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ABSTRACT

We study structure formation in a set of cosmological simulations to uncover the scales in the initial density field that gave

rise to the formation of present-day structures. Our simulations share a common primordial power spectrum (here � cold dark

matter, �CDM), but the introduction of hierarchical variations of the phase information allows us to systematically study the

scales that determine the formation of structure at later times. We consider the variance in z = 0 statistics such as the matter

power spectrum and halo mass function. We also define a criterion for the existence of individual haloes across simulations, and

determine what scales in the initial density field contain sufficient information for the non-linear formation of unique haloes.

We study how the characteristics of individual haloes such as the mass and concentration, as well as the position and velocity,

are affected by variations on different scales, and give scaling relations for haloes of different mass. Finally, we use the example

of a cluster-mass halo to show how our hierarchical parametrization of the initial density field can be used to create variants

of particular objects. With properties such as mass, concentration, kinematics, and substructure of haloes set on distinct and

well-determined scales, and its unique ability to introduce variations localized in real space, our method is a powerful tool to

study structure formation in cosmological simulations.

Key words: methods: numerical – galaxies: formation – dark matter – large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

In the standard cosmological model, galaxies and dark matter

haloes originate from random, adiabatic density fluctuations in the

big bang, magnified by inflation, and amplified under the force

of gravity in competition with cosmic expansion. If, as inflation

predicts (e.g. Linde 2005), and observations indicate (e.g. Bouchet

et al. 1993; Nusser, Dekel & Yahil 1995; Planck Collaboration XVII

2016; Planck Collaboration IX 2020), the primordial density field

is Gaussian, and statistically homogeneous and isotropic, its late-

time power spectrum and the distribution of haloes that form in

a sufficiently large volume are fully determined by the laws of

physics, and the universal cosmological parameters (e.g. Peebles

1980; Bardeen et al. 1986).

Because of the random nature of the initial density field, a

comparison between theoretical predictions and observations is

usually done on a population level, rather than for individual objects.

Constraints on the halo mass function or the matter power spectrum

require large surveys, and in the case of simulations, similarly

large volumes to sufficiently sample the underlying distributions

(e.g. Springel et al. 2005; Klypin, Trujillo-Gomez & Primack 2011;

Angulo et al. 2012). While scales much smaller than the survey or

simulation size are sampled many times, scales represented by the

⋆ E-mail: till.sawala@helsinki.fi

largest haloes, or the largest modes of the density field, are sampled

much more sparsely. This problem of ‘cosmic variance’ (see e.g.

Colombi et al. 2000) is not just a question of size, however. Any

particular object, observed with enough detail, is unlikely to have

a closely matching counterpart in a finite simulation volume, and

the search for the initial conditions that give rise to the formation

of particular observed structures remains an ongoing challenge (e.g.

Hoffman & Ribak 1991; Bistolas & Hoffman 1998; Doumler et al.

2013; Jasche & Wandelt 2013; Yepes, Gottlöber & Hoffman 2014;

Hoffman, Courtois & Tully 2015; Jasche, Leclercq & Wandelt 2015;

Carlesi et al. 2016; Lavaux & Jasche 2016).

While the statistics of the halo population are fully determined by

the initial power spectrum, the formation of particular objects and

their characteristics also depend on the particular phase information.

In a simple, monolithic collapse model (e.g. Peebles 1980), the

formation of a structure would be governed only by modes with

wavelengths at or above the scale of the Lagrangian region from

which the structure originated. N-body simulations (e.g. Davis et al.

1985) have shown, however, that structure formation in � cold dark

matter (�CDM) is ‘bottom up’, and large structures form in part

through the merger of smaller ones, causing even smaller scale modes

to affect the formation and the properties of more massive haloes.

The fact that distinct constituents of the halo population originate

from independent scales in the initial density field have been pointed

out, for example, by Aragon-Calvo (2016), who used simulations

with shared large-scale modes in order to create an ensemble of

C© 2021 The Author(s)
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simulations. Notably, and analogous to our Sections 3.3 and 3.2,

they show how a set of semi-independent realizations with some

shared phase information can overcome the statistical limitations

created by single sample.

In this paper, we systematically investigate which scales in the

initial density field are responsible for the formation of haloes at

later times. Starting from the density field of the 1003 cMpc3 EAGLE

simulation volume1 (Schaye et al. 2015), we generate a sequence of

simulations that systematically introduce random variations of the

white noise field on increasingly larger scales. At each scale, we

compare the resulting simulations in terms of the evolved density

field, the population of haloes, the existence of individual haloes,

and the variation in halo properties.

In particular, we uncover the scales in the initial density field that

contain the information responsible for the non-linear formation of

individual haloes. We also examine how the properties of haloes of

different masses change when the density field is perturbed on scales

below this existence scale. Finally, we demonstrate how our method

of introducing hierarchical, random perturbations to existing density

fields can be used deliberately to create variations of simulations and

simulated objects, including with variations in mass, concentration,

and kinematics. This makes it a particularly powerful tool for future

zoom and constrained simulations, allowing to efficiently explore

the parameter space of possible initial conditions that give rise to

the formation of haloes with particular observed properties. We

will explore the full potential of this method in a forthcoming

paper.

This paper is organized as follows. In Section 2.1, we describe

our method for parametrizing the phase information in an octree

basis, and the PANPHASIA white noise field. In Section 2.2, we

outline the set-up of the simulations used in this paper, our way

of identifying haloes, and of matching objects across simulations.

Section 3 presents the global results of our simulations, in terms of

the density field and its power spectrum, in Section 3.1, and the halo

population, in Section 3.3. In Section 4, we discuss the formation,

and variation in properties, of individual objects. We present a

definition of the identity of particular haloes across simulations in

Section 4.1, which allows us, in Section 4.2, to study the scales

in the initial density field that determine the existence of particular

haloes. In Section 5, we study the variation of halo properties: mass

(Section 5.1), concentration (Section 5.2), position (Section 5.3), and

velocity (Section 5.4). We present variations of a particular cluster-

mass halo in Section 6, and conclude with a summary and an outlook

to future work in Section 7.

2 M E T H O D S

The results in this paper are based on cosmological ‘dark matter only’

N-body simulations, i.e. both baryons and dark matter are subsumed

into a single type of simulation particle, and evolved only under

the effect of gravity. In this section, we describe the creation of our

initial conditions, the set-up of the simulations, and the identification

of structures. Additional information about the parametrization of

the primordial density field, and the PANPHASIA white noise field

that is used in its construction, can be found in Jenkins (2013) and

Jenkins & Booth (2013).

1Throughout this paper, we use physical units of mass and comoving physical

units of length (denoted as cMPc) and density, unless otherwise specified. At

z = 0, we use Mpc or kpc as a shorthand.

2.1 Initial conditions

A natural way to describe the primordial Gaussian density or

displacement field in a cosmological simulation of a cubic region

with periodic boundary conditions is a Fourier representation, intro-

duced for cosmological simulations by Efstathiou et al. (1985), and

employed by many subsequent initial condition generators (e.g. Katz

et al. 1994; Bertschinger 2001; Springel et al. 2005; Jenkins 2010;

Hahn & Abel 2011; O’Leary & McQuinn 2012).

In the standard �CDM model, it is assumed that the initial density

fluctuations after inflation are Gaussian. The statistical properties

of the overdensity field, δ(x), and its Fourier transform, δ(k), for

a volume, V, are then completely defined by the one-dimensional

linear power spectrum, Plin(k):

Plin(k) =
1

V
〈|δk|2〉. (1)

To create a set of �CDM initial conditions, it is necessary to

specify the cosmological parameters, the dimensions of the periodic

region, the power spectrum, and the phase information, which can be

encapsulated as a realization of a Gaussian white noise field (Salmon

1996). Gaussian white noise fields are particularly convenient to

work with numerically: for example, their two-point autocorrelation

functions are zero for any non-zero lag. Consequently, the values for

an unconstrained white noise field can be set by any high-quality

pseudo-random number generator. As Salmon (1996) also pointed

out, not only does this offer a simple way to produce multiscale

random fields, it is also straightforward to include linear constraints:

the corresponding �CDM linear overdensity field for a given linear

matter power spectrum is given by the convolution, in real space, of

the white noise ‘phase information’ field with a specific spherically

symmetric window function, computed from a one-dimensional

integral over the linear matter power spectrum.

2.1.1 Octree basis

Jenkins (2013) introduced a way of constructing multiscale real-

space white noise fields based on an octree decomposition of a cubic

period volume. In this formalism, the Gaussian white noise field

is built hierarchically from a linear superposition of octree basis

functions.

The individual basis functions are zero outside of the particular

cubic cell they occupy, and orthogonal to each other, even when

completely or partially overlapping. Consequently, an unconstrained

Gaussian white noise field can be created by choosing the octree

function amplitudes from a pseudo-random sequence of uncorrelated

Gaussian variables of zero mean and unit variance.

The white noise field can be refined at any location by adding

information from higher (or deeper) levels of the octree. The white

noise field is then specified in each cell at the highest level as

an appropriate polynomial of the local Cartesian cell coordinates.

The octree functions themselves are not polynomials, but an octree

function occupying any parent cell is represented by eight distinct

piecewise polynomials, with each one filling one of the parent’s eight

child cells.

It proves convenient in this paper to use these octree functions to

represent the phase information in all the simulations we present. The

primary rationale for this choice, however, will be made evident in

subsequent papers. Our ultimate goal is to construct multiscale initial

conditions that also satisfy linear constraints, derived for example

from reconstructions of the large-scale structure around the Milky

Way. Here, the octree decomposition is crucial, as it allows for the

MNRAS 501, 4759–4776 (2021)
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introduction of localized changes to the density field, independently

from the external constraints.

There are an infinite number of possible sets of orthogonal octree

basis function, using different polynomial functions to represent

the field within the cells of the octree. The degree to which the

density information is attached to a particular level of the octree

depends on the choice of basis. Throughout this paper we will use

the S8 octree basis functions developed by Jenkins (2013). The S8

function set have been used in making initial conditions for many

cosmological simulations of the Virgo Consortium,2 from modelling

galaxy clusters (Bahé et al. 2017) via galaxy groups (Sawala et al.

2016) and individual galaxies (Grand et al. 2017), down to simulating

the smallest cold dark matter (CDM) dark haloes at the present day

(Wang et al. 2020).

We use the S8 octree functions for practical reasons as they are well

established and have been shown to be suitable for zoom simulations

in the sense that that the large-scale properties of resimulated haloes

closely match the originals for a reasonable computational cost. This

is in contrast to the simpler S1 octree basis functions that show poor

stability in the properties of haloes with increasing resolution at the

same computational cost (Jenkins 2013). We have not explored other

choices for this paper. To mitigate against our particular choice of

basis functions when presenting our results, we introduce later in this

subsection, length scales and mass scales that take into account of

our choice of basis function in addition to the physical sizes of the

octree cells.

2.1.2 Contribution to the variance from individual levels

To illustrate the relative importance of individual layers of octree

functions to the �CDM overdensity field, we first consider the

fractional contribution of each level of octree functions to the total

variance of the overdensity field when smoothed with a spherical

top-hat function of radius R and mean density, containing mass M at

the mean density of the universe. This ratio is given by

σ 2
L

σ 2
=

∫

d3
k W 2(kR)

(

j 2
lmn(k�L) − j 2

lmn(2k�L)
)

Plin(k)
∫

d3k W 2(kR)Plin(k)
,

where W(kR) ≡ (sin (kR) − kR cos (kR))/(kR)3 is the spherical top-

hat window function in k-space, Plin(k) is the �CDM linear power

spectrum, �L is the cell size of the octree at level L, and the functions

jlmn are given by

jlmn(k�L) = ((2l + 1)(2m + 1)(2n + 1))1/2

× jl

(

kx�L

2

)

jm

(

ky�L

2

)

jn

(

kz�L

2

)

. (2)

The three functions jl,m,n, on the right-hand side, are spherical

Bessel functions of the first kind, and kx, ky, kz are the Cartesian

components of the wave vector k.

The phase information for level L is defined as that given by the

octree functions that fully occupy octree cells at level L − 1, and

therefore contribute phase information that can be represented as

sets of disjoint polynomials filling the octree cells at level L.

In Fig. 1, we plot the ratio σ 2
L/σ 2 against the spherical top-hat

filter mass, M, and size of a spherical perturbation, λ, related via

M = ρ × 4/3πr3, where ρ = 	0 × 3H0
2/(8πG), and r = λ/2 =

π/k, for a series of single octree levels, each shown by a solid line.

For each level there is a range of top-hat filter masses and wavelengths

2http://virgo.dur.ac.uk/

Figure 1. Relative contribution to total the variance of the density field, σ 2,

by different octree levels, using the S8 octree basis functions (solid lines),

or a sharp k-space filter (dashed lines), as a function of wavelength, λ, top

axis, and corresponding spherical top-hat mass, bottom axis. The scale at

which the relative contribution from a given octree level L is maximal defines

λmax σ 2 (L) and Mmax σ 2 (L), and is indicated by faint vertical lines.

where a particular level contributes most to the total variance. We

call these scales Mmax σ 2 and λmax σ 2 , respectively.

For comparison, the dashed curves show the fractional contribution

to the variance if, instead of setting octree functions to zero except in

a single octree layer, we do the equivalent transformation assuming

we use Fourier modes to represent the phase information. More

precisely, we set all Fourier modes to zero outside the factor of 2

range of 1/
√

2 < k�L <
√

2.

The peaks of the dashed and solid curves line up quite well, and the

shape of the sets of curves is similar. This indicates that for quantities

such as the variance of the overdensity field smoothed with a top-hat,

we can establish a close correspondence between octree layers and

sharp-k space shells in Fourier space. We expect to get very similar

results to those we present in this paper, had we chosen instead only

to work with Fourier modes.

2.1.3 The cut-off scale

If we set to zero all the octree functions occupying cells at level L

and above (so that the white noise field is approximated by disjoint

polynomial functions occupying the octree cells at level L), the

resulting, truncated power spectrum has a high-k cut-off of the form

〈

P L
lin(k)

〉

= Plin(k)

(

∑

l,m,n=0,1

j 2
lmn(k�L)

)

. (3)

The high-k cut-off is due to the summation term in brackets on the

right-hand side of equation (3) that tends to one in the limit of small

k, and to zero for large k.

In Fig. 2, we illustrate how the full �CDM dimensionless power

spectrum is built up from successive higher ‘layers’ of octree

functions by plotting equation (3) for a �CDM power spectrum for

several values of L. We can see that the �CDM linear power spectrum

is approximated better and better as we add successive layers of octree

function phase information. Truncating the octree representation for

all cells higher than a given level produces a relatively sharp cut-

off in the spherically averaged power spectrum. We can define an

MNRAS 501, 4759–4776 (2021)
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Figure 2. Top panel: the reproduction of the �CDM dimensionless power

spectrum (blue solid line) as a function of wavenumber, k, bottom axis, and

wavelength, λ, top axis, with increasing accuracy. Bottom panel: the ratio of

the truncated power spectra and the �CDM power spectrum. Individual black

lines show the truncated power spectra given by equation (3), successively

including the phase information for octree levels up to the indicated level

L. Dashed grey lines and the faint vertical lines indicate a reduction of the

truncated power spectra by a factor of 4, allowing us to define a cut-off

wavenumber, kcut, and cut-off scales, λcut(L) and Mcut(L) for each octree

level. The red solid and dashed lines show the power spectrum truncated at

level L = 20 and the Nyquist wavenumber of the cells at L = 20, respectively.

associated cut-off wavenumber, kcut(L), by determining where P L
lin(k)

falls by a factor of 2 in amplitude, or 4 in power, below the �CDM

linear power spectrum.

2.1.4 Length scales and physical quantities

In Table 1, we give a set of conversion factors that relates the level, L,

to physical quantities. The first column gives the octree level. Level

23 is the deepest level and hence the smallest scale at which we

sample the PANPHASIA field for this project. The second column lists

the side length of the octree cells themselves. As the 100 cMpc side

length of the simulation volume is represented by 12 cells at level

12, the length scale at level L is (100/3)214 − L cMpc.

Column 3 gives λmax σ 2 (L), the wavelength of a perturbation for

which the contribution from level L to the fractional variance σ 2
L/σ 2

in the S8 parametrization is maximal, as shown in Fig. 1. Column 4

gives Mmax σ 2 , the equivalent spherical top-hat mass. Column 5 gives

λcut(L), the cut-off scale, i.e. the small-scale limit at which the power

due to the truncation at level L falls to a quarter of the value of the

full, linear �CDM power spectrum, and Mcut, in column 6, is the

mass of an equivalent spherical top-hat.

While the size of octree cell is of interest, this length scale on

its own is not particularly revealing. This is because, as described

above, the physical length scales affected by the octree functions

result from a combination both of the cell size and the functional

forms of the octree functions themselves. In general, basis choices

that use high-order polynomials affect smaller physical length scales

in units of the octree cell size.

Table 1. Correspondence between octree levels and physical scales.

L �cell λmax σ 2 log10

(

M
max σ2

M⊙

)

λcut log10

(

Mcut
M⊙

)

(cMpc) (cMpc) (cMpc)

23 0.065 0.025 5.5 0.051 6.4

22 0.13 0.053 6.5 0.101 7.3

21 0.26 0.11 7.5 0.202 8.2

20 0.52 0.24 8.5 0.405 9.1

19 1.04 0.52 9.5 0.81 10.0

18 2.08 1.11 10.5 1.62 10.9

17 4.17 2.41 11.5 3.24 11.8

16 8.33 5.27 12.5 6.48 12.7

15 16.67 11.6 13.5 12.97 13.6

14 33.33 25.6 14.5 25.94 14.6

13 66.67 56.5 15.6 51.88 15.5

12 133.33 122.9 16.6 103.78 16.4

Note. L: octree level; �cell: size of the octree cell at level L; λmax σ 2 :

characteristic wavelength, where the fractional contribution to the variance

from level L is maximal; Mmax σ 2 : mass of a mean-density spherical top-hat

of diameter λmax σ 2 ; λcut: wavelength at which power is reduced by four when

power at levels L and above are set to zero; Mcut: mass of a mean-density

spherical top-hat of diameter λcut.

As shown in Fig. 1, for most scales of interest, the contribution

from any one level to the variance is less than 1/3, and any object

contains phase information from multiple levels. Comparing the red

lines in Figs 1 and 2, we see that, while the octree functions at L =
20 contribute most at λmax σ 2 = 0.24 cMpc, the power already falls

to 1/4 at λcut = 0.41 cMpc if the power spectrum is truncated at L =
20. This is due to the fact that the information from L = 20 already

contributes significantly to the full �CDM power spectrum at this

scale, in addition to smaller contributions from L > 20. While λmax σ 2

thus locates the peak contribution from a single level, for the effect

of variations at and above a certain scale on structure formation, λcut

proves the most useful quantity. In Section 4.2, we also define a new

length scale based on the existence of unique haloes across variations

at a given level.

2.1.5 PANPHASIA

In addition to defining the S8 octree basis functions, Jenkins (2013)

also defined a single extremely large ‘public’ realization of a

Gaussian white noise field, called ‘PANPHASIA’. The PANPHASIA

field is an octree with 50 levels, more than enough to encompass

all the phase information of all existing cosmological simulations.

By design the phase information in PANPHASIA can be computed

rapidly at any location of the field and at any depth in the octree. We

will take our phase information for this paper from the PANPHASIA

field.

All the simulations for this paper are of a 1003 cMpc3 volume. We

define a reference set of phase information that is the phase informa-

tion used for the EAGLE project flagship 1003 cMpc3 volume (Schaye

et al. 2015, hereafter called ‘Reference’). The phase information for

this simulation occupies a very small region of the entire PANPHASIA

field. The Reference simulation phase information comes from a

cubic patch of dimension 123 at the 12th level octree (so at this level

the whole PANPHASIA field consists of 212 = 2048 cells on a side).

We will use the symbol, L, usually with a subscript to denote the

level of phase information in the PANPHASIA field. The zero-point for

the octree levels is arbitrary and simply follows as a consequence of

a choice for the Reference phases made by Schaye et al. (2015).
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Structures from Gaussian random fields 4763

Figure 3. Illustration of displacements in the PANPHASIA white noise field. In all panels the region of PANPHASIA represented in the simulation volume is

indicated by thick lines. In the left-hand panel, adjacent regions of PANPHASIA displaced by 1 and 2 in one dimension are shown in red and yellow, respectively.

The second and third panels (variants 1 and 2) illustrate shifts at level Lmin + 2 by 1 and 2, respectively. The fourth panel, variant 3, represents a shift by 1 at

level Lmin + 3 and another arbitrary shift at level Lmin + 4. Any combination of shifts is possible, and all integer shifts result in independent white noise fields on

the respective levels.

2.1.6 Variations as shifts in PANPHASIA

As illustrated in Fig. 3, we can conveniently introduce random

variations to the initial density field as coordinate shifts in PAN-

PHASIA. The left-hand panel shows three adjacent subvolumes of

PANPHASIA, in blue, yellow, and red, respectively. Each subvolume

contains completely independent phase information, i.e. completely

independent regions of the white noise field, for the same simulation

volume. The next three panels, to the right, show several possible

variants. Assuming that the blue PANPHASIA region contains the full

phase information of the Reference simulation from levels Lmin to

Lmax, variants 1 and 2 differ from the Reference simulation, and from

each other, at levels Lmin + 2 and above. Variant 3 shares levels Lmin to

Lmin + 2 with the Reference simulation, levels Lmin + 3 with the variant

2, and differs from all other simulations at level Lmin + 4.

Provided that there is significant large-scale power, initial con-

ditions with different low-level phase information result in the

formation of different objects, independent of shared high-level phase

information. The Reference simulation, and the variants 1 and 2,

share the same amount of phase information (Lmin to Lmin + 2), so

it is expected that, statistically, the structures formed in each will

be equally similar to one another. Since the levels of PANPHASIA

are completely independent, the choice of ‘Reference’ among the

three is arbitrary. If two simulations share the same large-scale phase

information, the statistical similarity in the structures formed depends

on the smallest scale down to which the phase information is shared.

While variants 2 and 3 also share phase information at level Lmin + 4,

the fact that they differ at Lmin + 3 means that they have no additional

similarity. Out of all illustrated volumes, the Reference simulation

and variant 3 share phase information down to the smallest scale, so it

is expected that they will have the greatest similarity in the structures

formed.

We label a set of simulations that differs from the phase informa-

tion of the Reference simulation from level L to Lmax as variants VL,

and identify individual volumes that employ a shift by i from level

L to Lmax as VLi. For example, V16 is the set of variants that differ

from the Reference simulation at level L = 16 and above, and V185

is the individual variant that differs from the Reference simulation

at level L = 18 and above by a shift by 5. Variants with multiple

shifts, e.g. by i from level L to level M − 1 and by j from level M

to level Lmax, where L < M ≤ Lmax, are labelled VLi/Mj, etc. Hence,

V182/215 is the individual variant that employs a shift by 2 at levels

18–20, and a shift by 5 at levels 21 and above.

2.2 Simulations and structure finding

All simulations presented here assume a �CDM cosmology, with

parameters h = 0.6777, ns = 0.9611, σ 8 = 0.8288, 	0 = 0.307,

	b = 0.0483, and 	� = 0.693. They are set up in a volume of

1003 cMpc3 with glass initial conditions, using N = 3763(5.3 × 107)

particles, giving a particle mass of 7.4 × 108 M⊙, a mean interparticle

separation of 266 ckpc, and a comoving softening length of 13 ckpc

throughout.

We use the IC GEN initial conditions code and the methods

described in the papers Jenkins (2010, 2013) to make second-

order Lagrangian perturbation theory initial conditions for a starting

redshift of 127. To minimize interpolation errors, we used a 15363

Fourier mesh with quadratic interpolation to generated all of the

initial conditions. The Nyquist frequency of this Fourier mesh is a

factor of 4 smaller than the theoretical particle Nyquist frequency.

We set all Fourier modes to zero if the magnitude of their wave vector

equals or exceeds the one-dimensional particle Nyquist frequency.

The simulations are run using P-GADGET-3, a TREEPM code based

on the publicly available code GADGET-2 (Springel 2005). In total,

we have performed 469 simulations: one simulation with phase

information identical to the 100 cMpc EAGLE volume of Schaye et al.

(2015, ‘Reference’), and 39 ‘variant’ simulations, for each of the 12

levels from 12 to 23. At every level, there are thus 40 simulations

including the Reference simulation, which are equidistant in their

white noise fields.

Overdensities and self-bound structures are identified using the

friends-of-friends (FoF; Davis et al. 1985) and SUBFIND (Springel

et al. 2001) algorithms, respectively. Throughout this paper, unless

otherwise mentioned, the term ‘halo’ refers to a self-bound structure,

as identified by SUBFIND, and we limit some of our analysis to only

MNRAS 501, 4759–4776 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
1
/4

/4
7
5
9
/6

1
0
2
5
4
0
 b

y
 N

a
tio

n
a
l L

ib
ra

ry
 o

f H
e
a
lth

 S
c
ie

n
c
e
s
 u

s
e
r o

n
 0

3
 M

a
y
 2

0
2
1



4764 T. Sawala et al.

central haloes, i.e. the most massive self-bound structures within

their FoF groups.

3 G LOBA L R ESU LTS

In this section, we present the overall results of our simulations, and

the effect of the varying the initial conditions on the z = 0 density

field, the matter power spectrum, and the abundance of dark matter

haloes of different mass.

3.1 Density fields

In Fig. 4, we visually compare the structures at z = 0 formed

in the Reference simulation (top row) to those formed in variants

with independent white noise fields (WNFs) at and above levels 22,

20, 18, and 16, respectively. From left to right, the columns show

the projected dark matter density in boxes of side length 100, 33,

and 10 Mpc, respectively. Shades of grey indicate similar projected

density in the Reference and the variant simulations, shades of

blue or purple indicate higher densities in the Reference or variant

simulations, respectively.

In the right-hand column, differences from the Reference simula-

tion can already be perceived at level 22. While nearly all identifiable

haloes can be matched by eye, some low-mass haloes appear slightly

displaced, often by less than the size of the halo. At this level of

variation, scales visible in the middle and left-hand panels appear

almost identical. For variants at level 20, most haloes in the right-

hand column are offset, but can still be matched across simulations

by eye. Differences are also apparent in the middle column, where

some lower mass haloes now show a noticeable displacement. At

L = 18, differences are noticeable in all three panels. In the right-

hand column, all haloes appear visibly displaced, and many low-

mass haloes can no longer be matched by eye, while in the left-

hand column, displacements are still mostly below the size of the

identifiable haloes. At L = 16 all differences are enhanced: while

the right-hand panel shows similar amounts of structure in both

simulations, most individual objects can no longer be identified and

appear at random. The middle panel still shows some correlation

between the position of the more massive groups, as well as filaments,

but only the largest haloes still appear in dark grey, indicating that

they are displaced by less than their size.

We will examine the changes to individual, matched objects more

rigorously in Section 4. As an example, we will also discuss changes

to a single, cluster-mass halo in more detail in Section 6.

3.2 Power spectrum

In the top panel of Fig. 5, we show the matter power spectrum, P(k),

of our simulations measured at z = 0. We define

P (k) =
1

V
〈|δk|〉2

as the volume-averaged power spectrum, where δk is given by the

three-dimensional Fourier transform of the density perturbation field,

δ(x) = ρ(x)/〈ρ〉 − 1, over the simulation volume.

While all simulations are set up with an identical input power

spectrum, each one only contains a finite volume, and hence each

mode is sampled only a finite number of times. The black solid line

in Fig. 5 shows the result of the Reference simulation, and coloured

lines show the results of the 39 variants at each level from 13 to

23, offset for visual clarity. The Reference result is also repeated as

a dashed line with every set. In addition, thick grey lines show the

average power spectra off all variants at a given level.

In the bottom panel, for k > 1 h Mpc−1, we show the cross-power

spectrum of the density field of the Reference simulation and each

of the variant simulations, in addition to the (auto)power spectrum

of the Reference simulation.

It can be seen that, for small variations (e.g. for variations at level

23), all variants have a nearly identical power spectra, and follow

all the peculiar features of the Reference simulation. Likewise, at

levels 22 and 23, the cross-correlation between the variant and the

Reference simulation is nearly identical to the autocorrelation of the

Reference simulation.

As the scale of variations increases, differences between individual

variants can be seen, but not at all scales: very small scales (large

k) are sampled so well within each volume that differences between

the variants are averaged out in the autocorrelation, while very large

scales (small k) are not yet affected at moderate scales of variation.

The large-scale limit of scatter in the matter power spectra grows

with decreasing L.

Differences in the cross-correlation are apparent from level

21 down, and first noticeable on small scales. As expected

from Fig. 2, the cross-correlation drops below the autocorrela-

tion significantly above the cut-off scale (or below the cut-off

wavenumber).

For larger variations, it can also be seen that the average of the

power spectra is much smoother than any individual power spectrum,

effectively sampling a larger volume. The difference between levels

12 and 13, however, is minimal. It can be seen that individual lines

for individual volumes nearly match one another. This is due to

the fact that there is very little power at level 12, subject to the

mean-density constraint of the simulation volume. By coincidence,

the Reference simulation is quite close to this average on all

scales.

All power spectra were computed on a 3763 mesh created with

triangular-shaped-cloud interpolation of the particle data with com-

pensation for the window function, using the NBODYKIT package

(Hand et al. 2018). For the cross-correlation, the k-space binning

was adapted for each level.

3.3 Halo abundance

In Fig. 6, we compare the halo mass functions in terms of M200,crit of

our simulations to the analytic mass function of Jenkins et al. (2001),

calculated for the same cosmology. Because of the small sample

size, the Reference simulation (thick black solid line), measured in

a single, 1003 Mpc3 volume, differs slightly from the mass function

of Jenkins et al. (2001) (thick black dashed line) at high masses.

Similarly to Fig. 5, coloured lines show the results of the 39 variants

at each level from L = 13 to 23. For visual clarity, each set of lines

is offset, and the mass functions of Jenkins et al. (2001) and the

Reference simulations are repeated as thin dashed and solid black

lines with each set.

It can be seen that, for small variations, the halo mass functions

very closely follow that of the Reference simulation. The scatter

continuously increases as the scale of the variations increases. Only

by level 15 (λcut = 13 cMpc) does the scatter among the mass

functions for individual volumes become large enough to erase the

particular features inherited from the Reference simulation. Similar

to the variation of the power spectrum, beyond level 13, there is very

little additional variation.

It can also be seen that the scatter among the mass functions for

each set is greater at higher mass. This may appear counterintuitive,
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Structures from Gaussian random fields 4765

Figure 4. Dark matter density at z = 0. From left to right, columns show boxes of width and depth 100, 33, and 10 Mpc, respectively. The top row shows the

simulation with the Reference phase information, while the following rows show the effect of randomizing phase information at and above levels 22, 20, and

18, respectively. On each panel, shades of grey indicate high projected density in both the Reference and variant simulations, blue indicates higher density in

the Reference simulation, and purple indicates higher density in the variant simulations.
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4766 T. Sawala et al.

Figure 5. Top: matter power spectra at z = 0, for the Reference simulation

(black dashed) and 39 variants at each level from 12 to 23. For visual clarity,

the power spectra of the variant simulations are offset, and the result of

the Reference simulation is repeated with each set. Solid grey lines show

the power spectrum averaged over all variants at each level. Bottom: power

spectra of the density cross-correlation between the Reference simulation and

the 39 variant simulations at each level from 16 to 23. The dotted black line

shows the (auto)power spectrum of the Reference simulation. On both panels,

vertical lines show the scale of kcut, values for L > 19 lie outside the range.

Figure 6. Halo mass function (M200,crit) at z= 0, for the Reference simulation

(thick black solid), and 39 variants at each level from 12 to 23. Vertical

coloured lines show the value of Mcut, the mass of a spherical top-hat of mean

density and diameter λcut. Also shown (thick black dashed) is the halo mass

function of Jenkins et al. (2001), calculated for the same cosmology. For visual

clarity, the sets of halo mass functions of the variant simulations are offset,

and the mass functions of the Reference simulation, and of Jenkins et al.

(2001) are repeated with each set, as thin solid and dashed lines, respectively.

Table 2. Median and standard deviation in the number haloes of a given

mass across the simulations of a given level.

Level N(1011) N(1012) N(1013) N(1014)

Ref 21 689 2602 343 21

23 21 723 ± 48 2613 ± 9 343 ± 1 21 ± 0

22 21 683 ± 51 2597 ± 6 345 ± 2 21 ± 0

21 21 676 ± 78 2613 ± 16 341 ± 3 21 ± 0

20 21 704 ± 81 2629 ± 18 344 ± 6 21 ± 1

19 21 790 ± 63 2698 ± 28 347 ± 8 21 ± 1

18 21 833 ± 118 2662 ± 46 356 ± 12 23 ± 2

17 21 825 ± 257 2703 ± 28 328 ± 8 28 ± 2

16 21 711 ± 214 2674 ± 66 327 ± 22 27 ± 3

15 21 403 ± 266 2655 ± 80 318 ± 13 32 ± 5

14 21 705 ± 292 2732 ± 100 322 ± 16 29 ± 5

13 21 554 ± 184 2677 ± 87 318 ± 25 29 ± 5

12 21 523 ± 193 2682 ± 89 318 ± 25 30 ± 6

given that (as we discuss in Section 5.1), individual, higher mass

objects are less strongly affected by changes to the primordial density

field at a given scale. However, the scatter in the mass function has

different origins at different masses: at the high-mass end, where the

number of haloes is low, the scatter is due to a change in the mass of

individual objects, while at the low-mass end, it is due to the change

in the number of independent objects, but on scale with very small

sampling noise.

Table 2 gives an overview of the median number of haloes of

different masses, and the associated standard deviation, across the

39 simulations for each level from 12 to 23. It is worth noting that,

for sufficiently large haloes, or sufficiently small-scale variations, the

standard deviation in halo number, σ N, is below even the value of√
N expected for a random process without any variation in the bias.

For example, the average number of haloes of 1012 M⊙ is ∼2700–

522, but the scatter at L = 20 is only 18. This indicates that the

scatter is due primarily to a change in the mass of the same haloes

found across different simulations. For larger variations, the scatter

typically rises above
√

N , which can be attributed to different bias

in each volume (White & Rees 1978; Cole & Kaiser 1989).

Fig. 7 presents the same information visually. It can be seen that,

while variations in the initial density field at L = 19 lead to the

formation of independent 1011 M⊙ haloes, their population is so

well sampled in the 100 Mpc volume that their number has less

than a 1 per cent scatter at any level. At the other end of the mass

range most individual 1014 M⊙ haloes exist across all simulations at

L = 17, albeit with a small change in mass. The simulation volume,

however, is not large enough to sample them accurately in every

volume. Averaging over all variants at level 12 or 13, we can see that

the Reference simulation contains slightly fewer than the expected

30 ± 5 haloes of mass 1014 M⊙.

4 IN D I V I D UA L H A L O E S

In the previous section, we have compared populations of haloes

among different simulations. We now turn our attention to individual

haloes. As we already discussed, if the variations in the initial

conditions between two simulations are small enough, the same

haloes form in both. Here, we investigate which scales in the initial

density field determine the existence of unique haloes, and how the

properties of individual haloes change subject to variations on smaller

scales.

In order to address these questions, we need to match haloes across

simulations. Following Springel et al. (2008), we use the fact that all
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Structures from Gaussian random fields 4767

Figure 7. Median and standard deviation in the number of haloes for different

masses, as a function of the level at which variations are introduced in the

initial conditions at z = 0, L, and the corresponding wavelength, λcut. The

Reference simulation has the expected number of haloes up to ∼1013.5 M⊙,

but lies outside 1σ for both ∼1014 and ∼1014.5 M⊙ haloes.

of our simulations start from identical glass files, with particles whose

IDs encode their initial, unperturbed Lagrangian coordinates along a

Peano–Hilbert curve. Fig. 8 illustrates the matching procedure for a

halo identified in a snapshot of the Reference simulation, represented

by the leftmost slice. In a first step, we identify the halo’s 50 most

bound particles (or all particles, if fewer than 50), and use their IDs to

determine their Lagrangian origin. This is represented by the second

slice from the left, where particles identified in the previous step

occupy a finite volume, indicated by the grey circle.

In the next step, we examine all haloes in the corresponding

snapshot in one of the variant simulations, each represented by the

five coloured slices to the right. We select haloes whose masses

are within a factor of 3 of that in the Reference simulation. If a

halo contains a large fraction of the 50 particles identified in the

previous step, by definition, its Lagrangian region of origin overlaps

with that of the halo in the Reference simulation. In the example

shown here, the first (red), third (blue), and fourth (green) slice

each contain a halo that fulfils the mass criterion and contains at

least 1/5 of the particles of the halo in the Reference simulation.

These haloes, which have grown to a similar mass from similar

regions of origin, are considered matches. Conversely, the second

(yellow) and fifth (purple) slice do not contain matching haloes in this

example.

We note that this procedure is not completely symmetrical under

exchange of the Reference and the variant simulations. However,

we have tested that our results do not vary qualitatively when,

at a given level, one of the variants is chosen as the Reference

instead.

As expected, the matching rate is highest for high masses and high

level (small-scale) changes in the initial density field, and decreases

when the scale of changes increases relative to the size of the haloes.

However, we find that even for low-mass haloes in simulations

that share almost no phase information, the matching rate only

falls to ∼15 per cent. Two haloes matched under these conditions

have, by coincidence, grown to similar mass from overlapping

Lagrangian volumes, without their simulations sharing any relevant

information. Although matched, these are not physically the same

halo.

4.1 Halo identity across simulations

The possibility that two similar haloes can exist in two volumes that

share no phase information leaves the tantalizing question: when

are two haloes genuinely identical? It appears that simply asking

that they consist of the same particles is not sufficient; instead,

we are looking for haloes that are formed for the same physical

reasons.

While we could modify our matching criteria, we cannot discrim-

inate ab initio between a genuine match (one where the halo pair has

formed because of the common phase information) and a merely

coincidental one. However, if spurious matches occur purely by

chance, and the rate of those matches is less than 1/2, the probability

for at least N/2 spurious matches to the same halo in N variant

simulations decreases with N. Conversely, if genuine matches are

found with a probability above 1/2, the probability for N/2 genuine

matches to N variants simulations increases with N. Consequently,

for sufficiently large N, genuine matches have a high probability to

be identified in more than half of the variants, and haloes that are

matched to more than half of the variants have a high likelihood of

being genuine matches.

In Fig. 9, in each panel, we show the multiple-matching rate,

fN, as a function of mass, for 1–39 possible matches between the

Reference simulation and all N = 39 variants at each level. Shades

of red denote the fraction of haloes with 1–19 matches; shades of

blue correspond to 20–39 matches. The thick black line shows the

fraction of haloes with 20 matches. It can be seen that the fraction

of haloes above 1010.5 M⊙ matched at least once is over 95 per cent,

almost independently of mass and level. However, as expected for

purely chance events, at lower masses and larger scale variations,

the number of multiple matches rapidly decreases, and as expected,

the fraction of haloes matched at least half of the time tends to zero

for low-mass haloes and low-level variations, and to unity for high

masses and high-level variations.

4.2 Existence of unique haloes

The matching by ‘majority vote’ introduced in the previous paragraph

allows us to define a new criterion for the existence of unique

haloes: we say that a halo exists at and above level LE if it can

be matched to more than half of the simulations that randomly vary

the initial density fields at levels above LE. In other words, a halo

exists at a scale LE because, at this scale, the initial density field

contains the necessary information for the formation of this particular

halo.

In Fig. 10, we show the fraction of unique haloes that can be

matched to more than half of the variants, fmatch,1/2, as a function

of level, L, and of the corresponding cut-off wavelength, λcut(L).

Circles show the results measured in our simulations, dashed lines of

corresponding colours show two-parameter logistic fits of the form

fmatch,1/2(λcut, M) =
1

1 + e−aM (λcut−λE,M )
, (4)

where aM and λE,M are free parameters fit separately at each mass,

over the domain indicated by the extent of the dashed lines. Crosses

indicate the radius, rhalo(M), of a mean-density sphere of mass M.

For each halo mass, we find a similar behaviour, with values

of aM in the range 8–10. Moreover, we find linear scaling of

λE,M ∝ M∼1/3 ∝ rhalo(M). This reflects the fact that the length scale on

which the initial density field needs to be defined for unique haloes

to exist, is, on average, closely related to the size of the Lagrangian

volume that will collapse into the halo.

MNRAS 501, 4759–4776 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
1
/4

/4
7
5
9
/6

1
0
2
5
4
0
 b

y
 N

a
tio

n
a
l L

ib
ra

ry
 o

f H
e
a
lth

 S
c
ie

n
c
e
s
 u

s
e
r o

n
 0

3
 M

a
y
 2

0
2
1



4768 T. Sawala et al.

Figure 8. Matching of haloes using particles with identical coordinates at z = ∞. The origin of the most bound particles in a given halo of the Reference

simulation at redshift z (‘Reference particles’) define a Lagrangian volume (denoted by the grey circle) to which all particles in haloes in the variant simulations

are compared. In this example, variants 1 (red), 3 (blue), and 4 (green) each contain a halo that includes the majority of Reference particles, and whose mass at

redshift z is within a factor of 3 of the halo in the Reference simulation. By contrast, variants 2 and 5 contain no matching haloes.

L = 16 L = 17 L = 18

L = 19 L = 20 L = 21

Figure 9. Fraction of haloes with multiple matches, fmatch,N, between the Reference simulation and the 39 variant simulations at each level from 16 to 21, as

a function of halo mass in the Reference simulation. Shades of red and blue indicate 1–19 and 21–39 matches, respectively, while the black line indicates 20

matches. As expected, the matching rate is highest for high masses and high level (small-scale) variations, and decreases towards lower masses and higher level

variations. It is worth noting that even at scales that are completely uncorrelated, many haloes can be matched by chance. However, the number of multiple

matches decreases sharply.

Accounting for this self-similar behaviour, the solid lines in Fig. 10

show a global fit to equation (4), with aM = a = 9, and

log10(λE,M/cMpc) = 1/3 log10(M/M⊙) − 3.79, (5)

or equivalently,

λE,M = 0.88 × rhalo(M). (6)

Dashed lines give a slightly closer match to the individual halo

mass ranges for which they are fitted independently with two free

parameters each. However, the solid lines give a close fit to the

entire data set with only two free parameters, a and the coefficient in

equation (6) that determines λE,M.

The phase information of the initial density field has to be defined

at least down to λcut = λE,M in order to not only create a similar
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Figure 10. fmatch,1/2, the fraction of haloes at z = 0 that are matched more

than half of the time across variations at a given cut-off wavelength (λcut,

top axis), and level (L, bottom axis), for different masses. The scale at which

fmatch,1/2 equals 1/2 defines LE,M and λE,M, i.e. the level and wavelength at

which there is sufficient information in the primordial white noise field for

the formation of unique z = 0 haloes of a given mass, M. Circles show results

measured in the simulations, dashed lines are individual fits to equation (4)

at each mass, and solid lines are fits of the same equation to the entire data

set. For comparison, crosses show rhalo(M), i.e. the radius of a mean-density

sphere of mass M. It can be seen that λE,M scales with mass proportional to

rhalo, indicating a self-similar behaviour.

number of haloes of a given mass at z = 0, but also to determine

the formation of unique haloes of mass M. We find that this scale

is ∼88 per cent of rhalo(M), the radius of the Lagrangian volume

enclosing a mean-density sphere of mass M, and ∼44 per cent of

the wavelength, λcut, of a perturbation expected to collapse into a

halo of mass Mcut. As examples, we find that, at z = 0, unique

haloes of 1012 and 1014 M⊙ exist when the initial density field

is defined down to cut-off wavelengths of 1.6 and 7.5 cMpc,

respectively.

5 TH E O R I G I N O F H A L O P RO P E RT I E S

Having defined the scales that determine the existence of partic-

ular haloes, we now turn to the changes seen in the properties

of individual haloes that are matched across simulations due to

variations on smaller scales. In particular, we will examine the

mass and concentration of individual haloes, and their position and

velocities.

At this stage, it is important to remind ourselves that, while the

Reference simulation plays a special role in identifying matches, it

is only one of many possible realizations. At every level, it shares

the same amount of phase information with any of the variants, as

they share with one another. Furthermore, any halo identified in the

Reference simulation is only one possible realization of that halo.

If we consider that the possible random variations on scales below

LE define the space of possible halo properties, we can consider

the halo of the Reference simulation as one random sample of this

space, not guaranteed to be at its centre. In measuring the variation

in properties of individual haloes, we therefore do no compare the

different realizations of a halo to the Reference simulation. Instead,

we compute a median value from all realizations at a given level, and

analyse the scatter among individual samples.

5.1 Mass

Fig. 11 shows the change in mass of individual, matched haloes,

relative to the median mass across variants, and as a function of

median mass, for variations at levels 18–23. On every panel, each

individual halo can appear from 20 to 40 times; haloes with fewer than

20 matches are excluded by the ‘majority vote’ criterion described

in Section 4. The range on all panels covers mass ratios between

1:3 and 3:1. It is worth remembering that matches with mass ratios

outside this range relative to the Reference simulation are excluded.

While haloes can, in principle, have mass ratios of nearly 1:9 relative

to the median mass, the paucity of points approaching the limits

of the range indicates that such large deviations in mass are very

rare.

We find that, at a given halo mass and level of variation, the

halo masses of variants are approximately log-normally distributed.

Consequently, we quantify the scatter3 in mass across the variants

for each halo as

σ ∗
M = σ (log10 M). (7)

The red bands on each panel of Fig. 11 indicate σ ∗
M , in bins equally

spaced in log(〈M〉). It can be seen that, at each level, the scatter

increases with decreasing halo mass. Comparing different panels, it

can also be seen that the relative variance in mass increases as the

scale of the variation in the initial density field is increased from L =
23 to 18. For haloes of a given mass, the mass varies more for lower

level variations.

This behaviour is summarized across masses and levels in Fig. 12,

which shows σ ∗
M as a function of level and λcut. Different coloured

points show the scatter measured from our simulations for haloes of

different mass, from 1011 M⊙ (blue) to 1014 M⊙ (grey). To each set

of data points, we have fitted linear relationships of the form

σ ∗
M = aMλcut + bM , (8)

which are shown in Fig. 12 by dashed lines of corresponding colours,

with coefficients aM and bM depending on mass.

Because haloes of a given mass drop out of existence below

the level LE(M), given by equation (5), data points below LE(M)

are excluded from the fit. We also exclude haloes at L = 23,

where we find a slight upturn in σ ∗
M (L) relative to the fit at all

masses. We attribute this to the finite spatial resolution of our

simulations.

We also find a universal relation for the mass scatter, with a value

of a = aM = 1.15 for all mass bins, and a mass dependence for bM =
4.6 − 0.445 log10(M/M⊙), i.e.

σ ∗
M = 4.6 + 1.15λcut − 0.445 log10(M/M⊙). (9)

Fits to this universal relation are shown by solid lines in Fig. 12.

From the observed regularity, we expect that the relations can

be extrapolated both to higher mass haloes and to smaller scales.

However, it should not be extrapolated to levels below the existence

scale for a given halo mass.

Comparing σ ∗
M (L) to the existence scale, LE, we find that the scatter

in halo mass typically reaches σ ∗
M ∼ 0.23, or a factor of ∼1.7 in mass

before haloes drop out of existence. Scatters in mass of ∼10 per cent

(σ ∗
M = 0.041) or ∼1 per cent (σ ∗

M = 0.0043) are found for variations

at 2 and 5 levels above the existence level LE, respectively.

3We refer to the ‘scatter’ of a quantity, x, as either the standard deviation,

σ x = σ (x), or the standard deviation of its logarithm, σ ∗
x = σ (log10(x)).
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4770 T. Sawala et al.

Figure 11. Mass ratio between the mass of individual, matched central haloes in all 39 variant simulations at a given level, and their average mass across all 40

simulations, as a function of average mass. The red band shows the 1σ scatter. Vertical dashed lines on panels at L = 18 and 19 indicate the minimum mass of

haloes that exist at these level.

Figure 12. Median scatter in log halo mass, σ ∗
M for matched haloes of

different mass (indicated by different colours), as a function of level of

randomization in the initial density field (L, upper x-axis), and corresponding

wavelength λcut. Only bold data points are included in the fits. Dashed

lines show independent power-law fits for each mass bin, solid lines show a

universal power-law fit for all masses.

5.2 Concentration

In addition to the mass, a second parameter is required to characterize

a �CDM halo whose density is described by a Navarro–Frenk–White

(NFW) profile (Navarro, Eke & Frenk 1996),

ρ =
ρs

(r/rs)(1 + r/rs)2
, (10)

where rs and ρs are the scale radius and characteristic density, respec-

tively. The mass is commonly complemented by the concentration,

c, as a second parameter, defined through the equation

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
, (11)

where δc is the characteristic overdensity.

Following Springel et al. (2008), we calculate c from the measured

values of the maximum circular velocity, vmax, and its corresponding

radius, rmax, from which the overdensity inside rmax can be obtained

via

δv =
ρ(rmax)

ρcrit

= 2

(

vmax

H0 rmax

)2

.

For an NFW halo, the characteristic overdensity, δc, of equation

(11) is related to the overdensity inside rmax, δv , via the relation

δc =
ρs

ρcrit

= 7.213 δv .

We can thus calculate the concentration parameter, c, of each halo

from the measured values of rmax and vmax by computing δv and δc,

and solving equation (11) for c.

Because stripping of satellites affects rmax disproportionately

relative to vmax, equation (11) is not expected to hold for satellites,

and we limit our analysis to centrals only. Furthermore, measuring

the concentration of a halo requires sufficient numerical resolution to

resolve the density inside rmax. As Power et al. (2003) showed, even

in an accurate simulation, this is sensitive to a halo’s particle number,

and we limit our analysis of concentration to haloes containing at

least 1000 particles, or 7.4 × 1011 M⊙.

Neto et al. (2007) showed that concentration parameters for relaxed

haloes of a given mass are approximately lognormal distributed,

with σ ∗
c ∼ 0.11 at 1012 M⊙. Fig. 13 shows the relative scatter in

concentration of matched central haloes, as a function of median

mass, and for variations at levels 18–23. The red band shows σ ∗
c .

In contrast to the scatter in halo mass, there is a noticeable scatter in

concentration already at the smallest scale of variation. For example,

the scatter in concentration of individual 1013 M⊙ haloes at L = 22

MNRAS 501, 4759–4776 (2021)
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Structures from Gaussian random fields 4771

Figure 13. Ratio between concentration of matched central haloes in the variant simulations and the median concentration for each halo, as a function of

median halo mass, for different levels (indicated on each panel). The red regions show the standard deviation among variants. Grey regions denote haloes with

fewer than 1000 particles, the convergence limit determined by Neto et al. (2007); vertical dashed lines on panels at L = 18 and 19 indicate the minimum mass

of haloes that exist at these levels.

is 8 per cent, while the scatter in mass is <1 per cent for the same

variation. This reflects the fact that the scale that determines the

concentration of a halo, rmax, is much smaller than its total size,

and we find a much greater scatter in rs than in r200 for the same

haloes.

While the measurable scatter in total mass is bounded only by the

matching criteria, the scatter in concentration is naturally bounded

from above by the narrow range of concentrations for �CDM haloes.

As expected, we find that for large variations, the scatter of matched

haloes is similar to the scatter of independent haloes reported by

Neto et al. (2007).

Fig. 14 shows σ ∗
c for different masses, and different scales of

variation. As expected, we find that the scatter increases with

decreasing halo mass, and with the scale of variations. As shown

by dashed lines. Over the range we can resolve, and up to the

maximum value of ∼0.1, σ ∗
c appears to scale linearly with λcut,

and also show a regular scaling with mass. However, our simulations

lack the dynamic range necessary to extrapolate universal scaling

relations.

5.3 Position

Fig. 15 shows the relative displacement, �r, of individual, matched

haloes at z = 0 from their median position, as a function of their

median mass, and for variations at levels 18–23. Unlike in Fig. 11,

the range on each panel is adjusted to include 99 per cent of points

in every case.

We calculate the scatter in position as

σr =
√

σ 2
x + σ 2

y + σ 2
z , (12)

where r(x, y, z) are the Cartesian coordinates across the variants of

the halo, and σ x, σ y, and σ z are the 1D dispersions in position.

In Fig. 15, σ r is shown by a red line. At each level, the

average displacement increases with decreasing halo mass: for fixed

Figure 14. Median standard deviation of halo concentrations for haloes of

different mass (indicated by different colours), and as a function of level of

randomization in the initial density field (L, upper x-axis), and corresponding

cut-off wavelength λcut. Only bold data points are included in the fits. Dashed

lines show independent power-law fits for each mass bin.

variations of the initial density field, lower mass haloes are displaced

more than high-mass haloes. Comparing different panels, it can also

be seen that the displacement of haloes of the same mass increases as

the scale of the variation in the initial density field is increased: haloes

of a given mass are more displaced for larger scale variations. At L =
19 and 18, the mass dependence appears to flatten at low masses.

However, in both cases, this coincides with the limit in halo mass

for unique haloes to exist, as indicated by the vertical dashed lines;

haloes below this limit have a low probability to form across variants.

The dependence of average displacement on halo mass and level

is illustrated in Fig. 16. Different coloured symbols show the scatter

MNRAS 501, 4759–4776 (2021)
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4772 T. Sawala et al.

Figure 15. Displacement of matched central haloes in the variant simulation relative to the median position for each halo, as a function of median halo mass,

for different levels (indicated in each panel). The red lines show one standard deviation in position among variants. Vertical dashed lines in panels at L = 18 and

19 indicate the minimum mass of haloes that exist at these level. On each panel, the range extends to the 99th percentile of all haloes shown.

Figure 16. Scatter of halo positions, σ r for central haloes of different mass

(indicated by different colours), and as a function of level of randomization

in the initial density field (L, upper x-axis), and corresponding cut-off

wavelength (λcut, lower x-axis). Only bold data points are included in the

fits. Dashed lines show independent power-law fits for each mass bin, solid

lines show a universal power-law fit for all masses. Dotted lines show a

universal fit with the scaling proportional to rhalo.

measured from our simulations for haloes of different mass, from

(1011 M⊙) (blue) to 1014 M⊙ (grey). We find the average displacement

of haloes in each mass bin to be a power-law function of λcut of the

form

log10(σr/cMpc) = aM log10(λcut/cMpc) + bM . (13)

Dashed lines Fig. 16 show separate fits at each mass, when the same

limits to the domain as in Section 5.1 are applied. As in equations (4)

and (8), we find a self-similar behaviour, with a universal slope of a =

aM = 1.5, and a mass dependence of bM = 3.55 − 0.31 log10(M/M⊙).

Solid lines show fits with these parameters of a and bM at every level.

When we further restrict bM to scale proportional to the size of the

Lagrangian region, rhalo(M), we find bM = 3.83 − 1/3 log10(M/M⊙).

This relation is shown by the dotted lines in Fig. 16.

The increase in the average displacement of haloes with the scale of

the perturbations follows from the fact that the position of an object

depends on the gravitational potential of the surrounding density

field, and greater variation in surrounding structure leads to greater

variation in the potential, and thus the position of the halo. The mass

dependence at a given scale of variation follows from the fact that

less massive objects are sensitive to smaller external perturbations

of the potential than more massive ones. Comparing the mass- and

scale dependencies of σ r to those of σ ∗
M , we find a stronger scale

dependence for σ r, and a stronger mass dependence for σ ∗
M .

5.4 Velocity

By analogy to Fig. 15, Fig. 17 shows the scatter in velocity of

individual, matched haloes at z = 0, as a function of their median

mass, for variations at levels 18–23. The range in each panel is

adjusted to include 99 per cent of points in every case.

The velocity dispersion, σ v , of individual haloes is defined as the

dispersion in peculiar velocities of its matched variants,

σv =
√

σ (vx)2 + σ (vy)2 + σ (vz)2, (14)

where σ (vx), σ (vy), and σ (vz) are the corresponding 1D velocity

dispersions.

The median velocity scatter among matches, as a function of halo

mass and level, is illustrated in Fig. 18. Different coloured symbols

show the scatter measured from our simulations for haloes of different

mass, from 1010.5 M⊙ (blue) to 1010.5 M⊙ (grey). We find the familiar

power-law behaviour of equations (8) and (13), and parametrize the
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Structures from Gaussian random fields 4773

Figure 17. Velocity offset of matched central haloes in the variant simulation relative to the average position, as a function of average mass (shown on the

x-axis), and for different levels (indicated in each panel). The red lines show one standard deviation in position among variants. Vertical dashed lines on panels

at L = 18 and 19 indicate the minimum mass of haloes that exist at these level. In each panel, the y-axis extends to the 99th percentile for all matched haloes.

Figure 18. Magnitude of the average velocity difference, relative to the

average velocity across variants, for central haloes of different mass (as

indicated by colours), and as a function of level of randomization in the

initial density field (L, upper x-axis), and corresponding cut-off wavelength

(λcut, lower x-axis).

velocity offset as

log10(σv/(km s−1)) = aM log10(λcut/cMpc) + bM . (15)

Dashed lines show separate fits at each mass, solid lines show fits

assuming a fixed slope at every level. The same cuts to the domain

as in Sections 5.1 and 5.3 are applied. Solid lines assume a fit to

equation (15) with a universal slope and regular mass dependence,

and we find values of aM = 1.1 and a mass dependence of bM =
3.35 − 0.15 log10(M/M⊙).

The velocity dispersion of halo variants increases as the scale

of the variation in the initial density field is increased, and also

scales inversely with halo mass. Comparing the mass- and scale

dependencies of σ v to those of σ r, we find an even stronger scale

dependence and even weaker mass dependence for σ v . This can be

explained because the velocity of a halo is set not by its internal

mass (or even the density of its environment), but by larger scale

tidal fields. Haloes respond to a change in environment, but the mass

dependence of the velocity on halo mass appears much weaker than

for both the mass scatter and displacement.

6 VA R I AT I O N S O F A SI N G L E H A L O

In this section, we show how the introduction of random variations on

different scales can create targeted variations of a particular object,

either very similar to, or very different from the original object. In

addition, we show how introducing an additional set of higher level

variations can create small additional perturbations to an existing

variant.

As an example, we choose the most massive halo of the Reference

simulation at z = 0, with a mass of 2.2 × 1014 M⊙, whose density

map is shown in the top left-hand panel of Fig. 19, and which is

comparable in mass to the Virgo Cluster (Urban et al. 2011).

Galaxy clusters are a frequent target for zoom-in simulations, e.g.

by Eke, Navarro & Frenk (1998), and more recently by Borgani

et al. (2002), Kay et al. (2004), Nagai, Vikhlinin & Kravtsov (2007),

Martizzi et al. (2016), Bahé et al. (2017). Schaller et al. (2015) and

Barnes et al. (2017) both analysed clusters from the same EAGLE

volume that defines our reference simulation. An inherent challenge

in these studies is that the largest clusters are, by definition, rare

objects in any cosmological volume, limiting the predictive power

of a simulation. For example, Schaller et al. (2015) conclude that

the presence of cores in observed clusters is an outstanding problem

that requires a larger samples of simulation counterparts, which our

method of generating variants of existing objects may be able to

provide.
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Figure 19. Top left: dark matter density in the most massive cluster in the

Reference simulation at z = 0. Analogous to Fig. 4, the remaining panels

show differences in the projected density in the same Eulerian volume. The

top centre, top right-, and bottom left-hand panels show the difference relative

to the Reference simulation, for variants V181 and V181/212 (top middle and

right), and V211 (bottom left). As expected, the differences in density relative

to the reference simulation are similar in V181 and V181/212, which use the

same shift on levels L = 18–20. By comparison, the difference between V211

and the Reference simulation is much smaller. The bottom centre and bottom

right-hand panels show the density relative to V181 for variants V181/212

and V181/213, respectively. While their differences relative to the Reference

simulation are similar in magnitude to that of V181, their differences relative

to V181 are much smaller, and similar in magnitude to that between V211

and the Reference simulation.

Figure 20. Density profile of the most massive cluster at z = 0. The thick

black line shows the mass profile in the Reference simulation, while lines of

different colour show up to 39 matched haloes at each level from 16 to 23.

For clarity, the lines for each level are offset, and the thin black line repeats

the Reference simulation with the corresponding offsets.

6.1 Simple variations

In Fig. 20, we show the density profile of the same cluster in the

Reference simulation (black line) and, offset for clarity, for up to 39

matches at each level from 16 to 23. At small scales (V23 and V22),

there is very little change in the density profile, both for the main

halo, as well as for the identifiable substructures. At levels 21 and

20, the density in the centre of the main halo remains similar, but the

positions of the larger substructures change, resulting in some scatter

in the outer density profile. Below level 20, the central density and

mass of the main halo change throughout.

Figure 21. Density profile of the most massive cluster at z = 0, similar

to Fig. 20. The thick black line shows the mass profile in the Reference

simulation. Brown lines show 19 variations at level 18, offset for clarity.

The Reference simulation and variant V181 are repeated as thin solid and

dashed lines black, respectively. Blue lines show 19 additional variations of

V181 at L = 21: V181/202 to V181/2120. It can be seen that these result in

small perturbations, not of the cluster in the Reference simulation, but of the

variation of cluster in V181.

At levels L = 20, 18, and 16, the scatter in mass is 1 per cent,

10 per cent, and 60 per cent, respectively, while the scatter in concen-

tration is 9 per cent, 20 per cent, and 35 per cent. Variations below

level 20 yield clusters with very similar mass and concentrations, but

different individual subhaloes; variations at level 18 yield clusters

with very similar mass, but different concentration (and different

subhaloes, apart from the largest ones), and variations at level 16

result in clusters with different total masses and concentrations, and

completely different members.

6.2 Higher level perturbations

As discussed in Section 2.1.1 and illustrated in the rightmost panel of

Fig. 3, we can also combine multiple shifts at different levels in the

same simulations. As an example, we have made a set of additional

simulations, in which we shift the phase information by 1 at levels

18–20, and by 1–19 at levels 21 and above. We label this new set

of simulations ‘V181/21[1–19]’ and note that V181/211 is identical to

V181.

In Fig. 19, we show the changes resulting from these higher level

perturbations, by comparing the projected density in higher level

perturbations at L = 21 to both the reference simulation, and to the

variant V181 of the same cluster. As expected, from the top centre and

top right-hand panels, it can be seen that compared to the Reference

simulation, V181 and V181/212 show the same amount of difference,

while V181, shown on the bottom left, is much more similar to the

Reference simulation.

The bottom middle and right-hand panels show the density relative

to V181 for variants V181/212 and V181/213, respectively. While

their differences relative to the reference simulation are similar in

magnitude to that of V181, their differences relative to V181 are

much smaller, and similar in magnitude to that between V211 and

the reference simulation.

Similar to Fig. 20, in Fig. 21, we show the density profiles of

the cluster in the 19 variants V181–19 (red lines), and the 19 variants

V181/211–19 (blue lines), with offsets for clarity. It can be seen that the
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scatter among the density profiles for V181/211–19 is much reduced

compared to the scatter among V181–19, and furthermore, that the

individual variants of V181/211–19 scatter around the variation V181

(dashed black line), rather than around the Reference simulation

(solid black line).

Variations of a single object by random variations of the initial

density field at scales below the existence scale can be used

deliberately, to facilitate the study of rare objects. Variations just

below the existence scale could be used to create a diverse set of

massive clusters using only zoom-in simulations, without requiring

to first simulate a much larger simulation volume. By introducing

secondary variations at level 21 to an existing variant at level 18,

we can create multiple, smaller scale perturbations around existing

objects. This offers many possible applications: for example, from

a cluster with moderate concentration, we can first create a variant

with high concentration, and then create multiple high-concentration

clusters with separate satellite populations.

It is also worth noting that we have applied the shift across the

entire volume. This is not necessary, the real-space localization of

our basis allows us to independently vary spatial subvolumes of the

random density field. In a forthcoming paper, we will show how this

technique can be used to create a faithful reproduction of the Local

Group embedded within the observed constraints. In particular, it

allows the generation of accurate Local Group candidates through a

series of localized, small-scale perturbations, without affecting the

nearby large-scale structure constraints.

7 SU M M A RY AND DISCUSSION

Using cosmological N-body simulations, we have identified the

scales of the initial density field that statistically determine the

formation of haloes of different mass and their abundance. We have

also determined the scales responsible for the existence of particular

haloes, and explored how the properties of individual haloes change,

as a result of variations on smaller scales.

The precise correspondence between a modification at a certain

level, and an effect on a particular scale, depends on our parametriza-

tion of the initial density field and our choice of basis functions. As

discussed in Section 2.1.1, a modification on one level percolates over

a range of wavenumbers and a range of physical scales, both in the

initial and the evolved density field. Expressing the modifications in

terms of physical scales such as λcut and λmax σ 2 alleviates some of the

parameter dependence, but we expect that a different implementation

will yield slightly different results.

We have defined a criterion for the existence of unique haloes

across simulation volumes: a halo is said to exist at a certain scale,

LE, if the information in the primordial density field is sufficient for

more than half of the variations at smaller scales still to result in

the formation of the same halo. In equations (5) and (6), we have

parametrized the existence scale as a function of halo mass and the

size of its Lagrangian volume.

Beyond the mere existence of haloes, we have also quantified

changes in their properties such as mass, concentration, position,

and velocity, and find power-law relationships between the scale

of the initial variation and the scatter in each of these properties.

Furthermore, over the range 1011–1014 M⊙ in halo mass, we find that

for each property, a single relationship can be used, when scaled by

halo mass, reflecting the self-similarity of hierarchical growth from

�CDM initial conditions.

The change in mass shows the strongest mass dependence. By

contrast, there is only a very weak mass dependence to the change in

velocity. We attribute this to the fact that, while the mass accretion

is set on the same scale that determines the total halo mass, the

velocities of haloes are set by the tidal field on larger scales. The

small remaining mass dependence can be attributed to the degree to

which the halo itself influences its own tidal environment.

Taking a cluster-mass halo as an example, we also show that,

by varying different scales in the initial conditions, variants of the

same object can be produced. Small-scale variations will result in the

same cluster, but substructures of different mass, different orbits, or

in different phases of their orbit. Larger scale variations will change

the overall mass and concentration of the cluster itself. In zoom

simulations of particular objects, this can be used to estimate the

expected, random change in properties, arising from the fact that the

initial density field is more finely sampled. Moreover, changes to

the white noise field can also be introduced deliberately to explore

regions of the parameter space, which can be useful in the study of

rare objects.

Our method bares similarity to the ‘genetically modified haloes’

approach of Roth, Pontzen & Peiris (2016), which extends the

recursive Hoffman–Ribak algorithm (Hoffman & Ribak 1991) to

compute the changes to the initial density field required for the

formation of a structure with desired properties, along with the

necessary corrections to preserve the nature of the random field.

Extending the biological metaphor, our method relies on evolution

through fully random mutations, rather than genetic modification.

However, because it allows independent control of the scale of

variations and of their spatial extent, it can be used to explore the vast

space of possibilities very efficiently, while preserving the Gaussian

nature of the initial random field at all times.

Our method can be naturally extended in several ways: multiple

levels of the white noise field can be varied independently; different

spatial regions of the white noise field can be varied independently,

and variations smaller in amplitude than a full substitution can

be used, all while preserving the Gaussian nature of the initial

conditions. In a forthcoming paper, we will use this method to

produce a faithful representation of the Local Group embedded in

the observed large-scale constraints of the local Universe.
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The initial conditions for the simulations analysed in this work can

be generated using the information described in Appendix A. The

MNRAS 501, 4759–4776 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
1
/4

/4
7
5
9
/6

1
0
2
5
4
0
 b

y
 N

a
tio

n
a
l L

ib
ra

ry
 o

f H
e
a
lth

 S
c
ie

n
c
e
s
 u

s
e
r o

n
 0

3
 M

a
y
 2

0
2
1

file:www.dirac.ac.uk


4776 T. Sawala et al.

simulation data generated as part of this work will be shared on

reasonable request to the corresponding author.
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APPENDI X A : PA N P H A S I A DESCRI PTORS U S ED

The Reference simulation in this paper uses the same phase informa-

tion as the 100 cMpc EAGLE simulation (Schaye et al. 2015), whose

PANPHASIA phase descriptor is

[Panph1,L16,(31250,23438,39063),S12,

CH1050187043,EAGLE L0100 VOL1].

The reference phase information is defined using a 12 × 12 ×
12 root cell at level L = 16. At level 16 for example the reference

phases in the x-direction are taken from the range of 12 cells 31250–

31261, and similarly 23438–23449 and 39063–39074 in y and z,

respectively.

To create variants of the phase information we extract the phase

information from neighbouring regions of the PANPHASIA field.

Because a white noise field is uncorrelated it is sufficient to use

regions that are shifted by multiples of 12 cells at level 16, in the x,

y, or z directions.

From this, the phase information for volumes VLj is constructed

by applying an integer spatial shift of (�x, �y, �z), in units of the

box size, equivalent to 12 cells in the positive x-direction at level 16

of the octree, or 100 cMpc, and similarly for y and z:

�x = (j mod 10),

�y = ((j − �x) mod 100)/10,

�z = ((j − 10�y − �x) mod 1000)/100.

For example, V2124 is constructed using shifts of �x = 4 and

�y = 2.

For every variant, we shift up to 10 levels at Lmin and above by

multiples of the box size. The cell size at each level is the ratio

between the box size and the root cell, lcell = 100/12/2L − 16 cMpc.

In order to shift the phase information by the box size, at each level,

a shift by �Ni = �i × 12 × 2L − 16 is required. For example, V2124

corresponds to the following cell shifts in PANPHASIA:

�Nx = 4 × 12 × 221−16 = 1536,

�Ny = 2 × 12 × 221−16 = 768,

�Nz = 0.

⎫

⎬

⎭

L = 21

�Nx = 4 × 12 × 222−16 = 3072,

�Ny = 2 × 12 × 222−16 = 1536,

�Nz = 0.

⎫

⎬

⎭

L = 22

�Nx = 4 × 12 × 223−16 = 6144.

�Ny = 2 × 12 × 223−16 = 1536,

�Nz = 0.

⎫

⎬

⎭

L = 23
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