Been Peary

HMS
 CC
 856
 .0735
 no. 76-8
 cop. 2

OREGON STATE UNIVERSITY

SETTLING TUBES FOR SIZE ANALYSIS OF FINE AND COARSE FRACTIONS OF OCEANIC SEDIMENTS

by

J. Thiede. T. Chris,
M. Clauson and S.A. Swift

Reference 76-8
June 1976

Office of Naval Research
Contract N00014-67-A-0369-0007 Project NR 083-102

Reproduction in whole or in part is permitted for any purpose of the United States Government

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When De:a Eniortd)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPDRT NUMEER Reference 76-8 2. GOVT ACCESSION NO.	3. RECipient's Catalog number
4. TiTLE (and Subtifle) SETTLING TUBES FOR SIZE ANALYSIS OF FINE AND COARSE FRACTIONS OF OCEANIC SEDIMENTS	3. TYPE OF REPORT A PERIOD COVERED Technical 6. PERFORMING ORG. REPORT NUMBER
7. Author(e) J. Thiede, T. Chriss, M. Clauson, and S.A. Swift	B. Contract or grant number(a) N00014-67-A-0369-0007
9. Performing organization name and address School of Oceanography	10. PROGRAMELEMENT. PROJECT, TASK

Oregon State University
Corvallis, Oregon 97331
11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research
Ocean Science \& Technology Division
Arlington, Virginia 22217
14. MONITORING AGENCY NAME A ADDRESS(If different (rom Controllind Office)

NR 083-102

Th.
12. REPORT DATE

June 1976
13. NUMBER OF PAGES

87
15. SECURITY CLASS. (of this roport)

Unclassified
15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abatract ontered in Block 20, If different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse alde If neceesary and Identlity by block number)

Pelagic Sediments
Silt and Sand Size Analysis
Settling tubes
20. ABSTRACT (Continue on reverse alde lt neceseary and ldentlity by block number)

Instrumentation for rapid, high precision size analysis of silt and sand size particles has been acquired and/or developed by the marine geology group of the School of Oceanography of Oregon State University. A Cahn automatic electrobalance with particle sedimentation accessories is used for size analysis of the silt fraction of pelagic sediment; a large diameter settling tube developed at Oregon State University is used for analysis of the sand size fraction. The data generated with these systems are recorded by a strip chart recorder as well

- -UHITY CLASSIFICAIION OF THIS PAGE(Whon Defo Entored) .

as by a high speed paper tape punch. Computer programs to deal with large volumes of data and to calculate various size parameters for each sample have been developed for this instrumentation and are documented in this report. Instrumentation has also been developed to permit specific size fractions to be separated from the bulk sediment to allow compositional studies of the different size modes. All documentation necessary to understand this instrumentation system is presented in this report, and thus is available to all students interested in textural classifications of pelagic sediments.

MASC
 aC 856

School of Oceanography
Oregon State University
Corvallis, OR 97331

SETTLING TUBES FOR SIZE ANALYSIS OF FINE AND COARSE FRACTIONS OF OCEANIC SEDIMENTS

by

J. Thiede
T. Chris
M. Claus on and
S.A. Swift

Approved for public release; distribution unlimited.

Table of Contents

List of figures iv
List of tables iv
Summary v
Acknowledgments. vi

1. Introduction. 1
2. Analysis of fine grained (mainly silt sized) sediment components. 3
2.1. Size analysis of silt sized components of oceanic sediments. 3
2.1.1. Procedures for sample preparations. 4
2.1.1.1. General procedures. 4
2.1.1.2. Sample preparation for grain size analyses on the Cahn balance. 6 6
2.1.2. Calibration and use of the Cahn balance 9
2.1.3. Data reduction of strip chart records 11
2.1.3.1. General procedures. 11
2.1.3.2. Digitizing 13
2.1.3.3. Explanation and listing of computer program. 19
2.1.4. Discussion of some test runs. 38
2.1.4.1. Reproducibility 38
2.1.4.2. Smoothing. 41
2.1.4.3. Pretreatment. 41
2.1.4.4. Accuracy 45
2.2. Separation of size fractions of silt sized material for com- positional studies. 45
3. Analysis of coarse ($>0.063 \mathrm{~mm}$ diameter) sediment components. 45
3.1. Instrumentation for size analysis and separation of size classes of coarse sediment components 45
3.2 Data reduction and presentation. 51
3.2.1. Explanation of computer program. 51
3.2.2. Program listing. 62
4. References 86
Figure 1 Schematic representation of a scale change in a CAHN strip chartrecord. 17
Figure 2 Reproducibility of frequency curves 40
Figure 3 Effects of different smoothing functions. 42
Figure 4 Effects of different values of the smoothing parameter S 43
Figure 5 Effects of pretreatment of a natural sample (GO 09225) with hydrogen peroxide. 44
Figure 6 Frequency curves of Quartz Mode C. 46
Figure 7 Large diameter settling tube for size analysis and separation of size components of coarse grained sediment. 48
Figure $8 \quad$ Top assembly of large diameter settling tube. 49
Figure 9 a. Details of bottom assemblies of large diameter settling tube. 50
b. View from above of outlets to collect the various sub- samples for compositional studies. 50
Figure 10 Size frequency distribution of grain size data. 55
List of Tables
Table 1 CAHN System Settling Times for $\mathcal{G}=2.65$ and 25 cm column at $20.0^{\circ} \mathrm{C}$. 14
Table 2 Deep sea sediment sample data. 39
Table 3 Example of data generated by the large diameter settling tube system. 52

Summary

Instrumentation for rapid, high precision size analysis of silt and sand size particles has been acquired and/or developed by the marine geology group of the School of Oceanography of Oregon State University. A Cahn automatic electrobalance with particle sedimentation accessories is used for size analysis of the silt fraction of pelagic sediment; a large diameter settling tube developed at Oregon State University is used for analysis of the sand size fraction. The data generated with these systems are recorded by a strip chart recorder as well as by a high speed paper tape punch. Computer programs to deal with large volumes of data and to calculate various size parameters for each sample have been developed for this instrumentation and are documented in this report. Instrumentation has also been developed to permit specific size fractions to be separated from the bulk sediment to allow compositional studies of the different size modes. All documentation necessary to understand this instrumentation system is presented in this report, and thus is available to all students interested in textural classifications of pelagic sediments.

Acknowledgments
The acquisition, development, and construction of the system of settling tubes has been funded through contracts from the Office of Naval Research to Drs. T. H. van Andel and G. Ross Heath until 1974 and to Drs. van Andel and J. Thiede since 1974. We gratefully acknowledge this support. We drew considerably upon previous experience of Mr. J. P. Dauphin and R. Oser with the Cahn balance. We would also like to extend our gratitude to the ONR program director responsible for the submarine geology and geophysics programs of Code 480 (Dr. A. Malahoff).

1. Introduction

Size analysis of silt and sand size particles is a controversial problem which has occupied researchers for many years (for an excellent review of most methods, see Muller, 1967). Since the component sizes of many marine sediments range over a fairly wide spectrum of size classes, different institutions have used different methods to study their granulometry. Most frequently, size distributions of the material $>0.063 \mathrm{~mm}$ have been determined using sieving methods while size distributions of the fine grained material have been investigated by measuring the rate of accumulation of particles settling through a fluid medium. It is disadvantageous that two different methods applied in separate steps have to be combined to obtain a size distribution of the total sediment. Since both methods measure different variables (settling velocity for the fine grained components, median axis of the coarse components) the se size distributions are not compatible in many instances.

Size distributions of oceanic sediment samples are routinely determined as part of the research programs carried out by the various members of the marine geology group of the OSU School of Oceanography. To avoid the above disadvantage, a system of settling tubes for size determinations of pelagic sediments has been developed. It consists of a Cahn automatic electrobalance with particle sedimentation accessories (Cahn Instruments, Paramount, California) for determination of the size distributions of silt sized material and a large diameter settling tube which has been developed by Mr. Milo Clauson at Oregon State University for the analysis of the sand size fractions of sediments.

Both systems measure the settling velocities of particles. If desired, the range of measurement for the large diameter settling tube can be extended down to $40 \mu \mathrm{~m}$ while the silt analysis system can analyze particles $<63 \mu \mathrm{~m}$ in diameter. Thus, the total system permits the overlap of coarse and fine distributions, which allows proper matching of the individual grain size curves.

Various procedures and attachments to the settling tubes, as discussed in this report, allow the separation and subsampling of size classes for compositional studies of various size fractions. The generation of large volumes of data have forced us to develop computer programs to handle these data, to calculate various size parameters as outlined below, and to plot size distributions. The development of this instrumentation package and the accompanying procedures is now largely complete. We have collected all pertinent information about these instruments, all instructions on how to use the instrumentation,
details of the computer programs developed for data reduction, as well as ideas on how to avoid mistakes when applying these methods. We feel that this instrument package is going to be widely used within this group as well as at other institutions, and therefore we want to share our successes and failures with future students of textural properties of pelagic sediments. This report is not consistent throughout in the detail used in describing and discussing the various components of the whole package because descriptions of some instruments have been detailed elsewhere. The Cahn balance is delivered with a comprehensive manual describing many of its essential features which need not be repeated here (Cahn Instrument Company, 1975). The large settling tube has been developed in-house, therefore, it requires more complete documentation. The development is the most recent stage in the evolution of a system that began in 1958 with the design and construction at Scripps Institution of Oceanography of a settling tube to measure automatically the size distribution of particles coarser than 0.06 mm (by T.H. van Andel and J. D. Snodgrass). In 1966, van Andel and R. M. Beer, with ONR support, added a fine fraction component based on the Cahn sedimentation balance. The system was transferred to Oregon State University in 1968 and used, with minor modifications, for various investigations including the ONR-supported study of Panama Basin deep-sea sedimentation. The current instrumentation is different from the previous ones because it is more refined and has a higher resolution than before, it is completely automated and it has the added capability of subsampling the size fractions.

The responsibilities for producing this manual have been distributed among the following colleagues of J. Thiede who is at present one of the Principal Investigators under the contract from ONR to the School of Oceanography of Oregon State University: Mr. S.A. Swift (size analysis of silt sized material, section 6.1), Mr. M. Clauson (instrumentation for size analysis and separation of size classes of coarse sediment component, section 7.1), and Mr. T. Chriss (data reduction and presentation for the large settling diameter tube, section 7.2). of oceanic sediments

$$
2.1
$$ Size analysis of silt sized components through settling

The settling velocity of particles is a function of size, shape, fluid viscosity, and the density difference between the particle and the fluid. The principle of sedimentation analysis is that particles with higher settling velocities will settle through a given length of column faster than those with slower velocities. Sand and coarse silt particles are commonly introduced at the top of a column, separate according to their relative settling velocities, and produce an analog record of cumulative weight versus time on a sensing and recording system. (See elsewhere in this report). Fine silts and clays are introduced as a homogeneous suspension, particles settle out according to their settling velocity and their original height in the column, and a record of the accumulated weight vs. time is produced.

The results of sedimentation analysis are directly related to the settling velocity distribution of particles in the sample. The results may be interpreted also in terms of the sizes of spherical particles, of uniform density, which would settle at some theoretically or empirically determined velocity in distilled water at a standard temperature. Sedimentation diameter, here, refers to the diameter of the quartz sphere with the same settling velocity as the sample particle from nature. Size units used may be length units or the dimensionless phi unit, where $\mathrm{Phi}=-\log _{2}\left(\frac{\text { diameter }(\mathrm{mm})}{1.0 \mathrm{~mm}}\right)$.
The major drawbacks to the technique is that it is not direct and that absolute particle dimensions are very rarely obtainable. For certain purposes other techniques which yield dimensional or volume results are preferable, but sedimentation is generally the more efficient method for large numbers of disaggregated sediment samples (see Poole (1957) and Swift et al. (1972) for reviews of methodology for coarse and fine material, respectively).

Characterization of the grain size distribution of a sample would, ideally, give the distribution of sizes of the original particles either just before, just at, or sometime after deposition. Such an analysis would provide information about the original material, about the depositional process, or about the extent of post-depositional changes. It would also serve to characterize the sediment for lateral correlation and for studies of changes in stratigraphy. Unfortunately, much of the information in marine deposits is probably lost due to post-depositional processes (bioturbation, chemical and physical diagenesis, and winnowing or total erosion by bottom currents), to alteration during sampling and analysis, and to random varability inherent in the depositional regime. This loss of information and the limitations of the settling tube system with respect to reproducibility and accuracy should be conridered in any inter pretations of size data determined by this system.

There are essentially three conceptual steps in automated sedimentation analysis which in practice may overlap: l) pre-treatment of sample, 2) introduction of sample into settling column, separation by settling, recording of analog output, and 3) analysis of output and interpretation. Details of the hardware involved for analysis of fine silt to clay material are fully described in Oser (1972a, 1972b), Dauphin (1972), and Cahn Instrument Co. (1975). Procedural steps are described here because they may vary with the investigator, because they have not been published elsewhere, and because they are more closely related to the theory, limitations, and goals of the technique.

2.1.1. Procedures for sample preparation

2.1.1.1. General procedures

Ideally, pre-treatment should return the sample to its original size distribution. Because the results of sedimentation analysis are interpreted in terms of a hydraulic parameter, original size distribution in this case refers to the distribution of all the material which fell below the critical shear stress at the surface of the bed or was trapped during the interval of time represented by the sample. Very often this size distribution is no longer obtainable, especially with silts and clays deposited in aqueous environments. Syn- and post-depositional processes are active in most depositional environments other than restricted basins, which break down, build up, or otherwise alter the particles individually or en masse. Sampling and handling may further alter unconsolidated or water-indurated material. Thus, the degree to which the measured size distribution approaches the original pre-depositional distribution, which reflects the continued influences of source material, transport processes, and hydraulic conditions at the time of deposition, is uncertain. For some materials and some purposes this uncertainty is less than others. This is the case for workers who may be interested only in the sand-sized carbonate fraction or the siltsized quartz fraction of a deep-sea mud. Pre-treatment then consists of treatments intended to remove air and free material from cavities, to remove post-depositional cement, and to otherwise return the particles to their pre-depositional hydraulic equivalents.

When some doubt arises as to the extent of alteration of material, pretreatment procedures should be developed to reduce the effects of post-depositional processes as much as possible and to insure that valuable information in the size fractions significant to the study remains unchanged. The object of such procedures is to reduce the sample to hydraulically distinct components without altering those components in any way. A hydraulic or environmental interpretation can not be applied to the results of these analyses. The analysis serves to further define compositional features of the sediment and should only be used to these ends. These philosophical ideas
should serve as guidelines in designing a proper pre-treatment program for one's samples.

Pre-treatment may consist of one or more of the following: dispersal of the fine-grained material; removal of post-depositional products; isolation of a grain-size fraction or a compositional fraction to be studied; and determination of the weight proportion of the analyzed fraction with respect to the sample as a whole.

Dispersal serves to disaggregate floccules. Techniques of sample dispersal are: rinsing with distilled water to remove soluble salts; tumbling sample in water; working sample through a fine-mesh sieve; removal of organic binders; immersion in an ultrasonic bath; and rinsing with peptizing agents (see Royse (1970) pp. 25-27).

Post-depositional products such as carbonate, silica, iron oxides, and hydrocarbons may form by chemical alteration, diagenesis, or substitution. To the extent that treatment does not alter the size of compositional components of the sample important to the study, removal may be accomplished by various chemical means (Royse (1970) p. 9).

If a particular size fraction is to be studied, separation by repeated shaking, settling through a measured height of water, and siphoning at time intervals indicated by theoretical relations (see section 6.1.1.2 below) are preferable to sieving. Whereas the settling method removes material according to its least cross-sectional area. Size boundaries derived by sieving may include or exclude material with higher or lower settling velocities than that desired, producing a poor separation or a misleading size distribution.

Particular compositional fractions, such as all the non-carbonate, all the silica-free, or only the inorganic material, are commonly studied. Removal methods include HF treatment for silica, HCl for carbonate, and $\mathrm{H}_{2} \mathrm{O}_{2}$ or sodium hypochlorite (Anderson, 1963) for organics. Care must be taken with the $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment to insure that the reaction is not so violent as to break the shells of fragile marine microfossils. Also, solutions of $\mathrm{H}_{2} \mathrm{O}_{2}$ and distilled water should be buffered to near neutrality to prevent dissolution of carbonate tests.

Measurement of the proportion of sediment which is to be analyzed is done by drying and weighing the total sample and reweighing after material has been removed, or by drying and weighing before and after each pretreatment step. The size distribution of fine silts and clays may be differentially altered by the drying process. If there is suspicion that this is occuring, an alternate procedure can be used. The sample suspension is diluted to a known volume, a small aliquot of known volume is removed y pipette, the aliquot is dried, weighed, and a value for the total mass of the
sample calculated. The remainder of the sample may then be used in the sedimentation analysis. During this procedure, large errors may be introduced.
2.1.1.2. Sample preparation for grain size analysis on the Cahn balance Disperse sample.

1. Remove 3-5 gm. of sediment and place in an 8 oz . jar.
2. Fill one half full with filtered distilled water (FDW) and add approximately one milliter of 0.033 M Calgon solution.
3. Gently break up large cohesive lumps with a spatula.
4. Allow to stand l-3 days, swirling occasionally.

Remove organic matter.

1. Transfer sample to quari screwtop jars washing well with distilled water.
2. Move samples into a well ventilated lab hood.
3. Add a small amount (25 ml) of basic $\mathrm{H}_{2} \mathrm{O}_{2}$ and note the degree of bubbling.
***Be careful not to lose small particles when large bubbles burst.
4. Add up to 200 ml of basic $\mathrm{H}_{2} \mathrm{O}_{2}$ if the evolution of CO_{2} is nonviolent.
5. Leave l-3 days in hood with loose lids or with watch glass covers. Stir occasionally by swirling the jar gently.
***Hot plates and stirring rods are not necessary and only increase the chance of selectively loosing fine material.
6. If left for more than one day make periodic checks on the pFi of the solution with pH paper. Solution should be basic. Add more basic $\mathrm{H}_{2} \mathrm{O}_{2}$ if acidic.
7. Test for complete oxidization of organics by addition of more basic $\mathrm{H}_{2} \mathrm{O}_{2}$. Repeat 3 through 6 if CO_{2} evolution occurs.
8. When oxidization is complete (or if sediment has been oxidized for 3 days) rinse the sample 3 times by repeated candle filterings and refillings with FDW. (Usually only lday is necessary with $7{ }^{\prime \prime}$ long candle filters.)
***Be careful not to let filters dry out and not to lose significant amounts of fine sediment due to adhesion on candle filters.
Sieve at 63μ.
9. With liquid reduced by candle filtering in step 8 , wash sediment through a 63μ sieve into a 1500 ml beaker.
10. Break up any remaining clay aggregates by gentle working with a camel hair brush and a gentle FDW spray from a squeeze bottle.
11. Backwash the $>63 \mu$ fraction into a 250 ml beaker using FDW.
12. Allow $>63 \mu$ fraction to settle out (5-10 min.). Decant off supernatant and transfer solids to a dry, weighed Teflon dish.
13. Dry the $>63 \mu$ material in a $60^{\circ} \mathrm{C}$ oven overnight (l-2 days), cool in a dessicator the next day, weigh, and record weight $>63 \mu$. Transfer the dry sample to a labled vial.
14. Wash the $<63 \mu$ fraction from 1500 ml beaker back into its quart jar with FDW. (If quart jar is too small store excess in an 8 oz . jar and candle filter both volumes until the quart jar is sufficient.
15. The whole sieving procedure should take about 3 hrs . for 10 samples.

Decant at $4 \mu(8 \varnothing)$.

1. Label all jars with a vertical strip of tape marked off in overlapping 8 cm . intervals.
2. Fill jars up to one of the upper marks with FDW. Add one milliliter of 0.033 M Calgon. Shake or swirl to produce a homogeneous suspension.
3. At the appropriate time (as calculated from the Stokes' equation) decant off 8 cm . of liquid into a clean quart jar and rinse the hose briefly by sucking FDW through.
4. Wash < 4μ fraction into clean labeled gallon jugs.
5. Repeat until a clear supernatant is obtained. Use no less than 4 decantings; 7 is usually sufficient. Total time for separation will depend on the number of decantings, on settling time, and on the dedication of the worker. Record the number of decantations.
6. Add $50-100 \mathrm{ml}$ of $0.5 \mathrm{M} \mathrm{MgCl}{ }_{2}$ solution to gallon jugs containing the $<4 \mu$ fraction. Let stand overnight.
7. Siphon down until the volume of liquid is small enough to be washed with sediment into an 8 oz . jar.
8. Allow $<4 \mu$ fraction to settle overnight.
9. Siphon off supernatant and transfer to a weighed, dry 'Teflon evaporating dish. Dry at $60^{\circ} \mathrm{C}$ (may take 2 days), cool in dessicator, weigh and record weight $<4 \mu$. Transfer dry sediment to a labeled vial.

Estimate weight of the $4-63 \mu$ fraction.

1. Wash 4-63 fraction into a 500 ml Erlenmeyer flask and dilute to 250 ml .
2. Swirl to produce a homogeneous suspension.
3. Pipette out 50 ml of suspension into a dry, weighed Teflon evaporating dish.
4. Dry at $60^{\circ} \mathrm{C}$ overnight, cool in dessicator, weigh, and cal ulate weight of $4-63 \mu$ fraction (multiply by 5). Transfer sample frcm
evaporating dish into a labeled vial.
5. Store remaining $4-63 \mu$ fraction in an 8 oz . jar and add 1 ml of 0.003 M Calgon solution until ready to be run Cahn.

Warnings and Notes.

1. Do not store samples in water any longer than necessary. The longer that samples are exposed to carbonate dissolving water (either tap or FDW) the greater the possibility that significant size alteration of the sample will occur.
2. Do not crush, grind, or ultrasonic sediment samples. Some abrasion causing physical deterioration of the sample will occur during the normal lab routines given above (eg. candle filterings, sieving), but intentional alteration of the size distribution should be avoided.
3. Be careful not to spill any of the sample while stirring, sieving, oxidizing organics, or transferring suspensions between containers. There is some selective removal of fines during candle filtering and decanting. Careful work can minimize the loss.

Preparation of reagents.
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{pH}$ basic)

1. Work with gloves in a well ventilated hood.
2. Dilute stock $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ to about half strength with FDW.
3. Add concentrated $\mathrm{NH}_{4} \mathrm{OH}$ and adjust to $\mathrm{pH} 7.0 / 7.5$ with $\mathrm{NH}_{4} \mathrm{OH}$ from a $50 \mathrm{ml}^{4}$ beaker.
$\mathrm{MgCl}_{2}(0.5 \mathrm{M})$
4. Weigh out 0.5 moles (about 101 gm) of reagent grade MgCl_{2} $6 \mathrm{H}_{2} \mathrm{O}$ and add to 1000 ml of FDW in an Erlenmeyer flask.
5. Cover with Parafilm and shake until dissolved.
***This solution is not intended to be used in quantitative analysis, so the strength of the solution need not be exactly known. $\mathrm{MgCl}_{2}-6 \mathrm{H}_{2} \mathrm{O}$ is wet and sticky. Do not bother with decimal places in weighing it out.

Calgon solution (0.033 M).

1. Weigh out 20.4 gm of sodium Hexametaphosphate $\left(\mathrm{NaPO}_{3}\right)_{6}$ in 1 . of FDW.
2. Calgon is (NaPO_{3}) with many impurities. If clay mineralogy is to be performed, reagent grade $\left(\mathrm{NaPO}_{3}\right)_{6}$ should be used.
2.1.2. Calibration and use of the Cahn balance.

For material $<30 \mu$ a tube (25 cm) shorter than is normally used for sand-sized materials is necessary. A pan suspended from the arm of an electrobalance is used as a sensing device. The speed of the analysis is improved and problems of adhesion of clays and fine silts on introduction are avoided by starting from a homogeneous dispersion of particles (Krumbein and Pettijohn, 1938, pp. 91-92).

These instructions are intended to provide a brief description and stepwise procedure for running the Cahn Balance $\overline{a f t e r}$ it has been set-up. These do not fully take the place of the Instruction Manual provided by the Cahn Instrument Company. All the Cahn Manual should be examined and the sections $1.2-1.8,7,5.7 .3-5.7 .5$ studied. The instructions and instrument settings listed below are used for a suspended sample weight of 0.080 to 0.500 gms .

Pre-operation set-up.

1. Use stirrup B on balance arm and set tabs on the MASS DIAL RANGE (MDR) and the RECORDER RANGE (RR) to B. Set dial on MDR to 500; set FACTOR on 1; and set FILTER on 3. Switch power on in all Cahn units 24 hours before running. Switch on Speedomax Recorder several hours before calibration.
2. Fill pump in Lauda Constant Temperature Bath and Circulator to l inch from the top with distilled water. Insert hoses into water bath and turn on CIRCULATOR and COMPRESSOR. After water levels in pump and water bath have stabilized, add distilled water to water bath until water level is about $3 / 4$ inch from top. Let pump and compressor run until water in sedimentation column is at $20.0^{\circ} \mathrm{C}(30-60 \mathrm{~min}$. before calibration). Put test tube containing 50 ml of slurry into pump well, so that it also comes to temperature.
3. Check paper in recorder and change roll if necessary. Clean pen and fill ink reservoir. When not in use leave pen in up position so ink is not drained from reservoir. After cleaning glassware, pan, etc., fill small closed cylinder to $\frac{1}{2}$ inch below red line (25 cm column) with de-gassed distilled water. Set this container in the larger water bath container and fill bath to about 2 inches from top. Insert pan and sedimentation column into the inner cylinder. Either add or remove water from inner container until level is exactly on red line. Align hangdown assembly beneath weighing mechanism and connect hangdown assembly to hook, making sure the nylon lines and the collection pan are hanging free. Place wind shield halves around the exposed strings.
4. Have ready: pipettes, beaker with rinse water, an empty beaker, forceps, and a long spatula.
5. When $R R$ is in the Z position there is zero output to the recorder. Switch $R R$ to this position whenever changing the weight hanging on electrobalance beam arm.
6. Leave Automatic Range Expander (ARE) on DISABLED until a sample is to be run. Calibrate using FAST chart recorder speed.
7. Find zero on recorder by unplugging cable connection leading from ARE and shorting out the recorder with alligator clips across the double prongs in the cable plug. This will produce the recorder reading to which the rest of the electronics will be zeroed. Plug cable back into ARE.
8. Zero ARE by unplugging, from the Control Unit, the cable leading to range expander input, and inserting resistor wired onto banana plugs. Make adjustments to NULL screw in front of ARE with screwdriver and flashlight.
9. Suspend hangdown assembly from stirrup B as for a run and lay a 250 mg weight on the pan below stirrup B. Turn MASS dial to. 500 and RR to 100 mg . If weights on stirrup C have not been changed since last run, simply adjust SET 5 until pen reads zero on recorder. If it is necessary to readjust weights on stirrup C, first read sections 1.5 .6 to 1.5 .11 in Instruction Manual. With a 250 mg weight on Stirrup B, MASS dial on . 500 and RR on 100 mg , add weights to stirrup C carefully until recorder reads on scale or below scale. If below scale, remove weights. Continue until recorder pen can be zeroed using SET 5 knob.
10. Switch $R R$ to Z, remove 250 mg weight from stirrup B, and turn the MASS dial to .000 . Flip RR to 10 mg and adjust SET $0 / 10$ until pen is zeroed. Return $R R$ to Z.
11. Place 250 mg on the left balance pan, set MASS dial to. 300, and switch RR to 100 mg . Find chart paper marking 100 units above recorder zero, and adjust CALIBRATE RECORDER knob until pen stays on this line. Switch RR to Z , remove 250 mg weight from stirrup B, and turn MASS dial to 0.
12. Flip $R R$ to 5 mg and readjust SET 10, if necessary, until pen stays on recorder zero. If any adjustment is necessary repeat $5,7,8$, and 9 until little or no adjustment is required. The system will then be calibrated.

Operation

1. With RR on Z, unhook hangdown assembly from weighing mechanism and slide glassware outward so slurry can be added.
2. Using pipettes, remove an amount of water from the sedimentation column equal in volume to the combined volume of the sample slurry and the rinse water.
3. Hang stirrer on the edge of the water bath; shake the test tube containing the 50 ml of sample slurry until the sediment is thor oughly dispersed.
4. While holding the bridle so that the pan is pulled snugly against the bottom of the settling tube, pour the slurry into the settling tube. Pour rinse water into the test tube, swirl to suspend any particles adhering to the sides, and add to the settling tube. Stir until thor oughly mixed.
5. Immediately after removal of stirrer from column, quickly slide glassware under balance, connect hangdown assembly to hook, and free nylon lines if they are touching. Be careful not to lose any sediment out of the sedimentation column in the process of mixing and hanging the pan.
6. Flip RR to 10 mg , engage ARE, and replace wind shield halves.
7. The beginning of the run is the moment when the stirring stops and the sample material begins to settle. Mark the strip chart "Time $=0$ " at this point.
8. After the pen has crossed the full scale of the recorder eight times (or less) increase the MASS dial until the pen pegs on the low end of the recorder. Quickly decrease MASS dial just enough to bring the pen back on scale. If a sample with an immersed weight large with respect to the recorder range ($R R$) is run, then this procedure may have to be repeated 2 or 3 times during a run.
9. Switch the chart speed to slow sometime in the period of 34 to 101 minutes after initiation of run.

2.1.3. Data reduction of strip chart records

2.1.3.1. General procedures. .

The analog output of sedimentation analysis on the CAHN electrobalance is a strip chart plot of accumulated weight vs. time (Oser, 1972a) The transformation of the plotted output into a frequency distribution of settling velocity or size is done by mathematically simple transformations. Unfortunately, these transformations are based on assumptions about the material in the sample and about the dynamics of the settling tube method (see Blatt et al., 1972, pp. 52-55; Krumbein and Pettijohn, 1938, pp. 95119).

The assumptions made when the sample is settled out of a homogeneous dispersion differ from those made when samples are introduced and ti ning
initiated at the top of the settling tube.
As soon as the sample is dispersed and the electrobalance engaged, particles will begin to settle throughout the entire water column. At any time the material accumulating on the pan is a combination of fractions of the sample with high settling velocities which have completely settled out and fractions with lower settling velocities for which there are portions still in suspension. This necessitates the use of Oden's Formula (Krumbein and Pettijohn, 1938, pp. 112-117) in order to determine the size distribution:

$$
W=P-\left(\frac{t d P}{d t}\right)
$$

where $\quad W=$ weight of the totally settled fractions
$P=$ weight of the pan at some time t
$\frac{d P}{d t}=$ slope of the weight - accumulation vs. time curve.

This formula assumes that the conditions of Stokes' Law hold true. In particular, the fluid should be of infinite extent and there should be no particle-particle interactions. Wall effects and entrainment of small particles within the turbulence of faster settling particles undoubtedly occurs, but no empirical assessment of the deviance from Stokes' Law in a fine grained sedimentation system has been made. Stokes' Law is generally assumed valid as the transforming function between settling velocity and sedimentation diameter. An attempt to reduce the error associated with the assumptions is made by running only dilute suspensions--. $50-.84 \mathrm{gm} / \mathrm{l}$. The errors will probably be greater in the fine end of the size distribution.

The composition, density, and shape of particles in the silt and clay fraction varies and is usually unknown in geologic work. But particle sizes calculated by Stokes' Law from settling velocities are determined by assuming a quartz density ($2.65 \mathrm{gm} / \mathrm{cm}^{3}$) and a spherical shape. The size distribution therefore, is that of the standard sedimentation diameter of Gibbs et al. (1971). Thus, a complete size distribution for one sample over the limits of sedimentation systems $(2000 \mu-1 \mu)$ may be formed. Though the units of the size axis remain the same across the boundary between large and small settling tube data (in contrast to past distributions incorporating the results of sieving with settling methods), the uncertainty of the points does increase markedly at the size where Stokes' Law is used to transform settling velocity to size.

2.1.3.2. Digitizing

Recommended set-up and materials:

Light table with ample room to either side
Plastic base sheets inscribed with digitizing intervals (phi or time lines)
Table of settling times (Table l)
Data recording sheets
Ship's curves
See-through plastic rulers one of which is marked off in $0.1^{\prime \prime}$ increments
Several sharp \#3 or harder pencils
Masking tape
Strip chart records
Patience

Task:

Accumulated weight values (short axis of strip chart) relative to an arbitrary scale are picked off analog record at intervals on the time axis which correspond to 0.1 phi increments. These intervals were calculated using settling times of quartz spheres from Stokes' formula and using the chart speeds of the recorder.

1. Tape fast chart speed base sheet to light table with scale increasing from right to left. Note the equivalence of these terms Horizontal axis = long axis = time or phi axis Vertical axis = short axis $=$ weight axis.
2. Unroll strip chart and use masking tape to mount the strip chart over the base sheet.
3. 1 The point on the time axis of the strip chart corresponding to the initiation of the settling of grains (withdrawal of stirrer) should be placed over the vertical line (marked Time $=0$) on the base sheet.

Table 1. CAHN System Settling Times for $\rho=2.65$ and 25 cm column
at $20.0^{\circ} \mathrm{C}$.
Based on Cahn equation:
$K=\frac{(0.3) h r_{10}{ }^{8}}{\left(d_{s}-d_{1}\right) g}=\frac{(0.3)(25)(0.01005) 10^{8}}{(2.65-0.99823) 980}=4656.415$
Then: $t_{(\min)}=\frac{K}{d_{(\mathrm{cm})}}{ }^{2}=\frac{4656.415}{d_{(\mathrm{cm})^{2}}}$

ϕ	$\mu \mathrm{m}$	Time (minutes)	ϕ	$\mu \mathrm{m}$	Time (minutes)
4.0	62. 500	1. 19	6.6	10.309	43.81
. 1	58. 314	1.37	. 7	9.618	50.34
. 2	54.409	1. 57	. 8	8. 974	57.82
. 3	50.766	1.81	. 9	8.373	66.42
. 4	47. 366	2. 08	7. 0	7. 812	76.30
. 5	44. 194	2. 38	. 1	7. 289	87.64
. 6	41. 235	2. 74	. 2	6.801	100.67
. 7	38. 473	3. 15	. 3	6.346	115.62
. 8	35. 897	3.61	. 4	5. 921	132.82
. 9	33.493	4.15	. 5	5. 524	152.59
5.0	31.250	4.77	. 6	5. 154	175. 29
. 1	29.157	5.48	. 7	4. 809	201.35
. 2	27. 205	6.29	. 8	4. 487	231. 28
. 3	25.383	7. 23	. 9	4. 187	265.61
. 4	23.683	8.30	8. 0	3.906	305. 20
. 5	22.097	9. 54	. 1	3.645	350.48
. 6	20.617	10.95	. 2	3.401	402. 56
. 7	19.251	12.58	. 3	3. 173	462.50
. 8	17.948	14.46	. 4	2. 960	531.43
. 9	16.746	16.60	. 5	2. 762	610.36
6. 0	15.625	19.07	. 6	2. 577	701.16
. 1	14. 579	21.91	. 7	2. 405	805.05
. 2	13.602	25.17	. 8	2. 244	924.63
. 3	12.691	28.91	. 9	2. 093	1062.87
. 4	11.842	33. 20	9. 0	1. 953	1220.87
. 5	11.049	38. 14			

2. 2 Vertical scale lines on strip chart should be aligned parallel with vertical markings on base sheet.
3. With a ruler and sharp pencil scribe a straight line onto the strip chart directly over each vertical line on the base sheet. Continue out to the last line before the change in chart speeds.
4. Select portion(s) of a ship's curve(s) which will best fit smoothly each segment of the analog record between scale changes and scribe in pencil on the strip chart record a smooth line which best represents the curvature of that record.
4.1 Noise in the record (unusual peaks and troughs) should be smoothed out. This includes noise associated with pan and string vibrations at the start of a run, short period noise due to disturbances (door slamming, elevators, or air currents) while the CAHN is running, long period noise due to heating and cooling cycles during the night, and any noise associated with scale changes, adjustments to the automatic range expander, and changes in recorder chart speed.
5. 2 Near-vertical curves at scale changes and large amounts of noise at the start of a run present problems. Scribed curves should extend the smoothed record back to 4 phi on the base sheet. Scribed curves on either side of a scale change should be extended far enough that they intersect an already existing vertical line or so that a vertical line intersecting the two can be drawn.
6. Choose a convenient weight scale for the short axis of the strip chart record and place zero at any horizontal line which intersects the scribed line to the right of the 4.0 phi line.
7. Pick off weight values at each intersection of the pencil line scribed on the weight accumulation curve with a vertical phi line on the base sheet. Record the value opposite the corresponding phi number in the data sheet.
8. Where there is a scale change or a change due to an adjustment in the MASS dial, the weight scale must be recalibrated to the chart markings. An example of a scale change is given in Figure 1.
7.1 A line (a) perpendicular to the time axis is selected (could be a line on the base sheet or on the strip chart) or constructed so that it intersects the extensions of the pencil curves $\left(b_{1}, b_{2}\right)$ scribed on the strip chart record to either side of the scale change.

It is assumed that the weight at the intersection of \underline{b}_{1} and a (read off the old weight scale) is the same as at the intersection of $\underline{b} 2$ and a. A new scale is started from this point (using the same ratio of unit chart height to unit weight on the pan).

The same routine is used for changes in the strip chart record due to adjustments in MASS dial.
8. When there is a change from fast to slow chart speed it is necessary to replace the plastic base sheet with the sheet marked for slow chart speeds and to proceed with digitizing as in steps 2.0-7.3. In changing the base sheets, the location of the time axis of the strip chart with respect to the new phi scale must be calculated using the settling time tables (i.e., the horizontal scale must be re-zeroed.
8. 1 Locate as precisely as possible the point where the change in chart speeds was made. Draw a vertical line, hereafter referred to as the Scale Line, through the point.
8.2 If the line lies within 1 mm of a 0.1 phi line on the fast chart speed base sheet, switch base sheets, lay the line constructed in 8.1 over the corresponding 0.1 phi line on the slow chart speed base sheet, and continue digitizing.

Figure 1.
An example of a scale change in a CAHN strip record. Horizontal axis is time from $T=0$ increasing towards the left. Record is digitized from right to left. Vertical axis is accumulated weight. Line a is a vertical line constructed perpendicular to horizontal chart markings. Lines $\frac{b}{d}$ and \underline{b}_{2} are pencil lines fitted to the analog record (line ㄷ) by the use of ship's curves.

Usually the Scale Line is further than one mm a way from a 0.1 phi line. Look up in the data tables the settling time, T_{1}, elapsed between the two 0.1 phi values bracketing the Scale Line. Measure the horizontal distance between the Scale Line and the last vertical 0.1 phi line to the right. Convert this distance to time, $\mathrm{T}_{2}\left(30^{\prime \prime}=60 \mathrm{~min}\right.$. $)$ Subtract T_{2} from T_{1}. Convert the remainder from time to distance at slow chart speed ($3^{\prime \prime}=60 \mathrm{~min}$.).

On the strip chart, measure off this distance to the left of the Scale Line and construct another vertical line. This vertical line corresponds to the 0.1 phi value at which the next digitizing point should be taken. Line up this vertical line over its appropriate 0.1 phi value line on the slow chart speed base sheet and continue digitizing as in steps 2.0-7.3.
9. The matrix of 51 values of accumulated weight vs. 0.1 phi value should be keypunched for storage and for computer processing using the program SIZEBAL (see below). A description of the format for punching is contained in the next section. Using this format eight cards will be required for each sample.

Problems:

1. At present the base sheets are marked from 4.0 phi to 7.2 phi (fast chart speed) and from 6.4 to 9.0 phi (slow chart speed). Occasionally the switch in chart speeds during a run is made at a point outside the overlapping phi interval, that is, outside the interval of 33.2 to 100.7 min . after Time $=0$ (6.4-7.2 phi). If the switch is made too soon then the position of each vertical 0.1 phi line after the Scale Line must be calcualted and marked on the strip chart by hand up to 6.4 phi. First, the procedure for chart speed changes given above (Step 8) is used to find the first 0.1 phi line after the speed change. Then, look up the difference in settling time between the two 0.1 phi values, convert this to distance (using $3^{\prime \prime}=60 \mathrm{~min}$.) and construct a vertical line at a point this distance to the left of your last 0.1 phi line. If the chart speed is changed too late, the same procedure must be done from the 7.2 phi line up to the chart speed switch after which digitizing may proceed as in Step 8 above.
2. If too large a sample is introduced into the CAHN settling column, if the sample contains a large amount of coarse silt, or if too sensitive a full scale range (selected by the Recorder Range dials on the control unit) is chosen, then rapid scale changes in the recorder may occur at the start of a run. The near vertical analog record produced by the pen is difficult to digitize because curves drawn through the pen tracings to either side of the scale change do not overlap. Consideration should be given to rerunning a smaller subsample or to rerunning at a higher value of Recorder Range. If this is impractical, digitizing across the scale changes can be made somehwat easier by extending the vertical width of the chart paper. Fix a blank sheet of paper just beneath the chart record, extend the pen tracings on to this sheet using the ship's curves until they overlap and proceed as in step 7 above.

2.1.3.3 Explanation and listing of computer programs

Data from both the CAHN settling tube (CAHN) and the large settling tube (LST) can be analyzed through program SIZEBAL. SIZEBAL will accept multiple data sets from either terminal or batch jobs, will calculate cumulative and frequency distributions, will calculate descriptive statistics, and will output the results on lineprint and as plotted curves. An up-to-date version of SIZEBAL in Fortran and binary images is stored on cards. The subroutines in SIZEBAL which analyze CAHN data use a modified version of Oden's Formula (see Krumbein and Pettijohn, 1938, p. 110-119) to calculate the cumulative curve. The user has several options to choose from in selecting a differentiating algorithm to transform cumulative to frequency data.

The CAHN reduction routines will force several types of error to new values:

1) If the cumulative raw data is not strictly ascending, an error message is sent to the line printer. Checks for reversal of slope are also made before and after differentiation to a frequency curve. Any aberrant points will be set equal to the value of the previous data point.
2) If the derivative of the cumulative curve is negative, the derivative will be set equal to zero.

The last point on the fine end of the cumulative distribution is forced to terminate in a straight line with the preceding two points.

The subroutine LST (large settling tube, see below) does not check the raw data for strict accension, therefore, be careful to check your data during digitization. No forcing of the ends of the frequency distribution ocars as in the CAHN subroutines, but the derivatives will be set equal to zero if they are negative.

Options available in running SIZEBAL

1. Differentiating routines are loaded separately from SIZEBAL. Four options are available to the user:

- Routine *SMOOTH contains a cubic spline interpolation algorithm. Use of $*$ SMOOTH allows additional smoothing of the distributions. Increasing the value of input variable $S S$ will increase the smoothness of the curves.
- Routine *CSLOPE estimates the differential at each point by calculating the slope between the preceding and the following point. At the ends of the distribution the slope is calculated using the first two and the last two data points.
- Routine $火$ LS LOPE is similar to *CSLOPE but the slopes at the first and last points are set equal to zero.
- The user may prepare her/his own algorthm to obtain derivatives by doing the following:

Write a subroutine named SMOOTH containing the algorithm to generate derivatives. The calling string should be: CALL SMOOTH (N, X, DY, SS, A, B, C, D) where:

N is the number of data points in arrays X and Y X is the array of phi values at the digitized points Y is the array of accumulated weights at each point in X DY, SS, A, C, and D are dummy variables B is the array of derivatives at each point in X.

This subroutine must be compiled and the binary loader deck saved under a file name (e.g., *NEWSMOOTH).

This is done by the following commands on the teletype:

```
#FORTRAN, I= <PRONAME> , X (CR)
    <PRONAME> contains the Fortran version of
        the subroutine.
NO ERROR FOR SMOOTH the teletype should respond with this
#SAVE, 56=*NEWSMOOTH (CR)
```

See additional comments under deck makeup regarding use of this algorithm.
2. Any number of data sets may be run within the user's time limits. The number of data sets must be input as a value of NJOBS on Control Card A.
3. The values of smoothing parameters and punch option in CAHN processing may be specified only once for all data sets in a batch or may be read in for each data set. Use variable KONTROL on Control CardA to indicate which method you will be using.
4. Either Cahn or large settling tube data digitized off strip chart records can be run through the program. Use variable ITYPE on Control Card A to specify which kind of data is being analyzed.
5. Descriptive statistics from the cumulative curve (according to Inman, 1952, and Folk and Ward, 1957) and from the frequency curve (moments statistics from Friedman, 1961) may be requested using variable IS TATS on Control CardA.
6. Routines for 3-point smoothing of the CAHN cumulative curve and/or 5 -point smoothing of the CAHN frequency curve can be selected if desired using variables WTl and WT2 on Control Card One. The same variables are used to control the use of routines which can do a 3-point smoothing of the raw data from the LST and/or a 3-point smoothing of the LST frequency distribution. It should be noted that 3 -point smoothing of the cumulative curve has the effect of also smoothing the frequency curve from which it is derived.
7. The frequency percent data may be output on punched cards. For CAHN data use variable WT3 on Control Card One to select for this option. For LST data equip LUN 44 to PUN.
8. Plots of the cumulative curve and the frequency curve overlying each other may be requested using variable IPLOT on Control Card One.
9. The high and low phi values of the distribution and the increment between digitizing points may be changed for each data set using variables LOPHI, HIPHI, and DELPHI on Control Card Three. The program assumes that the increment between the data points within a data set is constant. Default values are 4 to 9 phi at 0.1 phi increments (51 data points) for CAHN data and 2 to 4 phi at 0.05 phi increments (41 data points) for LST data.
10. The vertical scale of the plotted frequency curve is in weight percent of the size fraction analyzed per digitizing unit. The magnitude of the se scale units is controlled in part by variable TOTLSILT.

If percentages based on the total sample are desired, set TOTLSILT equal to the percent silt in the bulk sediment. If percentages based on the silt fraction only are desired, set TOTLSILT equal to 100. The vertical axes of the cumulative curves are scaled from 0 to 100 percent.
II. The vertical scale of the frequency curve may be adjusted so that maximum height will occur at full plot scale (6 inches). Use variable ICHOOSE to select this option. Alternatively, the frequency percent at full scale may be specified using variables ICHOOSE and HISCALE.

Deck makeup for batch jobs: (For OS-3 operating system at OSU)
Cover Card
${ }_{8}^{7}$ JOB, XXXXXX, BBB, NAME
${ }_{8}^{7}$ TIME $=100$
${ }_{8}^{7}$ LABEL, $62 /$ <NAME $>$ must be present whether or not punched option is requested
${ }_{8}^{7}$ EQUIP, $44=<$ FILE NAME $>$ for output of LST data only. May also be equipped to punch $(44=\mathrm{PUN})$. For Cahn data equip to NULL
${ }_{8}^{7}$ LOAD, *SIZEBAL, $*$ SMOOTH, $L=*$ GLIB Note: the name of file con-
taining an alternative differentiating routine
may be substituted for $* S M O O T H$
RUN
data deck
${ }_{8}^{7}$ LOGOFF
Data deck makeup:
Control CardA Control Card one Control Card two Control Card three Data cards
must be repeated for each data set.

Card description:
Control CardA

Cols.	Numonic	Format	Explanation
2-3	NJOBS	I2	Number of data sets
5-6	KONTROL	I2	00 - if parameters SSl, SS2, WT1, WT2, WT3 are to be read once for job.
			01 - if parameters are to be read for each data set.
8-9	ITYPE	I2	00 - if data from large settling tube
			01 - if data from CAHN
11-12	IS TA TS	I2	01 - if requesting statistics routine
			02 - to suppress statistics
13-20	TITL(Z)	A 8	Default is <Heath> Name under which plot is labeled and saved at Computer Center.

Control Card one

Cols.	Numonic	Description
$1-7$	ACCNO	sample identification number $11-20$
SS1	value of first smoothing factor in the cubic spline fitting subroutine (Punch decimal).	
$31-40$	SS2	value of second smoothing factor (Punch decimal)
$41-50$	WT2	Controls use of smoothing average. See below (Punch decimal)
Controls use of smoothing average. See		
below (Punch decimal)		

Control card one continued:

Cols.	Numonic	Description
$51-60$	WT3	If WT3 distribution will not be punched. Any other real number will produce a punch- deck. (Punch decimal).
$71-72$	IPLOT	If blank, cumulative and frequency curves are plotted. If any other integer, then plots are suppressed (No decimal).

For CAHN data reduction:
if $\mathrm{WTl}=0.0$, then SIZEBAL will skip 3-point moving average on the cumulative distribution.
if $\mathrm{WT} 2=1.0$, then SIZEBAL will skip 5-point moving average on the frequency distribution

For large settling tube reduction:
if $\mathrm{WTl}=0.0$, then SIZEBAL will skip the 3 -point moving average on the crude cumulative weight data.
if $W T 2=0.0$, then SIZEBAL will skip the 3 -point moving average on the frequency distribution

If $\mathrm{KONTROL}=0$, then only values for ACCNO and IPLOT are required on Control Card one after the first data set.

Control Card two

Cols.	Numonic	Format	Description
$1-40$	$\operatorname{TITL}(4,5,6,7,8)$	5 A 8	Descriptive label for each plot. May be left blank

Control Card three (may be blank, see instructions regarding default values above).

1-10	LOW PHI	F10. 0	Smallest phi value digitized (Punch decimal).
11-20	HIPHI	F10. 0	Largest phi value digitized (Punch decimal).
21-30	DELPHI	F10. 0	Phi digitizing increment (Punch decimal).
31-40	TOTLSILT	F10. 0	Total area below the frequency curve. Default value is 100 . (Punch decimal).
41-42	ICHOOSE	I2	If ICHOOSE=00 or is blank vertical scale of frequency curve is adjusted so maximum frequency occurs at full scale (6 in .). If ICHOOSE is any other two digit integer, frequency at full scale is read from HISCALE.
43-52	HIS CALE	F10. 0	Percentage value at full scale of frequency plot. Default value is 20 when ICHOOSE is not equal to 00 and HISCALE is blank.

Data Cards

$1-8$	SIZEBAL	A8	Job label (not required)
$9-71$	CONWT	$7(\mathrm{X}, \mathrm{F} 8.4)$	Cumulative sample weights
$72-78$	ACCNO	A7	Data set label (not required)
$79-80$		A2	Card number (not required)

Program Listings:

The program listings for SIZEBAL and its subroutine can be found on the following pages:

PROGRAM LISTINGS

```
OSマ =CマサマAN JミマS!O4 3.13
```


2 XV (1QO), LOPHI, HIDHI, DELPHI, NPAINTS
PEAL L~DAT
INTGGE HAPOWARE
CALL YaEJUTO(1a)
CALL UNECITO (?2)
IWSEEHEROWARE (51)-2
CALL ENUIO (11, 600)
CALL ETUID(20.510)
GO TO?
$\frac{1}{2}$
CALL ĒUTO (20.9HLP)
CONT INEJ=
CALL EOUIP (IT, ${ }^{3 H P L O T}$
CALL A PUYTIME (TITL
TITLI 103$)$
$3 \mathrm{OO}_{\mathrm{T}} \mathrm{OL}(\mathrm{T})=3_{a_{H}}{ }^{2}$
IDUTOUT $=24$
INDUT $=19$

- FC̃MAT(4 $(X, I 2), A 3) \quad$ HTTL 2$)=a H$ HEATH
TE(TITLI己): EQ, ${ }^{2} \mathrm{H}$ ITITL(?) $=9 \mathrm{H}$ HEATH
TE(TITLI?) EEOXIH

NJユZS = NIMAER OF DATCHES OF OATA. MODTHING PARAMETERS ANJ
KONTOCL = GIF THE VALUES OF THE SMOOTHING PARAMETERS ANJ
KOYNROL CPTIJN ARE TGOE QEAQ IN ONLY ONCEN WHTHEACH
SU3SEDUEAT ЗATSH OF DATA.
ITVOE = 1 IF OATA IS FQOM CAHI, OTHEQHISE IT IS FROM

CALL ELTT (-5., 5..-3)

2EAD(INPUT, 1 ?) ACSNO,SS1,SS2, WT1,WT2,WT3,IPL?T

SSI = SOOTHING EACTCP FCD SOLINE CURVE FIT TO CONWT VALUES
SSTE SMOTHING FACTOQ FOR SPLINE CUEVE FIT TO CUWWTV VALUES
SST= SMCOTHTMG EACTOQ FOR SPLINE CUEVE FITTTO CUNWTP VALUESTRIZUTIJN.

WTA = O.OUILL SKIP 3 OOINT SMOOTHING ON THF TNPUT OATA

WTK IS YOT US = ?
WHEA IOLOT =C NORMAL DLDTTING OF RUMULATTVE ANGFREO. OISTPIZUTTONS
लजTTV気
ROUTEAE T? RETAIN SSI, SS2, NT2.WT3 VALUES FOR MULTIPLE BAFCHES

LDPUT $=4 . ?$
HIDHI $=0_{0}^{\circ}{ }^{3}$

!5 L’oul =? ?

```
                            HJOHI= 4.? 
    15 NP\TNTS = IFIX((HIPHI - LOPHI)/OELPHI + 1.01)
    IF KKEN EOO 1) GO TO 12
    TF (KNNTROLEEQ. 1; ro Th 12
```



```
    SS1=TSC1
    S5?=TSS2
    GT1=TWTA
    WT?=TWT?
    WTR=TWT?
    G0 Tn 12
    1 1
        TSS1=5S1
        TSS?=5S?
        TW+2=WT?
        TWT B=WT3
C
    LINF PRINTOUT OF CONTDOL CARO VARIAILES
    12. WKTTE(IOUTPUT,4001)(TITLII),T=3,8)
        WQITF(44,4,4001)(TITLII), I=3,8)
    4001
    FOOMAT({H1,GAR)
```



```
C
    CALL OWTSITONWT,INDUT, NPOINTS,IFLAGI
    IF(TFLAG.ER.1) GO TO q
    IF(TYYOT.FO,1) की ro 3003
    CALL STINTI,WTZ,SSI,TPLOT,
    CALLGSTMW
3003
3004
    CALL CAHN(SS1,WT1)
    CALL CALC(SSZ,WTI,WT?,WT?,IPLOT,TOTLSILT,ICHOOSE,HISCALE,ITYPEI
CO!TINHE
    IFIISTATS.EQ.1) CALL STATSIITYDF)
C: RETURE NJORS RY ONE ANO CHECK FOR ANOTHER GATRH.
    Mjnas=Mjnge-1
    IF INJOAS .LT.1) r.O TO 14
    GOTO
    CALL PLOT(10.,26.0,-3)
```

IINEOLTTNE PWTSICONWT INPUT NPOINTS,IFLAK, TYFNSION CONWTVOOT
COIMON ACRNO IFLACO=

3002

ती $2011 \mathrm{I}=2, \mathrm{NDOTNT}$
IF(CONWTIIILT.CONWT(I-1)) GOTO 3200
3311 COMTIMHE
$3 ? 00$ WRITEX20.32011ACCNO
 IFLAG=1 EFTHEM
FND


```
            SUNOOUTTHF CAHNYSSI,WTIG
```



```
            EFAL LNPHI
            OT:{ENSICN: CF(T5)
            II=NSOTNTS
            II=NNOTNTS
    III= III-1
CO USFS ACRIMMLATEO WEIGHT VALUES NORMALITED TO ZEFO (CONWT)
C ANN THF TRANSFOEMEG SFTTLING IIME VALIJES (XXI TO
```



```
    P =L\capPHT + MELDHI
    P= FONWTII
    ROHNT(1)=0.
    OY(1)=1.
    X(1)=LCPHI
```



```
    CONWT\K\=CONWT\K:-R
    OY(K)=1.
    x(k)=P
    XX(K)=4.**(P-4.)
515
    F=P+חFLTHT
    SS=SS:1
    GALLSMOOTHIII,XX,CONWT,OY,SS,A,D,C,O)
    ก0 &25 k=1. II
525
    CUMWTP(K)= 「ONWT(K) - (XX(K)-1.)*(B(K))
C
    FORCFS CUMWTG CUOVE TO 3E NON-DFCREASITG AND FOPCES THE
```



```
    no 627 K=2. Iv
    IF(C,|MWTP(K).GT,CU\PsiWTP(III|C|MWTP(K) = FUMWTPIIII)
    IF(CUMWTP(K):LT,CUYWTPIIGICUNWTP(KI = CUMWTP(1)
```



```
    &27 IFICMM.LT.0.OISUMWTP(K)=CUMWTP(K-11
    IFICMM,IT:0.O)SUMWTP(K) = CUMWTP(K-II
C
    DOFS A 3-PNINT SMOOTH OF GUMWTO CURVF IF DESIFED.
    OOFSTA.EN.O.I GOTOTHGOS
    631 CF{K)=, COIINTO(K-1)+?.*CUMWTP(K)&CUMWTP(K+1))/4.
    O\cap &z? K=?.III
    53? C(NWWTP(K)= CF(k)
    S3? CINWIP
    FNO
```

```
37%
279
\
291
$
2.
l
389
207
201
%
29
衘年年
$97
300
302
304
7 %%
\ח%
309
307
311
31.3
314
314
317
319
3.37
323
3244
325
37%
322
377
3.31
3%
3?7
334
33=
2.37
3?9
34?
34%
24?
34!
345
34h
34.
34
<5%
351
35,
35%
```



```
            PFAL LOFAI
```

 PFAL LOFAI
 INETSFB COMNT
 INETSFB COMNT
 x TS ADRAY OF X VALIJS TO PLOT CUMWTP ANO FPFQP AGAINST
x TS ADRAY OF X VALIJS TO PLOT CUMWTP ANO FPFQP AGAINST
C CIIWTO IS ARDAY OF Y VALUFS
C CIIWTO IS ARDAY OF Y VALUFS
CMWWDIIS AROAY OF Y Y VALUES
CMWWDIIS AROAY OF Y Y VALUES
N TC THF ORFMENSINN OF X. CUMWTP, ANO FREOR
N TC THF ORFMENSINN OF X. CUMWTP, ANO FREOR
INTERER TENUP. DENOOWN, EMO
INTERER TENUP. DENOOWN, EMO
ROUNT $=$ COUNT +1
ROUNT $=$ COUNT +1
PCNOOWN =?
PCNOOWN =?
nedir $=3$
nedir $=3$
$\mathrm{FNO}=\mathrm{NDOL}^{-3}$

```
    \(\mathrm{FNO}=\mathrm{NDOL}^{-3}\)
```



```
    DLENGTH \(=\) IHIPHI-LOPHII/0.5
```

 DLENGTH \(=\) IHIPHI-LOPHII/0.5
 IF (TYVPE EO.1) ADJUST=4:0
 IF (TYVPE EO.1) ADJUST=4:0
 SCALEF=?.
 SCALEF=?.
 IF (Ir.
 IF (Ir.
 AMAX \(=H I\)
 AMAX \(=H I\)
 IF \{AMax.ED.G.1 AMAX \(=20\).
 IF \{AMax.ED.G.1 AMAX \(=20\).
 0101
 0101
 5 AMAX=0
    ```
    5 AMAX=0
```



```
10
```

10
CONTIMUF
CONTIMUF
QMERED = PLFNGTH
QMERED = PLFNGTH
IFEP.GT, DFMEAERIEEMCRER $=90$
IFEP.GT, DFMEAERIEEMCRER $=90$
LFNGTH = IFIX(RLEMGTH)
LFNGTH = IFIX(RLEMGTH)
KCOUNT $=$ MOOF (COUNST, 3)
KCOUNT $=$ MOOF (COUNST, 3)
IFRKCOMMT. FO. 1 SHIFT $=0.0$
IFRKCOMMT. FO. 1 SHIFT $=0.0$
IFTKGOUNT: EQ.OISHIFT $=18.0$

```
    IFTKGOUNT: EQ.OISHIFT \(=18.0\)
```



```
    FSCALE = F., AMAX
```

 FSCALE = F., AMAX
 YFIRST = (MMAX - FLOAT (IFIX (AMAX)) * FSCALE
 YFIRST = (MMAX - FLOAT (IFIX (AMAX)) * FSCALE
 YNEXT = \(\mathrm{S}_{\mathrm{i}}\) - YFIRST, FLOAT I IFIX (AMAXI)
 YNEXT = \(\mathrm{S}_{\mathrm{i}}\) - YFIRST, FLOAT I IFIX (AMAXI)
 AMAY = FLOAT (IFIX (AMAX))
 AMAY = FLOAT (IFIX (AMAX))
 ENRODF (R, 1OC.RTYSCALE) AMAX
 ENRODF (R, 1OC.RTYSCALE) AMAX
 \(10 ?\)
 \(10 ?\)
 (Fa.?)
 (Fa.?)
 CFSRALE = K. (CUMWTP(N)
 CFSRALE = K. (CUMWTP(N)
 FACNOE 15.100 O, DLOPHIILOPHI
    ```
    FACNOE 15.100 O, DLOPHIILOPHI
```



```
10Ca forcatafroi
```

```
10Ca forcatafroi
```



```
    CALL PLOTSYMスi-.4. -.54SHIFT,.21.RLOPHT•0..8)
```

 CALL PLOTSYMスi-.4. -.54SHIFT,.21.RLOPHT•0..8)
 CALL PLOTSYMRIPLENGTH/Z...-.54SHIFT,.?1; ONELOHT, O., B)
    ```
    CALL PLOTSYMRIPLENGTH/Z...-.54SHIFT,.?1; ONELOHT, O., B)
```



```
    rall reor iog,SHiFT, OENUOI
```

```
    rall reor iog,SHiFT, OENUOI
```



```
    call riot (.in, yince
```

 call riot (.in, yince
 CALL FLOT (n..,YTNCPE.DFNOOWN)
 CALL FLOT (n..,YTNCPE.DFNOOWN)
 CALL PLDT (O:OGOHSHET, PENDOWMI
 CALL PLDT (O:OGOHSHET, PENDOWMI
 CALL PLOT PLENGTH, \(5.0+\) SHIFT, FFNOOWN:
    ```
    CALL PLOT PLENGTH, \(5.0+\) SHIFT, FFNOOWN:
```



```
    CALL PLOT (DLENGIH-OE,Y, PFNOOWN)
```

```
    CALL PLOT (DLENGIH-OE,Y, PFNOOWN)
```



```
    CALL PLOT (SLENGTH,Y,OENDOWH)
```

 CALL PLOT (SLENGTH,Y,OENDOWH)
 \(J=\Delta M A X-1\)
 \(J=\Delta M A X-1\)
 กn \(16 T^{x}-1\)
    ```
    กn \(16 T^{x}-1\)
```



```
    CALL FLOT RLENGTH. YNOW, PF NาOMAI
```

```
    CALL FLOT RLENGTH. YNOW, PF NาOMAI
```


(ALG, YLOT (FLOAY (LFYGTH), O. OFSHIFT, PFNOOWN)

CALL FLCT (XINCOE, T. + SHIFT, PENOOWNI
CALL PLOT IXINCPF, - NS +SHIFT, DENOOWN:
CALL DLOT IXINCRE, OLSSHIFT, PEANOWNI
$1 \rightarrow$ CALL RLOT (XTMOSE, B. +SHIFT, ロFNOOWNI

 CALL PLOT(STALEP* (XIN-I)-AOJUSTI.FRFQP(N-1)*FSCALE+SHIFT.PENUP) $0030 \quad T=3, N$

IFOKCOUNT NE CIFO TO 40
CALL PLOT(9,0,0. ?, ENO)
CALL OLOTINT(REMERER+5.0.0.0.10)
$F R=R$.
RETIIRM
FR $=~ K P M E A F E ~$ CETION
ENT


```
            {UMiNTORSOPH,HOCHI,OELDHI,NDOTNTS
            SFEX(1)CI,LOPHI,MLHT
O}\mathrm{ IHIS SUTPOUTINE CALOHLATES INMAN, MOMENT ANC FOLK@ WARN STATISTICS
C T,AHN O? LST MATA ITYPE=I FOO CEHM
    AHNGTAGLET = LOPHT
    CHMORLOHI
    = NPTINTS
    FF=0.
    movoxjus=1, N
    2030 FF =FFFFFREOP(JJ)
    NO 204. T=1*N
    JFIR.LT.0.' GO TO 204?
    H=F
204r u-T
2042 Pr, =P*H/(H-R)+X(M)
        00 2045 I= 4.N1
        R=1f.-c!M#WTO(J)
        IF(P.LT.O) GO TO 2047
        H=?
```



```
        RシPr:-GIMMHTP(I)
        H=?
2050
205? D25=R*H/(H-R)+X(M)
        00 20丁5 T=M,M
```



```
        IFIR.LT.C.I GO TO 2057
    1F=?
OG5 MM=T
2057 O5N=P*HY(H-R)+X(MM)
    0\cap 2060 I=4Y, "!
    R=7CG-FUMWTPII)
    H=?
20EO N=T
    OF=O*H/(H-R)+X(M)
    002065 I=M,N
    F=, CUMWTP(I) TO 2067
        JF!P.LT.Q.I GO TO 2067
    206E MM=I
    2067 Pa4=D*H/(H-R)+X(NM)
        OO 20>0 J=MM.N
        R=35--CUMWTP(1)
        TF!
    2070 4= 1
    207?
        par=O*H/(H-又)+X(4)
    C
    G INMAM STATISTIRS
        MCAHI=0.5*(P1F+D84)
        M-nT=n50
            7FVI=3.5*(094-P16)
            SKFUI=(MEANI-MEOI) OEVI
```



```
            KUQTI=105%*(On5-p5)-DEVI)/DEVI
    C. FILK ANT WAEM STATISTICS
            A)
            MFANF=(P16+050+544)/3.
            MR2TF=(084-D1&)/4.+(Pa5-P5)/6.6
            SKFWF=(016+PAL_-7.*DEO)/(2.*(PQ4-P16))*(P5+P95-2.*P50)/12.*
            2 (PGR-DFI)
            K\1f(F)=(095-P5)/(?.44*(P75-P25))
C% MOMENT STATISTICS
            x:41= *N2 = x 4 3 = xM4 =0.0
            IF (OHIETART.LTVOO:0) to T0 20
            0=OHICTAOT
```

```
459
45%
451
46?
454
465
455
467
469
470
471
47?
473
&f
F4f
477
474
479
4.81
497
483
4894
4.4%
499
487
487
499
491
493
4 9 3
494
495
4 0 5

``` \(n=0+0\)
\(X M-N N=x M 1\)
```



```
On 25
\(X M 1-X M+\cap * F R O O T I / F F\)
\(X M 1=X M 1+n * F R F O C I I I / F F\)
\(O=n+n\)
pr. \(\quad Q=n+n\)
XMEAN二XM1-AOSTPHISTAOT:
3n \(\cap=\cap H I S T A R T\)
\(\cap \cap 40 \quad T=1, \mathrm{Ni}\)
\(C M=0-X M E A N\)
K1:=x4?+OM*OM*F?FQS(I)
\(x M 3=x 42+(\cap M * * 3) * F F E \cap P(I)\)
```



```
\(41] n=1+0\)
\(X\) STOFV = SOCT (XM2/FFFI
XSKEW=XM3/1FF*XSTOEV**31
\(\times<1\) GT \(=x M 4 /\) (FF*XSTREV**4)
WRITE IOUTPUT, \(2 \mathrm{G} 021 A C G N O\)
2002 FOPMATIIHI,AGX, \(A\) ACC SSTOM NUMGFR \(\neq, ~ A 7 / 11\)
```




``` \(2 \neq 0\) VIATION \(\neq F 6.3, z\) WFFITE' Z WOUTPUT, 2004 MEOI, ME ANI, OFVI, SKFWI,SK2I,KURTI
HRITF (TOUTOUT, \(20051 O 9 F V\)
```





```
2305 FQRMATIFO PHI OUAETILE OEVTATION \&,FG.3, XI
```




``` FFTURN
FAN
```





```
 REAL LOOHT
 DIMENSTON OF{1COI,FREO(100),FKT100)
```



```
 THIS SUAPCUTINE TAKES NOOINTS DATA POINTS AT O.OLSPHI
 2.N゙FHI TO L.EORHI, SPLINE FITS THE DATAA ANTG
 GENEOATE X VALUES FOR SMOOTH CALL ? TO 4 PHI RY . O5
 TFNERATE COUCIOEACE LIMITS AROUT EACH OATA POINT: OVIT)
 Q = CONGT \11
 CONW'(1)=0.0
 x(1)=L १рчII
 NN= NO\capIMTS - -
 OY(1)=1.?
 OY(1NE1:C
 2001
 FORMAT(\pm S=&'ERG1)
 CONWT(K)= GONWT(K) - Q
 OY (K)=1.0
70 x(k)=x(K-1)+0.05
%10 NORMALITE ALL OATA TO RONWT(NPOINTS)
 no }720\mathrm{ J=1,NPOTMTS
 CMMWTO JJ=CONWT(JS/CONWTINOOINTSI*100.
 720, CONWT(J) = CNWWTJ) + ?
 3 DOINT SMONTHING IF DESIREN
 TFYWT1. EQ;O.O.
721. CF(K)=(CUMWTP(K-1)+2.*CUMWTP(K)*COMWTP(K+1)1/4.
 CF(K)=(KUYWTD(K
72? CUMWTP(K)=CF(K)
?-2 GALL SMOOTH FOR SPLINE FIT DARAMETERS
30 CALL SMOOTHTH(NPOINTS,X, CUMWTP,OY,SSI,A,Q,C,DI
 EORNS CHECKK, 3.LTGOG.C
```



```
731 IFIFFFO(I).LT.O.OIFRFQYII=O&O
 IFINT2.EO.J.O) GO Tी 734
 CO 732 T=2,NN
 FK(I)=(FFEG(T-1)+2*FREO(I)+FRED(I+1))/4.C
 FK(II=1FFECHN
 MOR33II=?MNN
 FDFGD(1)=FOEO(1)
 FR=NP(NOOIMTS)=FRFO(NPOINTS)
 1,0 T0 7% Tr
734 n) 73FI= I,NTOTNITS
734 FR-OO(TI=FOEO(T)
7%5 rONTINIIE
 WRITF(ICIIMUT,?AE)
```




```
 2 &CATAZ,FY,&OEQC=NTAGEZ,4X, &OISTRIBUTIONAI
 W\capITE(INUTOUT,\SI)(X(K), OONWT(K),CUMWTP(K),FPEOP(K),K=1,
 & NOOINTSI
 WRJTEI44 , 7&1)(XIK),CONWT(K),CUMWTP(KI,FREOP(K),K=1,
 l mitotntel
 7&1 FOQMA!Iax,F5.?,5x,F5.1,6x,F7.C,6x,F7.?)
 TrN= = O
 CALLGGSPLOTITTVOE!
30
 CALL GSPLOTIITVOE: r,o rO 90J
 EETリR4
 FN゙त
```



```
かつ๙วสด.วに)
 pOUTJNE TO SMOOTH A SERIES OF DISTPETF POINTS ANO INTERPOLATE
 QETHETN THEM IY MEANS OT A CURIC SOLINE FUNCTION. THE COMP-
 ONENTS OF ARRAYYX MUST AE STRICTLY INNRRAEING. ST S IS A NON-
 METATIVF DAZAMETER WHICH COMTENLS THF EXYENT OF SMOOTHING,
 OY TS AM ESTIMATE OF THE ERROR OF Y AT CACH POINT.
```



```
 * cui250i
 FD|IVALFNRE (P(1), SP(2)), (R1(1), SP1(21), (R2(1), SR2{2))
```



```
 EDHIVALENCE (T(1);,ST\2)\; {T1(1), ST1(21), (U(1), SU(2))
 LIMTT =250
 N1 = 1
 NP=N1 N?,GT. LIMIT, GOTO190
 M1 =N1: N N N
 OR(M1) = R1 N1) = Q1(N2) = R21 N2) = R21 M2) = U(M1) =
 1 U(N1)=U(N2)=U(M2)=P=0.
 M1 # N1 + 1
 H=x(M1,)
 F=(r)N1)= (NON1), %
 00 10 I = M1, M?
 G}=
 H
 F=1
 =(Y(I+1) - Y(I)) / H
 A(I) =F-EE
 T(I)}=2\mp@code{R
```



```
 R11IT, = - OY (I), r,N- or (I) / H
 CONTINUS
 On ?O I = M1, M?
 R(I) = R(I)*R(I) * R1(I)*R1(I) * R2(I)*R2II)
 C(T) =R(I)*R1(II+1)*R1(I)*R2(I+1)
 O(I) =R(I)*O?(I+?)
 rontinuje
```



```
21 กति 30 = M1, M?
 F1(I-1)=F*R(I-1)
 *2(T-2)=G*R(IT-2)
```



```
 F=P*C(I) +TI(I)-H=R1(I-1)
 G=H
 TgMTIMMF
 K=41 + M?
 no 40 J=M1, M?
 I=K, = 2(I) *U(I) - o1(II*U(I+1) - -2(I) *U(I*2)
 4 0
 FON}
 M=450 \overline{I}=`N1.M?
 G=4
 H=(UIT+1) - U(II) (XXIT+1) - x(I))
 V(T:OM, (H) G) * Or(I)* Or(I)
 5 0
 G= V!N2, = - H* OY(:12) * OY(N2)
 t = E%- F,* H
 FO= F?NOR
 IF \overline{F}\mathrm{ ? NOf less S OR F? not gREATER G THFN GO TO FIN.}
 IF:F?.SE.S.OR.FZ.LF.G) GO TO 93
 FTM TJUALS go.
 F
 an कül= 41. 4?
 G=(V(I+1)-v(II))'&(XITY+1)={(ISI))
```

```
*)
```



```
 *CSLOPE
```



```
 1C(230),\eta(26O)
 g(1)=(Y(2)-Y(1))/{X(2)-X(1))
 NN=N-1
 Q(N)=(Y(N)-Y(N:N))/(X(V)-X(NV))
 O? 2 I =?,NN
 ?Q(T)=(Y(I+1)-Y(I-1))/(X(I+1)-X(I-1))
 CETUPN
*LSLOPE
```



```
 M(1)=0.%
 O(+1)=0.7
 2 3(T)=(Y(I+1)-Y(I-1))/(X(I+1)-x(I-1))
 RENURN
```


### 2.1.4. Discussion of some test runs

The effects of pre-treatment procedures of grain size analysis and the reproducibility and accuracy of the Cahn sedimentation system were studied using test runs of eight deep-sea sediment samples and four samples of ground analytical quartz (Table 2). Each quartz sample contained a narrow size range of particles which had been separated out by repeated settling and decantation. The sediments used were near-surface samples from cores taken from the Panama Basin. The techniques for sample preparation and sample runs described in sections 6.l.l-6.l. 3 were used.

### 2.1.4.1. Reproducibility

Reproducibility was assessed by recovering and rerunning the same sample a number of times. The frequency curves of four to five natural samples could be reproduced well (Figure 2a). For others, variations in general shape, presence of peaks, relative heights of the peaks, and positions and shapes of the peaks may occur (Figure 2 b ). There seems to be no way to generalize or systematize the variations observed. On the other hand, the quartz samples show excellent reproducibility (Figure 2c). If we can assume that the quartz samples received no preferential treatment in analysis, then this high reproducibility suggests that the source of variability in the natural samples are actual variations in the settling velocity distribution of the sample rather than analytical sources.

The possible sources of variations are:

1. Flocculation and/or disaggregation of cohesive particles while settling or during storage prior to settling.
2. Changes in the shape and size of material during recovery or resuspension.
3. Dissolution of silica or carbonate.
4. Losses of material during recovery.

Varying the amount of smoothing by either multi-point moving averages or by the smoothing parameters in the cubic spline fit algorithm does not significantly change these results.

While it seems reasonable to expect that careful laboratory preparation and running of multiple splits of samples will on occasion produce closely comparable frequency distributions, it is impossible to anticipate to what extent, if any, the effects of flocculation of cohesive material, of mineral

Table 2 Samples used in test runs on CAHN sedimentation balance.

Accession No.	Core No.	Depth in Core cm	$\begin{aligned} & \text { Numb } \\ & \mathrm{H}_{2} \mathrm{O}_{2} \text { Pre- } \\ & \text { treatment } \end{aligned}$	of Runs   No Pretreatment
POO9729	Y69-108 MGl	0-1	3	0
POO9730	Y69-108 MGl	5-6	3	0
POO9731	Y69-108 MGl	15-16	4	0
GOO9224	Y69-108 MGl	0-2	0	1
GOO9225	Y69-108 MGl	10-12	3	2
GOO9226	Y69-106 MGl	2-4	3	2
GOO9227	Y69-106 MGl	7-8	3	2
GOO9228	Y69-106 MG2	0-2	3	2
Quartz Mode	Phi Interval Decanted for	$\begin{gathered} \text { Number } \\ \text { runs } \\ \hline \end{gathered}$		
A	4.5-5.0	3		
B	6.0-6.5	1		
C	7.5-8.0	3		
D	8.0-8.5	3		
A, B, C	Combination	1		
A, B, C, D	Combination	3		




Figure 2. Reproducibility of frequency curves obtained when silt sample material is recovered and rerun thr ough CAHN sedimentation system. Data points are at 0.1 phi intervals. No smoothing of curves was done. (a) Accession No. PO 09729 (b) Accession No. GO 09227 (c) Quartz Mode D
dissolution or precipitation, and of sample splitting have altered a given distribution. In light of this, it is unlikely that in the near future, the techniques of sedimentation analysis of silt sized deep-sea sediment on the CAHN will improve sufficiently that the graphical results can be used for purposes other than qualitative comparison.

This limitation might be overcome in future studies in one or more of three ways:

1) Flocculation effects might be reduced by running smaller samples and by truncating the size range studied at a coarser lower limit.
2) If the time required to digitize analog records could be reduced more runs of the same sample would be feasible and statistical comparisons of the curves might be possible.
3) The possibilities of quantitative comparison of broader portions of the curve might be pursued.

### 2.1.4.2. Smoothing

Raw data from natural and quartz sampes were run through SIZEBAL repeatedly to test the effects of moving multipoint smoothing averages and of the smoothing parameters in the cubic spline fitting routine on the shapes and positions of frequency curve models.

Use of the smoothing averages has the effect of removing small shoulder and tail peaks and of lowering the curve as a whole. The effects appeared in multiple as well as single mode runs (Figure 3).

Using the cubic spline fitting routine with the smoothing parameters equal to zero rather than the point-slope differentiating routine increases the roughness slightly, though no modes were moved, added or deleted. (Figure 4). The half-height width of the peaks are slightly reduced.

Increasing the values of smoothing parameters has the effect of moving coarse silt modes towards the fine end of the scale (Figure 4). At smoothing values recommended by the spline fit algorithm this displacement ranges from 0.2 to 0.5 phi units. Increasing the smoothing has the effect of filling in valleys in the curves and rounding the shoulders of peaks. Use of this routine to differentiate and smooth grain size curves is not recommended.

### 2.1.4.3. Pretreatment

Oxidation of or ganic matter with hydrogen peroxide treatment did not seem to effect the shape of the frequency curve in two out of four samples (Figure 5). In the other cases the variability among the pre-oxidation curves and among the post-oxidation curves precluded any comparison. The effects of organic matter removal are probably disaggregation of fecal pellets and


Figure 3. Effects of different smoothing functions on the frequency curves of one run of Accession No. GO 09227. Data points at tenth phi intervals. The frequency curves are attatched to the appropriate vertical scale.
a) No smoothing
b) 3-point moving average smooth of cumulative curve only.
c) 5-point moving average smooth of frequency curve only.
d) Both 3-point and 5-point moving averages used.


Figure 4. Effects of different values of the smoothing parameter $S$ in the cubic spline fitting algorithm on the results of one run of Quartz Combination ABCD. Data points at tenth phi intervals. Vertical arrows show the displacement of the peak of the coarsest mode with the increase in smooth-
ing parameter, $S$.
a) $\mathrm{S}=0$
b) $\mathrm{S}=5$
c) $\mathrm{S}=10$


Figure 5. Effects of pretreatment of a natural sample (GO 09225) with hydrogen peroxide. Data points at tenth phi intervals; curves smoothed with both 3 -point and 5-point moving averages.
a) Two runs of the same split with no organic material removed by $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment.
b) Three runs of another split treated with $\mathrm{H}_{2} \mathrm{O}_{2}$.
unknown effects on the settling velocities of carbonate material and fragile silt-sized tests.

### 2.1.4.4. Accuracy

The accuracy of the CAHN analysis might best be tested by running through the system a series of samples containing particles which have been artificially manufactured out of material of known density to a known shape and then size graded. Sizes predicted from settling velocity measurements could then be compared with measured dimensions. This exercise might assess to what extent the principles and assumptions of Stokes'Equation are approached in the settling apparatus. Empirical corrections to the equation might be derived. To date such an ambitious experiment has not yet been under taken.

In a smaller scale experiment the size of ground analytical grade quartz was measured in two ways. Subsamples of approximately one phi grain size width were obtained by repeated settling and decantation. Two fine silt sized subsamples were run through both the CAHN and a Coulter Counter. The Coulter Counter produces a voltage proportional to the volume of each particle; counts of particles within narrow volume limits can be made electronically and a volume distribution computed. When the output from both instruments is inter preted in terms of spherical quartz grains the frequency distributions are essentially identical (Figure 6). It can be inferred from this that the quartz grains have a high sphericity and that the effects of deviations from conditions of pure Stokes' settling are minor. Thus, for inert, spherical particles sedimentation analysis on the CAHN is a true predictor of grain size. Unfor tunately, such particles only vaguely resemble those mixtures of cohesive and non-cohesive materials commonly found in marine sediments. More experimental work is needed to understand the true size properties of natural samples and their response in a settling tube.
2.2. Separation of size classes of silt-sized material for compositional studies

The separation of grain size classes within the silt range for composition studies has been mentioned in section 2.1.1.2. and can be done by decanting.
3. Analysis of coarse ( $>0.063 \mathrm{~mm}$ diameter) sediment components
3.1. Instrumentation for size analysis and separation of size components

The analysis of the size distributions of material in the range of 2 mm to less than 63 microns in hydraulic diameter is performed by settling through a water filled column. This technique, although not new, has been


Figure 6. Frequency curves of Quartz Mode C produced by a) CAHN Sedimentation System and by b) Coulter Counter. Data points in CAHN frequency curves are at tenth phi intervals. Background noise from fluid in Coulter Counter runs was negligible. Data points in Coulter Counter frequency curves are the spherical equivalent diameters at the mid-points of the volume channels in which data was collected.
modified to reduce several sources of error and lower the amount of labor invested in each sample. The errors typically found in this technique are: 1) concentration effects, 2) wall effects, 3) time error in the introduction of the sample, 4) low mass resolution, and 5) inadequate definition of the size of the distribution due to wide digitizing intervals. The equipment was designed to minimize error contribution of each of these sources.

The analyzer consists of a polyvinylchloride tube 230 cm long with an inside diameter of 20 cm (Figure 7). It is supported by a wall mounted bracket at its top. The bottom 40 cm of the tube is removable and is interchangeable with the size separation unit described later. Attached to the upper mounting bracket is the semiconductor strain element and the sample introduction mechanism (Figures $8 a$ and $b$ ). The sediment accumulation pan, fabricated from low density polyethylene, hangs from the semiconductor element by a length of cotton/dacron thread. The settling distance is approxiamtely 215 cm .

The sample introduction mechanism is mounted to a vertical shaft which allows it to rotate in the horizontal plane as well as to slide vertically. The holder may rest in one of three positions to facilitate sample loading. The sample is introduced by placing it on a removable pan and placing the inverted pan into the holder. The holder is later moved from the ready position into the run position where the holder settles on a pneumatic damper. As the holder reaches the end of its travel, the pan trips a micro-switch activating the digitizing equipment and immerses the sample in the water at the top of the column, releasing the sediment.

Size separation of individual modes in order to facilitate compositional examination is accomplished by interchanging the bottom portion of the settling tube and rerunning a split of the sample. The size fractionation unit (see Figures 9 a and b ) is designed to separate up to six size fractions during a single settling of a sample. The unit consists of six conical cups 64 mm in diameter and 65 mm high. An externally rotatable disk is used to occlude all but one of the sample cups during any selected time interval (corresponding to a particular size interval). Information on the modal distribution obtained from the cumulative weight versus settling velocity data are used to calculate a collection time window for each size fraction. At the completion of the size separation, a valve at the apex of each cup is opened and the individual size fractions are flushed into separate beakers for microscopical or chemical examination.

The digitizing system consists of a sampling rate programmer, an analog to digital converter and a high speed paper tape punch (Figure 6). The sample rate programmer has selectable digitizing rates from 400 samples per minute to one sample per minute. Additionally, the unit can be programmed to change its sampling rate after reaching a selected number


Figure 7. Large settling tube for size analysis and separation of size components of coarse grained sediment. Strip chart recorder and high speed paper tape punch are shown to the left of the 230 cm long and 20 cm wide settling tube (see section 7 ).

a


Figure 8. $\quad \mathrm{a}$ and b . Top assemblies of large settling tube.


Figure 9. a. Details of bottom assemblies of large settling tube. The bottom assembly for size analyses is attached to the settling tube; the one for subsampling size classes is standing to its right.
b. View from above into 6 outlets to collect the various subsamples for compositional studies. The protecting disc which allows one to subsample has been removed.
of data points. The unit can be programmed for automatic shut-off after any predetermined number of sata points up to a maximum of 47,000. The analog to digital conversion is 11 binary bits plus sign ( 2047 full scale). Currently, calibration yields 3.125 counts per milligram true weight on the pan. The system noise when referred to sample weight is 0.5 mg maximum deviation during a 10 minute period; however, this figure is dependent upon the building vibration level.

Many oceanic sediments with particles in the size range 63 mm to 2 mm contain material of biological origin. These biogenic particles include foraminifers, radiolarians and pelagic gastropods. Foraminifers and gastropods have internal cavities in their tests which retain air when placed directly in water. The technique described below is an attempt to wet the test cavity so that consistent mass estimates and settling velocities may be calculated. Tests not wetted internally tend to float on the surface of the column and fail to settle. Partially wetted tests settle much slower than their wetted counterparts and, hence, give broader distributions.

The sample is dried at $80^{\circ} \mathrm{C}$ for a period of 24 hours and a split of about 400 to 800 mg is placed in a 10 ml beaker. Approximately 5 ml of a reagent grade acetone is added and the sample placed into a vacuum desiccator which is then evacuated to 300 torr. The dessicator pressure is cycled every 30 seconds for a period of 3 minutes between ambient room pressure and 300 torr, after which time the remaining acetone is diluted with 3 to 4 ml reagent grade $95 \%$ ethanol and the pressure cycled as before. The supernatant is decanted, 5 ml of $2 \%$ aqueous solution of sodium hexametaphosphate is added and the pressure again cycled. The sample may be stored in this form in a closed container until the analysis can be run. Care must be exercised during the entire process not to allow the material to desiccate. Prior to placing the sample on the removable pan, excess fluid should be decanted. The sample pan's surface is moistened with a $10 \%$ aqueous solution of KODAK "PHOTOFLO." This treatment produces a surface tension sufficient to retain large particles while the pan is inverted prior to release into the column. Care must be taken to limit the amount of fluid present on the pan. Too much fluid may allow the sediment to drip off the pan while the pan is in inverted position.

### 3.2. Data reduction and presentation

3.2.1. Explanation of computer programs

The raw data output by the large settling tube consists of a sequence of integer numbers punched on to paper tape at varying time intervals. These numbers are proportional to the output voltage of the strain gauge, and hence are proportional to the weight of accumulated sediment on the collection pan at each given time. The FORTRAN program *GRAINSIZ processes this raw data for each sample, and produces the following types of final output (see Table 3).

Example of data generated by the large settling tube system for size analyses of coarse ( $>0.063 \mathrm{~mm}$ diameter) components of pelagic sediments (compare Fig. 10).

StV= fn२Clajso:




Table 3 continued



1. Computer plotted cumulative and frequency curves of the sample's grain size distribution (see Figure 10).
2. A table containing the cumulative and frequency percentages at. 05 phi intervals.
3. A table listing the grain size statistics calculated by the techniques of Inman (1952) and Folk and Ward (1957).

In addition, the program prints out various types of intermediate data, and has several options for punching raw data and/or frequency percent data on cards.

The computer program is internally documented, hence computational details need not be fully elaborated here. The following is a brief summary of the primary functions of the program's subroutines:

SUBROUTINE READIN: This subroutine reads in the values put out by the strain gauge and converts this sequence of values (voltages) to a sequence of cumulative weight percentages. It also reads in control cards which contain parameters which determine output and data smoothing options used in subsequent subroutines. The subroutine is presently designed to handle up to 1104 data points per sample. This corresponds to approximately 32 minutes of data at the present sampling scheme. Each data set may be larger than 1104 data points but the excess data will not be reduced.

SUBROUTINE SETIME: This subroutine associates a settling time with each data point. It assumes that the first data point occurs at 0.0 seconds, that the first 200 data points are taken at. 666 second intervals, and that all subsequent data points are taken at 2.368 second intervals.

SUBROUTINE GIBBSIZE: This subroutine calculates the grain size associated with the settling times which correspond to each data point. Grain sizes given are for spheres of density 2.65 $\mathrm{g} / \mathrm{cm}^{3}$. The following equation of Gibbs et al., (1971) is used to determine grain size from settling velocity:

$$
\mathrm{r}=\frac{0.055804 \mathrm{v}^{2} \rho_{\mathrm{f}}+\sqrt{0.003114 \mathrm{v}^{4} \rho_{\mathrm{f}}^{2}+\left[\mathrm{g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)\right]\left[4.5 \eta \mathrm{v}+0.008705 \mathrm{v} \rho_{\mathrm{f}}\right]}}{\left[\mathrm{g}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{f}}\right)\right]}
$$



Figure 10. Size frequency of grain size data listed in Table 3. Units in phi, tick marks each 0.05 phi.

$$
\text { where: } \quad \begin{aligned}
\mathrm{v} & =\text { velocity in } \mathrm{cm} / \mathrm{sec} . \\
\eta & =\text { dynamic viscosity of fluid in poise } \\
\mathrm{g} & =\text { acceleration of gravity }\left(\mathrm{cm} / \mathrm{sec}^{2}\right) \\
\mathrm{r} & =\text { sphere radius in } \mathrm{cm} . \\
\rho_{\mathrm{f}} & =\text { density of fluid in } \mathrm{g} / \mathrm{cm}^{3} \\
\rho_{\mathrm{s}} & =\text { density of sphere in } \mathrm{g} / \mathrm{cm}^{3}
\end{aligned}
$$

It should be noted that the equation in Gibbs et al.is incorrect due to a printing error. The last term under the radical reads $\mathrm{v}^{2} \rho_{\mathrm{s}}$ whereas it should read $v^{2} \rho_{\mathrm{f}}$. (M. D. Matthews, 1974, personal communication)

These grain sizes (in cm ) are subsequently converted to sizes in terms of phi units, where

$$
\text { phi }=-\log _{2} \quad\left(\frac{\text { diameter in } \mathrm{mm}}{\operatorname{lmm}}\right) \quad(\text { Krumbein, 1938) }
$$

SUBROUTINE FIXENDS: This subroutine searches the data set to locate the start of significant accumulation of sediment on the collection pan. It then rescales the raw data. See comment cards 587 to 606 for details.

SUBROUTINE INTERPOL: This subroutine uses linear interpolation to determine the cumulative percentages at even. 05 phi intervals, beginning at -2.00 phi ( 4 mm ) and ending at $5.05 \mathrm{phi}(.0302 \mathrm{~mm}$ ).

SUBROUTINE PTSMOOTH: This subroutine is a program option which may be used to smooth the raw input data. It uses an eleven point (maximum) smoothing function described by the following general formula:

$$
\hat{v}_{i}=\frac{w_{1} v_{i-5}+w_{2} v_{i-4}+w_{3} v_{i-3}+w_{4} v_{i-2}+w_{5} v_{i-1}+w_{6} v_{i}+w_{5} v_{i+1}+w_{4} v_{i+2}+w_{3} v_{i+3}+w_{2} v_{i+4}+w_{1} v_{i+5}}{2 w_{1}+2 w_{2}+2 w_{3}+2 w_{4}+2 w_{5}+w_{6}}
$$

where $\mathrm{V}_{\mathrm{i}}=$ unsmoothed value of variable V at data point i , and $\mathrm{W}_{1}$ through $W_{6}$ are weighting factors which the data points before and after data point i are multiplied by and summed in order to return the smoothed value $\widehat{V}_{i}$ for data point $i$.

If smoothing of the raw data is desired, the weighting factors are read in on the program control card. See comment cards 737-759 for additional details.

SUBROUTINE FVSMOOTH: This subroutine is a program option which may be used to smooth the derived frequency distribution. It is similar to SUBROUTINE PTSMOOTH except that it uses a five point (rather than an eleven point) smoothing function. This function is given hu.

$$
\hat{v}_{i}=\frac{W w_{1} v_{i-2}+W W_{2} v_{i-1}+W W_{3} v_{i}+W W_{2} v_{i+1}+w w_{1} v_{i+2}}{2 W w_{1}+2 w w_{2}+W w_{3}}
$$

where $W W_{1}, W W_{2}$, and $W W_{3}$ are weighting factors.
See comment cards 791-796 for additional details.
SUBROUTINE HILOW: This subroutine limits the output data to the size range for which sediment was present in the sample.

SUBROUTINE FREQCALC: This subroutine takes the sequence of cumulative percentages from SUBROUTINE INTERPOL and differentiates this data to determine the frequency percentages in each. 05 phi size class. It also calls SUBROUTINE FVSMOOTH if smoothing of the frequency curve is desired. See comment cards 864-872 for important details.

SUBROUTINE SETOUT: This subroutine prints out the final cumulative and frequency percent data. This data is punched onto cards, or output to a file, if desired.

SL゙BROUTINE GSPLOT: This subroutine plots the cumulative and frequency curves on the Calcomp plotter. Note: the frequency curve is plotted. 025 phi to the right of its proper position. (See comment cards 864-872 for details.)

SUBROUTINE STATS: This subroutine calculates grain size statistics for each sample by the Inman and the Folk and Ward techniques. The following equations are used for these calculations:

Inman statistics:

$$
\begin{aligned}
& \text { Median }=\phi_{50} \\
& \text { Mean grain size }=\frac{\phi_{16}+\phi_{84}}{2} \\
& \text { Mhi standard deviation }=\frac{\phi_{84}-\phi_{16}}{2}
\end{aligned}
$$

Skewness $=\frac{\text { Mean }- \text { Median }}{\text { Phi standard deviation }}$
Second skewness measure $=\frac{1 / 2\left(\phi_{95}+\phi_{5}\right)-\text { Median }}{\text { Phi standard deviation }}$
Kurtosis $=\underline{\underline{1 / 2}\left(\phi_{95}-\phi_{5}\right)-\text { Phi standard deviation }}$
Phi standard deviation

Folk and Ward statistics:
Mean $=\frac{\phi_{16}+\phi_{50}+\phi_{84}}{3}$
$\begin{aligned} & \text { Standard deviation } \\ & \text { ('sorting'") }\end{aligned}=\frac{\phi_{84}-\phi_{16}}{4}+\frac{\phi_{95}-\phi_{5}}{6.6}$
Skewness $=\frac{\phi_{16}+\phi_{84}-2 \phi_{50}}{2\left(\phi_{84}-\phi_{16}\right)}+\frac{\phi_{5}+\phi_{95}-2 \phi_{50}}{2\left(\phi_{95}-\phi_{5}\right)}$
Kurtosis $=\frac{\phi_{95}-\phi_{5}}{2.44\left(\phi_{75}-\phi_{25}\right)}$
where $\phi_{x}=$ the phi value for which $x$ percent of the sample is coarser.

## Preparation of Control Cards

Two control cards per sample are required for program *Grainsiz. The first of these cards contains the accession number for the sample, all input parameters required for computation, and variables which control output and computational options. Card 2 contains any 40 character descriptive title for the sample. All input variables are integers with three exceptions. The ACCNO (the accession number), TITL(2) (the user's name), and the 40 character descriptive title are all alphanumeric. The integer variables must be right justified whereas the alphanumeric variables may appear anywhere in the designated field.

The variables are:
TEMP: The temperature of the fluid during the settling tube run. Must be an integer between 20 and $29^{\circ} \mathrm{C}$.

ACCNO: The sample's accession number, or any other identifier. May be any seven characters, including blanks.

ISAVE: A one digit integer which reduces control card preparation in computer runs involving more than 1 sample.

If ISAVE is zero, all the required input variables must be input for each sample.

If ISAVE is non-zero, only TEMP, ACCNO, and the 40 character title must be input for the second through last samples. All other variables will be assumed to be the same as for the first sample.

TITL(2): The user's name. May be up to eight characters long. If left blank, the output will be labeled with the name Chriss.

ISMOOTH: A one digit integer which determines whether data is to be smoothed, as well as when in the program the smoothing is to occur.

If ISMOOTH is zero (or blank), no smoothing is performed.
If ISMOOTH is 1 , raw data is smoothed.
If ISMOOTH is 2 , frequency percent data for each. 05 phi interval are smoothed.

If ISMOOTH is 3, both the raw data and the frequency data are smoothed.

Wl through W6: Two digit integers. These are the weighting factors used in smoothing the raw data. They may be left blank if ISMOOTH is zero, blank, or 2. At least one must be non-zero if ISMOOTH equals 1 or 3 (raw data to be smoothed).

WWl through WW3: Two digit integers. These are the weighting factors used in smoothing the frequency percent data. They may all be left blank if ISMOOTH is zero, blank, or l. At least one must be non-zero if ISMOOTH is 2 or 3 (frequency data to be smoothed).

NOSTATS: A one digit integer. If non-zero, calculation of grain size statistics is suppressed. If zero (or blank), statistics are calculated.

NOPLOTS: A one digit integer. If non-zero, plotting of cumulative and frequency curves is suppressed. If zero (or blank), plotting is done.

IF PUNCH: A one digit integer which controls punching of data or output of data to a file. Equipping LUN 40 to the card punch produces punched output whereas equipping LUN 40 to a file outputs the data to a file.

If IF PUNCH is zero (or blank), data is not punched onto cards or output to a file.

If IF PUNCH is 1 , raw data only is punched or output to a file.
If IFPUNCH is 2 , phi values and corresponding frequency percentages are punched or output to a file.

If IF PUNCH is 3, both raw data and frequency data are punched or output to a file.

IMPORTANT: If punched output is desired, the punched output must be labeled. See section regarding this under program execution.

## Control Card Set Up

Card 1:

COL.	VARIABLE
$1-2$	TEMP
$4-10$	ACCNO
12	ISAVE
$14-21$	TITL(2)
23	ISMOOTH
$25-26$	W1
$28-29$	W2
$31-32$	W3
$34-35$	W4
$37-38$	W5
$40-41$	W6

Card 1 continued:

COL	VARIABLE
$43-44$	WW1
$46-47$	WW2
$49-50$	WW3
52	NOSTATS
54	NOPLOTS
56	IFPUNCH

Card 2:

COL.
VARIABLE
1-40 Descriptive title for sample. Up to 40 characters.
REPEAT CARDS 1 AND 2 FOR EACH SUBSEQUENT SAMPLE

## Program Execution

Prior to execution of $*$ GRAINSIZ, the raw (unformatted) paper tape data must be run through the assembly language program *SJRUN in order to produce data in a format compatible with FORTRAN programs. See writeup on $* S J R U N$ for instructions on use of this program.

Execution of $*$ GRAINSIZ itself is most conveniently performed from remote teletype terminals. For teletype operation, the control cards must be stored under some file name, and the actual data set must be stored under another file name. Running procedure from teletype is as follows:
\#Equip, $7=$ (Name of file containing 2 control cards per sample)
\#Equip, $6=$ (Name of file containing raw data output from *SJRUN. A "nines card" must separate the data sets from separate samples. This "nines card" will automatically be supplied by *SJRUN and consists of the integer 9999 in any position of the data field. It may be in the last field of the last card containing true data, or may be on a separate card following the data set.
\#Equip, 40 = PUN (if punched output is desired)
(see Note below regarding labels.)
\#Equip, 40 = ("some file name") if oatput is to be directed to a saved file. Note: This file name must have been created prior to program execution.
\#LOAD, *BGRAINSI, L=*GLIB (CR)
RUN (CR)
(Computer will now respond by typing RUN again)
(Finally, it will respond "End of FORTRAN Execution")

## \# LOGOFF

Note: (CR) means "press carriage return."
*BGRRAINSI is the binary version of *GRAINSIZ
*GLIB is a program library containing plotting subroutines specific to the OS-3 operating system.

The following commands are required if punched and interpreted output is desired. The last two may be omitted if the output is to be punched but not interpreted.

$$
\begin{aligned}
& \text { \# LABEL, } 40 / \text { / USER NAME> } \\
& \text { \# LABEL, } 40 \text { / <JOB NUMBER> } \\
& \text { \# LABEL, } 40 / \text { INTER PRET }
\end{aligned}
$$

### 3.2.2. Program listing

The program listings for GRAINSIZ and *SJRUN can be found on the following pages:

```
 PROGRAM GRAINSIZ
C
 #***********WRITTEN OY TERRY CHRISS, OCEANOGRAPHY, OREGON
 ************STATE UNIVERSITY, 1975
 COMMON CUMPCT(1110),NEHV(1110)
 REAL NEMY
 INTEGER TEMP , W3,H4,H5,H6,WH1,NH2,WH3
 INTEGER H1 W2%H3,H4, W5,H
 REAL MINPHI,HIPHI, LOWPHI
 OIYENSION TIME(1110)
 DIYENSION DPHI(11110), OCUMPCT(150)
 DIMENSION DDPHIM15J),OC
 DIYENSION FCUMPCTIII10I
 DIMENSION TITL(10),TITLL(5)
C
C THE FOLLOWING THO CALL STATEMENTS HAVE THE EEFFEECT ANO TITL(10)
C OF REEURNING THE CURRENT OATE AND TIME TOGTITL(O) ANO
 CALL OATE (TTITL(9)\(10))
C FOLLOWING STATEMENTS AUTOMATICALLY DIRECT OUTPUT TO tHE
C FOLLOWING STA
 CALL UNEQUIP(30)
c
C FOLLOWING STATEMENT MAKES TITL(3) TO TITL(3) ELANK
```



```
C
II=1
C1 CALL REAOIN ITEMP,ACCNO,TITL,NPTS,ISMOOTH,H1,W2,
 2 CALL REAOIN,WTEMP,ACCNO,TITTL,NPTS,ISMOOTH,W1,W2,WW2,WW3,II)
C THE FOLLOWING STATEMENT INSURES THAT THE FOLLCWING CALL
C STATEMENTS ASSOCIATED WITH THE PLOTTING ROUTIAE ARE ONLY
C CALLED ONCE PE, COMPUTE₹ RUN, NOT ONCE PER SAMPLE
 IF (II .NE. 1) GO TO 40
C FOLLOWING STATEMENT BYPASSES PLOTTING COMMANDS IF fLOTTING
 IS NOT DESIRED.
 IF (NOPLOTS .NE. O) GO TO 40
C{**
C **SEST,
C LUN NUMBER 1O TO THE CALCOMP PLOTTER.
```



```
 OIHENSION VOLT(1110),VOLTDIFF(1500)
 EAL LASTITL
 OIYENSION JVOLT(1110)
C FOLLOWING EOUIVALENCE STATEMENT IS SIMPLY TO REDUCE MEMOPY
C REOUIQE MENTS OF THE PROGRAM. WE ARE DONE USING JVOLT
C POIOR TO THE USE OF VOLTDIFF.
 EOUIVALENCE(JVOLT, VOLTOIFF)
C
 OIYENSION TITL(10),NULL(6),TITLL(5)
 INTEGER TEMD
 INTEGER W1,W2,W3,W4,W5,W6,WH1,WW2,WW3
NOTE: IN FOLLOWING READ STATEMENT, ISMOOTH CETERMINES
```



```
CPAW DATA (INPUT VOLTAGESI, THE FREQUENCY DERCENTAGESSGOL ONOT SHESE, OR NOT AT ALL SEE COMMENT CARDS FOLLOWING
 ON GOTH OF THESESOR NOT AT ALLETAISEE
WI THROUGH WS ARE WEIGHTING FACTORS FOR THE SMOOTHING ROUTINE
CALLED OTSMOOTH WHICH IS A MAXIMUM ELEVEN DOINT
CALLED OTSMOOTH WHICHIIS A MAXINUM ELEVEN DOINT DATA.
CWWI,WHZ,WW3 ARE WEIGHTING FACTORS FOR THE SMOCTHING ROUTINE
CALLED FVSMOOTH WHICH IS A MAXIMUM FIVE POINT SMOOTHING
FUNCTIJN WHICH MAY BE APPLIED TO THE FREQUENCY
PERCENTAGE DATA.
IF NOSTATS AND NOPLOTS ARE ZERO (OR BLANK), BOTH GRAIN
SIZE STATISTICS AND PLOTS OF SIZE DISTRISUTIOAS ARE DONE,
C IF NOSTATSS AND NOPLOTSSARE NONTZEROQ CALCULATION OF
IF IFPIJNCH IS ZERO, DATA IS NOT PUNCHED ONTO
 IARJS. IF IFPUNCH IS 1, DAW DATA ONLY IS OUNCHED ON CARDS.
 IF IFPUNCH IS?, PHI VALUES AND CORRESPONDING FREQUENCY
 PERCENT AGES ARE, PUNCHED. IF IFPUNCHYS I S.
 IF ISAVE IS ZERO, TITL(2), ISMOOTH, WEIGHTING FACTORS,NOSTATS,
 NOPLOTS. AND IFPUNCH MUST, BE INPUT FOR EACH SAMPLEE.
 IF ISAVE IS NON-ZERO, THESE PARAMETERS MUST ONLYYBE TO BE
 THE SAME FOR GLL SUSSEQUENT SAMPLES. THUS FOR THE
 SECOND TO LAST SAMPLES, ONLY THE TEMP ANO
 TITLE VEESIGE INPUT.
 TITL(?) SHOUL? GE THE NAME OF THE USER&GIIT IS USEO IS CHARACTER
 TO LASEL THE PLOTS.OTITL(4) THPQUGH
 REAO(7,7) TEMP,ACCNO,ISAVE,TITL(2),ISMOOTH,W1,W2,W3,W4,W5,W5,
 1 WW1,WH2,WWJ,NOSTATS,NOPLOTS,IFPUNCH, (TITLL(J),J=1,5)
C, FOR:4AT(I2,1X,A7,1X,I1,1X,A , 1X,I1,1X,9(I2,1X),3(II,1X),/,5AG)
C THE FOLLOWING STATEMENT CHECKS FOR AN END OF FILE ON
THE FOLLOWING STATEMENT CHECKS FOR AN END OF FILE ON BEING
C LOGICAL UNIT 7 (LUN T) ON WHICH THE HEADER CAFOS ARE BEING
C DATA SET WAS THE FINAL DATA SET. IF SO. WE TERMINATE EXECUTION
OF THE DPOGQAM.
 IF(EOF(7)) GO TO 30
 IFIEOF(7
THE FJLLOHING PLOTTING STATEMENT IS TO CLEAR OUT
C THE PLOTTING GUFFEP., CALLOLOT(10.,25.0,-3)
31 CONTINUE
C NEXT STATEMENT INSURES THAT PLOT WILL BE LABELED WITH THE
C NEXT STATEMENT INSURES THAT PLOT WILLL BE LABELEDWI WH
IF(TITL(2) •EO. BH , TITL(2) = BHCHRISS
C FOLLOWING IS A POUTINE TO SAVE THE INPUT PARAMETERS
C FOLLOWING IS A POUTIME
 IFEII NE.N'GO TO 388.9
 LASTITL=TITL(2)
 LISMCOTH=ISMOCTH
 LASTW1=N1
 LASTW2=42
 LASTW3=W3
 LASTWW4=W4
 LASTW4=W4
```



```
 LASTHE=WG
 LASTWW1=WW1
 LASTWWH=WW年
 VVSTATS=NOSTATS
8388 IFFPUNCHEIFPUNCH
 IG (ISAVE SEOOO)
 ISYOCTH=L
 H2=LASTH2
 H4=LASTW4
 W5=LASTW5
 WW1 = LASTWH1
 WWZ=L ASTWWZ
 WW3=LASTWH3
 NOSTATS=LNOSTATS
 IFOUNCH=LIFPUNCH
8900 COYTINUE
C
C NOTE: THE PROGRAM IS PRESENTLY SET UP FOR
C REOIUCTION OF UP TO 11O4 DATA POINTS PER DATA SET. THIS
CREQIJCTION OF UP TO IIOLA OATA POINTS SPER DATA SET.
```



```
C SAMPLIVG SCHEME PRESENT INUTHNE DATA SET: THE EXCESS DATA
C IS DUMDE
C NEXT SECTION READS THE RAW dATA qUT OUT bY THE STRAIN GAUGE
 M=1
 NO 10 k=1,134
C REAG (6,1) (JVOLT(I),I=M,N)
1 FOR:AAT(X,GIG)
C NEXT STATEMENT CHECKS FOR -NINES - CARO WHICH INOICATES THE
C END OF THE SATA SETSGA NNINESESCARO HILLGALWAYS BE ROSAD
```



```
C POINTS COMPRISE THE OATA SET.
 OO 421, I=M;N
 421 CJNTINUE
 M=4+6
 N=v+6
10 CONTINUE
C NEXT SEGTICN CHECXS TO SEE TF DATA SET IS LARGER THAN
C NEXT SECTICN CHECXS IF SOE ITF CONTINUES READING DATA UNTIL
C IIONINEATACAROIIS REAG, SUUG ALLL
423 RE(I,GE,185)GONTO, 12,
 O0 422 IO=1.6
 IF(NULL(IO).EO.9999) GO TO 12
 GOTO 423
422 COVTINUE
C NEXT SECTION CHANGES JVOLTS FROM INTEGER TO REAL.
 IO 20 I=1,NOTS
 IJ= 2[J+1=1,NPTS
 IJ=r J+1
 VOLT(IJ)=JVOLT(I)
 COVTINUE
C
```

```
3000 VO: 30GIFEI=2,NPTS}=VOLT(I)-VOLT(I-1
C NEXT SEこTICN PRINTS OUT TABLE OF OAW DATA AS WELL AS
C THE IIJTT SONTROL DARAMETERS.
 &OTTE(30,200) (TITL(J),J=1,2), (TITL(J),J=9,10)
```



```
7777 हO? (S)(30,7777)
 5 WFITE [3J,6) \triangleCCNO,(TITLL(J),J=1,5)
 5 FORMAT(1X,A,OMX,5A3)
 WRITE (30.7777)
 WOITE (35.4)
 4 FO२MATIIX,\not=TEMD ISMONTH W1 W2 W3 W4 W5 WG WW1 WW2 WW3 *.
 1#T=TUNCH NOPLCTSA)
 1 FFOUNCH,NOPLOTS
 WOITE (30,7777)
9996 WRITE(30.9996)
 EЭRYAT(14CX;#RA
 *RITE(30.9997)(VOLT(I),I=1,NPTS)
9797 EORYAT(XX:10(FE.0,1X))
5 FOP:1AT (2X,I2,5\dot{S},I1, 3X,7(1X,I2), 2X,I2, 2X,I2,5X,I1,7X,I:)
CFOLLOWING SECTION IS FOR PUNCHED OUTPUT. IF DESIREED.
 IF (IFPUNCH, EQ&TIO) GO TO 400, (TITL(J),J=9,10)
 WRITE (40,230) (TITL(J),J=1, 2), (TI
 WRITE (40,4) WPITE(4J,5) TEMP,ISMOOTH,W1,W2,W3,W4,W5,H6,WW1,WW2,WW3
 WRITE (4J,5) TEMP, ISMOOTH,W1,W2,
 IF(IFPUNCH .EO
 500 WPITE(4J.9996) (VOLT(I),I=1,NPTS)
400 COYTINUE
งvบvuvevvu00
****** NEXT SECTION CALLS SMOOTHING SUBROUTINE, IF DESIRED
 MEXT SECTION CALLS SYOOTHING SUBROUTINE,IF OESIREO
 INTERVALS ARE SMOOTHED
 IF ISMOOTH EQUALS 3. GOTH RAW DATA ANO FREQUENCY
 OERCENTAGES AT .O5 OHI INTERVALS ARE SMCOTHEE
 NOTE: SMOOTHING OF FREOUENCY PERCENTAGES IS DONE
 FROM SUZROUTINE FREQCALC.
 IF (ISMOOTH .EO. 1) GO TO 9098
CG998 CALL PTSMOOTH (VOLT,NPTS,W1,W2,W3,W4,W5,W6)
C
 WPITE(30.7777)
6565 FOPMAT(100X;\not=SMOOTHEO OATAF)
 WOTTE (39,7777) (VOLT(I),I=1,NPTS
5557 FOTTE(?),5557) (VOLT(I)
C
C NEXT SECTION MAKEG ALL VOLTAGES POSITIVE BY SUBTPACIING THE
CVVOLGGGMATTHE ORIGGIN
9999 MIVVCLT=VOLT(I)
C
ดดก๐
THIS SECTION CHECKS TO SEE THAT THE VOLTAGE IS CONTINUOUSLY ETTHER
 THIS SECTION CHECKS TO SEE THAT THE VOLTAGE ISS CONTINUOUSLY
 CAN OVLY QE OUE TO NOISE IN THE SYSTEM), IS SET EOUAL
 THE YOLTAGOGF THE ABEQRANT OATA OOINT IS SET EOUAL
 IF (VOLT:(I+I). .LT. VOLT(I)) VOLT(I+1)=VOLT(I)
500 WPITE(43,9996) (VOLT(I),I=1,NPTS)
400 COYTINUE
****** NEXT SECTION CALLS SMOOTHING SUBROUTINE, IF DESIRED
```



```
IF ISMOOTH EQUALS 3. BOTH RAW DATA ANO FREQUENCY
VOTEZ SMOOTHING OF FREOUENCY PERCENTAGES IS DONE FROM SUYROUTINE FREQCALG.
```



```
C. 9998 CALL PTSMOOTH (VOLT,NPTS,W1,W2,W3,W4,W5,W6)
TO THE VOLTAGE OF THE PREVIOUS DATA POINT.
```



315
315
3
315
315
315

317
319
19

319
3119
325

321
321
322
323

322
323

324 | 324 |
| :--- |
| 324 |
| 325 | $\begin{array}{r}325 \\ 325 \\ \hline\end{array}$ 327

329

32 | 329 |
| :--- |
| 329 | 330

330

331
332

332
333
33
334
335
336
336
337
3
337
339
33
339
340
340
341
341
342
342
343
343
344
345
346
347
348
349
349
350
350
351
352
352
353
354
353
354
355
355
355
357
355
357
358
358
359
359
360
360
361
361
362
361
363
363
364
365
365
367
365
367
363
368
369
370
371
371
372
372
373
374
375
375
376
377
377
379
379
380
381
382
382
382
383
384
385
385
385
387
389
389
389
360
391
307
304
395
395
397
393


399
400
401
402

```
Cl
~
```



```
THE DATA POINTS. USE SUSROUTINE FYSMOOTHTOTHANOIO THISSPROOGLEM.
 DATA POINTS. USE SUSROUTINE FV)
 REAL NEWV
 INTEGER W1;W2,W3,W4,W5,W6
 OIMENSION V(1110)
 N=\PTS-5
 00 10
 A=W1** (V (I-5)+V +V(I+5))
 C=N3*(V(I-3)+V(I+3))
 O=W4*(V(I-2)+V(IN+2))
 E=N5*(V(I-1) +V(I+1))
 F=W6*V(I)}NEWV(I)=(A+B+C+D+E+F)/(2*(W1+W2+W3+W4+W5) + W6
 OO 11 I=6,N
 V(I)=NEWV(I)
 RETURN
 ENO
C
```




```
C:
 SU3ROUTINE FVSMOOTH(V,L,M,NN,WW1,HW2,WW3)
```




```
 SEESUSROUTINE PTSMOOTH FOR COMMENTS. THISS SURROUTINEISG
 FUNCTIJV IS FIVE DATA POINTS, RATHER THAN ELEVEN AS IN
 SURROUTINE DTSMOOTH. THE QESULT IS THAT IM SUDOOUTINE
 SVSYOOTHN ONLYYOOTHE FIRST TWO AND LAST TWO OATA POINTS
 ARE NOT SMMOOTHED.
 PEAL NEWV COMPCT(1110), NEWV(1110)
 COY YOM CUMPCT WW1,WW2,WW3
 INTEGEP WW1,WW2,W
 OIYEN
 J=L+2
 0010 I=J,K
 A=WWI*(V位-2)+V(I+2))
 B=NN2*(V(I-1) +V(I+1))
 C=WAN* V(I)
 1 0
 NEWV(I) = (A+G+C) / (2*(WW1+WW2) + WW3)
 0ด̣ 1: I=J,k
 11 V(T)=NENVIT)
 QETJON
 ENO
C
C
THIS SUBROUTIME IS A GENERAL PUPPOSE SUGROUTTNE WHICH
THIS SUBROUTIME IS A GENERAL PURPOSE SUGROUTINE WHICH
CAN GEUSEJFOR SYOOTHTNG ANY OTSTRIGUTION．EITHER
OF A CUMULATIVE CR FREDUENCY NA TURE GROUGS WG AOE WETGHTING
WHOSE VALUE WE WISH TO SMOOTH．WI THROUGH WG WA WR THE DATA
FACTOPS WHICH THE DATA POINTS BEFOPE ANO AETER THE DATA
POINT IN DUESTION ARE MULTIPLIED BY AND THEN SUMMEOTO
ARRIVE AT A NEW SMOOTHET VALUE FOR THE VARIARLE AT OATA
OOINT．IF IFALL OF THE WEIGHTING VALUES APE
NON－ZERO，BY LETTING WI EQNAL ZERD．WE PEDUCE THE SMCOTHING
FUNCTION TO A NIAE POINT SYOOTH．IF BOTH WI ANO WZARE Z．
THE REESULTING SMOOTHING FUNCTION IS A SEVEN POINT SMOOTH：
LTXEWISE，IF WIFW2，A
SHOOTHING FUNGTION．BECAUSE OF THE PARTICULAR ALGORITHM USEO
＊＊IMODRTANT NOTE：BECAUSE OF THE PARTICULAR ALGOQI FM SINSEO
ARE NOT SMOOTHED．THIS MAY NOT．BE VERY IMPORTANT IN A CASE
WHERE THERE ARE MANY DATA OOINTS，SUT COULD LEED TO SOME
FUNNY LCOXING OATA IN A SITUATION WHERE THERE ARE VERY FEW
OATA OOINTS ANO THIS COULO EASILY BE ALTERE SYOTHAT，THESE
WITH A SMODOTHNG FUNCTION OF SMALLER SITE THAN THE RESTOFFILEM．
COMMON GUMPCT（1110）．NEWV（1110）
REALGENG
ज11110）
\(\mathrm{N}=\mathrm{VPTS}-5\)
\(A=W 1 *(V(I=5)+V(I+5))\)
\(B=12 *(V(I-4)+V(I+4))\)
```



```
NEWV（I）＝（A＋B＋C＋D＋E＋F）／（2＊（W1＋W2＋W3＋W4＋W5）＋W6） RETURN
\(C\)
```



```
SEE SUSROUTINE OTSMOOTH FOR COMMENTS．THIS SURROUTINE IS
俭
ARE NOT SMODTHED．
PEAL NEWV
INT EGE？WW1，WW2，WW3
OIYENSION V（1110）
\(x=1+2\)
0010
\(A=W I=J, K\)
\((V)-2)+V(I+2)\)
\(B=A N 2 *(V(I-1)+V(I+1))\)
\(N E W V(I)=(a+G+C) \quad(2+(W W 1+W W 2)+W W 3)\)
VOIIENENVII）
END
๑ดのด๑๐
```




MrNr

```
C
 SUBROUTINE HILON(DOPHI,LOWPHI,HIPHI,L,M,NN)
```




```
FOLLONING SECTION INSUPES THAT ONLY THOSE VALUESSON
```



```
IN STM SIMDLY ELIMINATES THE OUTPUT OF OATA FOQ ALLVVALUESSMINATING
OF ODPHI WHICH ARE GREATER THAN HIPHI, IN
1
 REAL LOWPHI
 OIMENSION DOPHI(150)
 DO 1 I=1,143 , EO. LOWPHI) LEI
 IF (DOPHI(I) :EO. LOWPHI) LEI
 CONTINUE
 NN=Y-L+1
 RETURN
 ENO
00%0000
```




```
 SUG ROUTINE FREQCALCIDCUMPCT, OOPHI,L,M,NN,FREGPCT,ISMOOTH,
 1 WW1,WW2,WW3)
```




```
 THIS SUGROUTINE TAKES THE CUMULATIVE PERCENTAGES
 THIS SURROUIINE OUMCT AND OIFFERENTIATES THIS DATA
 IN DATA APQAY OCUYDCT AND DIFFERENTIATES FREQUENCY PEQCENTAGES IN EACH .OS PHI
 INTEOVALAATES DERIVITIVES USING THE OIFFECENCE BETWEEN OATA PT
 T ESTIMATES DERIVITIVES OSSINGGTEGEF THE DERINGIVITIVE AT DOINT I
C***** NOTE:WHEN PLOTTED, THIS WILL WAVE THE EFFECT OF SHIFTING
C**** NOTE:WHEN PLOTTEDVTHIS WILL HAVETHE FFFECT OF SHI
```



```
C***** THE SUBQOUTINE GSPLOT CAN GE MODIFIEQ SO THAT OOSITION
```



```
C C
 OIMENSION FREOPCT (150), DCUMPCT(150)
 DIYENSION DOPHI(150)
 INTEGEQ WW1,WW2,WW3
C FOLLOWIVG SECTION INITIALLY SETS ALL FREQPCTS EQUAL TOGO.O.
```



```
C THISS IS TO INNSUQE THAT NO VALUU
C
C NEXT SECTICN SSTIMATES DERIVITIVES GY METHOO RESCRIGEDIN FIRST FEW
C. COMMENT CARJS. NOTE FHA FRERCT (LLI REMAINS ZEROM CEFINED
C
 K=L+1
 2 FOR PRCT'I'M= (OCUMPCT(I)-DCUMPCT(I-1))
 WRITE(30,5556), FREQPCTS GEFORE SMOOTHINGE)
5666 FORMAT(1H, 10x
6669 FORMAT(1H)
WRITE (30,5657) (FREQPCT (I), I=L,M)
6567 FORYAT(1X,1](F6.3,1X))
C
```

```
C. NEXT SECTION GALLS SUOOTHING SUGRDUTINE FVSMOCTH,
C IF SMOJTHING OE T EE EREQUENCY CUR
C4 CALL FVSMODTH(FREQPCT,L,M,NN,WH1,WW2,WH3)
C5 COVTINUE
C668 WRITE (30, б658), FFREQPRTS AFTER SMOOTHINGA)
 WRITE (30,6569) (FREQPCT(I),I=L,M)
 WRITE(30,55667)
 WRITE(30,0569
 RETURN
 ENO
C
```




```
 SUSROUTINE SETOUT (ACCNO,TITLL,ODPHI, OCUMPCT,FREGPCT,
 SUSROUTINE SETOUT(ACCNO,TITLL,ODP
C
C
THIS SUBRCUTINE POINTS OUT THE FINAL CUMULATIVE AND FREQUENCY
PERCENTAGE DATA. IT ALSO PUNCHES THIS DATA ONTO CAROS, IF
C DESIREJ.
 OIMENSION TITLL(5),ODPHI(150), DCUMPCT(150), FREQFCT(150)
 REMENSION HOHI,LCWPHI
C OF************* INTERPOLATION INTERVAL
```



```
 M WRITE(30,9)
 FORYA (30,7;777)
7777 FOरMAT{IH)
 WRITE (30,7777)(OOPHI(I),DCUMFCT(I),FREQPCT(I),I=L,M)
10 FORMAT (2X,F12,2,2X,F12:4,2X,F12.4;
7778 FRITE(30,77
 WQITE (30,7778)
C NEXT SECTION IS FCQ PUNCHED OUTPUT
 IF(IFPUNCH,EQ., 2) 6O TO 11
 GO TO 12
 11 WRITE(40,91 (ODPHI(I),DCUMPCT(I),FREOPCT(I),I=L,M)
 CONTINUE
 12 CONTINU
 RET
C
```




```
 SUQPOUTINE GSPLOTYTITLL,CUMWTP,FREQP,X,LOFHI,HIFHI,
 SUSPOUTINE GSSPLOTKTITNLI
CN:
 922
 9}92
 924
 925
 925
 927
 930
 931
 933
 933
 9334
 934
 935
 936
 937
 9}93
 940
 941
 943
 9444
 944
 945
 946
 949
 949
 950
 952
 953
 $954
 9.
 956
 \}95
 957
 958
 959
 960
 961
 962
 963
965
965
966
967
968
969
979
971
973
974
974
9745
976
977
97%
979
981
98%
983
983
984
986
```

```
C NICK PISIAS AT OSU. TTT USES PLOTTING COMMANDS
```



```
C AT OPESJN STATE UNIVVERSITYOUCTIONER ANDOLDNTING GOMPUTER
C 19ROJ,GAMSOPMYSHCNCAL REOORT NO. 180, PEFERENCE 7O-10,
C PROGRAMSO TECHNICALAREDORT NON IBOTGREUNIVERSITY
๑\Omega
 REALLLOPHI
 INTEGEROPENUPI OENOOWNMPEND
 OIMENSION COUNT
 INTEGEROCOUNT
C X IS ARZAY OF X AXIS VALUES TO PLOT CUMNTP AND FREDF AGAINST.
C X IS AR RAY OF X AXIS VALUUES TO PLOT CUMNTP AN
C IN THIS CASE, IT IIS THE ARRAY OF PHI VAL
C FRERP ISS ANOTHER ARRAY OF Y AXIS VALUES GMWTP, AND FREOP
C N ANO NDOINTS ARE THE SIMENSIONS OF X,COMWTP, AND
C ALL PLOTS WILL HAVE THE SAME LEFT AXISSARISONS.
C
C
 LOPHI= -2.00
 CONNT = COUNT + 1
 OENDOWN=?
 PENUP = = 3
 ENO = -3
 ENMO= =-3
 A MAX = = OiN NTS
 NOJUST= LOPHI
 AOJUST = LOPHI (HINT-LOPHI)/0.5
 RLENGTH= = (HIPHI-LOPHI)/0.5
 SCALEFE2.0
 IE 1CRIEPP(I);NGT. AMAX) AMAX = FREQP(I)
 CONTINIJE
 REMEBEQ = RLENGTH
 REMEBER = RLENGTH RREMEREQ = RR
 LENGTH= IFIX(TLENGTH)
 LENGTH = IFIX(RLENGTH)
```



```
 IF(KCOUNT:EQ:2)SHIFT = 9.0
 IF(KCCUNT:E0;0) SMAIF
```



```
 FSSALE = GOM AMAX F FLOAT, (IFIXX (AMAX))) F FSCALE
 YNEXT = (5 5; - YFIQST (FMXX' (AMAX))
 AMAX = FLOAT (,IFIX (AMAX))
 100
 CSSALE = 6.2, CUMHTP(N)
 CSSALE = '0OO,RLOPHI)LOPHI
 ENCOOE (5,1000, HHIPHI)HIPHI
1000
 FORMAT(IOEL=#,F4, 2)
 CALL PLOTSYMB(RLENGTH-.4SEİST,SHI, ACCNO,O., S)
```



```
 CALL PLOTSYMS(4,:'1.O+SHIF
 YINCRE = I'5 SHIFT
 CALL FLOT (Ó. YYINCRE,PENDOWN)
 CALL PLOT (-O5,YINCRE,PENJOWN
 CNALL PLOT (OS,YINCQR,DENOOWN)
 15
 Cl
 YALL FLOT YFILENTTHSGIFT
 CALLG\dot{FLJT (RLEVGTH,Y,DENDOWN)}
 C
 CALL PLOT (RLENGTH+OO5,Y,PENDOWN)
 CALL FLOT (PLENGTH+.C5,Y,PENUP)
 CALL PLOT (RLENGTH,Y,PENDONN)
 JALL PMAXT-1
 ONOLG I'IY= 1, 'JEYT * T
 YNOW = Y - YNEXT * I
YNOW = Y'- YNEXT ** I
CALL PLOT (RLENGTH,YNOH,PENDOWN)
2000
```

990
991
9992
993

994
995
9

    995
    995
996
997
997
99
99
999
1000
1000
1001
1002
1003
1004
1005
${ }_{1}^{1005}$
1006
1007
1007
10 Cg
1009
1010
1011
1012
1012
1013
1013
1014
1015
1015
1016
1017
1018
1018
1019
1019
1020
1020
1021
1021
1022
1023
102
1023
1024
1025
1026
1026
1027
1028
1028
1029
1029
1030
1030
1031
1031
1032
1032
1033
1033
1034
1034
1035
1035
1037
1037
1039
1038
1039
1039
1040
1040
1041
1041
1042
1042
1043
1044
1045
1045
1045
1045
1047
1647
1049
1043
1049
1049
1050
1040
1051
1051
1052
1052
1053
1053
1054
1054
1055
1055
1056
1056
1057
1057
1059
1059
1959
1959
1060
1061
1061
1062
1063
1063
1064
1064
1065
1066
1067
1067
1063
1063
1059
1069
1070

```
 CALL FLOT (RLENGTH+.05,YNOW.PENDOWN)
 1 6
 CAGL FLOT (PLENGTH,YNOW,OENCOWN)
 CALL FLOT(FLCAT (LENGIH),OHSHIFT, DENCOWN)
 CALL PLOT(ELOAT (LENGTH),O.OS+SHIFT.PENJOWN)
 CALL FLOT(FLCAT(LENSTH),-:05+SHIFT;PENDONNI
 CALL PLOT(ELOAT (LENGTH),O.O+SHIFT,PENDOWN)
 OO 17 I = 1,LENGTH
 XIVCRE = LENGTHGIT
 XIVCRELOLLENGTHEF,I, +SHIFT, PENOOWN)
 CALL PLOT (XINCPE,0.+SHIFTMPENOONN)
 CALL PLOT (XINCRE,:OO5+SHIFT, DPNOOWN)
 1 7
 CNLE
```



```
 CNOL
 00 30 I=3,N
 SALLNFO IOT + (SCALER*(X(J)-ADJUST),FREQP(J)*FSCALE+SHIFT,PENOCWN)
 CALL PLOT ISCALER*IOMNO
 CALL PLOTiO.O,O.O,ENDI
 CALL PLOTINT(REMEBEQ+5.0,0.0,10)
 QR= 0.0
 RETURN
 40 RR = REMEBER
 RETURN
C
```




```
 1 SUSROUTINE STATS(TITLL,CUMHTP,FPEQP,X,LOPHI,HIPFI,
0NONONONONONONONON
 THIS SUBROUTINE CALCULATES GRAIN SIZE STATISTICS
 GY THE INMAY AVO THE FOLK AND WARD TECHNIQUES.
 IT HAS WFITTEN SY NICKOISIAS AT OSU.
 THESE TECHNIQUES ARE DESCRIJED IN THE FOLLOWING PUBLICATIONS:
 INMAN, 1952, JOUR, SEDIMENTARY PETROLOGYGYV. 22,NO, 3
 OI4ENSION TITLL(5),CUMHTO(150),FREQP(150),X(150)
 REAL LDPHI, REAL MEANI,MEI,KURTI,KURTF,MEANF
C
C
```




```
 LOPHI=-2.00
PHISTART = LOFHI
 P= DELFHI
 N=NDOINTS
 FF=0.0
```



```
 00 2043 I=11,N
 R=5.-CUMNTD(I)
2040 M=T
C NOTE: P5, D15, P25, ETC. ARE THE PHI VALUES AT THE 5TH, 16TH,
C NOTE: DS: DIER PRE, ETC
C
2342 D5=P*H/(H-O)+X(4)
 00204亏I= I,N
 P=15.-GリMMTP(I)
 M=15.EGUMNTP(I)
M,
```

```
2345
2745
 OO2050 I=YM,N
 R=25.-CUMWTP(I)
 IF(R.LT.O.)GOTO
 H=?
2050
 OO \C55 I=M;N
 OO 2C55 I=M;N
 IF(R:LT.O.IGOTO 2057
 H=?
2755
 MM=I
 MM=I
 00 2060 I=4M,N
 R=75.-CUMWTP(I)
 H=R
296
 P75=P*H/(H-R)+X(M)
 DO 2G65 I=M,N
 R=94.-CUMWT&'(I)
 R=94.-CUMWTP(I)
2065 MM=I
2065
 OO 2070 I=MM,N
 Q=95.-CUMWTP(I)
 Q=95.-CUMWTP(I)
 H=?
2070
C
C. MEANI=0.5*(P16+P84)
```



```
 MESI=P50
 SKGNI=(MEANI -MEDI}/DEVI
 SK2I=(0.5*(P5+PQ5)-MEOI)/DEVI
 SKइI=10.5*(P5+Pq5)-MEQI)/DEVI
C NEXT SECTION CALCULATES FOLK ANO WARO STATISTICS
 MEANF=(016405?+P84)/3.
```



```
 SO2TF=(P94-016)/44**(D95-P5)/(5:6
 SORTF=(PG4-016)/4**(D95-P5)/5:6
 ? KURTF=(095-P5)
& nexT settion hrites out the calculateo grain size
C
2002 GORMAT(31, & ACCESSION NUMBER &,AT//I)
```







```
 2 & SCRTING F%F6
 2007 FJSTHAT(1H1)
 PETURN
 EN]
C
```

    \({ }_{1157}\)
    
## *SJRUN

The program SJRUN takes the raw, unformatted punched paper tape data and converts it to a BCD format so it can be accessed by the data reduction programs. This program is in CDC-3300 COMPASS language and is compiled as an overlay for ease of operation. During the conversion two output files are generated, one for the formatted data and the second for abnormalities present in the raw data. Equip LUN 11 to file containing raw data. The output files are equipped to LUNS 20 and 21 (formatted data and errors data respectively). To run the program, type $*$ SJUN on teletype while in control mode. A listing of the first line of data points and the number of lines of data points of each sample is output to help monitor the program.



FIX． 22	EOU	CHAP
	UJP	EE． 00
	UJF	EE． 11
	JJP	FE． $1 \times$
	JJP	EE．0X
	UJP	E． $1 \times \mathrm{C}$
	UJP	EF．0XE
EE． 00	EOU	T TMF
	77	EE．00．C．
	Ujo	FIX． 23
ES． 11	EQU	
	2 l	TIME 11.0
	UJP	Fix．0\％
EE． $1 \times$	EOU	
	そTJ	IIME
	77	EE：1X：C
	リJP	FIX． 06
EE．OX	EOU	
	275	TIEECX．C
	JJo	FIX． 07
EF． $1 \times 5$	EQU	
	215	TIME
	77	
	UJP	FIX．C ${ }^{\text {a }}$
ES．OXE	E0y	TIME
	77	EF．OXE．C
	UJF	FIX．07
FIX． 23	EOU	
	LOI	CNT： 91
	ENA	9999AY，${ }^{\text {ORP }}$
	UJP．I	FIXTAPE
FIX． 02	Fou	＊
	100	C1
	AQJ．EO	FF．SAM
FF．OIF	EOU	T IMF
	77	FF，nIF．C
	JJP	FIX．75
FF．SAM	EQU	
	$29 J$ 77	FF．SAM，C
	リJo	FIX．O5
FIX．03	E0U	＊
	Sta	r． 1
FIX．07	Enu	
	QiJ	CHAR
	13 JP	GG．OI
	UJD	
	UJJP	
	UJP	GG． $1 \times 5$
	UJF	GC．0 OE
Tr．00	EOU	＊IMF
	215 77	TIME
	77	Grix ${ }_{\text {ci }}$
	リJP	${ }_{*}$ IX． 24
Gr． 11	そTJ	TIME
	77	G6：11．C
	15 JF	FIX．09
Gr．e． $1 \times$	E0U	
	2TJ	
	77 UJF	FIX．OF
GG． $\mathrm{Cl}^{\text {P }}$	E0U	＊
	Q J	TIMF
	77	Grix $0 \times{ }^{\text {a }}$
	UJP	${ }_{*} I^{\prime} .0^{2}$

[^0]



	1	00501 00502
C0.00.c 3 cs	1	- 0 O50
0).11.0 3 S	1	00504
$07.1 \times$ Cr 35	1	00505
07.1XC.C BSS	1	00507
0才. CXE: ${ }^{\text {a }}$ OS	1	00508
EE.00.C BSS	1	00509
Er.11.r 3 S	1	00510
EE. $1 \times$ C C BS	1	00511
	1	00512
EE:OXE:C OSS	1	+00514
FF.DIF.C GSS	1	00515
FF. SAM. 3 SSS	1	00516
G5.00.C BS	1	00518
GG.11.C 3 S	1	00519
Gr.1x.c ${ }^{\text {c }}$ S ${ }^{\text {S }}$	1	00520
	1	00521
GG. $0 \times 1 . \mathrm{C}$ BSS	1	00523
H4.co.c 3 S	$\frac{1}{1}$	00524
H4. $11 . \mathrm{C}$ 3SS	1	00525
	1	005
HH. $1 \times$ E.r OSS	1	00528
H4. OXE.C BSS	1	00529
II. 00.0 CSS	1	00530
II.11.C 3 SS	1	00531
		00533
II. $1 \times \mathrm{EP}$ O ges	1	00534
	*-ZEROIT2-1	00535
		00537
ENO		

## 4. REFERENCES

Anderson, J. U., 1963, An improved pretreatment for mineralogical analysis of samples containing organic matter, in Clays and Clay Minerals, v. 10. Proc. 10 th National Conf. on Clays and Clay Minerals, 1961, pp. 380-388.

Blatt, H., G. Middleton, R. Murray, 1972, Origin of Sedimentary Rocks. Prentice-Hall Inc., New Jersey, 634 pp.

Cahn Instrument Company, 1975, Instruction manual for the Cahn automatic electrobalance, Cahn Division, Ventron Instruments Corp., Paramount, California.

Dauphin, J. P., 1972, Size distribution of chemically extracted quartz used to characterize fine-grained sediments. Unpublished Master's Thesis, Oregon State University, Corvallis, Oregon.

Folk, R.L. and W. C. Ward, 1957, Brazos River Bar: a study in the significance of grain size parameters. J. Sed. Petrol. 27: 3-27.

Friedman, G. M., 1961, Distinction between dune, beach, and river sands from their textural characteristics. J. Sed. Petrol. 31:514-529.

Gibbs, R.J., M. D. Matthews, and D. A. Link, 1971, The relationship between sphere size and settling velocity, J. Sed. Petrol. 41:7-18.

Inman, D. L., 1952, Measures for describing the size distributions of sediments. J. Sed. Petrol. 22:125-145.

Krumbein, W.C., 1938, Size frequency distribution of sediments and the normal phi curve. J. Sed. Petrol. 8:84-90.

Krumbein, W. C. and F.J. Pettijohn, 1938, Manual of Sedimentary Petrology, Appleton-Century-Crofts, Inc., N. Y., 549 pp.

Muller, G. , 1967, Methods in Sedimentary Petrology. Hafner Publishing Co., New York - London, 283 pp.

Oser, R. K., 1972a, Textural analysis of fine-grained sediments: pelagic sediments of the northwest Pacific. Unpublished M.S. thesis, Oregon State University, Corvallis, Oregon.

Oser, R. K., 1972b, Sedimentary components of nor thwest Pacific pelagic sediments. J. Sed. Petrol. 42:461-467.

Poole, D. M., 1957, Size analysis of sand by a sedimentation technique. J. Sed. Petrol. 27:460-468.

Royse, C. F., 1970, An Introduction to Sediment Analysis, Arizona State University, 180 pp .

Swift, D. J. P., J. R. Schubel, and R. W. Sheldon, 1972, Size analysis of fine grained suspended sediments: a review. J. Sed. Petrol. 42:122-134.


[^0]:    00165
    00166
    00167
    00168
    00169
    00170
    00172
    00173
    00174
    00175
    00176
    00176
    0017
    00178
    00178
    00179
    00180
    00181
    001 B3
    00184
    00185
    00186
    00187
    00189
    00191
    00192
    00194
    00195
    00196
    00197
    00198
    00199
    00200
    00200
    00201
    00203
    00204
    00204
    00205
    00206
    00207
    00203
    00209
    00210
    00211
    00213
    00214
    00215
    00216
    00217
    00219
    00219
    002
    00221
    00222
    00223
    00223
    00224
    00225
    00226
    00228
    00229
    00230
    00231
    $0023 ?$
    $0023 ?$
    00233
    00233
    00234
    00235
    00235
    00237
    00237
    00233
    00239
    00240
    0
    0
    0
    0241
    00241
    00242
    00243
    00244
    00246
    00247
    00248

