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Settlement and early post-settlement survival of 
sessile marine invertebrates on topographically 

complex surfaces: the importance of refuge 
dimensions and adult morphology* 

Linda J. Walters 'l", David S. wethey'v2 

'Department of Biological Sciences and ' ~ a r i n e  Science Program, University of South Carolina, Columbia. 
South Carolina 29208, USA 

ABSTRACT: We predicted that both refuge dimension and growth form would influence settlement 
and short-term post-setUement success (57 d) of sessile marine invertebrates that live attached to hard 
substrata in low energy environments. Individuals with unlimited attachment to the substrata should 
rapidly be protected by their growth form, thus decreasing their need to settle in refuges and limiting 
the length of time any locations on heterogeneous substrata act as refuges. Alternatively, organisms 
with limited attachment to the substrata should remain susceptible to the causes of mortality for a 
longer time, and as a result should settle in high quality refuges [sites that protect individuals from 
competitors, predators or physical disturbance events until either a size refuge or reproductive matu- 

rity is obtained). Results agreed with these predictions for 4 species of invertebrates examined on both 
the topographically complex surface of the solitary ascidian Styela plicata (hereafter Styela) and on set- 
tlement plates w ~ t h  uniformly spaced roughness elements that mimicked the heights of roughness ele- 
ments (2.0 and 5.0 rnm) found on Styela in Beaufort, North Carollna, USA. On all surfaces, the 2 spe- 
cies with limited attachment to the substrata, Balanus sp. (aclonal, solitary) and Bugula neritina (clonal, 
arborescent), settled almost exclusively in the location that provided individuals with the best refuge: 
the crevices formed where the bases of roughness elements intersect with the flat surfaces. Addition- 
ally, when roughness elements of various heights were present (Styela, range: 0 6 to 8.8 mm), interme- 

diate size roughness elements (2.0 < X 1 5 . 0  mm) were picked over 72% of the time. Settlement loca- 
tions and locations where survival were enhanced were less consistent for the 2 species with unlimited 
attachment to the substrata: a clonal, encrusting form (Schjzoporella errata) and a clonal stolon-mat 
form (Tubularia crocea). Fewer individuals of these 2 species settled on roughness elements on Styela 
and when they did, they were not restricted to the bases of the roughness elements. On the plate sur- 

faces, most settlement did occur in crevices, but both species grew away from this location w~thin days 
and short-term survival was not consistently greater in this location. Additional trials were run on 
plates with pits of the same maximum dimensions as the tested roughness elements (2.0 and 5.0 mm 
depth) to see if crevices and pits provide refuges of equal quality for newly settled individuals. Only 
survival of Balanus sp. recruits was greatest in both crevlces and pits. Evidence for active choice of set- 
tlement location comes from consistent results in trials in which some larvae settled in greater numbers 
on specific size roughness elements on Styela and in areas of high erosion. Overall, these results show 
that one must be very cautious when generalizing about refuge quality on heterogeneous surfaces, and 
to determine if a location is a spatial refuge, i t  is critical to consider: (1) the dimensions of the larva, 
(2) the relative dimensions of the individual and potential refuge location at any point in time from the 
moment settlement occurred, and (3) the growth form of the individual which is related to its need for 
protection from biotic and abiotic sources of mortality. 
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INTRODUCTION 

In marine habitats, many organisms persist in spite of 

the existence of biotic and abiotic sources of mortality. 

Survival of many of these organisms is dependent on 

refuge exploitation (reviews: Woodin 1.978, Barry & 

Dayton 1991). Refuges have been shown to reduce cat- 

astrophic loss to competitors (e.g.  Woodin 1974, Buss 

1979, Grosberg 1981, Walters & Wethey 1986), preda- 

tors (e.g. Menge & Lubchenco 1981, Woodin 1981, 

Keough & Downes 1982, Young 1986, Walters 1992a) 

and physical disturbance events (e.g.  Connell 1961, 

Bergeron & Bourget 1986, Shanks & Wright 1986, 

Brawley & Johnson 1991). If a sessile organism is un- 

able to significantly reduce or eliminate mortality in 

time (temporal refuge) (e .g .  Lubchenco & Cubit 1980, 

Hay et  al. 1988), then a spatial refuge may provlde the 

individual wlth its only chance for survival. On a broad 

spatlal scale (cm to km),  a sessile organism may s ~ ~ r v i v e  

by growing on a substratum where sources of mortality 

are absent or significantly reduced (e.g. Grosberg 1981, 

Young & Chia 1981, 1984). On a smaller scale (pm to 

cm),  specific locations within topographlcally complex 

surfaces may enhance survival (e.g.  Connell 1961, 

Keough & Downes 1982, Lubchenco 1.983, LeTourneux 

& Bourget 1988, Walters 1992a). 

On topographically complex hard substrata, pits and 

crevices are  predicted to provide refuge for sessile 

invertebrates from predators and physical distur- 

bances (Barry & Dayton 1991), while topographic high 

spots may provide refuge for poor spatial competitors 

(Connell & Keough 1985). However, these predictions 

are  not always supported in the literature. For exam- 

ple, In a subtidal habitat where fish predation is 

intense, Keough & Downes (3.982) found higher sur- 

vival for 2 of 4 sessile invertebrates in pits (diameter: 

5 cm; depth: 5 cm) relatlve to flat surfaces. However, 

when recruits of the arborescent bryozoan Scrupocel- 

laria brunnea grew above the rims of the pits, survival 

was no longer greater in this location. Additionally, 

Walters (1992a) found that the effectiveness of bases of 

2 mm roughness elements (crevices) for the arbores- 

cent bryozoan Bugula neritina was dependent on the 

size of the predators in the system. With new recruits of 

the barnacle Sernibalanus balanoides, Connell (1961) 

found greater survival after a storm on concave sur- 

faces than convex surfaces (scale: mm to cm). Like- 

wise, Chabot & Bourget (1988) found that ice scour 

killed > 95 % of the juvenlle barnacles not in crevices 

(mean crevice depth: 8.5 cm).  In contrast, Wethey 

(1984) found no increase in survival of the barnacle 

S. balanoides during the first week after settlement in 

0.5 to 1.0 mm cracks on rock surfaces subject to intense 

water motion. Additionally, survival of barnacles in 

crevices on the cordgrass Spartina alterniflora (45" 

angle where leaf and stem tntersect) was slgntficantly 

lower than on leaves or stems for the flrst 24 h post-set- 

tlement and throughout the next 9 d (Young 1991). On 

topographic highs, Walters & Wethey (1986) showed 

that a 1.6 mm height advantage In the zone of contact 

reversed the predicted overgrowth interaction for com- 

petltlve interactions between some encrusting Inverte- 

brates (Alcyonidium hirsuturn vs Electra pilosa), but 

not others (A. hirsutum vs Botryllus schlosseri). 

These conflicting results show that refuge quality 

depends on the relatlve dimensions of the refuge and 

the organism and the susceptibility of the individual to 

mortality at any given point In time. At the time of set- 

tlement, the dimensions of larval forms are frequently 

small (scale: pm to cm) relatlve to the dimensions of 

many possible refuges, and survival during thls vulner- 

able phase is predicted to be enhanced in these loca- 

tions. With growth, the relative d~mensions change as 

2 fu~c t i c r ,  of !he individiial's g~vwii i  form. Organisms 

with limited attachment to the substrata (e.g. solitary 

and clonal arborescent forms) are predicted to be very 

susceptible to outright mortality, and thus should rely 

heavily on %electing high quality refuges and remain- 

ing in the confines of these refuges throughout their 

lifetimes or until size refuges are obtained (Jackson 

1977, 1979, Keough 1986). Organisms with unlimited 

attachment to the substrata (e.g.  clonal stolon-mat 

forms wlth runners from which upright axes develop 

and clonal encrusting forms) are predicted to rarely be 

completely killed; partial mortality should occur more 

commonly in organisms with these growth forms 

(Jackson & Hughes 1985). Thus, these larvae may be 

somewhat less selective at the time of settlement. 

Immediately following metamorphosis or at some later 

time, survival will not be increased in refuges, and 

these individuals should expand laterally beyond the 

dimensions of the refuge (Jackson 1977, Jackson & 

Hughes 1985). 

On topographically complex surfaces, the distribu- 

tion of settled larvae is rarely random (e .g .  Dean 1981, 

LeTourneux & Bourget 1988, Walters & Wethey 1991). 

To date, many studies have shown that hydrodynamics 

alone (e.g.  Wethey 1986, Butman 1987, Havenhand & 

Svane 1991, Harvey et al. 1995) or in combination with 

larval behavior (e.g. Crisp 1981, Pawlik et al. 1991, 

Walters 199213, Mullineaux & Garland 1993) determine 

where an  individual settles. Elther alternative can 

result in preferential settlement in pits and crevices 

(e.g. Crisp & Barnes 1954, LeTourneux & Bourget 1988, 

Rairnondi 1990, Walters & Wethey 1991, Walters 

1992b), while some amount of larval behavior is pre- 

dicted to be involved when larvae settle on topo- 

graphic highs (Walters & Wethey 1991). 

As part of a larger study on how natural topographic 

complexity influences the success of marine organisms 
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(Walters 1991), we were interested in understanding 

the mechanisms underlying the distribution of sessile 

invertebrates with different growth forms attached to 

the solitary ascidian Styela plicata (hereafter Styela). 

This animal is covered with roughness elements of var- 

ious sizes that can potentially alter the settlement and 

survivorship of epibionts. In North Carolina (USA) 

waters, Styela is frequently l00 % covered by 4 sessile 

invertebrates with unique growth morphologies: a soli- 

tary form, the barnacle Balanus sp. (95 " L  B. amphitrite, 

5% B. eberneus and B. improvisus; D. Rittschof pers. 

cornin.); a clonal arborescent form, the bryozoan Bu- 

gula neritina (hereafter Bugula); a clonal encrusting 

form, the bryozoan Schizoporella errata (hereafter 

Schizoporella); and a clonal stolon-mat form, the hy- 

drozoan Tubularia crocea (hereafter Tubularia). Our 

analysis was carried out in 2 phases: (1) we examined 

settlement on topographically complex surfaces of 

Styela and on artificial substrata with uniformly spaced 

roughness elements or pits that mimicked the types 

and scale of topographic complexity found on Styela, 

and (2) we examined daily survival in all possible 

settlement locations. From this data, we were able 

to determine if larvae settled preferentially in refu- 

ges and what size refuges were preferred. Addition- 

ally, we compared larval dimensions to refuge dimen- 

sions to see if larvae could have potentially been 

excluded from any locations and we meas.ured the 

height and lateral expansion of individuals with dif- 

ferent growth forms 7 d after settlement to see if indi- 

viduals with different growth forms remained within 

the boundaries of the refuges. 

MATERIALS AND METHODS 

On the floating dock at the Duke University Marine 

Laboratory in Beaufort, North Carolina (34" 43' 03" N, 

76" 40' 18" W ) ,  the solitary ascidian Styela plicata is 

the primary substratum for recruitment of sessile 

invertebrates during summer (Sutherland & Karlson 

1977, Sutherland 1978). Styela individuals used in 

these trials measured 44.7 k 0.7 mm (mean * SE) in 

length and 23.2 * 0.2 mm in width when measured 

without disturbance under water. The roughness ele- 

ments on their surfaces were composed of a solid cel- 

lulose matrix and ranged from 0.6 to 8.8 mm in height 

(mean: 3.1 i 0.1 mm). Approximately 2/3 of each indi- 

vidual was covered by roughness elements (bumps 

and ridges). 

Settlement on topographically complex surfaces of 

Styela plicata. The locations of all newly settled sessile 

invertebrate larvae were recorded relative to rough- 

ness elements on 81 experimentally denuded Styela 

between June 2 and 11, 1993. Styela were collected 

from the floating dock and all attached flora and fauna 

were removed with watchmaker's forceps and a soft- 

bristled toothbrush. After 48 h in running seawater 

tables, healthy, clean Styela were randomly attached 

to one of nine 20 X 20 cm plastic mesh squares (Vexar: 

5 X 8 mm openings) with plastic cable ties (6 cm apart). 

To eliminate flow through the mesh, each square was 

attached to a l mm thick plexiglass plate of the same 

dimensions. Plates were randomly attached to one of 

3 PVC pipes (diameter: 2.5 cm) with countersunk stain- 

less steel screws. Plates were hung face-down under- 

neath the dock (25 cm apart) to mimlc the normal 

growth orientation of Styela in this habitat and eli- 

minate siltation. Pipes were hung parallel to each 

other (70 cm apart) and parallel to the direction of the 

current. 

After 48 h of submersion, the locations of all newly 

settled individuals were measured relative to the 

roughness elements on each Styela with vernier 

calipers. First, we determined if each larva settled in 

contact with a roughness element or on the surface 

between roughness elements. If the individual settled 

in contact with a roughness element, the height of the 

ro'ughness element (H,,,) and the height of the settled 

larva above the base of roughness element (H,) were 

recorded in mm. A scaled vertical position (H,/H,,,) 

was then calculated for each individual to determine 

how close to the base of the roughness element it 

attached. To determine if different size roughness ele- 

ments were preferred, we calculated the proportion of 

larvae that settled on small (12.0 mm), medium (2.0 < X  

1 5 . 0  mm) or large (>5.0 mm) roughness elements. All 

statistical calculations were run in SAS 6.03 (SAS Insti- 

tute 1988): the categorical modeling procedure (CAT- 

MOD) with a posterior1 Bonferroni comparisons was 

used to analyze the count data (on/off roughness ele- 

ments, proportion on each size roughness elements); 

l-way analysis of variance (ANOVA) with a posteriori 

Bonferroni comparisons was used to compare the 

mean scaled vertical position of each species on the 

roughness elements. 

Settlement and survival on artificial substrata. It 

was not possible to run longer trials with Styela as the 

substratum because Styela individuals did not survive 

continued removal from the water for microscopic ex- 

amination. To model the topographies found on Styela, 

round settlement plates, 8.9 cm in diameter and 

6.0 mm thick, of 2 topographies were deployed: 

(1) 5.0 mm high, equidistant, cylindrical roughness ele- 

ments, and (2) 2.0 mm high, equidistant, cylindrical 

roughness elements (Fig. 1). We additionally consid- 

ered settlement in hemispherical pits. These surfaces 

are s ~ p e r i i c i d i i ~  b ~ i i i i k i i  to :he ;rc;r, bctl::eer! !-nsmh- 3 --  

ness elements, but lack the sharp angle where the 

roughness element and flat surface intersect (Fig. 1). 
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Roughness Elements , Typ L 
S tde 

Pit 

Plate type Height or depth Diameter Spac~ng 

5.0 mm r.e. 
2.0 mm r.e. 
5.0 mm pit 

2.0 mm pit 

Fig. 1 Dimensions (in mm) and locations of topographic 
features on settlement plates. Arrows on diagrams point to 
specific locations on surfaces (crevice, rim); lines point to 
larger topographic features (e.g. top of roughness element, 
pit). Height or depth: maximum height on plates with rough- 
ness elements (r.e.) or maximum depth on plates with pits; 
Diameter: diameter of r.e. or pits; Spacing: minimum distance 

to adjacent r.e. or pits 

We considered (3) 5.0 mm deep, equidistant, hemi- 

spherical pits, and (4) 2.0 mm deep, equidistant, hemi- 

spherical pits (Fig. l ) .  Commercially available materi- 

als with topographies that correspond to the numbers 

above are: (1) small Lego building blocks (Lego Sys- 

tems Inc.), (2) large Lego (Duplo) building blocks, 

(3) rolls of bubble plastic, and (4) plastic Chinese 

checker boards. Multiple, identical settlement plates 

were produced by pouring polyester resin into silicone 

rubber molds (Sylgard 184 Silicone Elastomer, Dow 

Corning Corp.) created from each topography. Black 

resin pigment (Titan Corp.) was added to the uncat- 

alyzed resin to make newly settled larvae more visible 

on the plates. 

Before running the first trial, plates were soaked in 

running seawater for 4 wk and then cleaned with a soft- 

bristled toothbrush. Nine 7 d trials were run in 1989 and 

1990 (starting dates - 1989: August 20, September 15, 

October 1; 1990: May 19, June 1.6, July 17, August 19, 

September 16, and October 10). One settlement plate of 

each topogra.phy was attached to a PVC pipe with 

countersunk stainless steel screws and suspended face- 

down directly beneath the floating dock as described 

above. Plates were arranged in a Latin square design. 

Observations were made daily to determine where lar- 

vae had attached over the previous 24 h. From maps 

made of the locations of all settlers, we were also able to 

determine if any previously settled larvae had died and 

how old each individual was when it died. To make 

these observations, plates were removed from the dock, 

brought into the laboratory in seawater-filled buckets 

and immediately put into a running seawater table. 

Plates were observed individually with a dissecting 

microscope while submerged. It took less than 5 min to 

examine each plate. Each plate remained in the labora- 

tory for less than 30 min each day. 

The plates with roughness elements were divided 

into 4 potential settlement locations: (1) tops, (2) sides, 

(3) bases of roughness elements, i.e. crevices, and (4) 

flat areas >0.25 m.m from the roughness elements. On 

the plates with pitted surfaces, 3 locations were con- 

sidered: (1) in pits, (2)  rims of plts extending out to 

0.25 mm, and (3) the remaining exposed area between 

pits. The areas occupied by each of these locations on 

all topographies are presented in Table 1. To ensure 

that all observations were independent, only 1 type of 

location was observed on each plate. The location 

observed on each plate was chosen randomly, but 

remained constant throughout a trial. Three replicates 

of each plate type/location combination were observed 

during each 7 d trial. 

Larval settlement varied tremendously over time. 

Weekly cumulative totals ranged from a high of 8669 

settlers (September 15, 1989) to a low of 684 settlers 

(July l?, 1991). To Jeieriilirie if seitiement of each 

species with at least 12 settlers per trial differed from 

random on the 4 plate types, the mean density of set- 

tlers (N cm-') was calculated for each location for 

each trial. The repeatability of the settlement results 

between trials, especially when there are large differ- 

ences in cumulative settlement, is critical in making 

generalizations about settlement location preferences. 

To determine the repeatability of results between tri- 

als, we used a l-way ANOVA, considering the trials 

as replicates, and the mean settlement densities in 

each trial as our observations. Then we used an a pri- 

on contrast, comparing the settlement density in pits 

or crevices to the mean settlement density in all other 

sites. 

Table 1. Surface area (mm2) and percent of the total area cov- 
ered by each topographic feature on each type of settlement 
plate. As all plates were cast from the same original material, 
the surface areas occupied by each topographic feature did 

not differ among replicates. r.e.: roughness elements 

Plate type Location Surface area % total area 

5.0 mm r.e. Top 1134 1 17.8 

Side 2387.6 37.6; 

Crevice 122.6 1.9 

Flat 2712.5 42.7 

2.0 mm r.e. Top 1806.9 22.1 

Side 3179.3 38.8 

Crevice 379.0 4.6 

Flat 2821.6 34.5 

5.0 mm pit Pit 2240.6 30.0 

Rim 125.6 1.7 

Exposed 5115.8 68.3 

2.0 mm pit Pit 3838.8 46.4 

Rim 379.3 4.6 

Exposed 4063.2 49 0 
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To measure short-tern~ survival (57 d) ,  we followed 

all individuals that settled during the 7 d trials, and 

determined the proportion of settlers that died each 

day and the number of days from settlement to death. 

We regressed the log of the proportion surviving 

against time. The slope of this regression is the mortal- 

ity rate (per day). All regression lines were forced 

through 0 (log of 1) because the proportion alive was 1 

at time zero. We used analysis of covariance to com- 

pare the slopes of the lines among locations on each 

plate type. When the analysis of covariance showed an 

overall difference in the slopes among locations, we 

used Bonferroni t-tests (Miller 1966) to make simulta- 

neous comparisons among the slopes to determine 

which locations differed from each other. 

Dimensions of larvae and 7 d individuals. To deter- 

mine if larval dimensions exceeded the dimensions of 

potential refuges on Styela or plates with complex 

topographies, we measured the overall dimensions of 

competent larvae of each species (N = 30) with an ocu- 

lar micrometer attached to a dissecting microscope. 

To determine the dimensions of 7 d recruits that set- 

tled in potential refuge locations, Bugula and Schizo- 

porella were allowed to attach to all plate surfaces in 

the laboratory using the methods described in Walters 

(1992a). Simultaneously, plates were suspended off the 

floating dock to collect Tubulal-ia and Balanus recruits. 

After 24 h, all but individuals in crevices or pits were 

removed and the locations of all survivors mapped. 

Then, all plates were suspended from the dock as 

described above for 6 d beginning on June 1, 1993. For 

normal growth to occur in this habitat, neither spatial 

competitors nor predators were excluded during this 

period. It is unlikely that partial mortality biased 

growth measures because all sources of mortality kill 

whole individuals when they are within this size range 

(Keough 1986, Walters 1992a). At the end of the trial, 

plates were removed from the water and the height 

and lateral expansion of thirty 7 d individuals of each 

species in each refuge location were measured with 

either an ocular micrometer attached to a dissecting 

microscope or vernier calipers. 

RESULTS 

Settlement on Styela 

A total of 412 larvae settled on 81 clean Styela indi- 

viduals within 4 8  h. Among these Individuals, there 

were significant overall differences in settlement loca- 

tion relative to the roughness elements (X' = 15.95; df = 

3,412; p = 0.0012) (Table 2). A significantly higher per- 

centage of Balanus individuals (94 %) settled in contact 

with the roughness elements than Tubularia (76%) or 

Schizoporella (67 %). Additionally, Bugula (81 %) set- 

tled in contact with roughness elements significantly 

more than Schizoporella (Table 2). Of the 327 larvae 

that settled in contact with the roughness elements, 

over 72% of each species settled in contact with 

roughness elements >2.0 and 55.0 mm (Table 2). Addi- 

tionally, Balanus and Bugula attached significantly 

closer to the bases of the roughness elements than 

Tubularia and Schizoporella ( F  = 30.39; df = 3,327; p = 

0.0001) (Table 2). 

Settlement and survival on artificial surfaces with 

uniform topographies 

All species settled non-randomly on plates with uni- 

formly spaced roughness elements (Table 3). Settle- 

ment of Balanus, Bugula, Schizoporella and Tubularia 

was greatest in the 90" angle formed at the bases of 

the roughness elements (crevices). These results were 

consistent regardless of the number of settlers In a trial 

and the height of the roughness elements (F-tests; 

Table 3 ) .  

Settlement preference results were less consistent on 

the pitted surfaces (F-tests; Table 3). Balanus settled 

Table 2. Larval settlement locations on Styela pljcata. To.uching r.e.: mean proportion of individuals that settled in contact with 
roughness elements (r.e.) on the surface of Styela. The remaining values are  calculated only for individuals that settled in contact 
with r.e Vertical position (scaled): mean (height of the individual above the base of r.e. in mm)/(the height of the r.e. in mm); On 
r.e. 22 0 mm high: mean proportion of individuals that settled on r.e. in this slze range; On r.e. 2.0 < X 2 5.0 mm high: mean 
proportion of individuals that settled on r.e. in this size range. If vertical bars following the means overlap, then the results of 

a posteriori Bonferroni comparisons were  not significantly different at  the p 0.05 level. (SE in parentheses) 

Species N Touching Vertical O n  r.e. On r.e. 
r.e. position 52.0  mm high 2.0 < X <  5.0 mm high 

Balanus sp. 7 2 19.18 (4.80) 72.06 (5,481, 

Rli_nlrla nnritina 148 0.15 (0.02) 20.00 (3.66) 77.50 (3.8211 

Tubulana crocea 107 76.64 (4.11) 1 '  0.48 (0.04)l 54.1.5 ( 4 . G G ;  
I 

Schizoporella errata 85 67.06 (5.13) 1 0.41 (0.04)l 14.04 (4.64) 82.46 (5.08) 
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Table 3 Mean settlement preferences for each species on each plate type Tnals number of trials used in the analyses (N  2 12 In- 

dividuals), N ~nc ,In numt>er of settlers. Number of scttlers cm mean number of settlers cm - in each location on sctllement plates, 

p probability the a p n o n  hypothesis that the settlement denslty In potential refuges (crevlces, pits) i .  ds equal to the mean settle- 

ment density in other locations, r e roughness elements, na not applicable as no larvae settled on t h ~ s  surface (SE in parentheses) 

Specles Plate Tnals N 

Balanus 5.0 r e .  9 645 22 (215.02) 

Bugula 5.0 r e  5 20 00 (4 02) 

Schizoporella 5 0 r e 4 18 25 (4 63) 

Tubulana 5 0 r e  2 19 50 (6.50) 

Balanus 2 0 r e  9 66533(21865)  

Bugula 2 0 r e  5 3 8 4 0 ( 1 7 2 3 )  

Sch~zoporella L 0 r e  7 21 57 (4 63) 

Tubulana 2 0 r e  3 19 33 (3 84) 

Balanus 

Bugula 

Sch~zopor(>lla 

Tubularia 

Balanus 

Bugula 

Schlzoporella 

T ~ b ~ l d l l d  

5.0 pit 

5.0 pit 

S 0 p!! 

5 U pit 

2.0 pit 

2.0 p1t 

2.0 pit 

2 0 pit 

Number of settlers c m 2  

TOP Side Crevice Flat 

Pit Rim Exposed 

preferentially in both 5.0 mm and 2.0 mm deep pits 

(Table 3) .  Bugula settled preferentlally in large pits but 

not in small ones (Table 3) .  The clonal encrusting form, 

Schizoporella, settled randomly on surfaces with 

5 .0  m m  pits, and preferentially in 2.0 mm pits (Table 3) .  

No Tubularia settled on the plates with pits. 

Regressions of mortality versus time in each location 

on each plate type are  combined for all tnals in 

Table 4. The rate of Balanus mortality (%  d- ' )  was sig- 

nificantly lower in crevices on plates with both size 

roughness elements (the preferred settlement location; 

Table 3) than on the tops or the flat areas between 

roughness elements (Table 4). On the pitted surfaces, 

Balanus mortality was significantly lower in pits where 

larval settlement was densest (Tables 3 & 4) .  Bugula 

mortality was also significantly lower in crevices than 

all other locations on plates with 2.0 mm roughness 

elements, while dally mortality rates in crevices on 

plates with 5.0 mm roughness elements was less than 

half the mortality on the tops of these roughness ele- 

ments (6.6 vs 14.0% d- ' ) .  Bugula mortality was highest 

on the rims of the large pits and in the bottoms of the 

small pits (Table 4).  For Schizoporella recruits, mortal- 

ity on plates with 5.0 mm roughness elements only 

occurred in the locations where large flat surfaces 

were exposed. On the tops of the roughness elements, 

mortality was 8"" d - '  while on the flat areas between 

bumps, mortality approached 24 ' ,  d- l .  No Schizo- 

porella recruits died dunng any trial on the sides or in 

crevices on the large roughness elements (Table 4).  

Therefore, again, the preferred settlement location 

(crevices) slgmficantly reduced rates of mortality. Mor- 

tality of Schizoporella was very low in all locations on 

plates with 2.0 mm roughness elements. On the sur- 

faces with 5 .0  mm deep pits, Schizoporella mortality 

did not differ between locations, while on the surfaces 

with 2.0 mm deep pits, Schizoporella mortality was 

greatest in the pits (Table 4),  the locations with the 

highest settlement (Table 3). Tubularja survival did not 

differ among locations on either surface with rough- 

ness elements (Table 4) .  

Dimensions of competent larvae and 7 d recruits in 

relation to refuges 

The dimensions of potential refuges considered in 

these tnals greatly exceeded the dimensions of larvae 

of Balanus, Bugula and Schizoporella (Table 5). When 

fully expanded, larvae of Tubularia exceeded 1.2 mm 

in diameter (Table 5 ) .  On Styela, the smallest rough- 

ness elements where any larval settlement occurred 

were 0.6 mm high. Thus, Tubulana larvae may have 

been excluded from certain spots. 

The height of 7 d Balanus individuals was never 

greater than the height of the roughness elements or 

the depth of the pits (Table 6) .  Thus, all individuals that 

settled in crevices on plates with roughness elements 
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Table 4. Short-term (27 d)  mortality rates ( %  dead d.') for each location on each plate type. p: probability values based on analy- 

sis of covariance tests (ANCOVA) used to compare the slopes of lines for each location. When ANCOVA showed overall differ- 

ences among locations, Bonferroni t-tests were used to make simultaneous comparisons among slopes. Rank: order of differences 

based on the Bonferroni comparisons; r.e : roughness elements; na: not applicable as no larvae settled on this surface 

Species Plate Mortality rates by location 
Top Side Crevice Flat 

Rank 

- 

crevice = side < top = flat 
crevice c side < top = flat 

slde < crevice = flat < top 
crevice < flat < top = side 

Balanus sp. 

Bugula nerjtjaa 

Schizoporella errata 

Tubularia cl-ocea 

crevicc = side < top < flat 

Pit Rim Exposed 

15.06 0 0001 pit < rim = exposed 
14.48 0.0001 pit < rim = exposed 

5.51 0.0013 pit = exposed < rim 
2.65 0.0004 rim = exposed < pit 

Balanus sp. 5.0 pit 
2.0 pit 

Bugula neritina 5.0 pit 
2.0 pit 

Schizoporella errata 5.0 pit 
2.0 pit 

0.00 0.2291 
1 1 9  0.031 1 rim < exposed = pit 

Tubularia crocea 5.0 pit 
2.0 pit 

would remaln within the boundaries of the refuge 

throughout the week, while the success of Balanus 

recruits in pits was in part determined by settlement 

location within the pits. Those settling near the bases 

of the pits should remain protected within the refuge; 

those settling near the rim may rapidly exceed the 

boundaries of the refuge. Lateral expansion in Bugula 

was limited to the width of the attachment zooid, while 

upward growth exceeded 2.8 mm in all tested locations 

(Table 6). Thus, all Bugula recruits that settled in 

crevices on 2.0 mm roughness elements or anywhere 

in 2.0 mm pits were exposed to predators and distur- 

bance events within 7 d.  However, individuals in 

crevices on 5.0 mm roughness elements shou.ld remain 

protected, while exposure of Bugula recruits in 5.0 mm 

pits was dependent on the exact settlement location. 

Upward growth of the new recruits of Schizoporella 

was limited to the thickness of the zooids; most of the 

growth of this encrusting form was lateral (Table G ) .  

Within 7 d,  recruits on plates with roughness elements 

covered an area a t  least 1.7 mm in diameter. Thus, 

most of the colony would be no longer near the crevice 

and either growing up the side of the roughness ele- 

ment or into the flat area between bumps. On pitted 

surfaces, Schizoporella also covered an area at least 

1.7 mm in diameter. As with Balanus and Bugula, 

exposure of recruits of Schizoporella in pits was de- 

pendent on the settlement location. Tubularia grew 

rapidly on surfaces with roughness elements (Table 6).  

If daily growth is approximately '4 of total growth, 

Table 5. Larval and adult morphologies of sesslle invertebrates that settled on Styelaphcdta and on the settlement plates and the 

mean dimensions of these larvae in pm (SE In parentheses) (N  = 30) 

Species Larval morphology Larval dimensions Adult morphology 

Balanus sp. Cyprid Length: 356.7 (9.30) 
Width. 159.38 (3  21) 

Aclonal, solitary 

Bugula neritina Coronate 

s ~ , \ ~ ~ ~ ~ ~ , - ~ ! ! ~  c::::2 C,rcc?!e 

Tubularia crocea Actinula 

Diameter: 166.67 (3.12) Clonal, arborescent 

Diameter: 207.69 (6.28) Clonal, encrusting 

Diameter of central disc: 260.00 (5.34) Clonal. stolon-mat 
Diameter with arms extended. 1269.33 (29.83) 
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Table 6. Dimensions of 7 d individuals in potential refuqe locations. enhanced [Table 41. Settlement locations and 
Mean height and lateral expansion in mm on Day 7 (SE in parentheses) locations where survival was enhanced were 
for individuals (N  = 30) that settled in crevices and pits on settlement 

plates; re: roughness el~rnents, na not applicable 
less consistent for the 2 species with unlimited 

attachment to the substrata. Both Schizo- 

) Rugula 5.0 r.e. Crevice 3.12 (0.05) 0.36 (0.01) 1 cantlv areater numbers at the bases of the 

Species Plate Location Helght Lateral expansion 

Balanus sp. 5.0 r.e. Crevice 1.13 (0.04) 1.34 (0.04) 

2.0 r.e. Crevice 0.97 (0.05) 1.18 (0.04) 

5.0 pit Pit 1.02 (0.04) 1.40 (0.03) 
2.0 pit Pit 1.01 (0.04) 1.31 (0.03) 

porella (clonal, encrusting) and Tubulana 

(clonal, stolon-mat) did not always settle on 

the roughness elements on Styela and when 

they did, they settled all along the roughness 

elements rather than at the bases (Table 2). 

Both species did, however, settle in signifi- 

neritina 2 0 r.e. Crevice 2.99 (0 04) 0.38 (0.02) 

5 0 pit Pit 2.80 (0 06) 0.40 (0.01) 

2 0 pit Pit 2.85 (0 06) 0.41 (0.02) 

Schizoporella 5.0 r e .  Crevice 0.28 (0.01) 2.00 (0.06) 

errata 2.0r.e. Crevice 0.23(0.01) 1.74(0.10) 

5.0 pit Pit 0.29 (0.01) 1.91 (0.06) 

2.0 pit Pit 0.28 (0.02) 1.68 (0.07) 

r d 

roughness elements on plates (Table 3). Short- 

term survival of Schizoporella was increased 

in crevices on 2.0 mm roughness elements, but 

not the 5.0 mm bumps (Table 4). Survival of 

Tubularia was not increased in either of the 

tested crevice locations (Table 4). 

Tubulana 5.0 r.e. Crevice 13.68 (0.46) 9.69 (0.37) Roughness elements and pits can be consid- 
crocea 2.0 r.e. Crevice 11 81 (0.40! !1).7-d (0.32: I eied ends of a cu~liinuum, since ail nonplanar 

5.0 pit Pit na na 
2.0 p ~ t  Pit na na 

I 

surfaces have a highest point and a lowest 

point. However, pits were frequently poorer 

quality refuges than crevices (Table 4 ) .  Al- 

though both arc considered depositiorldl re- 

then Tubulana on plates with both size roughness ele- gions (e.g. Middleton & Southward 1984), the settle- 

ments were out of the boundaries of the 2.0 mm crevice ment and survival results for individuals in crevices vs 

refuges in 2 d and 5.0 mm crevices in 3 d. pits of the same magnitude were often different (Tables 

3 & 4). This may be because larvae can not securely at- 

tach to the pitted surfaces which lack sharp angles, 

DISCUSSION such as those created where flat surfaces and rough- 

ness elements intersect (Fig. 1; LeTourneux & Bourget 

We predicted that individuals with unlimited attach- 1988). Additionally, these results may differ because we 

ment to the substrata would rapidly be protected by combined all settlement in pits, although some individ- 

their growth form, decreasing their need to settle in uals settled near the bases of the pits and others settled 

refuges and limiting the length of time any locations on near the rims, or because the diameter of the pits was 

heterogeneous substrata act as refuges. We also pre- greater than the spacing between roughness elements 

dicted that organisms with limited attachment to the (Fig. 1). No Tubularia ever settled on surfaces with pits 

substrata would remain susceptible to mortality for a (Table 3). It is not known if these larvae were: (1) ex- 

longer time and as a result should be much more con- cluded from at least the small pits due to their large di- 

sistent about settling in high quality refuges. The mensions (Table 5), (2) actively rejecting these surfaces, 

results agreed with the predictions for the 4 species or (3) absent due to larval supply. Bugula and Schizo- 

tested on both the topographically complex surface of porella consistently settled in crevices on surfaces with 

the ascidian Styela plicata and on settlement plates roughness elements and these locations acted as spatial 

with uniformly spaced roughness elements. Both spe- refuges (Tables 2 & 3). Neither consistently settled in 

cies with limited attachment to the substrata settled increased numbers in pits of similar sizes (Table 3). Sur- 

very specifically in locations that acted as refuges vival of Schizoporella was either random (surfaces with 

throughout the first week post-settlement (Tables 2 to 5.0 mm pits) or reduced in pits (2.0 mm pits; Table 4). 

4). The aclonal, solitary form (Balanus) settled almost Bugula did not preferentially settle in 2.0 mm pits and 

exclusively near the bases of roughness elements on survival was lowest in this location (Tables 3 & 4). 

Styela and in crevices on plates with large and small There is evidence that larvae of all 4 species actively 

roughness elements. Most Balanus recruits remained chose their settlement location after encountering 

within the boundaries of these refuges th.roughout the these topographically complex surfaces placed face- 

following week and survival was increased in these down in this low-energy environment (flow rates: 0 to 

locations. The clonal, arborescent form (Bugula) also 15 cm S-'; Culliney 1969). We repeated settlement 

consistently settled in crevices on Styela and on rough- plate trials in different months and years and found 

ness element plates (Tables 2 & 3) where survival was consistent results between trials that could not be 
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explained by the passive deposition model (Table 3). If 

larvae were deposited as passive particles, then they 

would have only accumulated in crevices and pits. 

However, on some surfaces, Bugula, Schizoporella and 

Tubularia settled in significantly greater numbers in 

areas of high erosion: the flat areas between roughness 

elements on Styela, the sides of roughness elements on 

Styela, and the rims or exposed surfaces on pitted sur- 

faces (see Walters & Wethey 1991 for calculations of 

the roughness Reynolds number, Re', for these sur- 

faces). T h s ,  we believe that larval exploration of sur- 

faces occurred. Laboratory trials have also docu- 

mented larval exploration under controlled conditions 

(Balanus: e.g. Crisp 1981, Mullineaux & Butman 1991; 

Bugula: Woollacott 1984; Schizoporella: L.J.W. pers. 

obs.; Tuhularia: Mills & Strathmann 1987). Evidence 

for active exploration under similar field conditions for 

Balanus and Bugula comes from Walters (199213). 

Through a series of manipulative field experiments on 

plates with uniformly spaced 2.0 mm roughness ele- 

ments, it was demonstrated that larvae of both species 

must either crawl or tumble over surfaces before set- 

tling consistently in crevices. 

Active surface exploration may explain additional 

selectivity by larvae of the 2 species with limited 

attachment, Balanus and Bugula, for crevices of me- 

dium size roughness elements on Styela. The number 

of settlers per plate was very slmilar when plates with 

large and small roughness elements from each trial 

were compared (ANOVA, p > 0.05). However, on these 

surfaces, larvae were only exposed to 1 size roughness 

element. On the surfaces of Styela, larvae potentially 

encountered roughness elements of many sizes. Bal- 

anus settled at  the bases of roughness elements that 

ranged from 0.6 to 5.7 mm in height. Bugula settled on 

roughness elements that ranged from 0.6 to 8.8 mm 

high. Although the distribution of small (52.0 mm), 

medium (2.0 < X <  5.0 mm), and large (>5.0 mm) rough- 

ness elements was similar on each Styela (L.J.W. pers. 

obs.), the majority of larvae settled in contact with 

medium size roughness elements (Table 2). Roughness 

elements in this size range may have marked the limits 

of larval exploratory ability. Alternatively, they may 

have been chosen to provide a spatial refuge for indi- 

viduals long enough for reproduction to occur or for a 

size refuge to be obtained. 

Potential sources of mortality included competitors, 

predators, and physical disturbance events. Refuges 

from competitors are predicted to be topographic highs 

(Connell & Keough 1985, Walters & Wethey 1991); 

refuges from predators and disturbances should be 

crevices and pits (Barry & Dayton 1991). Competitive 

interactions are  frequently more common with species 

that have unlimited attachment to the substrata (e.g. 

Jackson 1977, 1979). In the Pacific Northwest, the 

encrusting bryozoan Membranipora memhrancea was 

frequently overgrown by competitors and it settled 

preferentially on topographic highs on surfaces with 

uniformly spaced roughness elements or pits (Walters 

& Wethey 1991). However, neither Schizoporella nor 

Tubularia were likely to succumb to this source of mor- 

tality. Schizoporella is a dominant spatial competitor in 

the North Carolina system and once established, it can 

resist invasion of all other species (Sutherland & Karl- 

son 1977, Sutherland 1978). By combining rapid 

growth and a stolon-mat morphology, Tubularia 

stolons frequently overgrew other competitors and if 

any stolons were overgrown, death of the colony did 

not result (L.J.W. pers. obs.). Additionally, removal of 

competitors had no effect on survival for Bugula 

recruits that settled in all possible locations on settle- 

ment plates with uniformly spaced 2.0 mm roughness 

elements during 20 d trials in this habitat (Walters 

1992a). The filefish Monacanthus setifer was the pn-  

mary predator in this system and it consumed all indi- 

viduals not in refuges (Walters 1992a). If competition is 

not an  important source of mortality in this system, 

then individuals should settle in crevices or pits to 

reduce mortality due  to fish predation and physical 

disturbance events. 

The distribution of settlers was not influenced by the 

number of settlers in a trial or spatial exclusion over 

time. We observed significant preferences in species 

with high settlement (Balanus) as well as in species 

with low settlement (Bugula, Tubularia, Schizopo- 

rella). It is also unlikely that settlement patterns were 

the result of larval exclusion, based on the number of 

previously settled individuals in a trial. Although com- 

petitive exclusion (pre-emption) would eventually 

keep larvae from settling in preferred settlement loca- 

tions (Wethey 1984), it was not likely in these short- 

term experiments. If each settled individual was con- 

sidered to occupy 1 mm2 from the day it arrived, then 

daily loss of space available could be calculated 

through the last day of the trial (Wethey 1984). Dunng 

the tnal with the most settlement (8669 settlers), the 

area remaining available for settlement a t  Day 7 in 

crevices, the consistently preferred settlement loca- 

tion, could be calculated. Unoccupied area in crevices 

decreased from 379 mm2 to 287 rt 8 mm2 (mean rt SE)  

on plates with 2.0 mm roughness elements and from 

123 mm2 to 80 + 11 mm2 on plates with 5.0 mm rough- 

ness elements. Thus, 76% of the space on plates with 

small roughness elements and 45% of the space on 

plates with large roughness elements was still avail- 

able for settlement after 7 d .  Additionally, if larvae 

were excluded from the crevices over time, then the 

proportion ot iarvae settiiny iile~e bi~uciid decrease 

over time. On each day of the trial, the number of lar- 

vae settling in this location was compared to the total 
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number of settling larvae. On the plates with 5.0 mm 

roughness elements, the proportion of larvae settling 

around the bases of the roughness elements remained 

constant throughout the trial. However, more Balanus 

larvae settled around the bases of small roughness ele- 

ments on the last day of the trial (Day 7) than on Day 5 

(F = 3.84; df = 5, 18; p = 0.0260). This result is opposite 

the pattern expected if larvae were being excluded as 

space filled up.  

The results of these s tud~es are consistent with our 

predictions that both refuge dimensions and growth 

form influenced settlement and short-term post-settle- 

ment success. Because fish and disturbance events 

were the primary sources of mortality, pits and crevices 

should have provided the best refuges. However, both 

settlement and refuge quality were consistently 

greater in crevices than pits of the same magnitude. 

Larvae of animals with limited attachment to the sub- 

strata actively settled in refuges that coverec! a vzry 

small amount of the available surface area. Larvae 

with these growth forms additionally chose refuges of 

specific sizes. Larvae of animals with unlimited growth 

along the substrata were less specific about attach- 

ment location and grew out of refuge locations within 

days. Overall, both growth form and refuge dimen- 

sions need to be carefully considered when deter- 

mining refuge quality on a topographically complex 

surface. 
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