth and Minner (1998) propose a dynamic programming approach to treat
the problem of determining safety stocks in multi-stage inventory systems, assum-
ing normally distributed demand and periodic review base stock control policies.
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Furthermore, they also assume that no internal delays occur and that each stockpoint
is satisfying a service level constraint. More approaches that are based on dynamic
programming algorithms can be found in Inderfurth (1991) and Minner (1997).

Graves and Willems (2000) discuss the so-called guaranteed-service model for set-
ting safety stocks in a multi-stage setting to cover demand uncertainties. They develop
a model for positioning safety stocks in a supply chain where each stage is controlled
by a base-stock policy, assuming an upper bound for the (customer) demand level.
Therefore, the safety stocks set by their approach cover demand realizations below
the upper bounds. This assumption is necessary to model guaranteed service times
between each stage in the supply chain and its customers.

There are also papers on determining safety stocks in multi-stage inventory systems
where the approach is based on simulation studies. Optimization methodologies based
on simulation of inventory systems are discussed in Kleijnen and Wan (2006).

Eilon and Elmaleh (1968) perform simulation studies to compare the performance of
five alternative inventory control policies given wide fluctuating and seasonal demand
patterns. The results of the simulations are several non-linear curves showing the rela-
tion between the fill rate and mean stock level. Three of these five control policies
include safety stocks, but the authors do not discuss how they determined the safety
stock parameters.

Wemmerlöv and Whybark (1984) also perform simulation experiments to evaluate
several single-stage lot sizing procedures under demand uncertainty. Cost compari-
sons of the procedures are made with a service level of at least 99.999%. The safety
stocks needed to achieve these service levels are determined by a search routine, i.e.
repeating the simulations until the target service levels are reached.

De Bodt and Van Wassenhove (1983) present a case study at a company, which uses
MRP in a dynamic environment, i.e. the company faces substantial demand uncertain-
ties. The safety stock setting is analysed by a simulation study. Several strategies were
defined (combinations of safety stock and safety time) and analysed which resulted
in graphs relating average inventory level to service levels. They provide managerial
insight by showing that considerable savings can be made at this company, but do not
discuss how the safety stocks should be determined.

In the studies of Callarman and Hamrin (1984) the performance of three lot sizing
rules in MRP systems is compared, given an uncertain demand process. The cost com-
parisons have been made by introducing safety stocks at each run to keep the service
levels at 95 and 98%. The required safety stocks are determined by using the so-called
Service Level Decision Rule (SLDR), which has been developed by Callarman and
Mabert (1978). The SLDR is based on linear regression analysis on simulated values
of the following set of factors: forecast errors, coefficient of variation of demand, and
the expected time between orders. In order to achieve the target service level, the
SLDR is used with a search routine.

Our work is closely related to Kohler-Gudum and De Kok (2001) who propose a
so-called Safety Stock Adjustment Procedure (SSAP) to obtain target service levels
in simulation models. The technique is based on the assumption that a Time Phased
Order Point (TPOP) policy is applied. Their simulation study aims to determine the
discrete probability density function of the net stock process. Based on this probability
distribution, the safety stock is adjusted to ensure the specified target service level.
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Our approach differs from Kohler-Gudum and De Kok (2001) on two aspects.
First, our approach determines the empirical distribution of the backorder quantities
for setting safety stocks instead of determining the probability density function of the
inventory process. Based on a set of assumptions (independence of the demand and
replenishment process of safety stock levels), the necessary amount of safety stock is
determined by adding the adjustment quantity to the initial safety stock that can be an
arbitrary value. In our approach, the initial safety stock is set equal to zero and after-
wards, the safety stock level is determined based on backordered quantities. Second,
the model that is used in our approach is a planning model that is solved in rolling
horizon setting, and therefore, the planning process is imitated as much as possible.
Kohler-Gudum and De Kok (2001) do not discuss the simulation model extensively.

Although there exists a large body of literature on determining safety stock levels,
to our knowledge, this literature does not provide an effective methodology that can
address supply chains that face several constraints like capacity constraints, production
in batch sizes, and non-stationary forecast process. Most approaches make restrictive
assumptions about the demand process (Inderfurth and Minner 1998; Graves and
Willems 2000) or do not explicitly discuss how they set the safety stock levels (Eilon
and Elmaleh 1968; De Bodt and Van Wassenhove 1983). Our approach is closely
related to Kohler-Gudum and De Kok (2001), but we extend the approach by using
an empirical supply chain planning model in the simulation study and that makes the
results of the approach more reflecting the (planning) practice.

3 Problem definition

We consider a supply chain that consists of an arbitrary number of stages and stock-
points in which a product passes through multiple production sites before it is finally
delivered to outside customers. This supply chain is planned and controlled by a cen-
tral decision authority that has access to all relevant status information (like inventory
levels and work-in-process quantities) at all production sites and makes release deci-
sions for the entire supply chain. The release decisions result from a deterministic
mathematical programming model that is solved in a rolling horizon setting (Stadtler
and Kilger 2005), which has been implemented in an Advanced Planning and Sched-
uling system. For these kinds of planning models, safety stocks are input parameters
that have to be determined externally.

Formulation of the planning problem by a mathematical programming model
assumes a deterministic view of supply chain planning by considering all model param-
eters, as demand, lead times, production rates to be known with complete certainty.
This assumption of complete and deterministic information is desirable from a model
complexity point of view, but given the dynamic and uncertain nature of most supply
chains, this assumption is violating reality. Demand uncertainty is an important factor
to be considered in supply chain planning, and therefore, safety stocks are kept to
cover part of the demand uncertainties.

The core function of supply chain planning models is to coordinate material and
resource release decisions in the supply chain such that predefined customer ser-
vice levels are achieved with minimal costs. Safety stocks are kept to deal with
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demand uncertainties and consequently to increase service levels. The service level
is an increasing function of the safety stock level. Therefore, more safety stocks are
needed to increase the service level, which results in increased inventory holding costs.

From the other side, demand uncertainties can cause stock outs that result in lost
sales, emergency shipments, or loss of goodwill. Since we assume that all excess
demand that is not directly satisfied from inventory is backordered, costs that are
related with a backorder are backorder costs, which are harder to quantify than inven-
tory holding costs. The problem of setting safety stocks is mainly a trade-off between
inventory holding costs and backorder costs. Section 4 discusses the modelling of
these costs and discusses also the considered supply chain planning model in detail.

4 The approach

We consider a supply chain that is planned and controlled by a central decision author-
ity, which may be supported by an Advanced Planning and Scheduling system. We
assume that the supply chain planning model is based on a mathematical programming
model that is solved in a rolling horizon setting, where the forecasts may be updated
when the planning horizon is shifted. We also assume that the demand process and
replenishment decisions are independent of the safety stock level. Furthermore, we
assume that all excess demand at all stages in the supply chain is backordered. We
do not make any assumption about the demand and forecast process, which makes
this approach less restrictive to a certain probability density function of the demand
process.

Based on the discussed assumptions, a simulation experiment is performed in the
following way. The planning horizon is divided into a fixed number of time buckets,
which are filled by forecasts of the demand generated by a demand generator, which
generates a series of forecasts based on historical demand and forecasts data. Then,
the planning model with demand forecasts is solved given all kinds of materials and
resources constraints. The planning model may be based on linear programming mod-
els or mixed-integer programming models if some decisions require integer variables.
Such discrete decisions can, among others, regard lotsizing in production or transpor-
tation. At the end of the first time bucket (planning cycle), the state of the system (e.g.
the inventory levels and forecasts) is updated and the planning cycle is repeated with
the horizon shifted by one period.

Figure 1a illustrates the inventory development of a certain product and the result-
ing backorder process that is output of 100 simulation runs. After the simulation runs,
the horizontal axis is shifted (see Fig. 1b) such that the number of backorders is lim-
ited, i.e. the customer service level is increased to a certain predefined level. Figure 1b
shows that increasing the safety stock level decreases the number of backorders, and
therefore, increases the service level.

Thus, by solving the supply chain planning problem very frequently where each
time the forecasts are updated, long-run backorder quantities indicate the amount of
safety stocks that was needed to prevent the backorders partially, i.e. to achieve a
certain customer service level. Note that the customer service level is externally deter-
mined for all products at all stages in the supply chain. The customer service level has
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Fig. 1 The inventory development of a certain product; a shows the results of simulation runs and b shows
how the horizontal axis is shifted to limit the number of backorders, i.e. to achieve a certain customer service
level

Demand generator

SC Planning model

Backorder quantities

horizon 
shift

f(d), µd,i, d,i

Optimal solution

(t), t 1 = ,...,Tˆ
id

Safety stock levels

Service level setting

Explanation of used symbols:

f(d) probability density function of the demand process
µd,i Expected (exogenous) demand of end-item i 

d,i Standard deviation of forecast errors of end-iem i
T Planning horizon

Forecast of demand of end-item i in period t (t=1,...,T)( )ˆ
id t

Fig. 2 Several steps of the approach

been defined as the long-run fraction of demand satisfied directly from shelf (fill rate
measure). Having discussed the theoretical idea behind the approach, the steps of the
approach (see Fig. 2) will be discussed in the following sections in more detail.

4.1 Demand generator

The first step of the approach is the generation of a series of forecasts which are
input to the supply chain planning model. We do not make any assumption about the
distribution of the demand process. Historical data about demand and forecasts may
be (statistically) fitted into the best fitting probability distribution function. Having
chosen the most suitable probability density function for the demand distribution, the
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first two moments of the distribution can be derived to determine the parameters of
the demand distribution. Figure 2 shows that these parameters (µd,i , σd,i ) are input
for the demand generator where µd,i is the expected (exogenous) demand of end-item
i and σd,i is the standard deviation of forecast errors of end-item i .

Suppose that we have historical sales data of n time periods, then µd,i can be
calculated by

µd,i = 1

n

−1∑

s=−n

di (t + s) (1)

where di (t) is the demand for item i in period t . Forecast errors can be determined
by several measures (Silver et al. 1998). The Mean Absolute Deviation (MAD) is
recommended for its computational simplicity. The MAD for item i as function of the
forecast horizon h can be calculated by

MADi (h) = 1

T

−1∑

s=−T

(
di (t + s) − d̂i (t + s − h, t + s)

)
(2)

where T is the length of the planning horizon, di (t) the demand for item i in period
t , and d̂i (t − h, t) the forecast made in period t − h for the demand in period t . It is
reasonable to assume that the MAD is an increasing function of the forecast horizon
h (Heath and Jackson 1994). The conversion of MADi (h) to σi (h) is extensively dis-
cussed in Silver et al. (1998). Having determined the parameters of the demand distri-
bution, the random generator can generate a series of forecasts of the demand d̂i (t) for
t = 1, . . . , T . The generated forecasts are input for the supply chain planning model.

Several extensions are possible. For example, the demand process may not be sta-
tionary which makes the µd,i a function of time (demand process follows a trend or
has a seasonal effect). Furthermore, the standard deviation of the forecast errors may
be not a function of the forecast horizon h. Several kinds of adaptations are possible
in order to imitate the demand and forecast process as much as possible.

4.2 Supply chain planning model

One approach to supply chain planning models is based on deterministic mathemat-
ical programming principles (De Kok and Fransoo 2003). The advantage of using
the supply chain planning model (implemented in an APS system) for the simulation
study is that it already contains the network structure(s), the item list, bill-of-mate-
rials structure, batch sizes, and the routings. Using the supply chain planning model
for this approach is highly recommended, as these models are reflecting the planning
practice. Furthermore, for those companies that have implemented an APS system,
little modelling effort is required for this approach.

The mathematical programming model that is used to determine the safety stock
levels is a stand-alone model, but derived from the supply chain planning model. The
supply chain planning model may have to be adapted, as safety stocks have to be set
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Fig. 3 A three-stage supply chain considered in the supply chain planning model

equal to zero in the supply chain planning models or replenishment decisions should
not consider safety stock levels. Then, the planning problem should be solved without
considering safety stocks, i.e. backorders are planned when demand exceeds available
inventories. Depending on the supply chain planning model, the planning problem has
to be solved such that all relevant cost factors have to be considered except costs asso-
ciated with consumption of safety stocks. The solution of the supply chain planning
model contains order releases for the production system and planned inventory levels.
The order releases within the length of the lead time of a certain item at a certain stage
(frozen horizon) are stored, as they are not allowed to be changed in the next solving
round. Below, we discuss the considered supply chain planning model in detail, which
is used to determine the safety stock levels. Figure 3 shows a rough outline of the
three-stage supply chain that is considered in the supply chain planning model.

4.2.1 Objective function

Equation (3) is the objective functions of the supply chain planning model. The objec-
tive function minimizes the total costs (TC), which consist of several cost factors that
are assigned to several stages in the supply chain. We consider a (pharmaceutical) sup-
ply chain with three stages. Stage 3 is the most upstream stage where the raw materials
(active ingredients) are stored. The active ingredients are processed to tablets, which
are stored at the second stage. Thereafter, the tablets are packaged and stored at the
most downstream stage (stage 1). N j is the total number of items at stage j with
j ∈ {1, 2, 3}, n j is a certain item that belongs to stage j , t is a certain (discrete) time
period, and T is the planning horizon.

Min TC =
∑

n1

T∑

t=1

c1 · UDn1(t) +
∑

n1

T∑

t=1

c2 · OPn1 · BMn1(t)

+
∑

n1

T∑

t=1

c3 · EIn1(t) +
∑

n2

T∑

t=1

c4 · UDn2(t)

+
∑

n2

T∑

t=1

c5 · UDDn2(t) +
∑

n2

T∑

t=1

c6 · BCn2(t)

+
∑

n2

T∑

t=1

c7 · EIn2(t) +
∑

n3

T∑

t=1

c8 · UDn3(t)

+
∑

n3

T∑

t=1

c9 · UDDn3(t)+
∑

n3

T∑

t=1

c10 · EIn3(t) (3)
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The first three terms of the objective function are related to the first stage in the
supply chain. For this stage, we consider three cost factors that have to be minimized.
The first terms are costs associated with unsatisfied demand (backorders) c1 ·UDn1(t)
where UDn1(t) is the backorder quantity for item n1 in period t . The second term
deals with costs for replenishing a quantity that deviates from the (minimum) replen-
ishment quantity c2 · OPn1 · BMn1(t). OPn1 is the period order quantity for item n1
and BMn1(t) the deviation from the minimum replenishment quantity for item n1 in
period t . Campaign sizes are determined based on a trade-off between ordering costs
and inventory holding costs, whereas batch sizes are quantities that are determined by
legislative authorities. Therefore, producing in fixed batch sizes is required, whereas
deviating from the campaign size is undesired. The third term is the total inventory
holding cost at this stage c3 · EIn1(t) where EIn1(t) is the inventory level of item n1 at
the end of period t .

For the second stage of the supply chain, four cost factors are considered. The first
terms sum backorders that result from exogenous demand at this stage. So, c4 ·UDn2(t)
is unsatisfied demand (backorder) costs for item n2 in time period t , whereas the sec-
ond term c5 · UDDn2(t) considers unsatisfied demand (backorders) that result from
endogenous (derived) demand from the first stage of the supply chain. Since the sec-
ond stage in the supply chain considers the production of tablets in campaigns (a fixed
multiple of batch sizes), the third term c6 · BCn2(t) considers costs associated with
deviating from the fixed campaign size BCn2(t) for item n2 in period t . The fourth
term considers the total inventory holding costs for item n2.

The third stage in the supply chain considers three cost factors: costs associated with
unsatisfied demand (backorders) of exogenous demand c8 · UDn3(t), costs associated
with unsatisfied demand (backorders) that result from endogenous demand (from the
second stage of the supply chain) c9 · UDDn3(t), and total inventory holding costs
c10 · E In3(t) of item n3. For confidentially reasons, we cannot show the values of the
cost parameters, except that c1 > c2 > · · · > c10. The determination of these cost
parameters was not part of this study, as they can be taken over from the objective
function of the supply chain planning model.

4.2.2 Stage 1 model

The objective function (3) is minimized subject to several constraints, which are dis-
cussed below per stage in the supply chain. Equations (4) are materials balance equa-
tions with EIn1(t) is the inventory level of item n1 at the end of period t , T Rn1(t) the
replenishment quantity of item n1 in period t , and TDn1(t) the (exogenous) demand
for item n1 in period t . The latter parameter contains data that are input to the planning
model. Further, EIn1(0) is the initial inventory level.

EIn1(t) = EIn1(t − 1)+TRn1(t)−TDn1(t), n1 = 1, . . . , N1, t =1, . . . , T (4)

Equation (5) determine the minimum replenishment quantity for item n1 in period
t , as the replenishments are based on periodic order quantity (OP). I Dn1(t) is the
(forecast of) independent demand for item n1 in period t .
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MRn1(t) =
OP∑

i=1

I Dn1(t + i), n1 = 1, . . . , N1, t = 1, . . . , T (5)

Having determined the minimum replenishment quantity, Eq. (6) determine the real
replenishment quantities SMn1(t) for item n1 in period t . BMn1(t) is then the deviation
from minimum replenishment quantity for item n1 in period t that is considered in the
objective function.

SMn1(t) = MR n1(t) − BMn1(t), n1 = 1, . . . , N1, t = 1, . . . , T (6)

The total replenishment quantity for item n1 for the entire planning horizon (TR n1

(t)) is determined by two parts: SMn1(t) which we have just discussed and FPn1(t)
which are fixed replenishment quantities of item n1 in period t determined in previ-
ous solving rounds. The binary parameter α regulates that within the lead time of the
planning horizon no new decisions are taken.

TRn1(t) = α · SMn1(t) + (1 − α) · FPn1(t), n1 = 1, . . . , N1,

t = 1, . . . , T, α =
{

0 i f t � L
1 i f L < t � T

(7)

Equation (8) determine which part of the exogenous demand IDn1(t) for item n1 in
period t is satisfied (SDn1(t)). The unsatisfied demand quantity UDn1(t) for item n1
in period t is punished in the objective function.

SDn1(t) = IDn1(t) − UDn1(t), n1 = 1, . . . , N1, t = 1, . . . , T (8)

Equation (9) are equations for TDn1(t) which is determined by SDn1(t) that result
from Eq. (8) plus UDn1(t − 1) which is the unsatisfied demand in t − 1, i.e. backorder
quantity for item n1 from period t .

TDn1(t) = SDn1(t) + UDn1(t − 1), n1 = 1, . . . , N1, t = 1, . . . , T (9)

4.2.3 Stage 2 model

Several constraints apply to stage 2 which will be discussed now. Like in stage 1,
Eq. (10) are the balance equations for the materials flow. The symbols have the
same meaning as in stage 1, except that indices show that the equations apply to this
particular stage.

EIn2(t) = EIn2(t−1)+TRn2(t)−TDn2(t), n2 =1, . . . , N2, t =1, . . . , T (10)

Equation (11) determine the total replenishment quantity for item n2 in period t
where α is the same binary parameter that is used in Eq. (7). PPn2(t) is the production
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quantity to be produced of item n2 in t and FPn2(t) are firmed production quantities
that are determined in previous solving rounds.

T Rn2(t) = α · PPn2(t)+(1−α) · F Pn2(t), n2 =1, . . . , N2, t =1, . . . , T (11)

Equation (12) require that the production quantity of item n2 to be produced in
period t must be an integer multiple of Qn2 , the batch size of item n2 multiplied by
yn2 , the yield factor of the production process that produces item n2.

PPn2(t) = Qn2 · yn2 · NBn2(t), n2 = 1, ..., N2, t = 1, . . . , T, (12)

with N Bn2(t) ∈ N0.
Equation (13) determine the derived (endogenous) demand at stage 2. This is the

multiplication of the (with lead time L shifted) replenishment quantities of items n1
with the BOM factor.

DDn2(t) = BOMn2,n1 ·
∑

n1

SMn1(t − L), n2 = 1, . . . , N2, t = 1, . . . , T (13)

Equation (14) determine the costs associated with going below the campaign size
BCn2(t), which is punished in the objective function. CSn2 is the campaign size (a
certain number of batches of n2) of item n2.

BCn2(t) = CSn2 − NBn2(t), n2 = 1, . . . , N2, t = 1, . . . , T, (14)

with BCn2(t) ∈ N0.
Unsatisfied demand from t−1 (resulting from either exogenous demand UDn2(t−1)

or endogenous demand UDDn2(t − 1) determine the backorder quantity BOn2(t) of
item n2 in period t .

BOn2(t) = UDDn2(t − 1) + UDn2(t − 1), n2 = 1, . . . , N2, t = 1, . . . , T (15)

Equation (16) show that the satisfied part of demand for item n2 in period t SDn2(t)
is equal to the exogenous demand IDn2(t) for item n2 in period t minus unsatisfied
demand quantity UDn2(t) for item n2 in period t , which is punished in the objective
function.

SDn2(t) = IDn2(t) − UDn2(t), n2 = 1, . . . , N2, t = 1, . . . , T (16)

Equation (17) are the application of the same idea (as Eq. 16) to the dependent
(endogenous) demand for item n2 in period t .

SDDn2(t) = DDn2(t) − UDDn2(t), n2 = 1, . . . , N2, t = 1, . . . , T (17)
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The sum of SDn2(t), SDDn2(t), and the backorders for item n2 in period t BOn2(t)
are equal to TDn2(t), total demand for item n2 in period t .

TDn2(t)=SDDn2(t)+SDn2(t)+BOn2(t), n2 =1, . . . , N2, t =1, . . . , T (18)

4.2.4 Stage 3 model

Constraints (19) till (26) apply to the third stage of the supply chain. Equation (19) are
the balance equations for this stage. EIn3(t) is the inventory level of item n3 at the end
of period t , TRn3(t) is the replenishment quantity of item n3 in period t , and TDn3(t)
is the total demand of item n3 in period t .

EIn3(t) = EIn3(t − 1)+TRn3(t)−TDn3(t), n3 =1, . . . , N3, t =1, . . . , T (19)

The replenishment quantity TRn3(t) is partly determined in the previous solving
rounds (FPn3(t), firm planned replenishment orders for item n3 in period t) and new
released orders On3(t) to be determined for item n3 in period t . The orders are sent to
(external) supplier(s).

TRn3(t) = (1 − α) · FPn3(t) + α · On3(t), n3 = 1, . . . , N3, t = 1, . . . , T (20)

Furthermore, constraints (21) require that the ordered items are (a) integer multi-
ple(s) of Qn3 , batch sizes for item n3.

On3(t) = NBn3(t) · Qn3, n3 = 1, . . . , N3, t = 1, . . . , T, (21)

with NBn3(t) ∈ N0.
The total demand for item n3 is determined by adding the satisfied parts of the

dependent (endogenous), independent (exogenous) demand plus the backorders for
item n3 in period t .

TDn3(t) = SDDn3(t)+SDn3(t)+BOn3(t), n3 =1, . . . , N3, t =1, . . . , T (22)

Equations (23) and (24) show how the satisfied parts of the dependent SDDn3(t)
and independent demand SDn3(t) for item n3 in period t are determined. IDn3(t) is
the independent demand for item n3 in period t and DDn3(t) is the dependent demand
for item n3 in period t .

SDn3(t) = IDn3(t) − UDn3(t), n3 = 1, . . . , N3, t = 1, . . . , T (23)

SDDn3(t) = DDn3(t) − UDDn3(t), n3 = 1, . . . , N3, t = 1, . . . , T (24)

The dependent demand DDn3(t) is determined by multiplying the BOM-factor with
TPn2(t − L) with L is the lead time of second stage of the supply chain.

DDn3(t) = BOMn3,n2

∑

n2

TPn2(t − L), n3 = 1, . . . , N3, t = 1, . . . , T (25)
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The backorder quantity for item n3 in period t BOn3(t) is the summation of the
unsatisfied dependent and independent demand for item n3 in period t − 1.

BOn3(t)=UDDn3(t − 1) + UDn3(t − 1), n3 =1, . . . , N3, t =1, . . . , T (26)

Finally, non-negativity constraints have to be considered.

EIn1(t), TDn1(t), TRn1(t), SMn1(t), BMn1(t), SDn1(t), UDn1(t), EIn2(t),

TDn2(t), TRn2(t), PPn2(t), UDn2(t), UDDn2(t), SDn2(t), SDDn2(t), EIn3(t),

TDn2(t), TRn2(t), On2(t), UDn2(t), UDDn2(t), SDn2(t), SDDn2(t) � 0 (27)

4.3 Backorders and safety stocks

After solving the mathematical programming model that we discussed in the previous
section, the planning horizon is shifted by one period after which the demand gen-
erator generates a new series of forecasts for the shifted horizon. The order releases
within the frozen horizon determined in the previous solving round are not allowed to
be changed, as these orders are assumed to be scheduled in a more detailed planning
level or already taken in process. The supply chain planning model is solved again,
but since a frozen horizon, fixed order releases and an update of the forecasts are taken
into consideration, backorders may occur if the available inventories are no longer
sufficient to satisfy the updated required quantities.

The planned backorder quantities after each solving round are stored. A large num-
ber of replications is necessary to draw valid conclusions on the empirical distribution
of the backorders. Furthermore, the results of the first couple of runs have to be ignored,
as the system has to reach a state that is independent of the initial conditions. The rela-
tion between the backorder quantities and the determination of safety stock levels will
be explained in the following. Suppose that the safety stock levels were set before-
hand equal to the maximum measured backorder quantities at all stages in the supply
chain, a service level of 100% would have been achieved in the supply chain, given the
generated forecasts of the demand process. Therefore, the last step of the approach is
to set a target customer service level for the several items at the several stages. Based
on these target customer service levels, safety stock levels can be determined for the
items.

The service level for the most downstream stage (stage 1) in the supply chain is
determined by Eq. (28) where βn1 is the fill rate for item n1, i.e. the long-run fraction
of independent demand IDn1(t) satisfied directly from shelf (without backordering).

βn1 =
∑

t

(
1 − UDn1(t)

IDn1(t)

)
, n1 = 1, . . . , N1 (28)

For stages 2 and 3 of the supply chain, Eq. (29) determine the service level, as these
stages face exogenous (independent) demand and endogenous (dependent) demand
from the next (downstream) stage of the supply chain.
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βn j =
∑

t

(
1 − UDn j (t) + UDDn j (t)

IDn j (t) + DDn j (t)

)
, j = {2, 3}, n j = 1, . . . , N j (29)

5 Application of the approach

The discussed approach has been implemented at Organon, a worldwide operating
biopharmaceutical company with an annual turnover of more than 2.4 billion Euros.
The company consists of more than 10 production sites and about 60 national distri-
bution centres spread all over the world. Organon has more than 30 branded products
in its portfolio and markets only prescription medicines for improving both the health
and quality of human life.

Figure 4 shows a rough outline of one of Organon’s tablet supply chains with the
main production processes and stockpoints. Active ingredients form input to the tab-
lets production process. Some additional materials may be needed for this production
process. The packaging process blisters the tablets, packs the blistered tablets in car-
tons and instructions for use are added. Next, the finished products are shipped to
more than 60 national warehouses (which are owned by Organon) spread all over the
world. From these national warehouses, finished products are sold and distributed to
customers like hospitals, pharmacists, and wholesalers.

This supply chain is planned and controlled by an APS, which was implemented
a couple of years ago. The APS is a planning system that controls the supply chain
by calculating high-level production plans for the several stages in the supply chain.
The forecasts which are input to the planning problem are provided by the forecasting
system which calculates statistical forecasts of the expected demand on SKU level
based on historical demand information. Having implemented the Advanced Plan-
ning and Scheduling system, Organon was facing the question how to determine the
safety stock parameters (which are input to the planning models) that cover (partially)
demand uncertainties such that the entire supply chain is considered and total inventory
holding costs are minimized given certain customer service levels.

In the following sections, we discuss the results of a project performed within
Organon to determine the safety stock levels using the discussed approach. For con-
fidentially reasons, the product names for which this approach has been implemented
will not be mentioned. Further, the numbers do not reflect the real numbers, as they
are divided by an arbitrary factor. With respect to the simulation experiment, the run
length was set equal to 100 periods and the number of replications was five, fol-
lowing the approach proposed by Law and Kelton (2000). The average CPU time is
about 2 mins. The supply chain planning model has been implemented in a standard
Advanced Planning System that uses CPLEX as solver.

Fig. 4 A rough outline of the supply chain of Organon
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5.1 The supply chain of product A

Figure 5 shows the supply chain of product A. The most upstream stage in this supply
chain is the active ingredient (AI 1). The tablet production is performed at two produc-
tion sites of Organon, and therefore, active ingredients 1 (AI 1) are shipped to another
production site (AI 2). After tablets production 2 (TB 2), the tablets are packaged and
shipped to warehouses 1 till 11, which supply Organon’s end customers. Production
site 1 is supplying warehouses 12 till 26. Warehouses 27 till 34 are supplied by local
subcontractors who get the active ingredients from Organon. Therefore, a direct link
has been made between the stockpoints AI 1 and warehouses 27 till 34.

We applied the proposed approach to this supply chain to determine the safety
stocks levels of each item at each stockpoint. We note that safety stocks cannot be
pooled, since the products in each warehouse are different due to the fact that they are
country-specific. The lead times, batch sizes, bill-of materials structure and all other
characteristics of this supply chain have been taken over from the supply chain plan-
ning model. The mathematical formulation of the mixed-integer programming model
that is solved in a rolling horizon setting is the one discussed in Sect. 4.2.

Based on stored historical demand and forecasts data, we found that the normal
distribution is statistically fitting the forecasts and sales data the best. A goodness-of-
fit test has been used to find the suitable distribution that fits the best to the data. The
result was that the average demand is time-independent, but forecast errors showed a
strong correlation with the forecast age, i.e. the number of periods between the moment
the forecast was made and the moment the demand is realized. The demand genera-
tor randomly generates a series of forecasts based on the parameters of the normally
distributed demand (µd,i , σd,i (h)).

Fig. 5 The supply chain of
product A
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Fig. 6 An example of the backorders that result from a simulation study for a certain item

Table 1 Safety stock levels
based on the proposed approach
and the current safety stock
levels

Current situation Model suggestion

National warehouses 100 89

Tablets stockpoint 51 47

Active ingredients 49 21

As discussed in the previous section, the outputs of the approach are series of
planned backorders that are stored. Figure 6 shows the development of backorders of
a certain item. As this figure shows, the backorder quantities are mostly equal to zero,
which means that there is mostly enough inventories available to satisfy the required
quantities. Whenever the required quantity (either dependent or independent demand)
is not (fully) satisfied, a backorder is planned for the next period.

It is not possible to show here all results that we obtained from the implementation
of the discussed approach. However, the results of our approach for this particular
supply chain are presented in Table 1. The second column of Table 1 shows the cur-
rent safety stock levels and the third column shows the safety stock levels that result
from our approach based on a target service level of 99%. It was not our intention to
decrease current safety stock quantities, but Table 1 shows that in this case, substantial
savings may be achieved by implementing the approach. However, the comparison
is not completely fair, as in the current situation also other types of uncertainties are
covered.

5.2 The supply chain of product B

The supply chain of product B has also been used for the validation of the proposed
approach. Figure 7 shows the supply chain of product B. Contrary to product A; two
active ingredients (AI 1 and AI 2) are required for the tablet production. After the
production process, the tablets are shipped to two packaging sites where the tablets
are also stored (TB2 and TB3). After packaging of TB2, the products are shipped to 19
national warehouses all over the world, whereas TB3 is shipped to only one national
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Fig. 7 The supply chain of
product B
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TB 2

TB 3 20
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Table 2 Safety stock levels
based on the proposed approach
and the current safety stock
levels

Current situation Model suggestion

National warehouses 162 136

Tablets stockpoint 71 46

Active ingredients 29 22

warehouse. The same approach has been applied for this supply chain to determine the
safety stock levels. As we mentioned in the case of supply chain of product A, safety
stocks can not be pooled due to the fact that each product is country-specific. Based
on historical demand and forecasts data, the demand generator generates a series of
forecasts that are input to the mathematical programming model that is presented in
Sect. 4.2.

Table 2 presents the results of the proposed approach (to obtain a service level of
99%) and the current safety stock levels. The results show that substantial savings
can be made, but even more important, the approach turns out to give satisfying and
reasonable results.

6 Conclusions

In this paper, we introduced an approach to determine safety stock levels in multi-item
multi-stage inventory systems that face demand uncertainties. The problem of deter-
mining safety stock levels in a supply chain to meet certain predefined target customer
service levels is based on a simulation study where the supply chain planning problem
is solved in a rolling horizon setting. We assume that the supply chain is planned and
controlled by a central authority that sets releases to the production system based on
mathematical programming models. Combining the long run backorder quantities that
result from the simulation study with predefined target customer service levels, the
approach allows for determining safety stock levels in the supply chain.

The approach does not make any assumption about the demand process. Further-
more, all kinds of constraints can be included that are also considered in the supply
chain planning model. The approach is based on two main assumptions. The first
assumption is that the requirement process and replenishment decisions are completely
independent from the safety stock levels. The second assumption is that all unsatisfied
demand is backordered. As a form of validation, we discussed an application of the
approach to two supply chains at Organon, a worldwide operating pharmaceutical
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company. The approach helped the company to determine the safety stocks that cover
demand uncertainties.

A shortcoming of our approach is that we assume that any upstream unavailability
of stock leads to an order delay at the next stage, which affects the performance of the
inventory system. This is not necessarily what happens in practice. A short study that
we performed showed that usually protection against a shortage is not only achieved
through the use of safety stocks, but also by using the slack in the lead times or by
reprioritizing the orders such that a higher customer service level is achieved than ini-
tially planned. This effect can be compensated by setting the target customer service
level lower than the ‘real’ target customer service level and this could be an object of
further study.
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