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Settlements and stresses of multi-layered grounds and improved
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SUMMARY

The investigation of equivalent elastic method is made to predict settlements and stresses of multi-layered
grounds and improved grounds. Analytical models to represent the heterogeneous elastic properties of
layers in vertical and horizontal directions for multi-layered grounds and improved grounds are proposed
in taking into account the equivalent elastic modulus and the equivalent thickness. By introducing the
equivalent thickness derived from Terzaghi’s formula of the vertical stress, the equivalent elastic method of
using the equivalent elastic modulus and the equivalent thickness is applied to the formulations concerning
immediate settlements and vertical stresses in multi-layered grounds and improved grounds. Comparison
is performed between rigorous solutions and simulations for immediate settlements and vertical stresses
in multi-layered grounds and improved grounds. It is found that the proposed method is able to describe
properly the characteristics of distributions for settlements and vertical stresses in multi-layered grounds
and improved grounds. Copyright q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Concerning design methods for foundations of structures, a great attention has been focused not
only on the bearing capacity but also on settlements and stresses below the foundation under
various loading conditions recently. Conventional methods based on the allowable stress design
and the limit state design have been often utilized in designs of building’s foundations. It has
been required that deformations and stresses developed in a structure due to service loads have
to be predicted more accurately in design methods. Numerical analyses such as the finite element
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method (FEM) and the boundary element method (BEM) have provided accurately settlements and
stresses beneath foundations for multi-layered soil systems or multi-layered soil systems with soil
improvement if the formulation employed establishes efficiently constitutive models into which
detailed stress–strain relationships can be incorporated. For application to numerical analyses of
FEM and BEM, Hirai [1–3], Kamei and Hirai [4], Hirai and Kamei [5], Hirai et al. [6] proposed
constitutive models of sandy soils, cohesive soils and improved soils to describe the characteristics
of elastic–plastic behaviours in general stresses. For practical designs of building’s foundations,
however, conventional methods [7, 8] which adopt closed-form linear elastic solutions have not yet
been superseded by FEM and BEM due to availability and simplicity of conventional methods.
Because of this reason, special efforts are made to derive the formulation of immediate settlements
and vertical stresses which possess closed-form linear elastic solutions for both multi-layered
soil systems and multi-layered soil systems with soil improvement. In addition, the consolida-
tion settlements classified as elastic–plastic deformation are calculated by use of vertical stresses
aforementioned.

Regarding settlements and stresses of multi-layered soil systems, Burmister [9–13] and Fox [14]
provided rigorous solutions for two-layered elastic systems and Burmister [9–13], Schiffman [15],
Kirk [16] and Jones [17] revealed exact solutions for three-layered elastic systems. For the imme-
diate settlement classified as elastic deformation in soil–rock system, Ueshita and Meyerhof [18]
exhibited the rigorous solutions which were employed to verify the availability of approximate
solutions calculated by Steinbrenner’s [19, 20] method. Furthermore, as for the immediate settle-
ment of multi-layered soil systems, Ueshita and Meyerhof [21, 22] presented the rigorous solutions
with which the approximate solutions given by Odemark’s [23] method was compared. Palmer
and Barber [24] proposed the approximate solution for two-layered elastic systems by the use of
the equivalent thickness. Using computational results provided by Burmister [9–13], Nascimento
et al. [25] propounded an approximate analytical method for pavements of multi-layered systems.
In Palmer et al.’s method and Odemark’s method, it is assumed that once multi-layered elastic
systems with n-layers have been transformed into an equivalent single elastic layer, the calcu-
lation is only valid within the lowest layer n which is an isotropic and homogeneous material.
Ullidtz [26] and Freeman and Harr [27] presented that Odemark’s method is able to approximate
the multilayer theory of elasticity only for the case where elastic moduli of layers decrease with
depth.

Using a simple extrapolation of Steinbrenner’s approximation that the compression of a finite
layer of depth z metres on a rigid base is the same as the compression within the top z me-
tres of an infinitely deep deposit, Simons and Menzies [28] proposed an approximate method
which accommodates a variation of the elastic modulus with depth by replacing each real layer
in multi-layered soil systems with one hypothetical layer on a rigid base. Simons et al.’s method
was utilized in the case where elastic moduli within these layers increase with depth and it was
adopted in Recommendations for Design of Building Foundations [7, 8] published by the Archi-
tectural Institute of Japan. By weighting the elastic parameters of each layer in a multi-layered
system, Fraser and Wardle [29] provided an equivalent elastic modulus which is same as the
elastic modulus derived from the extrapolation of Steinbrenner’s approximation. Poulos and Davis
[30] indicated that the use of extrapolation of Steinbrenner’s approximation for a multi-layered
system leads to an overestimate of settlement caused by the underlying layers if the modulus
of the layers decreases with depth. It was shown by Hirai and Kamei [31, 32] that the settle-
ment obtained by the extrapolation of Steinbrenner’s approximation is not applicable to the case
where elastic moduli within multi-layered soil systems decrease with depth. Himeno [33] and
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Matsui [34] presented computational programs which analyse settlements, stresses and strains
generally in multi-layered elastic systems. The computational programs by Himeno and Matsui,
however, are employed only for circular loads but not for rectangular loads on the surface in
multi-layered soil systems.

In the following presentation, the investigation is made to propose the equivalent elastic method
which consists of equivalent elastic modulus and equivalent thickness [31, 32] for multi-layered
soil systems with soil improvement. First, both improved soil columns and internal soil lay-
ers surrounded with improved soil columns are transformed into a composite soil system with
the equivalent elastic modulus. Second, the composite soil system and external soil layers are
transformed into equivalent multi-layered soil systems. The analytical method which includes the
equivalent elastic modulus and the equivalent thickness is exhibited by developing the approximate
solutions given by Palmer and Braber [24], Odemark [23] and Terzaghi [35].

The investigation is performed for the influence of loaded area, both area and depth of soil
improvements, and the difference of elastic moduli between in situ soils and improved soils upon
settlements and stresses of improved soil systems. In comparison with rigorous solutions, finite
element analysis and multi-layer elastic analysis, the applicability of the proposed method is
demonstrated.

In the computation for consolidation settlements of cohesive soils, Hirai and Kamei [36, 37]
proposed analytical methods to estimate the consolidated state and the consolidation yield stress. It
is very important that distributions of vertical stress in soil systems have to be determined precisely
in the calculation of consolidation settlements. In the following presentation, two analytical methods
of vertical stresses in multi-layered soil systems are utilized; i.e. the direct method to use the
equivalent thickness directly and the indirect method of adopting distribution widths of vertical
stresses expressed with equivalent thickness.

EQUIVALENT THICKNESS AND EQUIVALENT ELASTIC MODULUS OF
MULTI-LAYERED SOIL SYSTEMS

In the case of three-dimensional elastic problems to satisfy boundary conditions with complicated
shapes in an infinite solid, Hirai and Satake [38, 39] proposed the analytical method of utilizing
transformations between functions in cylindrical coordinates and those in spherical ones. For three-
dimensional elastic problems encountered in multi-layered soil systems, it becomes more difficult
to satisfy accurately the boundary conditions between each layer in proportion to increase in soil
layers because of the complication of integrations [21, 22, 34] included in three-dimensional elastic
analyses. Furthermore, the three-dimensional elastic analyses for rectangular foundations have a
tendency to become more complicated than circular foundations. In order to predict settlements and
stresses under vertical loadings on multi-layered soil systems, Hirai and Kamei [31, 32] proposed
approximate analytical procedures to develop the methods given by Palmer and Barber [24] and
Odemark [23].

Figure 1 exhibits multi-layered soil systems composed of n-layers subjected to vertical loads
q . As shown in Figure 1, the present procedure uses the elastic moduli, i.e. Young’s modulus Em
and Poisson’s ratio �m and thickness Hm for mth layer in n-layers of multi-layered soil systems,
and B and Df are dimension and depth of a foundation, respectively. According to Palmer and
Barber’s method [24] for two layers and Odemark’s [23] method for multi-layers, the equivalent
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Figure 1. Multi-layered soil systems.

thickness Hme was given by the following expression: for the case where Em�En

H1e − Df =
{
E1(1 − �2n)

En(1 − �21)

}1/3

(H1 − Df)

Hme =
{
Em(1 − �2n)

En(1 − �2m)

}1/3
Hm (m = 2∼ n)

(1)

As for the case where Em�En , considering that Terzaghi’s [35] approximate formula of the vertical
stress is available for a layer on a rigid base, i.e. E2 = ∞ in two layers, it is assumed that the
equivalent thickness Hme for multi-layers may be represented by an interpolation function as
follows:

H1e − Df =
⎡
⎣0.75 + 0.25

{
E1(1 − �2n)

En(1 − �21)

}1/3
⎤
⎦ (H1 − Df)

Hme =
[
0.75 + 0.25

{
Em(1 − �2n)

En(1 − �2m)

}1/3]
Hm (m = 2∼ n)

(2)

Figure 2 shows an equivalent single soil layer with the equivalent thickness expressed by Equations
(1) and/or (2) for multi-layered soil systems exhibited in Figure 1. In Figure 2, it is assumed
that the vertical stress is distributed with the gradient of tan � [40] in the case of an isotropic
and homogeneous elastic system. The present procedure takes tan � = 1

2 [41] for convenience.
Therefore, the transverse dimension Bje and the longitudinal dimension L je of vertical stress
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Figure 2. Equivalent single soil layer with equivalent thickness for Figure 1.

distributed on the upper boundary of j th layer were given by the following form [32]:

B1e = B, Bje = B − Df +
j−1∑
k=1

Hke ( j �= 1)

L1e = L , L je = L − Df +
j−1∑
k=1

Hke ( j �= 1)

(3)

where B and L are the transverse dimension and the longitudinal dimension of a rectangular foun-
dation, respectively, on the assumption that B � L , and Bje and L je are referred to as distribution
widths of vertical stress of j th layer.

The n-layered soil systems shown in Figure 3 was transformed into equivalent two-layered soil
systems illustrated in Figure 4. The equivalent elastic modulus EH [31, 32] for n − 1 layers in
Figure 4 was represented by

EH =
⎡
⎣{E1

(1 − �2n)

(1 − �21)

}1/3
H1 − Df

H − Df
+

n−1∑
j=2

{
E j

(1 − �2n)

(1 − �2j )

}1/3
Hj

H − Df

⎤
⎦
3

(4)

Furthermore, two-layered soil systems in Figure 4 was transformed into an equivalent single soil
layer shown in Figure 5 by the use of the equivalent thickness as follows: for the case where
EH�En [31, 32]

He − Df =
(
EH

En

)1/3

(H − Df) (5)
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Figure 3. Multi-layered soil systems.

Figure 4. Equivalent two-layered soil systems for Figure 3.

and for the case where EH�En

He − Df =
[
0.75 + 0.25

(
EH

En

)1/3
]

(H − Df) (6)
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Figure 5. Equivalent single soil layer for Figure 4.

EQUIVALENT THICKNESS AND EQUIVALENT ELASTIC MODULUS
OF IMPROVED SOIL SYSTEMS

Figure 6 shows schematically multi-layered soil systems subjected to vertical loads q at depth Df.
Figure 7 illustrates equivalent multi-layered soil systems with equivalent elastic modulus E (k−1)

T
for Figure 6. Concerning k − 1 layers within multi-layered soil systems shown in Figure 6, the
equivalent elastic modulus E (k−1)

T illustrated in Figure 7 can be expressed by Equation (4) where
n is replaced with k. Figure 8 exhibits improved soil systems which are composed of improved
soil columns and multi-layered soil systems in the case where soil improvements are achieved for
multi-layered soil systems shown in Figure 6. Both improved soil columns and internal soil layers
surrounded with improved soil columns in Figure 8 are transformed into a composite soil system
with equivalent elastic moduli Eeq and �eq in Figure 9. Figure 9 shows equivalent improved soil
systems which consist of the composite soil system and external multi-layered soil systems for
Figure 8.

Using the elastic modulus Ep and Poisson’s ratio �p of improved soil columns, the equivalent
elastic modulus Eeq and the equivalent Poisson’s ratio �eq for the composite soil system exhibited
in Figure 9 were derived as follows [42]:

Eeq = E (k−1)
T + (Ep − E (k−1)

T )
∑

Ap/Ab

�eq = �n + (�p − �n)
∑

Ap/Ab

(7)
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Figure 6. Multi-layered soil systems.

Figure 7. Equivalent multi-layered soil systems with equivalent elastic modulus for Figure 6.

where
∑

Ap is the sum of the area of base of improved soil columns, Ab = BbLb is the area of base
of the composite soil system, and Bb and Lb are the transverse dimension and the longitudinal one
of the base of the composite soil system, respectively. The elastic–plastic behaviour of improved
sandy soils was investigated by Hirai et al. [6] and the method to determine elastic moduli of
improved sandy soils was proposed.
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Figure 8. Improved soil systems composed of improved soil columns and
multi-layered soil systems for Figure 6.

Figure 9. Equivalent improved soil systems composed of a composite soil system and
multi-layered soil systems for Figure 8.

Let us consider the case where k−1 layers of the upper part of multi-layered soil systems shown
in Figure 6 are replaced with the equivalent moduli Eeq and �eq. Figure 10 illustrates that replaced
soil systems are composed of both the upper part of k − 1 layers replaced with the equivalent

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (in press)
DOI: 10.1002/nag



H. HIRAI

Figure 10. Replaced soil systems composed of both k − 1 layers replaced with equivalent elastic moduli
and n − k + 1 layers of native soils for Figure 6.

moduli Eeq and �eq and the lower part of n− k + 1 layers of multi-layered soil systems. Figure 11
exhibits an equivalent single soil layer with equivalent thickness for Figure 10. It is assumed in
Figure 11 that the vertical stress is distributed with the gradient of tan � = 1

2 in an isotropic and
homogeneous elastic system. Therefore, the transverse dimension Bke and the longitudinal one
Lke of distribution widths of vertical stress on the upper boundary of kth layer are given by the
following form:

Bke = B − Df +
k−1∑
m=1

Hme

Lke = L − Df +
k−1∑
m=1

Hme

(8)

where the equivalent thickness of equivalent single soil layer shown in Figure 11 is expressed by
the following equations:
for the case where Eeq�En [43, 44]

H1e − Df =
{
Eeq(1 − �2n)

En(1 − �2eq)

}1/3

(H1 − Df)

Hme =
{
Eeq(1 − �2n)

En(1 − �2eq)

}1/3

Hm (m = 2∼ k − 1)

(9)
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Figure 11. Equivalent single soil layer with equivalent thickness for Figure 10.

for the case where Eeq�En

H1e − Df =
⎡
⎣0.75 + 0.25

{
Eeq(1 − �2n)

En(1 − �21)

}1/3
⎤
⎦ (H1 − Df)

Hme =
⎡
⎣0.75 + 0.25

{
Eeq(1 − �2n)

En(1 − �2m)

}1/3
⎤
⎦ Hm (m = 2∼ k − 1)

(10)

for the case where Em�En [43, 44]

Hme =
{
Em(1 − �2n)

En(1 − �2m)

}1/3
Hm (m = k ∼ n) (11)

and for the case where Em�En

Hme =
[
0.75 + 0.25

{
Em(1 − �2n)

En(1 − �2m)

}1/3]
Hm (m = k ∼ n) (12)

Figure 12 exhibits distribution widths of vertical stress on each layer shown in Figure 10, in which
distribution widths of vertical stress are the same as those shown in Figure 11.
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Figure 12. Distribution widths of vertical stress for Figure 10.

Figure 13. Equivalent multi-layered soil systems with equivalent elastic moduli for Figure 9.

Figure 13 illustrates equivalent multi-layered soil systems with equivalent elastic moduli for
improved soil systems shown in Figure 9. Using the equivalent elastic modulus Eeq and the
equivalent Poisson’s ratio �eq for the composite soil system and the elastic modulus Em and
Poisson’s ratio �m of multi-layered soil systems exhibited in Figure 9, the equivalent elastic
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Figure 14. Equivalent single soil layer with equivalent thickness for Figure 13.

moduli in Figure 13 are proposed by making reference to the derivation of Equation (7) as follows:

E∗
m = Em + (Eeq − Em)BbLb/(BkeLke)

�∗
m = �m + (�eq − �m)BbLb/(BkeLke) (m = 1∼ k − 1)

(13)

where if BbLb/(BkeLke)>1, it follows that BbLb/(BkeLke) = 1.
Therefore, improved soil systems which are composed of improved soil columns and multi-

layered soil systems exhibited in Figure 8 are transformed finally into equivalent multi-layered soil
systems with equivalent elastic moduli as shown in Figure 13. Here, since improved soil systems
are reduced to the equivalent multi-layered soil systems, the preceding analytical procedures for
multi-layered soil systems shown in Figures 1 and 3 are applicable to multi-layered soil systems
with transformed elastic moduli indicated in Figure 13.

Figure 14 exhibits the equivalent single soil layer with equivalent thickness for Figure 13. Since
it is assumed in Figure 14 that the vertical stress is distributed with the gradient of tan � = 1

2 in an
isotropic and homogeneous elastic system, the transverse dimension B ′

je and the longitudinal one
L ′
je of distribution widths of vertical stress on the upper boundary of j th layer are given by the

following form:

B ′
1e = B, B ′

je = B − Df +
j−1∑
m=1

H ′
me ( j �= 1)

L ′
1e = L , L ′

je = L − Df +
j−1∑
m=1

H ′
me ( j �= 1)

(14)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (in press)
DOI: 10.1002/nag



H. HIRAI

Figure 15. Distribution widths of vertical stress for Figure 13.

where the equivalent thickness of the equivalent single soil layer shown in Figure 14 is expressed
by the following equations:

for the case where E∗
m�En [43, 44]

H ′
1e − Df =

{
E∗
1 (1 − �2n)

En(1 − �∗2
1 )

}1/3

(H1 − Df)

H ′
me =

{
E∗
m(1 − �2n)

En(1 − �∗2
m )

}1/3

Hm (m = 2 ∼ k − 1)

(15)

for the case where E∗
m � En

H ′
1e − Df =

⎡
⎣0.75 + 0.25

{
E∗
1 (1 − �2n)

En(1 − �∗2
1 )

}1/3
⎤
⎦ (H1 − Df)

H ′
me =

[
0.75 + 0.25

{
E∗
m(1 − �2n)

En(1 − �∗2
m )

}1/3]
Hm (m = 2∼ k − 1)

(16)

for the case where Em�En [43, 44]

H ′
me =

{
Em(1 − �2n)

En(1 − �2m)

}1/3
Hm (m = k ∼ n) (17)
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and for the case where Em�En

H ′
me =

[
0.75 + 0.25

{
Em(1 − �2n)

En(1 − �2m)

}1/3]
Hm (m = k ∼ n) (18)

Figure 15 exhibits distribution widths of vertical stress on each layer shown in Figure 13, in which
distribution widths of vertical stress are the same as those shown in Figure 14.

IMMEDIATE SETTLEMENTS

For the semi-infinite soil medium of the elastic modulus En and Poisson’s ratio �n subjected to
uniform loads q on a rectangular foundation with the transverse dimension B and the longitudinal
one L , the immediate settlement at the depth z below the centre of foundation is expressed as
follows [19, 20]:

w(z) = 2Bq(1 − �2n)

�En

[
loge

(√
1 + m2 + n2 + m√

1 + n2

)
+ m loge

(√
1 + m2 + n2 + 1√

m2 + n2

)

− 1 − 2�n
2(1 − �n)

n tan−1
(

m

n
√
1 + m2 + n2

)]
= K (z, �n)

En
Bq (19)

where m = L/B, n = 2z/B and K (z, �n) is represented as follows:

K (z, �n) = 2(1 − �2n)

�

[
loge

(√
1 + m2 + n2 + m√

1 + n2

)
+ m loge

(√
1 + m2 + n2 + 1√

m2 + n2

)

− 1 − 2�n
2(1 − �n)

n tan−1
(

m

n
√
1 + m2 + n2

)]
(20)

As for the semi-infinite soil medium of the elastic modulus En and Poisson’s ratio �n subjected
to uniform loads q on a circular foundation with radius a, the immediate settlement at the depth
z below the centre of foundation is written as follows [45–47]:

w(z)= 2aq(1 − �2n)

En

⎛
⎝
√
1 + z2

a2
− z

a

⎞
⎠
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 + z/a

2(1 − �n)

√
1 + z2

a2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= K (z, �n)

En
Bq (21)

where B = 2a and

K (z, �n) = (1 − �2n)

⎛
⎝
√
1 + z2

a2
− z

a

⎞
⎠
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 + z/a

2(1 − �n)

√
1 + z2

a2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(22)
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For the immediate settlement in the centre of a foundation for multi-layered soil systems shown
in Figure 1, a modified form of Palmer and Barber’s method, which is called the modified Palmer
and Barber’s method, is proposed in the following form [31, 32]:

Si =
{
I (H1e − Df, �n)

E1
+

n∑
k=2

I (
∑k

j=1 Hje − Df, �n) − I (
∑k−1

j=1 Hje − Df, �n)

Ek

}
Bq (23)

where

I (z, �) = K (0, �) − K (z, �) (24)

and the equivalent thickness of equivalent single soil layer shown in Figure 2 is given by Equations
(1) and (2).

Also, as for the immediate settlement in the centre of a foundation for multi-layered soil systems
shown in Figure 1, a modified form of Odemark’s method, which is referred to as the modified
Odemark’s method, is propounded in the following form:

Si =
{
I (H1 − Df, �1)

E1
+

n∑
k=2

I (
∑k

j=1 Hje − Df, �n) − I (
∑k−1

j=1 Hje − Df, �n)

Ek

}
Bq (25)

where the coefficients of correction, n1 and n2, represented in Odemark’s method are assumed to
be unity and the equivalent thickness of equivalent single soil layer shown in Figure 2 is designated
by Equations (1) and (2).

For the immediate settlement in the centre of a foundation for multi-layered soil systems shown
in Figure 3 and equivalent two-layered soil systems illustrated in Figure 4, the modified Palmer
and Barber’s method is represented in the following form:

Si =[I (He − Df, �n)/EH + {I (He + Hn − Df, �n) − I (He − Df, �n)}/En]Bq (26)

Also, the modified Odemark’s method is written as follows:

Si =[I (H − Df, �n)/EH + {I (He + Hn − Df, �n) − I (He − Df, �n)}/En]Bq (27)

EQUIVALENT ELASTIC MODULI OF SEMI-INFINITE MULTI-LAYERS

Considering the case where a semi-infinite layer underlies the single layer with an equivalent
elastic modulus as shown in Figure 4 in conditions that Hn →∞, circularly loaded area B = 2a,
Poisson’s ratio �n = 0.5 and depth Df = 0, Equations (26) and (27) are expressed, respectively, as
follows:
for the modified Palmer and Barber’s method:

Si = 1.5aq

EH
FP (28)

FP = 1 − 1/{1 + (He/a)2}1/2 + m/{1 + (He/a)2}1/2 (29)
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and for the modified Odemark’s method:

Si = 1.5aq

EH
FO (30)

FO = 1 − 1/{1 + (H/a)2}1/2 + m/{1 + (He/a)2}1/2 (31)

where m = EH/En and the equivalent thickness is expressed by

EH�En : He = (EH/En)
1/3H (32)

EH<En : He = {0.75 + 0.25(EH/En)
1/3}H (33)

Assuming an equivalent semi-infinite layer for the system consisting of a single layer and a
semi-infinite layer, we obtain the immediate settlement in the centre of a circular foundation in
the following form:

Si = 1.5aq

Eequ
(34)

where Eequ denotes the equivalent elastic modulus of the equivalent semi-infinite layer. Therefore,
it is seen from Equations (28)–(31) and (34) as follows:
for the modified Palmer and Barber’s method:

Eequ = EH/FP (35)

and for the modified Odemark’s method:

Eequ = EH/Fo (36)

EXPRESSIONS OF VERTICAL STRESS

For the semi-infinite soil medium of the elastic modulus En and Poisson’s ratio �n subjected to
uniform loads q on a rectangular foundation with the transverse dimension B and the longitudinal
one L , the vertical stress at the depth z below the centre of foundation is expressed as follows
[19, 20]:

��′
v = ��′

v(z)

= 2q

�

[
mn√

1 + m2 + n2
1 + m2 + 2n2

(m2 + n2)(1 + n2)
+ sin−1 m√

m2 + n2
√
1 + n2

]
(37)

where m = L/B and n = 2z/B.
As for the semi-infinite soil medium of the elastic modulus En and Poisson’s ratio �n subjected

to uniform loads q on a circular foundation with radius a, the vertical stress at the depth z below

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (in press)
DOI: 10.1002/nag



H. HIRAI

the centre of foundation is written as follows [35, 48]:

��′
v =��′

v(z) = q

⎡
⎢⎢⎢⎣1 − 1(

1 + a2

z2

)3/2

⎤
⎥⎥⎥⎦ (38)

For the vertical stress in each layer below the centre of foundation on multi-layered soil systems
shown in Figure 1, substituting the sum of each equivalent thickness, which is given by Equation (1)
and/or (2) and is illustrated in Figure 2, into the depth z in Equations (37) or (38), we obtain
the vertical stress in each layer of multi-layered soil systems shown in Figure 1. For the vertical
stress in each layer below the centre of foundation on improved soil systems shown in Figure 8,
substituting the sum of each equivalent thickness, which is given by Equations (15)–(18) and is
illustrated in Figure 14, into the depth z in Equations (37) or (38), we get the vertical stress in
each layer of improved soil systems shown in Figure 8.

On the other hand, using the equation of equilibrium of vertical stress for multi-layered soil
systems shown in Figure 1 leads to the vertical stress in each layer as follows:

��′
v =

(
B · L

Bje · L je

)
q (39)

Substituting the distribution widths of vertical stress defined by Equation (3), Bje and L je, into
Equation (39), we obtain the vertical stress in each layer of multi-layered soil systems shown in
Figure 1. Employing the equation of equilibrium of vertical stress for improved soil systems shown
in Figure 8 yields the vertical stress in each layer as follows:

��′
v =

(
B · L

B ′
je · L ′

je

)
q (40)

Substituting the distribution widths of vertical stress defined by Equation (14), B ′
je and L ′

je, into
Equation (40), we get the vertical stress in each layer of improved soil systems shown in Figure 8.

ANALYSES OF IMMEDIATE SETTLEMENT AND VERTICAL STRESS

Let us consider the immediate settlement and the vertical stress in two layers subjected to circular
uniform load on the surface of soil medium where a single layer rests on a semi-infinite layer
shown in Figure 16. Equations (23) and (25) are used to predict the immediate settlement in
the following presentation. Poisson’s ratios are assumed that �1 = �2 = 0.5. For two cases where
H1 = a and H1 = 3a when m = E1/E2�1 and the equivalent thickness given by Equation (2) is
adopted, Figures 17 and 18 exhibit relationships between m and the deflection factor Fs which
is defined as Fs = Si/(2aq(1 − �21)/E1), where Si is the immediate settlement on surface in the
centre of foundation. The deflection factor Fs is the same as FP and FO indicated by Equations
(29) and (31), respectively. The rigorous solutions presented by Himeno [33] and Matsui [34] are
shown and are referred to simply as ELSA and GAMES, respectively. It is found that Palmer and
Barber [24] method is not able to represent the rigorous solution in the range of small m, but
Simons and Menzies [28] method, modified Palmer et al.’s method expressed by Equation (23)
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Figure 16. Two-layered soil systems under circular uniform loads on ground surface.

Figure 17. Relationships between elastic modulus and deflection factor.

and modified Odemark’s method given by Equation (25) are capable of simulating the rigorous
solution properly for the range that m�1.0.

Figures 19 and 20 show relationships between m and the deflection factor Fs for two cases where
H1 = a and H1 = 3a when m = E1/E2�1 and the equivalent thickness is given by Equation (1). In
this case, the modified Palmer et al.’s method given by Equation (23) and the modified Odemark’s
method expressed by Equation (25) reduce to the Palmer et al.’s method and the Odemark’s method,
respectively. It is seen that Equations (23) and (25) are capable of describing the rigorous solution
properly for the range that m�1.0, but Simons et al.’s method cannot simulate the rigorous solution
as m increases.
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Figure 18. Relationships between elastic modulus and deflection factor.

Figure 19. Relationships between elastic modulus and deflection factor.

Figures 21 and 22 exhibit relationships between m and the normalized vertical stress �z/q on
the interface between upper and lower layers below the centre of circular foundation as shown in
Figure 16 for two cases that H1 = a and H1 = 3a when Equation (38) is employed and Equations (1)
and (2) of the equivalent thickness are specified according as m�1.0 and m�1.0, respectively.
In comparison with the rigorous solutions calculated by ELSA and GAMES for two layers,
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Figure 20. Relationships between elastic modulus and deflection factor.

Figure 21. Relationships between elastic modulus and vertical stress
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Figure 22. Relationships between elastic modulus and vertical stress.

Figure 23. Improved soil systems under circular uniform loads on ground surface.

the proposed solutions given by Equation (38) with Equations (1) and (2) are able to simulate
the behaviour of the vertical stress which decreases with the increase of m. For an isotropic
and homogeneous medium where elastic moduli in two layers take equal values, the vertical
stresses [48] possess constant values 0.646 and 0.146 for H1 = a and H1 = 3a, respectively.

For improved soil systems shown in Figure 8, since the elastic soil parameters of improved soil
systems can be experimentally determined, the equivalent elastic moduli given by Equation (7)
are obtained easily. Because of this reason, we focus on the improved soil systems composed of
a composite soil system and multi-layered soil systems exhibited in Figure 9.

Figure 23 shows that circular loads are provided on the surface of improved soil systems where
both a composite soil system with Eeq and �eq and an external soil layer with E1 and �1 overlie
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Figure 24. Relationships between length and equivalent elastic modulus.

a semi-infinite soil layer with E2 and �2. It is assumed that Poisson’s ratios take �1 = �2 = �eq.
Applying Equation (13) with Equations (7)–(12) to the case of Figure 23, we have

y = � + 4(1 − �)

(2 + ��1/3)2
x2 (41)

where y = E∗
1/Eeq, � = E1/Eeq, � = H1/a, �= Eeq/E2, x = R/a.

Figure 24 shows relationships between x = R/a and y = E∗
1/Eeq expressed by Equation (41)

when E1 = E2 and � = 1.0. It is found that the equivalent elastic modulus E∗
1 increases initially and

takes constant value E∗
1/Eeq = 1.0 at R/a = 1.85 and 2.84 for Eeq/E2 = 5.0 and 50.0, respectively,

as the radius R increases.
In the following presentation, the proposed solutions of immediate settlement are calculated

by the modified Palmer and Barber’s method indicated in Equation (23) with Equations (7)–(18).
For two cases that Eeq/E2 = 5.0 and 50.0, Figures 25 and 26 show the relationships between
x = R/a and the deflection factor F which is defined as F = w/(2aq(1− �22)/E2), where w is the
immediate settlement on surface in the centre of foundation. It is assumed that E1 = E2, � = 1.0,
�1 = �2 = �eq and Poisson’s ratios take 0.3 and 0.5. Since the stiffness matrix in the FEM [49]
represents infinity for Poisson’s ratio= 0.5 in the case of axisymmetric elastic problems, Poisson’s
ratio= 0.49 is adopted approximately instead of 0.5. In Figure 25, it is found from the proposed
solutions that as R/a increases, the deflection factor F decreases and after R/a reaches 1.85, the
deflection factors for Poisson’s ratios 0.3 and 0.5 keep constant values 0.55 and 0.61, respectively.
It is seen from the proposed solutions in Figure 26 that as R/a increases, the deflection factor F
decreases and after R/a reaches 2.84, the deflection factors for Poisson’s ratios 0.3 and 0.5 retain
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Figure 25. Relationships between length and deflection factor.

Figure 26. Relationships between length and deflection factor.
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Figure 27. Relationships between length and average vertical stress.

constant values 0.24 and 0.28, respectively. On the other hand, the analyses by FEM represent the
same tendencies as the proposed solutions.

Figure 27 shows the relationships between R/a and the normalized average vertical stress �z/q
on the interface between the composite soil system and the lower soil layer exhibited in Figure 23.
The analyses are performed by the proposed model given by Equation (40) with Equations (7)–(18)
and the FEM is provided. It is assumed that E1 = E2, � = 1.0 and �1 = �2 = �eq = 0.3. The rigorous
solutions calculated by GAMES correspond to the results of two layers where R/a is infinite and
it is observed that average vertical stresses �z/q take constant values 0.490, 0.333 and 0.120 for
Eeq/E2 = 1.0, 5.0 and 50.0, respectively. The proposed solutions represent the results as follows:
(i) The average vertical stress �z/q for Eeq/E2 = 1.0 has a constant value 0.444. (ii) As R/a
increases, �z/q decreases and after R/a reaches 1.85 and 2.84, average vertical stresses �z/q keep
constant values 0.292 and 0.124 for Eeq/E2 = 5.0 and 50.0, respectively. On the other hand, the
analyses by FEM indicate the same trends as the proposed solutions.

Figure 28 shows that circular loads are applied to the surface of improved soil systems where
both a composite soil system with Eeq and �eq and an external soil layer with E1 and �1 rest on
the second layer with E2 and �2 overlying a semi-infinite layer with E3 and �3. It is assumed
that Ht = H1+H2, Ht/a = 2.0, H1/a = 1.2, E2/E3 = 2, and �1 = �2 = �3 = �eq = 0.5 in Figure 28.
Applying Equation (13) with Equations (7)–(12) to the case of Figure 28, we have

y = � + 4(1 − �)

(2 + ��1/3)2
x2 (42)

where y = E∗
1/Eeq, � = E1/Eeq, � = H1/a, �= Eeq/E3, x = R/a.

Figure 29 shows the relationships between x = R/a and y = E∗
1/Eeq expressed by Equation (42).

It is found from Figure 29 that the equivalent elastic modulus E∗
1 increases initially and takes
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Figure 28. Improved soil systems under circular uniform loads on ground surface.

Figure 29. Relationships between length and equivalent elastic modulus.

constant value E∗
1/Eeq = 1.0 at R/a = 2.2, 4.0 and 7.0 for (�, �) = (8.0, 0.25), (125, 0.104) and

(1000, 0.013), respectively, as the radius R increases. Table I shows the equivalent elastic moduli
E∗
1 which are calculated by Equation (42) for the three cases in Figure 28.
In Figures 30–36, the investigation is achieved for equivalent three-layered soil systems such

as Figure 13 into which improved soil systems illustrated in Figure 28 are transformed.
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Table I. Soil parameters for improved soil systems and
equivalent three-layered soil systems.

Case 1 Case 2 Case 3

R/a (x) 1.27 1.0 3.05
Eeq/E3(�) 8 125 1000
E1/E3 (��) 2 13 13
E2/E3 2 2 2
�eq, �1, �2, �3 0.5 0.5 0.5
E∗
1/Eeq (y) 0.5 0.16 0.2

E∗
1/E3 4 20 200

Figure 30. Settlement distributions at depth z/a in centre of foundation for Case 2.

Figure 30 exhibits the distributions of immediate settlement at depth z/a in centre of foundation
for soil parameters of Case 2 shown in Table I. Equation (23) with Equations (7)–(18) is adopted.
The deflection factor F is defined as F =w/(2aq(1−�23)/E3), where w is the immediate settlement
at depth z/a in the centre of foundation. It is found from Figure 30 that Simons et al.’s method
is incapable of describing the rigorous solution given by ELSA and GAMES, but the proposed
method as well as the FEM can represent the rigorous solution accurately.
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Figure 31. Proposed method to determine settlement distributions at depth
z/a in centre of foundation for Case 2.

Figure 32. Settlement distributions at depth z/a in centre of foundation for Case 3.
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Figure 33. Relationships between thickness and deflection factor.

Figure 31 indicates the proposed procedure to determine the distribution of immediate settlement
at depth z/a. As Figure 31 is a detailed description for the derivation of the proposed solution
in Figure 30, Equation (23) with Equations (7)–(18) is used. The immediate settlements in multi-
layered soil systems are obtained by taking into account the ratio of stiffness on the basis of the
immediate settlement in the equivalent isotropic and homogeneous medium into which the multi-
layered soil systems are transformed. The result simulated in Figure 31 provides the proposed
solution illustrated in Figure 30.

Figure 32 exhibits the distributions of immediate settlement at depth z/a in the centre of
foundation for soil parameters of Case 3 shown in Table I. Equation (23) with Equations (7)–(18)
is adopted. The equivalent elastic modulus E∗

1 of the first layer in Case 3 is greater than that in
Case 2. It is found from Figure 32 that Simons et al.’s method is not able to describe the rigorous
solution given by ELSA and GAMES, but the proposed method as well as the FEM can simulate
the rigorous solution accurately.

Figures 33 and 34 show the relationships between ratio of thickness H1/Ht and the deflection
factor F , and it is assumed that Ht = H1 + H2, Ht/a = 2.0 and �∗

1 = �2 = �3 = 0.5. Equation
(23) with Equations (7)–(18) is used. The deflection factor F is defined as F = w/(2aq(1 −
�23)/E3), where w is the immediate settlement on surface in the centre of foundation. It is found in
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Figure 34. Relationships between thickness and deflection factor.

Figures 33 and 34 that compared with the rigorous solutions given by Ueshita and Mayerhof
[21, 22], ELSA and GAMES, Simons et al.’s method is incapable of predicting rigorous solutions,
however, the FEM and the proposed method can describe the tendency of rigorous solutions
accurately.

Figure 35 shows the relationships between ratio of stiffness E2/E3 and the normalized vertical
stress �z2/q in the centre of interface between the second and the third layers for the case where
a/H2 = 1.0, H1/H2 = 1.0 and �∗

1 = �2 = �3 = 0.5. Figure 36 exhibits the relationships between ratio
of length a/H2 and the normalized vertical stress �z2/q in the centre of interface between the
second and the third layers for the case where H1/H2 = 1.0, E2/E3 = 2.0 and �∗

1 = �2 = �3 = 0.5.
Equations (38) and (40) with Equations (7)–(18) are employed. It is found from Figures 35 and 36
that compared with the rigorous solutions given by Jones [17], ELSA and GAMES, Newmark’s
[48] solution for an isotropic and homogeneous elastic medium is not able to predict the rigorous
solutions; however, two proposed solutions given by Equations (38) and (40) can describe the
tendency of rigorous solutions accurately.

For the above-mentioned equations employed in the equivalent elastic method, Table II shows
the summary of formulae related to each figure of Figures 1–36.
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Figure 35. Relationships between elastic modulus and vertical stress.

Figure 36. Relationships between length and vertical stress.
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Table II. Summary of formulae presented.

Figures Equations related to each figure

1 and 2 Equations (1)–(3)
3–5 Equations (4)–(6)
6–10 Equation (7)
11 Equations (7)–(12)
12 Equations (7)–(12)
13 Equation (13)
14 Equations (13)–(18)
15 Equations (13)–(18)
16 Equations (23), (25) and (38)
17 Equations (23) and (25) with Equation (2)
18 Equations (23) and (25) with Equation (2)
19 Equations (23) and (25) with Equation (1)
20 Equations (23) and (25) with Equation (1)
21 Equation (38) with Equations (1) and (2)
22 Equation (38) with Equations (1) and (2)
23 Equations (23) and (40) with Equations (7)–(18)
24 Equation (41) derived from Equation (13) with Equations (7)–(12)
25 Equation (23) with Equations (7)–(18)
26 Equation (23) with Equations (7)–(18)
27 Equation (40) with Equations (7)–(18)
28 Equations (23), (38) and (40) with Equations (7)–(18)
29 Equation (42) derived from Equation (13) with Equations (7)–(12)
30 Equation (23) with Equations (7)–(18)
31 Equation (23) with Equations (7)–(18)
32 Equation (23) with Equations (7)–(18)
33 Equation (23) with Equations (7)–(18)
34 Equation (23) with Equations (7)–(18)
35 Equations (38) and (40) with Equations (7)–(18)
36 Equations (38) and (40) with Equations (7)–(18)

CONSOLIDATION SETTLEMENT

The consolidation settlement for cohesive soils is written as follows:

Sc = CsH

1 + e0
log10

(
�′
vc

�′
v1

)
+ CcH

1 + e0
log10

(
�′
v1 + ��′

v

�′
vc

)
(43)

where Cs is the swelling index, Cc the compression index, H the thickness of layer, e0 the void
ratio, �′

v1 the effective vertical stress prior to construction, �′
vc the consolidation yield stress, ��′

v
the increment of effective vertical stress.

Substituting vertical stresses calculated in Equations (37)–(40) as increments of effective ver-
tical stress into Equation (43), we obtain consolidation settlements classified as elastic–plastic
deformation for multi-layered soil systems and improved soil systems.
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CONCLUSIONS

The following conclusions were drawn from the present investigation:

1. Since the equivalent thickness presented by Palmer and Barber can be adopted only for the
case where the elastic modulus of the upper layer is greater than that of lower one in two
layers, the proposal of the equivalent thickness is made for the case where the elastic modulus
of the upper layer is smaller than that of lower one in two layers.

2. For the multi-layer theory of elasticity, as the equivalent thickness offered by Odemark is
available only for the case where the elastic moduli decrease with depth, the equivalent
thickness is proposed for the case where the elastic moduli increase with depth.

3. Since each representation of immediate settlement provided by Palmer et al. and Odemark
can be used only for the case where the elastic moduli decrease with depth, the proposals
of immediate settlement for the case where the elastic moduli increase with depth are made
by use of the equivalent thickness which is derived from Terzaghi’s formula of the vertical
stress. The proposed formulations of immediate settlement are referred to as the modified
Palmer and Barber’s method and the modified Odemark’s method.

4. In order to generalize the formula of vertical stress on a rigid layer indicated by Terzaghi,
expressions of vertical stress for multi-layers are proposed by use of the equivalent thickness
and distribution widths of vertical stress.

5. It is verified that the extrapolation of Steinbrenner’s approximation given by Simons et al. is
not able to represent the rigorous solutions of the settlement for the case where the elastic
moduli decrease with depth for the multi-layers.

6. In order to describe the heterogeneous elastic properties of multi-layered soil systems with
soil improvement, analytical models are proposed by employing the hydrid method which
consists of equivalent elastic modulus and equivalent thickness.

7. Since improved soil systems are reduced to the equivalent multi-layered soil systems, the
proposed method for multi-layered soil systems is applicable to the improved soil systems.
The modified Palmer and Barber’s method and the modified Odemark’s one are available
for immediate settlements of multi-layered soil systems with soil improvement. The good
agreement of immediate settlements is observed between the rigorous solutions and the
simulation results.

8. Expressions of the vertical stress of multi-layered soil systems with soil improvement are
proposed by using both the method of adopting equivalent thickness directly and the method
of taking into account distribution widths of vertical stress. The comparison of vertical stresses
between simulation results and rigorous solutions provides the reasonable agreement.
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