
Setting the stage for data science: integration of data
management skills in introductory and second courses in

statistics
Nicholas J. Horton, Benjamin S. Baumer, and Hadley Wickham

March 25, 2015

Statistics students need to develop the capacity to make sense of the staggering amount of information
collected in our increasingly data-centered world. In her 2013 book, Rachel Schutt succinctly summarized
the challenges she faced as she moved into the workforce: “It was clear to me pretty quickly that the stuff I
was working on at Google was different than anything I had learned at school.” The same challenges are
seen by students who enter the workforce as analysts. The widely cited McKinsey report called for the
training of hundreds of thousands of workers with the skills to make sense of the rich and sophisticated
data now available to make decisions (along with millions of new managers with the ability to comprehend
these results). The disconnect between the complex analyses now demanded in industry and the instruction
available in academia is a major challenge for the profession. Statistical educators play a key role in helping
to prepare the next generation of statisticians and data scientists.

The updated ASA guidelines for undergraduate programs in statistics (American Statistical Association,
2014) describe a number of specific capacities needed to make sense of the data around us. This includes
data management and related skills (see SIDEBAR: What’s in a name), visualization, knowledge of statistics,
experience with forecasting and prediction, and sophisticated communication skills. Nolan and Temple Lang
(2010) argued that “the ability to express statistical computations is an essential skill,” and that major
changes to foster this capacity are needed in the statistics curriculum at the graduate and undergraduate
levels. Providing students with a basis in data manipulation and management skills can help ensure that
they develop the ability to frame and answer statistical questions with richer supporting data. Inculcating
our students with these general capacities, distinct from ungrounded training in specific technologies, may
help them thrive in an era where data analysis techniques can extract meaning from larger and more complex
data.

Instilling a framework for “Data Tidying” (see also http://www.jstatsoft.org/v59/i10/paper) and creating
opportunities for students to practice with real, messy datasets are a necessary but not sufficient way to
engage students. To help achieve these aims, important precursors to data science need to be incorporated
into a range of introductory and second courses in statistics. (If not then, when?)

Successful implementation is likely to be facilitated by the routine use of reproducible analysis tools (described
in detail in “Five Concrete Reasons Your Students Should Be Learning to Analyze Data in the Reproducible
Paradigm”, http://chance.amstat.org/2014/09/reproducible-paradigm) into first and second stage courses,
and we assume that such approaches are used (to model this we have made copies of the R Markdown and
formatted files for these analyses available at http://www.amherst.edu/~nhorton/precursors).

A framework for data-related skills The statistical data analysis cycle involves the formulation of
questions, collection of data, analysis, and interpretation of results (see Figure 1). Data preparation and
manipulation is not just a first step, but a key component of this cycle (which will often be nonlinear).
When working with data, analysts must first determine what is needed, describe this solution in terms
that a computer can understand, and execute the code. Here we illustrate how the dplyr package in R
(http://cran.r-project.org/web/packages/dplyr) can be used to build a powerful and broadly accessible
foundation for data manipulation. This approach is attractive because it provides simple functions that
correspond to the most common data manipulation operations (or verbs) and uses efficient storage approaches
so that the analyst can focus on the analysis. (Other systems could certainly be used in this manner, see for
example http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_C134_CARVER.pdf.)

1

http://www.jstatsoft.org/v59/i10/paper
http://chance.amstat.org/2014/09/reproducible-paradigm
http://www.amherst.edu/~nhorton/precursors
http://cran.r-project.org/web/packages/dplyr
http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_C134_CARVER.pdf

Figure 1: Statistical data analysis cycle (source: bit.ly/bigrdata4)

verb meaning
--
select() select variables (or columns)
filter() subset observations (or rows)
mutate() add new variables (or columns)
arrange() re-order the observations
summarise() reduce to a single row
group_by() aggregate
left_join() merge two data objects
distinct() remove duplicate entries
collect() force computation and bring data back into R

Table 1: Key verbs to support data management and manipulation (see http://bit.ly/bigrdata4 for more
details)

To illustrate these verbs in action, we consider analysis of airline delays in the United States. This dataset,
constructed from information made available by the Bureau of Transportation Statistics, was utilized in the
ASA Data Expo 2009 (Wickham, JCGS, 2011). This rich data repository contains more than 150 million
observations corresponding to each commercial airline flight in the United States between 1987 and 2012.

Because of the magnitude of data (larger than can be easily accommodated in R or similar general purpose
statistical packages), access via a database is recommended (see SIDEBAR: Databases). We demonstrate
how to undertake analysis using the tools in the dplyr package. (A smaller dataset is available for New York
City flights in 2013 within the nycflights13 package. The interface in R looks almost identical in terms of
the dplyr functionality, with the same functions being used.)

2

http://bit.ly/bigrdata4

Students can use this dataset to address questions that they find real and relevant. (It is not hard to find
motivation for investigating patterns of flight delays. Ask students: have you ever been stuck in an airport
because your flight was delayed or cancelled and wondered if you could have predicted the delay if you’d had
more data?)

now <- Sys.time(); now

[1] "2015-03-25 14:36:34 EDT"

require(dplyr); require(mosaic); require(lubridate); require(igraph)
my_db <- src_sqlite(path="ontime.sqlite3")

This example uses data from a database with multiple tables.

flights <- tbl(my_db, "flights") # link to some useful tables
airports <- tbl(my_db, "airports")
airlines <- tbl(my_db, "airlines")
airplanes <- tbl(my_db, "airplanes")

We start with an analysis focused on three smaller airports in the Northeast. This illustrates the use of
filter(), which allows the specification of a subset of rows of interest in the airports table (or dataset).
We first start by exploring the airports table.

filter(airports, IATA %in% c('ALB', 'BDL', 'BTV')) # what are these airports?

Source: sqlite 3.8.6 [ontime.sqlite3]
From: airports [3 x 7]
Filter: IATA %in% c("ALB", "BDL", "BTV")
##
IATA Airport City State Country Latitude
1 ALB Albany Cty Albany NY USA 42.74812
2 BDL Bradley International Windsor Locks CT USA 41.93887
3 BTV Burlington International Burlington VT USA 44.47300
Variables not shown: Longitude (dbl)

Next we aggregate the counts of flights at all three of these airports at the monthly level (in the flights
flight-level table), using the group_by() and summarise() functions. The collect() function forces the
evaluation. These functions are collected using the %>% operator allows the results from one object or function
to be piped to the next in an efficient manner.

airportcounts <- flights %>%
filter(Dest %in% c('ALB', 'BDL', 'BTV')) %>%
group_by(Year, Month, Dest) %>%
summarise(count = n()) %>%
collect()

Next we add a new column by constructing a date variable (using mutate() and helper functions from the
lubridate package), then generate a time series plot.

3

airportcounts <- airportcounts %>%
mutate(Date = ymd(paste(Year, "-", Month, "-01", sep="")))

head(airportcounts)

Source: local data frame [6 x 5]
Groups: Year, Month
##
Year Month Dest count Date
1 1987 10 ALB 957 1987-10-01
2 1987 10 BDL 2580 1987-10-01
3 1987 10 BTV 549 1987-10-01
4 1987 11 ALB 950 1987-11-01
5 1987 11 BDL 2442 1987-11-01
6 1987 11 BTV 496 1987-11-01

xyplot(count ~ Date, groups=Dest, type=c("p","l"), lwd=2, auto.key=list(columns=3),
ylab="number of flights per month", xlab="Year", data=airportcounts)

Year

nu
m

be
r

of
 fl

ig
ht

s
pe

r
m

on
th

1000

2000

3000

1990 1995 2000 2005 2010 2015

ALB BDL BTV

Figure 2: Comparison of the number of flights arriving at three airports over time

We observe in Figure 2 that there are some interesting patterns over time for these airports. Bradley (serving
Hartford, CT and Springfield, MA) has the largest monthly volumes, with Burlington the least number of
flights. At all three airports, there has been a decline in the number of flights from 2005 to 2012.

Another important verb is arrange(), which in conjunction with slice() lets us display the months with the
largest number of flights. Here we need to use ungroup(), since otherwise the data would remain aggregated
by year, month, and destination.

airportcounts %>%
ungroup() %>%
arrange(desc(count)) %>%

4

select(count, Year, Month, Dest) %>%
head() # list only the first six observations

Source: local data frame [6 x 4]
##
count Year Month Dest
1 3318 2001 8 BDL
2 3299 2005 3 BDL
3 3289 2001 7 BDL
4 3279 2001 5 BDL
5 3242 2005 8 BDL
6 3219 2005 5 BDL

Another analysis might compare flight delays between two airlines serving a city pair. For example, which
airline was most reliable flying from Chicago to Minneapolis/St. Paul in January, 2012? We can calculate an
average delay for each day for United, Delta, and American. (Note that we do not address flight cancellations:
this exercise is left to the reader.)

Let’s begin by taking a closer look at what variables are available, using a direct SQL call (see SIDEBAR:
Databases).

tbl(my_db, sql("SELECT * FROM flights LIMIT 10")) # or tbl(my_db, "flights") %>% head()

Source: sqlite 3.8.6 [ontime.sqlite3]
From: <derived table> [?? x 29]
##
Year Month DayOfMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime
1 1987 10 14 3 741 730 912 849
2 1987 10 15 4 729 730 903 849
3 1987 10 17 6 741 730 918 849
4 1987 10 18 7 729 730 847 849
5 1987 10 19 1 749 730 922 849
6 1987 10 21 3 728 730 848 849
7 1987 10 22 4 728 730 852 849
8 1987 10 23 5 731 730 902 849
9 1987 10 24 6 744 730 908 849
10 1987 10 25 7 729 730 851 849
..
Variables not shown: UniqueCarrier (chr), FlightNum (int), TailNum (int),
ActualElapsedTime (int), CRSElapsedTime (int), AirTime (int), ArrDelay
(int), DepDelay (int), Origin (chr), Dest (chr), Distance (int), TaxiIn
(int), TaxiOut (int), Cancelled (int), CancellationCode (int), Diverted
(int), CarrierDelay (int), WeatherDelay (int), NASDelay (int),
SecurityDelay (int), LateAircraftDelay (int)

We create the analytic dataset through use of select() (to pick the variables to be included), filter() (to
select a tiny subset of the observations) and repeat the previous aggregation.

delays <- flights %>%
select(Origin, Dest, Year, Month, DayOfMonth, UniqueCarrier, ArrDelay) %>%
filter(Origin == 'ORD' & Dest == 'MSP' & Year == 2012 & Month == 1 &

(UniqueCarrier %in% c("UA", "MQ", "DL"))) %>%

5

group_by(Year, Month, DayofMonth, UniqueCarrier) %>%

summarise(meandelay = mean(ArrDelay), count = n()) %>%
collect()

Merging is another key capacity for students to master. Here, the full carrier names are merged (or joined, in
SQL parlance) to facilitate the comparison, using the left_join() function to provide a less terse full name
for the airlines.

carriernames <- airlines %>%
filter(Code %in% c("UA", "MQ", "DL")) %>%
collect()

merged <- left_join(delays, carriernames, by=c("UniqueCarrier" = "Code"))
head(merged)

Source: local data frame [6 x 7]
Groups: Year, Month, DayofMonth
##
Year Month DayofMonth UniqueCarrier meandelay count
1 2012 1 1 MQ 8.750000 4
2 2012 1 1 UA -5.000000 2
3 2012 1 2 DL 2.333333 3
4 2012 1 2 MQ 24.166667 6
5 2012 1 2 UA -3.000000 3
6 2012 1 3 DL 8.000000 2
Variables not shown: Description (chr)

densityplot(~ meandelay, group=UniqueCarrier, auto.key=TRUE, xlab="Average daily delay (in minutes)",
data=merged)

Average daily delay (in minutes)

D
en

si
ty

0.00

0.01

0.02

0.03

−50 0 50 100

DL
MQ
UA

6

Figure 3: Comparison of mean flight delays from O’Hare to Minneapolis/St. Paul in January, 2012 for three
airlines

We see in Figure 3 that the airlines are fairly reliable, though there were some days with average delays of 50
minutes or more (three of which were accounted for by American Eagle).

filter(delays, meandelay > 50)

Source: local data frame [2 x 6]
Groups: Year, Month, DayofMonth
##
Year Month DayofMonth UniqueCarrier meandelay count
1 2012 1 13 MQ 78.33333 6
2 2012 1 21 MQ 88.40000 5

Finally, we can drill down to explore all flights on Mondays in the year 2001.

Mondayflights <- flights %>%
filter(DayofWeek==1 & Year > 2000 & Year < 2002) %>%
group_by(Year, Month, DayOfMonth) %>%
summarise(count = n()) %>%
collect()

Mondayflights <- mutate(Mondayflights, Date=ymd(paste(Year, "-", Month, "-", DayOfMonth, sep="")))
xyplot(count ~ Date, type="l", ylab="Count of flights on Mondays", data=Mondayflights)
ladd(panel.abline(v=ymd("2001-09-11"), lty=2))

Date

C
ou

nt
 o

f f
lig

ht
s

on
 M

on
da

ys

12000

13000

14000

15000

16000

17000

18000

Jan Apr Jul Oct Jan

Figure 4: display of counts of commercial flights on Mondays in the United States in 2001. The clear impact
of 9/11 can be seen.

Integrating bigger questions and datasets into the curriculum This opportunity to make a complex
and interesting dataset accessible to students in introductory statistics is quite compelling. In the introductory

7

(or first) statistics course, exploration of airline delays was introduced without any technology through
use of the “Judging Airlines” model eliciting activity (MEA) developed by the CATALST Group (http:
//serc.carleton.edu/sp/library/mea/examples/example5.html). This MEA guides students to develop ideas
regarding center and variability and the basics of informal inferences using small samples of data for pairs of
airlines flying out of Chicago.

Figure 5: display of sample airline delays data for a city pair used in the “Judging Airlines” MEA
Figure 5 displays sample airline delays for ten flights each for American Eagle Airlines and Mesa Airlines
flying from Chicago to Green Bay, Wisconsin. As part of this activity, students need to describe five possible
sample statistics which could be used to compare the flight delays by airline. These might include the average,
the maximum, the median, the 90th percentile, or the fraction that are late. Finally, they need to create a
rule that incorporates at least two of those summary statistics that can be used to make a decision about
whether one airline is more reliable. A possible rule might be to declare an airline is better than another if
that airline has half an hour less average delay, and that same airline has 10% less delayed flights than the
other (if the two measures of reliability differ in direction for the two airlines, no call is made).
To finish the assignment, students are provided with data for another four city pairs, asked to carry out their
rule on these new “test” datasets, then summarize their results in a letter to the editor of Chicago Magazine.
Later in the course, the larger dataset can be reintroduced in several ways. It can be brought into class to
illustrate univariate summaries or bivariate relationships (including more sophisticated visualization and
graphical displays). Students can pose questions through projects or other extended assignments. A lab
activity could have students explore their favorite airport or city pair (when comparing two airlines they will
often find that only one airline services that connection, particularly for smaller airports.) Students could be
asked to return to the informal “rule” they developed in an extension to assess its performance. Their rule
can be programmed in R, and then carried out on a series of random samples from the flights from that city
on that airline within that year. This allows them to see how often their rule picked an airline as being more
reliable (using various subsets of the observed data as the “truth”). Finally, students can summarize the
population of all flights, as a way to better understand sampling variability. This process reflects the process
followed by analysts working with big data: sampling is used to generate hypotheses that are then tested
against the complete dataset.
In a second course, more time is available to develop diverse statistical and computational skills. This includes
more sophisticated data management and manipulation with explicit learning outcomes that are a central
part of the course syllabus.
Other data wrangling and manipulation capacities can be introduced and developed using this example,
including more elaborate data joins/merges (since there are tables providing additional (meta)data about

8

http://serc.carleton.edu/sp/library/mea/examples/example5.html
http://serc.carleton.edu/sp/library/mea/examples/example5.html

planes). As an example, consider the paths of plane N355NB, which flew out of Bradley airport in January,
2008.

filter(airplanes, TailNum=="N355NB")

Source: sqlite 3.8.6 [ontime.sqlite3]
From: airplanes [1 x 9]
Filter: TailNum == "N355NB"
##
TailNum Type Manufacturer IssueDate Model Status
1 N355NB Corporation AIRBUS 11/14/02 A319-114 Valid
Variables not shown: AircraftType (chr), EngineType (chr), Year (chr)

singleplane <- filter(flights, TailNum=="N355NB") %>%
select(Year, Month, DayOfMonth, Dest, Origin, Distance) %>%
collect()

singleplane %>%
group_by(Year) %>%
summarise(count = n(), totaldist = sum(Distance))

Source: local data frame [13 x 3]
##
Year count totaldist
1 2002 152 136506
2 2003 1367 1224746
3 2004 1299 1144288
4 2005 1366 1149142
5 2006 1484 1149036
6 2007 1282 1010146
7 2008 1318 1095109
8 2009 1235 1094532
9 2010 1368 1143189
10 2011 1406 919893
11 2012 1213 807246
12 2013 1339 921673
13 2014 1114 766247

sum(~ Distance, data=singleplane)

[1] 12561753

singleplane %>%
group_by(Dest) %>%
summarise(count = n()) %>%
arrange(desc(count)) %>%
filter(count > 300)

Source: local data frame [9 x 2]
##
Dest count
1 MSP 2977

9

2 DTW 2371
3 LGA 865
4 MEM 854
5 ATL 841
6 SLC 564
7 DCA 429
8 BOS 380
9 SNA 319

We see that this Airbus A319 has been very active, with around 1300 flights per year since it came online in
late 2002. It tends to spend much of its time in Minneapolis/St. Paul (MSP), and is has amassed more than
11 million miles in the air!

Mapping is also possible, since the latitude and longitude of the airports are provided. Figure 6 displays a
map of flights from Bradley airport in 2013.

require(RSQLite)
con <- dbConnect(SQLite(), "ontime.sqlite3")

orig <- dbGetQuery(con, "SELECT * FROM airports WHERE IATA = 'BDL'")
dests <- dbGetQuery(con, "SELECT a.IATA, Latitude, Longitude, sum(1) as numFlights
FROM flights o LEFT JOIN airports a ON o.Dest = a.IATA
WHERE (Year = 2013 AND Origin = 'BDL' AND Cancelled != 0)
GROUP BY a.IATA")

require(igraph)
E <- data.frame(src = "BDL", dest = dests$IATA, weight = dests$numFlights)
V <- rbind(orig[,c("IATA", "Latitude", "Longitude")], dests[,c("IATA", "Latitude", "Longitude")])
airport <- graph.data.frame(E, directed = TRUE, V)
E(airport)$width <- with(E, 50 * weight / sum(weight))
require(maps)
map('state', xlim=c(-105, -65), ylim=c(25, 46))
plot(airport, layout=as.matrix(V[c("Longitude", "Latitude")])

, add=TRUE, rescale=FALSE
, edge.width = with(E, log(200 * weight / sum(weight)))
, edge.curved=TRUE
, edge.arrow.size = 0.3
, vertex.size = 30, vertex.label.cex = 0.8
, vertex.label.dist = 5, vertex.label.degree = ifelse(V$Latitude > 30, -pi/2, pi/2))

10

BDL

ATL

BWI

CLE

CLT

CVG DCA
DEN

DFW

DTW
EWR

FLL

IAD

MCO

MDW

MIA

MSP

ORD

PBI

PHL

RDU

RSW

SJU

TPA

Figure 6: Map of flights from Bradley airport in 2013

Linkage to other data scraped from the Internet (e.g. detailed weather information for a particular airport or
details about individual planes) may allow other questions to be answered (this has already been included
in the nycflights13 package (see SIDEBAR: Databases). Other approaches to analysis of big data in R
(e.g. dplyr package) can also be introduced. Use of a database to access this rich dataset helps to excite
students about the power of statistics, introduce tools that can help energize the next generation of data
scientists, and build useful data-related skills.

Conclusion

Many have argued that statistics students need additional facility to express statistical computations. By
introducing students to commonplace tools for data management, visualization, and reproducible analysis in
data science and applying these to real-world scenarios, we prepare them to think statistically in the era of
big data.

In addition, there have been other calls for an increased use of computing in the statistics curriculum at the
undergraduate level (American Statistical Association, 2014). In an era of increasingly big data, we agree
that this is an imperative to develop in students, beginning with the introductory course. Some in the data
science world argue that statistics is only relevant for “small” or “medium data” and “traditional tools.” We
believe that the integration of these precursors to data science into our curricula—early and often—will help
statisticians be part of the dialogue regarding Big Data and Big Questions.

Others have argued that statistics courses are mired in teaching techniques developed by pre-computer-era
statisticians to circumvent their lack of computational power. We concur that there are barriers and costs to
the introduction of reproducible analysis tools and more sophisticated data management and manipulation
skills to our courses. Further guidance and research results are needed to guide our work in this area, along
with illustrated examples, case studies, and faculty development. But these impediments must not slow down
our adoption. As Schutt cautions in her book, statistics could be viewed as obsolete if this challenge is not
embraced.

Finzer (2013) noted that such changes are also needed before university level, and that the U.S. K-12
education system “does not provide meaningful learning experiences designed to develop understanding of
data science concepts or a fluency with data science skills”. He concludes that statistics educators—who
generally understand data, have substantial expertise in computation, and have developed a variety of data
habits of mind—are well-positioned to advocate for major changes in the training of future data scientists. We

11

believe that the time to move forward in this manner is now, and believe that these these basic data-related
skills provide a foundation for such efforts.

ACKNOWLEDGMENTS A previous version of this paper was presented in July, 2014 at the Interna-
tional Conference on Teaching Statistics (ICOTS9) in Flagstaff, AZ.

REFERENCES American Statistical Association Undergraduate Guidelines Workgroup (2014). 2014
Curriculum guidelines for undergraduate programs in statistical science. Alexandria, VA: American Statistical
Association, http://www.amstat.org/education/curriculumguidelines.cfm.

Horton, N.J., Baumer, Ben S., and Wickham, H. (2014). Teaching precursors to data science in introductory
and second courses in statistics, http://arxiv.org/abs/1401.3269.

Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L. & Horton, N.J. (2014). R Markdown: Integrating
a reproducible analysis tool into introductory statistics, Technology Innovations in Statistics Education,
http://escholarship.org/uc/item/90b2f5xh.

Finzer, W. (2013). The data science education dilemma. Technology Innovations in Statistics Education,
http://escholarship.org/uc/item/7gv0q9dc.

Nolan, D. and Temple Lang, D. (2010). Computing in the statistics curricula, The American Statistician, 64,
97–107.

Wickham, H. (2011). ASA 2009 Data Expo, Journal of Computational and Graphical Statistics, 20(2):281-283.

SIDEBAR: What’s in a word?

In their 2010 American Statistician paper, Deborah Nolan and Duncan Temple Lang describe the need for
students to be able to “compute with data” to be able to answer statistical questions. Diane Lambert of
Google calls this the capacity to “think with data”. Statistics graduates need to be manage data, analyze it
accurately, and communicate findings effectively. The Wikipedia data science entry states that “data scientists
use the ability to find and interpret rich data sources, manage large amounts of data despite hardware,
software, and bandwidth constraints, merge data sources, ensure consistency of datasets, create visualizations
to aid in understanding data, build mathematical models using the data, present and communicate the data
insights/findings to specialists and scientists in their team and if required to a non-expert audience.” But
what is the best word or phrase to describe these computational and data-related skills?

“Data wrangling” has been suggested as one possibility (and returned about 131,000 results on Google),
though this connotes the idea of a long and complicated dispute, often involving livestock, which may not
end well.

“Data grappling” is another option (about 7,500 results on Google), though this perhaps less attractive as it
suggests pirates (and grappling hooks) or wrestling as combat sport or self defense.

“Data munging” (about 35,000 results on Google) is a common term in computer science used to describe
changes to data (both constructive and destructive) or mapping from one format to another. A disadvantage
of this term is that it has a somewhat pejorative sentiment.

“Data tidying” (about 900 results on Google) brings to mind the ideas of “bringing order to” or “arranging
neatly”.

“Data curation” (about 322,000 results on Google) is a term that focuses on a long-term time scale for use
(and preservation). While important, this may be perceived a dusty and stale task.

“Data cleaning” (or “data cleansing”, about 490,000 results on Google) is the process to identify and correct
(or remove) invalid records from a dataset. Other related terms include “data standardization” and “data
harmonization”.

12

http://www.amstat.org/education/curriculumguidelines.cfm
http://arxiv.org/abs/1401.3269
http://escholarship.org/uc/item/90b2f5xh
http://escholarship.org/uc/item/7gv0q9dc

A search for “Data manipulation” yielded about 740,000 results on Google. Interestingly, this term on
Wikipedia redirects to the “Misuse of statistics” page, implying the analyst might have malignant intentions
and could torture the data to tell a particular story. The Wikipedia “Data manipulation language” page has
no such negative connotations (and describes the Structured Query Language [SQL] as one such language).
This dual meaning stems from the definition (from Merriam-Webster) of manipulate:

• To manage or utilize skillfully
• To control or play upon by artful, unfair, or insidious means especially to one’s own advantage

“Data management” was the most common term, with more than 33,000,000 results on Google. The DAMA
Data Management Body of Knowledge (DAMA-DMBOK, http://www.dama.org/files/public/DI_DAMA_
DMBOK_Guide_Presentation_2007.pdf) provides a definition: “Data management is the development,
execution and supervision of plans, policies, programs and practices that control, protect, deliver and enhance
the value of data and information assets.” While somewhat clinical (and decidedly non-sexy), this may be
the most appropriate phrase to describe the type of data-related skills students need to make sense of the
information around them.

SIDEBAR: Making bigger datasets accessible through databases

Nolan and Temple Lang (2010) stress the importance of knowledge of information technologies, along with
the ability to work with large datasets. Relational databases, first popularized in the 1970’s, provide fast and
efficient access to terabyte-sized files. These systems using a structured query language (SQL) to specify data
operations. Surveys of graduates from statistics programs have noted that familiarity with databases and
SQL would have been helpful as they moved to the workforce.

Database systems have been highly optimized and tuned since they were first invented. Connections between
general purpose statistics packages such as R and database systems can be facilitated through use of SQL.
Table 2 describes key operators for data manipulation in SQL.

verb meaning
--
SELECT create a new result set from a table
FROM specify table
WHERE subset observations
GROUP aggregate
ORDER re-order the observations
DISTINCT remove duplicate values
JOIN merge two data objects

Table 2: Key operators to support data management and manipulation in SQL (structured query language)

Use of a SQL interface to large datasets is attractive as it allow the exploration of datasets that would be
impractical to analyze using general purpose statistical packages. In this application, much of the heavy
lifting and data manipulation is done within the database system, with the results made available within the
general purpose statistics package.

The ASA Data Expo 2009 website (http://stat-computing.org/dataexpo/2009) provides full details regarding
how to download the Expo data (1.6 gigabytes compressed, 12 gigabytes uncompressed through 2008), set up
a database using SQLite (http://www.sqlite.org), add indexing, and then access it from within R or RStudio.
This is very straightforward to undertake, though there are some limitations to the capabilities of SQLite.

MySQL (http://www.mysql.com, described as the world’s most popular open source database) and PostgreSQL
are more fully-featured systems (albeit with somewhat more complex installation and configuration).

13

http://www.dama.org/files/public/DI_DAMA_DMBOK_Guide_Presentation_2007.pdf
http://www.dama.org/files/public/DI_DAMA_DMBOK_Guide_Presentation_2007.pdf
http://stat-computing.org/dataexpo/2009
http://www.sqlite.org
http://www.mysql.com

The use of SQL within R (or other systems) is straightforward once the database has been created (either
locally or remotely). An add-on package (such as RMySQL or RSQLite) must be installed and loaded, then a
connection made to a local or remote database. In combination with tools such as R Markdown (which make
it easy to provide a template and support code) students can start to tackle more interesting and meatier
questions using larger databases set up by their instructors. Instructors wanting to integrate databases into
their repertoire may prefer to start with SQLite, then graduate to more sophisticated systems (which can be
accessed remotely) using MySQL.

The dplyr package encapsulates and replaces the SQL interface for either system. It also features lazy
evaluation, where operations are not undertaken until absolutely necessary.

Another option is for the user to specify SQL SELECT commands. For example, the following code would
replicate the creation of the dataset of counts for the three airports used to create Figure 2 using SQL (as
opposed to using the interface within dplyr).

airportflights <-
dbGetQuery(con, "SELECT Dest, Year, Month, DayOfMonth, DayOfWeek, sum(1) as numFlights

FROM ontime WHERE (Dest = 'ALB' OR Dest = 'BDL' OR Dest = 'BTV')
GROUP BY Year, Month, DayOfMonth, Dest")

In this example, a set of variables are selected (along with a derived variable which sums the number of
flights) from the three airports of interest. The results are aggregated by day and destination (at which point
there are more manageable). The dbGetQuery function in the RMySQL package returns a dataframe containing
the results from the SQL SELECT call. The SQL syntax is similar, but not identical, to the dplyr syntax.

Is setting up a database too much effort? We think not. But those willing to explore can undertake similar
analyses using the nycflights13 package on CRAN. This includes five dataframes that can be accessed
within R.

require(nycflights13)
airlines

Source: local data frame [16 x 2]
##
carrier name
1 9E Endeavor Air Inc.
2 AA American Airlines Inc.
3 AS Alaska Airlines Inc.
4 B6 JetBlue Airways
5 DL Delta Air Lines Inc.
6 EV ExpressJet Airlines Inc.
7 F9 Frontier Airlines Inc.
8 FL AirTran Airways Corporation
9 HA Hawaiian Airlines Inc.
10 MQ Envoy Air
11 OO SkyWest Airlines Inc.
12 UA United Air Lines Inc.
13 US US Airways Inc.
14 VX Virgin America
15 WN Southwest Airlines Co.
16 YV Mesa Airlines Inc.

airports

14

Source: local data frame [1,397 x 7]
##
faa name lat lon alt tz dst
1 04G Lansdowne Airport 41.13047 -80.61958 1044 -5 A
2 06A Moton Field Municipal Airport 32.46057 -85.68003 264 -5 A
3 06C Schaumburg Regional 41.98934 -88.10124 801 -6 A
4 06N Randall Airport 41.43191 -74.39156 523 -5 A
5 09J Jekyll Island Airport 31.07447 -81.42778 11 -4 A
6 0A9 Elizabethton Municipal Airport 36.37122 -82.17342 1593 -4 A
7 0G6 Williams County Airport 41.46731 -84.50678 730 -5 A
8 0G7 Finger Lakes Regional Airport 42.88356 -76.78123 492 -5 A
9 0P2 Shoestring Aviation Airfield 39.79482 -76.64719 1000 -5 U
10 0S9 Jefferson County Intl 48.05381 -122.81064 108 -8 A
..

planes

Source: local data frame [3,322 x 9]
##
tailnum year type manufacturer model engines
1 N10156 2004 Fixed wing multi engine EMBRAER EMB-145XR 2
2 N102UW 1998 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
3 N103US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
4 N104UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
5 N10575 2002 Fixed wing multi engine EMBRAER EMB-145LR 2
6 N105UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
7 N107US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
8 N108UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
9 N109UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
10 N110UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214 2
..
Variables not shown: seats (int), speed (int), engine (chr)

flights

Source: local data frame [336,776 x 16]
##
year month day dep_time dep_delay arr_time arr_delay carrier tailnum
1 2013 1 1 517 2 830 11 UA N14228
2 2013 1 1 533 4 850 20 UA N24211
3 2013 1 1 542 2 923 33 AA N619AA
4 2013 1 1 544 -1 1004 -18 B6 N804JB
5 2013 1 1 554 -6 812 -25 DL N668DN
6 2013 1 1 554 -4 740 12 UA N39463
7 2013 1 1 555 -5 913 19 B6 N516JB
8 2013 1 1 557 -3 709 -14 EV N829AS
9 2013 1 1 557 -3 838 -8 B6 N593JB
10 2013 1 1 558 -2 753 8 AA N3ALAA
..
Variables not shown: flight (int), origin (chr), dest (chr), air_time
(dbl), distance (dbl), hour (dbl), minute (dbl)

15

weather

Source: local data frame [8,719 x 14]
Groups: month, day, hour
##
origin year month day hour temp dewp humid wind_dir wind_speed
1 EWR 2013 1 1 0 37.04 21.92 53.97 230 10.35702
2 EWR 2013 1 1 1 37.04 21.92 53.97 230 13.80936
3 EWR 2013 1 1 2 37.94 21.92 52.09 230 12.65858
4 EWR 2013 1 1 3 37.94 23.00 54.51 230 13.80936
5 EWR 2013 1 1 4 37.94 24.08 57.04 240 14.96014
6 EWR 2013 1 1 6 39.02 26.06 59.37 270 10.35702
7 EWR 2013 1 1 7 39.02 26.96 61.63 250 8.05546
8 EWR 2013 1 1 8 39.02 28.04 64.43 240 11.50780
9 EWR 2013 1 1 9 39.92 28.04 62.21 250 12.65858
10 EWR 2013 1 1 10 39.02 28.04 64.43 260 12.65858
..
Variables not shown: wind_gust (dbl), precip (dbl), pressure (dbl), visib
(dbl)

end <- Sys.time(); end

[1] "2015-03-25 14:37:02 EDT"

end - now # elapsed

Time difference of 27.54015 secs

16

	Conclusion
	SIDEBAR: What's in a word?
	SIDEBAR: Making bigger datasets accessible through databases

