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The average settling velocity in homogeneous turbulence of a small rigid spherical 
particle, subject to a Stokes drag force, has been shown to differ from that in still fluid 
owing to a bias from the particle inertia (Maxey 1987). Previous numerical results for 
particles in a random flow field, where the flow dynamics were not considered, showed 
an increase in the average settling velocity. Direct numerical simulations of the motion 
of heavy particles in isotropic homogeneous turbulence have been performed where the 
flow dynamics are included. These show that a significant increase in the average 
settling velocity can occur for particles with inertial response time and still-fluid 
terminal velocity comparable to the Kolmogorov scales of the turbulence. This increase 
may be as much as 50% of the terminal velocity, which is much larger than was 
previously found. The concentration field of the heavy particles, obtained from direct 
numerical simulations, shows the importance of the inertial bias with particles tending 
to collect in elongated sheets on the peripheries of local vortical structures. This is 
coupled then to a preferential sweeping of the particles in downward moving fluid. 
Again the importance of Kolmogorov scaling to these processes is demonstrated. 
Finally, some consideration is given to larger particles that are subject to a nonlinear 
drag force where it is found that the nonlinearity reduces the net increase in settling 
velocity . 

1. Introduction 
A knowledge of the average settling rate of small heavy particles in turbulent flows 

is important to many multiphase-flow problems involving particle transport and 
dispersion. Examples include the settling of aerosol particles in the atmosphere or small 
water droplets in clouds, sediment transport in rivers, transport of dust from soil 
erosion or ash from volcanic eruptions, and other processes such as the combustion or 
the mixing of sprays. For the most part, attention has been focused in the past on the 
dispersion of aerosol particles by homogeneous isotropic turbulence. Theoretical 
investigations in this area have been made by Yudine (1959), Csanady (1963), Meek & 
Jones (1973), Reeks (1977, 1980) and Nir & Pismen (1979) amongst others. Yudine 
(1959) and Csanady (1963) demonstrated the ‘crossing-trajectories effect’ for particles 
settling under gravity where particles move relative to the surrounding fluid, crossing 
the trajectories of Lagrangian fluid elements. As a result the turbulent dispersion 
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decreases as the settling velocity increases. Other authors have investigated the effect 
of particle inertia on dispersion; these and other results are summarized in the recent 
papers of Mei, Adrian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hanratty (1991) and Wang & Stock (1993). Experiments on 
particle dispersion have been conducted by Snyder & Lumley (197 1) and Wells & Stock 
(1983) and there have been several studies involving numerical simulations such as 
those by Riley & Patterson (1974), Squires & Eaton (1991a), and Yeh & Lei (1991). 

Only recently has the question of changes in the average settling velocity in 
homogeneous turbulence been carefully addressed. Specifically we consider spherical 
aerosol particles settling in homogeneous and isotropic turbulence where the Eulerian 
flow field has zero mean. Reeks (1977) has argued that the average settling velocity of 
heavy particles would be the same as the terminal fall velocity in still fluid (hereinafter 
referred to as the terminal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuelocity) if the flow velocity is treated as a stochastic random 
field. It can be rigorously shown that (Maxey 1987), in the absence of particle inertia, 
the ensemble average velocity of a small spherical particle is indeed the same as the 
terminal velocity. Furthermore, if the particle inertia is very large, i.e. the particle 
aerodynamical response time is much greater than any integral timescale of the flow, 
the fluid velocity seen by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa particle appears as an uncorrelated random noise and 
should again have no net effect on the settling rate. In general any net effect of 
turbulent motion, either to reduce or enhance the settling rate (relative to the terminal 
velocity), should occur under the influence of intermediate or finite particle inertia. 

The motion of a spherical, aerosol particle is typically governed by the fluid drag 
force due to the relative motion of the particle to the surrounding fluid, the force of 
gravity on the particle and the inertia of the particle. For very small particles a linear 
Stokes drag law may be used to determine the drag force while for a larger particle 
whose motion relative to the surrounding fluid corresponds to a finite particle 
Reynolds number, the drag force varies nonlinearly with the relative velocity of the 
particle to the fluid. Tunstall & Houghton (1968) demonstrated that the interaction of 
a nonlinear drag force and particle inertia would reduce the average settling velocity 
in a flow oscillating in time about a zero mean, even without any spatial variation in 
the flow. By contrast a linear drag force would result in no net change in the settling 
velocity. The experiments of Tunstall & Houghton (1968) for spherical particles 
settling in liquids, and later work by Schoneborn (1975) and Hwang (1985) have 
generally confirmed this reduction in the average settling velocity for simple oscillatory 
flows, though there is some uncertainty about the theoretical estimates and the 
appropriate way in which to represent the fluid forces on the sphere. A characteristic 
of turbulent flows is the strong spatial variations that occur over a wide range of 
lengthscales. This presents the possibility for strong couplings between the particle 
motion and the spatial variations in the flow. 

As a first step in understanding the settling of finite-inertia particles in turbulent 
flows, Maxey & Corrsin (1986) studied the motion of aerosol particles in an ensemble 
of randomly oriented, periodic, cellular flow fields. The particles were subject to a 
linear Stokes drag force and the flow was spatially non-uniform. They showed that the 
average settling rate, over a wide range, is larger than the terminal velocity as particles 
tend to settle in the downward-flow side of a cell. The particles were also found to 
accumulate along isolated open paths. A more general framework directed toward the 
settling of heavy particles in turbulent flows was provided by Maxey (1987). An 
analysis was made for both the limits of rapidly settling particles and particles with weak 
inertia to determine the changes in the average settling velocity for Stokes particles. A 
kinematic, random flow field generated from random Fourier modes was used to 
simulate numerically the motion of aerosol particles in a homogeneous, isotropic 
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random flow and it was found that for finite particle inertia the average settling velocity 
was sometimes 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% greater than the terminal velocity. The tendency to an increase in 
the settling velocity was also verified by the asymptotic analysis. It has been argued that 
this relative increase is related to an inertial bias that causes particles to accumulate in 
regions of high flow strain rate or low flow vorticity. This preferential accumulation 
has been confirmed by the results from full direct numerical simulations for non- 
settling particles in homogeneous turbulence by Squires & Eaton (1991 b). 

Other studies of particle motion that should be mentioned include Fung (1990) and 
Yeh & Lei (1991). Fung et al. (1992) developed an extended form of the kinematic, 
random mode, simulation technique which allows for some of the dynamical features 
of the turbulence to be included and for features such as an inertial subrange to be 
represented. Fung (1990) applied this to investigate individual particle trajectories of 
settling particles. Yeh & Lei (1991) employed a large-eddy simulation for decaying, 
homogeneous, isotropic turbulence and included the motion of heavy particles, using 
an empirical Reynolds-number-dependent relation to estimate the drag force on the 
particles. The results were limited but indicated an increase of about 5 % in the average 
settling velocity. The first objectives of this present study are to verify from direct 
numerical simulations of homogeneous, isotropic turbulence that aerosol particles 
subjected to a linear Stokes drag do settle on average more rapidly and to obtain 
quantitative results for this increase in settling rate. 

The effect of flow turbulence on particle settling rate is intimately related to the 
interaction of particles with local spatial structures of the flow. This interaction is 
represented by the notion of inertial bias (Maxey 1987) and best realized if one 
examines the instantaneous concentration field of particles. The inertial bias implies 
that the long-term particle concentration field may be quite non-uniform and local 
particle accumulation would occur. The local accumulation is evident for the cellular 
flow mentioned above and has been repeatedly observed for free shear flows such as 
plane mixing layer and jet flows (Crowe, Gore & Troutt 1985; Chung & Troutt 1988; 
Longmire & Eaton 1992; Lhzaro & Lasheras 1992). One common feature of these 
relatively simple flows is that the scale governing the fluid velocity fluctuations is the 
same as the scale for the enstrophy or vorticity field. On the other hand, a range of flow 
scales co-exist in fully developed turbulence with integral scales governing the fluid 
velocity fluctuations, and smaller scales controlling the viscous dissipation and flow 
enstrophy field. This scale separation makes the problem of particleturbulence 
interactions much more complicated. It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis known that the large-scale turbulent motions 
determine the overall dispersion of particles (Reeks 1977; Squires & Eaton 1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ;  Yeh 
& Lei 1991), however, the question of what flow scale should be used to characterize the 
local accumulation produced by inertial bias and the subsequent change in the particle 
settling remains open. The second objective of this study is to answer this question. 

It is worth mentioning that some recent studies by She, Jackson & Orszag 1990, 
Brasseur & Lin 1991, and Ruetsch & Maxey 1991, 1992, have found that the more 
intense vorticity in a turbulent flow tends to form localized, coherent, and tube-like 
vortical structures at dissipation-range scales. This finding strongly suggests that the 
flow dynamics at small scales will play a significant role on the local particle 
accumulation, as it is most probably influenced by particle-flow vorticity interactions. 
Consequently, the flow dynamics at the dissipation range which is often viewed as of 
minor importance to particle dispersion must be correctly described when local 
accumulation and particle settling rate are considered. In this study, the method of 
direct numerical simulations (DNS) is similar to that used by Squires & Eaton (1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) 
and is chosen to simulate the dynamical evolution of the turbulence. DNS is limited to 
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moderate flow Reynolds number because of resolution requirements and as such the 
range of scale separation in the flow is limited. Other methods such as large-eddy 
simulations (Yeh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Lei 1991) may allow for higher Reynolds numbers but are not 
adequate here since they do not provide the necessary details of flow dynamics at the 
smallest scales. 

The paper is organized as follows. The main features of the isotropic, homogeneous, 
and stationary turbulent flows, simulated by solving the Navier-Stokes equations 
directly with a pseudospectral method, are presented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$2. Flow stationarity was 
achieved by forcing the low-wavenumber modes. For most of the simulations we 
adopted the forcing scheme of Eswaran & Pope (1988) and as used by Ruetsch & 
Maxey (1991, 1992). In one set of the simulations a different forcing scheme, based on 
a non-uniform force field (Hunt, Buell & Wray 1987), was employed as a comparison. 
This latter forcing scheme has been used to study the dispersion of heavy particles by 
Squires & Eaton (1991 a, b). In $ 3  we describe the equation of motion for a heavy 
particle and the simulation methods used to obtain particle settling velocity and the 
concentration field. The results for a particle settling under the linear Stokes drag are 
reported first in $4. We will show that a significant increase in the mean settling velocity 
occurs when the particle inertial response time and the terminal velocity are made 
comparable to the flow Kolmogorov scales ($4.1). To explain such Kolmogorov 
scaling and the faster settling we then examine the particle concentration field and its 
correlations with flow vorticity and velocity fields ($4.2). A method for the direct 
quantification of local particle accumulation is introduced in $4.3 to reveal the 
significant role of small-scale flow dynamics. The effect of nonlinearity in the drag force 
is discussed in $5. 

2. Turbulence simulation and flow characteristics 
2.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFlow simulation 

The spectral code used to simulate the three-dimensional, unsteady flow in forced 
isotropic and homogeneous turbulence was originally developed by Ruetsch & Maxey 
(1991, 1992). A few modifications were made to improve the efficiency of the original 
code and to include the motion of the particles. Only a brief description of the 
simulation method is given here to provide the necessary information for the analysis 
of particle motion. 

The Navier-Stokes equations governing the fluid motion are solved on a cube of side 
L = 271. using a pseudospectral method, with periodic boundary conditions applied in 
all three directions. This is a satisfactory approach provided that the integral 
lengthscale of the resulting flow is reasonably small compared to L. The flow cube is 
discretized uniformly into N 3  grid points, which defines the wavenumber components 
in Fourier space as 

where nj = 0,1,. .. , $N for j = 1, 2, 3. A small portion of the energy at higher wave 
numbers, Ikl 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+iV- 1.5, is truncated at each timestep to reduce aliasing errors, so the 
highest wavenumber realized in our simulation is k,,, = i N -  1.5. It is clear that the 
grid resolution, the value of N ,  determines the ratio of the largest lengthscale of the 
turbulence to the smallest and thus the value of the flow Reynolds number. Four 
different grid resolutions were used in this study. Lower grid resolution simulations are 
relatively inexpensive to run and are good for a general parametric study of particle 
settling rate, but the different scales are not well separated. Higher grid resolution 

kj = &nj(2n/L), (2.1) 
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t Computed based on the dissipation, A = ( ~ ~ V U ' ~ / E ) +  = (15)b'rk. 
$ It was reduced to 0.0005 for the computation of the settling rate of heavy particles with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAra = 

The flow was forced by a non-uniform force field on the modes of Ikl = 4 2  with a forcing scale 
0.005. 

equal to 40 (see the appendix in Squires & Eaton 1991 a). 

TABLE 1.  Flow parameters from the simulations 

simulations are more time-consuming but provide a wider range of flow scales which 
is more representative of a naturally occurring turbulent flow. By varying the Reynolds 
number for a single class of homogeneous turbulent flow the effects of increasing scale 
separation on particle motion can be investigated. 

The energy to maintain the flow is provided using a stationary, random forcing 
scheme developed by Eswaran & Pope (1988). In this forcing scheme an artificial 
forcing term is specified as a complex, vector-valued Uhlenbeck-Ornstein (UO) 
stochastic process. There are three parameters in the forcing scheme that affect the 
overall flow characteristics. The first is the forcing radius k, which determines how 
many modes are subjected to the forcing. In our study, 80 modes defined by 0 < )kl < 
k, = 8; were forced. The mode k = (0, 0, 0) represents a uniform mean flow and was 
set to zero at each timestep. To reduce the artifact from the forcing scheme on the 
large-scale motion, one would prefer a small forcing radius. However, the spatially 
averaged flow quantities show strong variations in time if the number of modes forced 
is too small. The above value of the forcing radius represents a compromise between 
these two considerations. The other two parameters are the forcing amplitude CT and 
timescale q, which specify the standard deviation and the correlation time of the UO 
process, respectively. These control the rate of energy addition (and thereby the 
dissipation rate) and the integral scales. These were fixed in the simulations at a2 = 
447.3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATf = 0.038 as in Ruetsch & Maxey (1991, 1992). In addition to the grid 
resolution and forcing parameters, the only remaining physical parameter that needs 
to be specified for the flow simulations is the kinematic viscosity Y. The velocity field 
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was started from rest and the flow was entirely generated from the forcing scheme and 
the nonlinear energy cascade. The spatial resolution of a spectral simulation is often 
monitored by the value of k,,,q, which should be greater than one for the smallest 
scales of the flow to be resolved (Eswaran zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Pope 1988), where 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 (v3//s)i is the 
Kolmogorov microscale. For the simulations in this study, k,,,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 was about 1.40. The 
Fourier coefficients of the flow velocity were advanced in time using a second-order 
Adams-Bashforth method for the nonlinear terms and a second-order Crank- 
Nicholson method for linear terms. The timestep was chosen to ensure that the CFL 
number was 0.3 or less for numerical stability and accuracy. 

The forcing scheme for the low wavenumber range was used to generate a 
statistically stationary flow and avoid the complications presented by turbulence 
decaying in time. The stationary turbulence should also be representative of the 
dissipation range dynamics for locally isotropic turbulence, especially with the 
emphasis placed here on the resolution of Kolmogorov scales. As discussed by Ruetsch 
& Maxey (1992), forcing schemes of one form or another have been used by many 
investigators in the past, and, although one should be concerned about the artificial 
effects of forcing, these studies have all shown remarkably consistent results for the 
dynamics of the dissipation range. To provide a comparison with other forcing 
schemes, a second forcing scheme proposed by Hunt et al. (1987) and used by Squires 
& Eaton (1991 a, b) was implemented for one set of the present simulations on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA483 
grid. In this second scheme a non-uniform, time-independent, large-scale force field is 
added to the flow at each timestep. Non-zero forcing coefficients are applied only for 
the modes at Ikl = 1/2 and their relative amplitudes are specified using the constraints 
of isotropy and incompressibility. Their final values are scaled in such a way that the 
resulting turbulence has about the same Reynolds number as the flow under the first 
forcing scheme for the same grid resolution. Originally we attempted to match the 
dissipation rate but the resulting integral scale under the second forcing scheme was too 
large compared to the box size L. Details of the forcing scheme are given in the 
appendix to Squires & Eaton (1991a). 

2.2. Flow characteristics 
In table 1 we list flow parameters for the simulations on various grid resolutions after 
the flow has become stationary (usually after two to three eddy turnover times). The 
quantities shown in the table (from top to bottom) are, the r.m.s. fluctuating velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u’, the integral lengthscale for the longitudinal spatial velocity correlation L,, the 
energy dissipation rate e, the eddy turnover time T, = uf2/e, the transverse Taylor 
microscale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, the Kolmogorov length (r), time (Tk) ,  and velocity ( u k )  scales, and the 
Taylor microscale Reynolds number Re, = u’h/v. The two ratios, q / T k  and u’/uL, 
represent the maximum separation in the timescales and the velocity scales. In this 
study, T,  is defined using the outer lengthscale uf3/e and the velocity scale u’, i.e. T,  = 
ur2/e. It can be shown that for isotropic turbulence the scale separation is related to the 
Reynolds number as (Hinze 1975, p. 225) 

This indicates that the timescale separation tends to be larger than the velocity scale 
separation, which is consistent with the results in table 1. Also shown in table 1 are the 
velocity derivative skewness and flatness, the kinematic viscosity v, and the timestep 
size at. 
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FIGURE 1. (a) The energy spectrum function E(k) for the simulated flows at various Re, using 
Kolmogorov scaling. The data taken from Comte-Bellot & Corrsin (1971) for a flow behind a 2-in 
grid at the location V, t / M  = 98 are plotted as a comparison; (b) dissipation spectrum function D(k). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0, 323, Re, = 21; ., 4S3, Re, = 31; 0, 643, Re,, = 43; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  96', Re,, = 62;  A, 4S3 and use of the 
second forcing scheme, Re, = 30; x , ComteBellot & Corrsin (1971), Re, z 65. 

In figure 1 we present log-linear plots of the three-dimensional energy spectra for the 
simulations at different Reynolds numbers based on Kolmogorov scaling. The energy 
spectrum E(k) is defined in the standard manner such that 

Cfa = E(k)dk. (2.4) s 
The spectrum was calculated by dividing the wavenumber space into about !JV shells 
according to the value of lkl, and then summing the kinetic energy in each shell. Also 
shown are a set of experimental data for the flow at V, t / M  = 98 downstream of a 2- 
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in grid taken from table 3 of Comte-Bellot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Corrsin (1971). Certain observations can 
be made from these results. First, the simulated energy spectra based on different grid 
resolutions and Re, show a reasonably good collapse for the Kolmogorov scaling, 
indicating a certain self-similarity of the dissipation-range flow dynamics. Secondly, 
the spectra compare very well with the experimental data, not only in terms of the 
general slope, but also the absolute values. One difference is that the data for the 
simulated spectra extend further below the dissipation length 7 (especially the one with 
the second forcing scheme) while the experimental data cover more of the large scales. 
Discrepancies between the simulations and experimental data are more significant at 
lower wavenumbers, kr] < 0.1, when the spectra are plotted on a linear scale, as noted 
in Yeung & Pope (1989). The discrepancies are to be expected owing to the forcing but 
should not be a significant factor in the present study. 

Also shown in figure 1 as a log-linear plot is the normalized spectrum for the 
dissipation of turbulent kinetic energy. The dissipation spectrum D(k) is related to E(k) 

by 
D(k) = 2VkZE(k). (2.5) 

Domaradzki (1992) has proposed a physical model and scaling relations for energy 
transfer at high wavenumbers which leads to the conclusion that the energy spectrum 
E(k) should vary as E(k) - kP2 exp ( -ak)  within the dissipation range. This would 
imply that D(k) - exp (- ak) and indeed the present simulation results for D(k) do 
support this. The dissipation spectra as plotted follow nearly a straight line, though the 
collapse of the data for different Reynolds numbers is not as good as for the energy 
spectrum. Of importance here is the fact that the relative contribution of small scales 
(high wavenumbers) to the total dissipation is more significant than that to the total 
energy. This can be realized in two ways. First, there appears to be a peak in the 
dissipation spectra at ky M 0.2, though the energy spectra seems to decrease 
monotonically with k. The peak location for the dissipation also compares reasonably 
well with the value of kr] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 0.1 5 observed in the measurements by Stewart & Townsend 
(1951) for grid-generated turbulence. Secondly, at large k the rate at which D(k) 
decreases is smaller than for the energy spectrum E(k), by a factor of k2 by definition. 
We note that the enstrophy spectrum for homogeneous isotropic turbulence is 
proportional to the dissipation spectrum. Therefore, small scales play a much more 
significant role in the vorticity fluctuations than in the velocity fluctuations even before 
one considers the intermittent nature of the more intense vorticity fluctuations. 

The one-dimensional energy spectra are often directly measured for grid-generated 
turbulence (Comte-Bellot & Corrsin 1971; Snyder & Lumley 1971; Wells & Stock 
1983). These can also be more accurately computed than the three-dimensional spectra 
in the simulations since the modes are more evenly distributed and an average over the 
three different directions can be performed. The one-dimensional energy spectrum 
Ell(kl) is defined as 

u ’ ~  = E,,(k,) dk,. (2.6) s 
In figure 2 we display the normalized one-dimensional energy spectra. A very good 
collapse of data is seen on the log-log plots. The line in figure 2 is a curvefit to the 
experimental data of Comte-Bellot & Corrsin (1971) for their 2-in grid case. The 
curvefit is shown here since the experimental data at different downstream locations 
collapse when plotted under Kolmogorov scaling. Further, the spectrum curve for their 
1-in grid case is very much the same as that for k7 0.01. We also made a comparison 
of Comte-Bellot & Corrsin’s spectrum data with those of Snyder & Lumley (1971) and 
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FIGURE 2. The one-dimensional energy spectra for the simulated flows at various Re, under 
Kolmogorov scaling: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 323, Re, = 21; ., 483, Re, = 31; 0, 643, Re, = 43; e, 963, Re, = 62; A, 483 
and use of the second forcing scheme, Re, = 30. The line is a curvefit for all the measured data taken 
from Comte-Bellot & Corrsin (1971) for a flow behind a 2-in grid. 

Wells & Stock (1983), both of which studied the dispersion of heavy particles in a grid- 
generated turbulence, and found that all the experimental curves agree very well for 
ky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0.01. Such universality of the energy spectrum is reproduced by the simulations, 
although this is somewhat surprising as the flow Reynolds numbers are not high. The 
flow Reynolds numbers for all the above experimental measurements are comparable 
to those in our simulations. As a side note, George (1992) recently suggested a different 
scaling using h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu' for the energy spectrum rather than Kolmogorov scaling for self- 
preserving decaying turbulence. For our forced stationary turbulence, we found, 
however, the Kolmogorov scaling collapses data much better than the suggested 
Taylor scaling. 

Finally, the velocity derivative skewness and flatness are shown in table 1.  The 
velocity derivative skewness in our simulations is in the range -0.55 to -0.40, which 
compares very well with the experimental range -0.5 to - 0.3 for Re, < 100 (Van Atta 
& Antonia 1980). The flatness also agrees with the experimental value of about 4. In 
summary, although the simulated flows are contaminated by the artificial forcing and 
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have only low to moderate Reynolds numbers (thus there is no discernible inertial 
subrange), they do, at least, compare very well with experiments for grid-generated 
turbulence and appear to represent realistically the dissipation-range dynamics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Simulation method for heavy particles 

3.1. Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof particle motion 

We consider the motion of heavy spherical particles in a uniform, isotropic, stationary, 
and homogeneous turbulent flow. The particle is assumed to be small in comparison 
with the Kolmogorov microscale of the turbulence and the loading dilute enough that 
the presence of the particles does not modify the turbulence structure. On the other 
hand, the particle is considered to be much larger than the molecular mean free path 
(Clift, Grace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Weber 1978, p. 272) and to have an aerodynamic response time much 
larger than the mean molecular collision time so that the effect of Brownian motion can 
be neglected in comparison to the dispersion by turbulent eddies. Since in grid- 
generated turbulent flow of air (Snyder & Lumley 1971) the Kolmogorov microscale 
is typically in the range 300 - 700 pm and in atmospheric turbulence of 1 mm, the 
above assumptions are applicable to the dispersion of particles in the size range 10 N 

200 pm. 
Under the assumption that the density of the particle p p  is much larger than the 

density of the fluid pf, (say, pJp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 100) the BBO (Basset-Boussinesq-Oseen) 
equation of motion (Maxey & Riley 1983) reduces to the following form 

where V(t) and Y(t)  are the velocity and the centre position of a heavy particle, 
respectively; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is the fluid velocity field. The Stokes response time is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAra and W is the 
Stokes terminal velocity, 

where dp is the diameter of the particle, ,u is the dynamic viscosity of the fluid, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 
is the acceleration due to gravity. The magnitude of the terminal velocity, I HI, will be 
denoted by W. 

We start by assuming the drag force acting on a particle as it moves through the flow 
is a linear Stokes drag, so that the coefficientf(Re,) in (3.1) is set to 1. A Stokes drag 
law is only valid when the particle Reynolds number, Re, = d, I V- uI/v, is much less 
than one. However, owing to the finite drift velocity, the particle Reynolds number 
may often be of the order of one for larger particles. In general an appropriate 
nonlinear drag should be used when considering such particles. One approach would 
be to include a quasi-steady drag force where the coefficientf(Re,) is determined by the 
instantaneous value of the particle Reynolds number. This is explored further in $5,  but 
for the present a Stokes drag law will be assumed. 

When the Stokes drag is used, the two particle parameters defined in (3.3) describe 
a timescale (or inversely a response frequency) and a velocity scale. On the other hand, 
for a turbulent flow there is no single set of scales but rather a continuous spectrum of 
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time and velocity scales. The larger scale, more energetic motions may be characterized 
by the r.m.s. fluid velocity u' and the integral lengthscale Lf; while the smaller scale, 
dissipative motions may be characterized in terms of the Kolmogorov microscales. As 
pointed out in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1, the values of the particle parameters have to be chosen relative to the 
scales of the fluid motion if any effect of the flow on the settling rate is to be observed. 
Their values should also be consistent with the assumptions made in deriving the 
equation of motion. It can be shown that 

We are mainly interested in the parameter range where both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ , / 7 ~  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW/v, are of the 
order of one, for which a substantial change in the particle settling rate will be 
observed. This parameter range is realizable as long as the density ratio is made large 
enough. The particle Reynolds number may be written as 

which can be made small if d,/q 4 1. 

3.2. Mean settling rate: a triplex averaging procedure 

In this section, we present the method for settling velocity computation. Previous 
experience with random flow fields (Maxey 1987) indicates that the relative change in 
particle settling rate is usually small, so a reliable method that can calculate the average 
settling rate accurately with small statistical error is necessary for one to capture such 
small changes. For this purpose, we developed a triplex averaging procedure to 
compute the mean settling rate. 

The first step of the simulations was to obtain a statistically stationary flow velocity 
field, during which no particles were introduced. This velocity field was then saved as 
a starting flow field for the study of particle settling, i.e. it was repeatedly used for 
different sets of particle parameters. 

The second step was to introduce particles into the flow. The particles were divided 
into six groups of different orientations for the gravity. The six orientations, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg/lgl, are 
(l,O, 0), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(- l , O ,  0), (0, l,O), (0, - l ,O),  (O,O,  1) and (O ,O,  - 1). We denote these six unit 
vectors by dfl) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 1,2,. . . ,6.  Each group contained N p  = 4096 particles which 
were located randomly with uniform distribution in the computation box at the time 
they were released. The initial velocity for each particle was assumed to be the terminal 
velocity W. This choice of the particle initial velocity is arbitrary but should have no 
influence on the long-time particle settling rate. 

The third step was to advance the flow and the motion of particles simultaneously. 
The total computation time for this last step was respectively about 46, 12,8 or 5 times 
the eddy turnover time T, for the different flow grid resolutions, from the lowest (323) 
to the highest (963). The trajectory of an individual particle was obtained by numerical 
integration of the equation of motion using a fourth-order Adams-Bashforth method 
for the particle velocity and a fourth-order Adams-Moulton method for the particle 
location. In many cases, it was found that even a second-order Adams method resulted 
in the same particle trajectory over a long period of time. The timestep was the same 
as that used for flow advancement. Since the particle position usually does not coincide 
with the grid points for the flow simulations, the fluid velocity at the location of the 
particle is derived using a partial-Hermite interpolation scheme introduced by 
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Balachandar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Maxey (1989). If the particle moves out of the simulation box, the flow 
velocity field is extended periodically in all directions to allow the interpolation of fluid 
velocity at any spatial point. At each timestep of the integration, the change in the 
settling rate relative to the terminal velocity averaged over the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4096 particles for each 

was computed, where the overbar denotes this first averaging. In addition, the r.m.s. 
particle fluctuating velocity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C T ~ B  [( 6 - <)'P1"'fl = [( K- K)' - (A 6)']4(!), (3.7) 

and r.m.s. relative velocity between a particle and the nearby fluid, 

were calculated. It should be noted that the mean value of the relative fluctuation 
velocity, (6  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFy - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuc( Y, t)), is zero after the initial transient. Further approaches 
zero when 7,/7k + 0. 

To obtain an idea of how the particle motion approaches a stationary state from the 
arbitrary initial conditions, we now examine the mean quantities after the above first 
averaging for a typical simulation with 7,/7p x 1.0 and W/v,  x 1.0 on the 963 grid. 
These results are presented in figure 3, where t = 0 corresponds to the time at which 
the particles are released. Several observations can be made here. The transient time for 
the mean settling rate to reach a stationary state is about 0.09, which is close to the 
value of large-scale eddy turnover time T, of 0.098 (see table 1). In general this transient 
time was found to be quite independent of the particle response time for the values of 
7, studied and in all cases 7, was much smaller than T,. In addition the mean settling 
rate after the transient interval oscillates in time on a timescale of the order T,. These 
indicate the settling rate is influenced by large-scale turbulent motion although the 
particle response time is on the order of the Kolmogorov scale. The statistical variation 
in the settling rate after the first averaging and after the initial transient stage should 
be of the order of CT~F)/(NJ:. For some initial tests, N p  was taken to be 1024 and we 
found the fluctuation amplitude was indeed twice as large. It should also be noted that 
the final results may not be necessarily better if N p  is made much larger since only a 
limited number of flow scales, particularly large scales, are involved in the simulated 
flow at a given time. To remedy this defect of the simulated flows, we chose to continue 
the simulations for a longer time interval with a moderate number of particles and to 
use a time-average. It may also be seen from figure 3 that AG1) is positive and the other 
two components are close to zero. Therefore, on average a particle settles in the direction 
of the gravity with a greater mean velocity than the terminal velocity. The transient time 
for the r.m.s. particle velocity is much shorter and was found to depend on the particle 
response time, i.e. about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47,. The transient time for the r.m.s. relative velocity is the 
shortest and was found to be about 2 - 37,. There also appears to be a slight overshoot 
at the end of the transient interval, which was found to be more pronounced as the 
particle response time was increased. Unlike the settling rate and the r.m.s. particle 
velocity, the particle-averaged magnitude of the relative velocity shows much less 
statistical variation at any instant. This is consistent with the smaller scale turbulent 
motions dominating the relative velocity, since at any instant there are many more of 
these than the larger eddies within the computation domain. 

The final step was to perform two further averaging processes, namely over time and 
over orientation. After averaging over particles for each group, we can obtain better 
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FIGURE 3. The particle velocity statistics in arbitrary units after the first averaging for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 where 
the gravity is oriented in the +x, direction. The mesh size is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA96,, Re, = 62, and particle parameters 
are r,  = T,, W = v,. __ , x,-component (i = 1); a * ., x,-component (i = 2); ---, x,-component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(i = 3). (a) the mean velocity AY:l); (b) the r.m.s. particle velocity ril) and the r.m.s. relative velocity 
ey.  

results by averaging over the six orientations of gravitational settling. For example the 
relative increase in the settling rate in the direction of gravity is 

and orthogonal to the direction of gravity it may be averaged as 

A V, E &(A Vp)  + A V p )  + A V p )  + A V r )  + A V f )  + A V p )  

+ A V ~ ) + A V ~ ) + A V ~ ) + A V ~ + A V ~ ) + A V ~ ) ) ,  (3.10) 

where it is assumed that there is no statistical difference between the two horizontal 
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FIGURE 4. The particle velocity statistics in arbitrary units after the second averaging as a function 
of time: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) the mean velocity AK;  (6) the r.m.s. particle velocity cd. The mesh size is 96a, Re, = 62, 
and particle parameters are 7, = T ~ ,  W = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk. 

directions for each group owing to symmetry considerations. Similar averaging can be 
performed to obtain the r.m.s. particle velocity and relative velocity, and these results 
are denoted by o - ~ ,  cr,, 8, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8,. This second averaging process cancels the effect of any 
directional bias (anisotropic features) that may exist for a single realization of the 
simulated flow. Figure 4 shows the results after the second averaging for the same 
particle parameters as in figure 3. We see that the fluctuations are greatly reduced. 
Finally we average the settling rate over time starting at t = 2T,, 

(3.11) 

where mT, is the total integration time for the motion of particles. This third averaging 
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process can be applied to other quantities and the final results will be denoted with 
angle brackets. The standard deviation on (AV,) can be approximated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( a,)/[3Np(rn - 2)]; (Bendat & Piersol 1971) if (m - 2) is much larger than one and the 
correlation time for A K  is assumed to be of the order of q. This last averaging process 
is equivalent to the ensemble averaging over a different realization of the flow. For the 
case shown in figure 4, the triplex averaging procedure results in (A V,) = 2.23 2 0.09. 
This may be compared with the value of Where equal to uk = 4.73. The first and the 
third averaging processes can be replaced by recording the change in the mean particle 
location for each group between the end of the integration and t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2T, and dividing the 
result by the time interval. This alternative way has also been used in the code and 
shown to result in the same average settling rate. 

The code was optimized and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun on a CRAY Y-MP. For the 32$ grid resolution case 
and the number of particles involved, the CPU time was 0.12 s for the flow evolution 
and 0.78 s for the tracking of all the particles at each timestep when the code was run 
on a single processor. While for the 963 case, the CPU time was 2.2 s for the flow 
evolution and 2.8 s for the tracking of the particles at each timestep. Therefore 87 % 
of the CPU time was used for moving the particles at the lowest resolution and 56% 
at the highest resolution. The required CPU time for a complete run was about one 
hour on 328 grid and five hours on 963. For the production runs, the code was 
parallelized to make use of more than one processor (normally three) to reduce the 
turnaround time and the charges for memory use. 

3.3. Simulation of concentration distribution 

While in the settling velocity computation efforts are made to reduce the final statistical 
error, the aim in the simulation of concentration distribution is to obtain a reasonable 
visual representation of the instantaneous spatial distribution of the particle locations. 
This is achieved with the use of a much larger number of particles, but owing to the 
limitations on available computer resources, the concentration is simulated only for a 
4S3-grid. 13 1 072 particles were used with a single orientation of the gravity parallel to 
the x,-axis. Initially, the particles were placed randomly in the box with a uniform 
distribution in their locations. The initial velocity is set to the terminal velocity for each 
particle. The concentration, C at any grid point is defined here as the number of 
particles found inside a small cube with its centre at the grid point and its side equal 
to the grid spacing. This number and hence the concentration C may take a value of 
zero or a positive integer. We note that a constant factor might be introduced to our 
present definition of concentration to give other definitions, but it does not affect the 
subsequent discussions and results of this study. The grid spacing is about twice the 
Kolmogorov scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 so that variations of the concentration field at a scale below 27 will 
not be resolved. Fortunately, the lengthscale associated with regions of intense 
vorticity is about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA67 or larger (Ruetsch & Maxey 1991). Thus this definition of 
concentration is capable of revealing satisfactorily the particle-vorticity field 
correlations. If a particle leaves the computation box, its periodic image can be used 
to preserve the total number in the box. Therefore as the total number of particles is 
constant and the turbulence homogeneous the mean particle concentration at any 
point is constant. As defined here, this uniform, mean concentration, (C) is 
131072/4S3 or 1.185. In any single simulation of the turbulence the initially non- 
coherent, statistically uniform, particle concentration will evolve to a coherent 
distribution as a result of dynamical interaction with the turbulence. 

This dynamical interaction is best seen in the transient interval when the initial, 
uniform concentration distribution responds to the evolving turbulence and quickly 

3 FLM 2 5 6  
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FIGURE 5. Normalized particle concentration (left-hand side) and flow scalar-vorticity field (right- 
hand side) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xl, x,)-slice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 27L/48) at the 5 consecutive time frames. The first frame is at 
t = 0 when the concentration is uniform. The time interval is 0.018 or about twice the Kolmogorov 
timescale. The mesh size is 483, Re, = 31, and particle parameters are 7, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7k, W = vk. 

becomes non-uniform as time increases. We present in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 the evolution of a 
typical normalized concentration field, C/ (C), and the scalar-vorticity field on a slice 
from the three-dimensional simulation box at five consecutive time frames during 
the initial development period. The normalized scalar-vorticity Q is defined as (wi wi)i /  
((wiwi);) ,  where wi is the flow vorticity. Throughout this paper, the grey scale is 
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defined such that black denotes at least twice the corresponding field mean and 
white represents a zero local value. Since C can only take discrete integers and its 
mean is 1.1852, the four grey levels appearing in the concentration field denote a 
local concentration of C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 1, 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 3, respectively. 

For the purpose of quantification, we now introduce two probability functions for 
the concentration field. The first is the probability of finding the concentration at a grid 
point equal to a particular value C, denoted by &(C, t). This first probability function 
was also used in the work of Squires & Eaton (1991 b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA second probability, P,(C, t) ,  
is defined by the percentage of the particles (out of 13 1072) that are found at those grid 
points where the concentration is at a given value C. P,(C, t )  represents the relative 
importance of a specific particle concentration in accounting for the total number of 
particles. Obviously the two probability functions are related by 

(3.12) 
N 

P,(C, t )  = "P,(C, t )  C = 0.84375&(C, t )  C, 

where Ng = 483 is the number of grid points and N, = 131 072 is the number of 
particles followed in the simulation. For the uniform concentration field at t = 0, the 
probability P, can be found exactly, i.e. 

N P  

N,-C 

P,(C, t = 0) = P,"(c) = for C=0,1,2, . . . ,N, ,  (3.13) 

where 
N J N ,  - 1) . . . (N ,  - c + 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) = C! 

(3.14) 

It follows then the probability for each of the four levels in the concentration field at 
t = O i s  

(3.15) 

The relative proportion of the four differently shaded regions changes with time. The 
fact that particles tend to accumulate in the low-vorticity region (Maxey 1987) implies 
that the probability for the void region in the concentration field where C = 0 or region 
of white should increase with time during the transient period;as shown in figure 6.  It 
is also seen that the probability for the black region increases with time, and that for 
the other intermediate concentrations decreases. Interestingly, the relative proportion 
changes rather slowly for t < 0.02 which may be an effect of initial condition for the 
particle velocity. The main changes seem to occur for 0.02 < t < 0.1 and the 
concentration field approaches a statistically stationary state for t > 0.1. This transient 
time appears to be the same as that for the mean settling rate, i.e. both are of the order 
of the eddy turnover time. Further analysis of local accumulation and correlation 
between the concentration and flow vorticity field is presented in the next section, 
where we will focus on the particle motion at the statistically stationary state. 

I PF(C = 0) = 0.3057, 

Pi(C = 2) = 0.2147, 

PF(C = 1) = 0.3623, 

Pi(C > 3) = 0.1173. 

4. Results and analysis 
In this section we first present the results on mean settling rate and other statistics 

for various particle parameters and grid resolutions. Particle concentration fields are 
then examined for the mechanism responsible for the change in the settling rate. We 

3-2 
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FIGURE 6. The transient behaviour of the concentration probabilities for r,/rk = W/v,  = 1 
on 4g3 grid, Re, = 3 1. 

intend to answer the following questions: when does the maximum change in the 
settling rate occur, how is the relative change related to the inertial bias and local 
accumulation, and what are the respective roles of different flow scales? 

4.1. Settling rate for heavy particles 

Initial tests showed that the most significant change in the long-time mean settling rate 
occurs when the particle response time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, and the terminal velocity W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 I Kl are made 
comparable to flow Kolmogorov scales. Therefore we shall focus on this parameter 
range. Figure 7 shows the increase in mean settling velocity {A V,>/uk as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r,/rk for a fixed relative terminal velocity, W/u,  = 1 .O, on various grid resolutions as 
listed in table 1 .  It may be seen that (AV,)/u, is always positive. It increases with 7, 

if r,/rk is less than 0.5 and reaches a maximum when 0.5 < T , / T ~  < 1. It then decreases 
with r, and approaches to zero as 7 , / 7 k  becomes much larger than one, though T, may 
still be less than T,. This qualitative feature is robust and does not appear to change 
with the flow Reynolds number. Similar results were obtained by Maxey (1987) for 
particles settling in random flow fields. As mentioned earlier these random flows, which 
were generated in terms of random Fourier modes that satisfied constraints for 
incompressible flow, had no coherent dynamics and the energy spectrum was quite 
narrowly centred around a single, large-eddy scale. In that study the largest increase 
in the average settling velocity was found to occur when 7, was about 0.2Lf/u', or 
equivalently for the data here when ra/T was about i. The limited range of scales in 
the earlier study meant that there was no distinguishable dissipation range, or 
meaningful distinction between T,  and 7,. The measured increases in the average 
settling velocity are also significantly greater in the present study. Here the largest 
increase (A<)  observed is 27 YO of the terminal velocity for simulations on the 323-grid 
and 45% on the 963-grid, from the data in figure 7. The increase in settling velocity 
when scaled by the Kolmogorov velocity is larger for higher values of Re,, within the 
first group of simulations. The alternative forcing scheme, based on the methods of 
Squires & Eaton (1991 a), shows an even larger increase in the settling velocity. The 
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FIGURE 7. The increase (<AV,)) in the particle mean settling velocity as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr,/rk for a fixed 
terminal velocity, W = u,. The error bar represents the statistical uncertainty. (a) Normalized by 
Kolmogorov velocity scale uk;  (b) normalized by r.m.s. fluid velocity u'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 323, Re, = 21; ., 483, 
Re, = 31 ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 648, Re, = 43; 0,  963, Re, = 62; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 4g8 and use of the second forcing scheme, Re, = 
30. For the 323 simulations, the size of the symbol is made the same as the error bar. 

value of 7,/7k at which (AY,)/v, is greatest is consistently within the interval of 
0.5 < 7,/7, < 1 and is centred around 0.8 as the Reynolds number Re, is varied. By 
contrast, the ratio of T,/7,  varies from 5.3 to 15.8, so that if the data were presented 
in terms of the ratio of 7, to T,, which is also representative of Lagrangian integral 
timescales, then there would be a much greater variation in the location of the peak 
increase with changing Re,. 

These results are also shown in figure 7 where <A 4)  is normalized by u'. We see that 
the quantitative difference among the simulated resulted for different Re, with the first 
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forcing scheme is greatly reduced. Therefore we may conclude that while the qualitative 
dependence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A Q  on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, follows Kolmogorov scaling, the quantitative value is still 
affected by large-scale fluid motion. This is partly related to the fact that the flow field 
has a limited scale separation and the fact that the change in particle settling velocity 
will be affected by a range of flow scales in the neighbourhood of its response time, as 
mentioned in $1. More specifically variations in the local fluid velocity in the 
neighbourhood of the particle that occur on a timescale much shorter than 7, will 
produce no response in the particle motion and make no contribution to the average 
settling velocity. Variations that occur on a very slow timescale compared to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, will 
lead to a perfect response in the particle motion with no relative velocity induced by 
the inertia of the particle. Of importance is how the interval of timescales centred on 
7, compares to T, and T ~ .  Another factor is that the low-vorticity region where particles 
tend to accumulate often resembles the large-scale flow features, as will be shown later. 
The value (AV,)/u’ increases with the flow Reynolds number for most 7,, indicating 
that for most cases the range of scales to which the particles can respond is wider than 
the scale separation covered by the simulations. However, when 7, is very small such 
that 7,/q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 1, the particles can respond to the large-scale flow exactly. In this case the 
large-scale flow will not affect the settling rate. This implies that the value (AV,)/u’, 
at a given small value of T ~ / T , ,  for higher Re, can be less than that for a lower Re, case. 
This reversion is observed at 7,/7k = 0.34 where (AV,) /u’  = 0.082 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0.005 on the 963- 
grid while (AV,)/u’ = 0.097 &- 0.004 on the 643-grid. We can claim that at 7, = 0.347, = 
0.002 the largest scales of the 963 flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T, = 0.098, K / 7 ,  = 49) have no effect on the 
settling. Other evidence of the reversion may be seen at 7,/7& = 0.17 on the 643-grid as 
compared to the lower grid resolutions. This reversion should have been observed for 
all the 7,/7, of the order of one, where the most substantial change in the settling 
occurs, had the simulations been performed at a sufficiently high Re, such that 
K/7, % 1. The reduced influence of the large scales on the mean settling rate also implies 
a reduced influence from the artifacts of the flow forcing on the particle settling rate. 
This, then, would lead one to expect similar results to hold for even higher Reynolds 
number flows, which at present we are unable to simulate. For example, in atmospheric 
turbulence where the flow scales are widely separated, the mean settling rate of small 
particles would only be affected by a limited range of flow scales near the dissipation 
range, the settling rate should be expected to be much larger than the terminal velocity 
as indicated by the present results. Both the growth rate of water droplets in clouds and 
the residence time of dust or aerosols in the atmosphere will be influenced by such 
changes in the settling rates (Pruppacher & Klett 1978). 

Next the changes in the settling velocity with changes in the terminal fall velocity are 
considered. Figure 8 shows (AV, ) /u ,  as a function of terminal velocity for a fixed value 
of the relative inertia, 7,/7k = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.O. Initially the ratio (AV,) /uk increases rapidly as the 
terminal velocity W/u, varies between 0 and 1 for a particular Reynolds number. The 
increase then begins to level off and (AV,)/u, reaches a maximum somewhere in the 
interval 1.5 < W / v ,  < 2.5, before decreasing at higher values of the terminal velocity. 
The location of the maximum, at least for the first set of simulations, tends to occur 
at higher value of w / V k  as the Reynolds number is increased. These qualitative features 
are similar to those of figure 7. This may be expected since an increase in W shortens 
the timescale of changes in the local fluid motion experienced by the particle as it settles 
more rapidly through the turbulent eddies, and so enhances the effects of the particle 
inertia. Also shown in figure 8 in the same data with ( A Q  scaled by u’ and again the 
relative role of the large-scale fluid motion on the quantitative value is evident. 
Noticeably, the results under this scaling agree very well for the two flows on 483 and 
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FIGURE 8. The increase (AK> in the mean settling velocity as a function of W/v,  for a fixed ratio of 
7J7, = 1.  (a) Normalized by Kolmogorov velocity scale v r ;  (b) normalized by r.m.s. fluid velocity u’. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Re, = 30. For the 328 simulations, the size of the symbol is made the same as the error bar. 

963, while those for 323 are much smaller. Figures 7 and 8 show that the different forcing 
schemes give different quantitative values although the qualitative features are the 
same. The larger quantitative increase in the settling velocity for the second forcing 
scheme may be partly due to the steady nature of the applied forcing and the smaller 
forcing radius used. 

The above results are concerned only with the mean statistics of particle motion. In 
figure 9 the particle r.m.s. velocity (a) normalized by u’ is shown as a function of T , / T ~ ,  

for a fixed value of the terminal velocity W/v, = 1.0. Here g = ;((a,) + 2  (a,)) is an 
average over the three directions. In the simulations we found that (gJ is usually 
slightly larger than {a,) (see figure 4 for example) and is a consequence of the 
continuity effect (Reeks 1977). Since the difference between (r,) and (a,) is small for 
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FIGURE 9. (a) The particle r.m.s. fluctuating velocity (a) normalized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu' as a function of 7 , / ~ ~ ;  (b) 
the particle r.m.s. relative velocity ( 0 )  normalized by uk as a function of ~ , / 7 ~ .  W/uk is set to one for 
these simulations. 0, 323, Re, = 21; ., 483, Re, = 31; 0, 643, Re, = 43; 0, 96s, Re, = 62; A, 4S3 
and use of the second forcing scheme, Re, = 30. 

the parameter range shown in figure 9, only the average value is discussed here. The 
r.m.s. particle velocity fluctuation decreases monotonically with increasing T , / T ~ ,  as the 
response of the particles to high-frequency (small scales) fluid motion diminishes. The 
quantitative value of the r.m.s. particle velocity fluctuation follows a scaling based on 
the large-eddy motion. Figure 9 further shows the r.m.s. relative velocity averaged over 
the three directions as a function of 7 , / T k  for W/v, = 1 .O. Again the difference between 
the different directions is small and not the main concern here. Unlike the r.m.s. 
particle velocity, the relative velocity increases quickly with the particle response time 
and its quantitative value follows Kolmogorov scaling for T , / T ~  up to order one. 
Within this range the relative velocity is strongly influenced by small-scale fluid 
motions. For larger particle response time, the large-scale fluid motion also plays a 
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role. This is apparent from the larger values of ( O ) / u ,  as the Reynolds number is 
increased for any given value of 7,/7, 2 2. This corresponds to the broader range of 
scales and the presence of more larger-scale fluid motion at higher Reynolds number. 

Figure 10 shows the corresponding data for the r.m.s. particle velocity and the 
relative velocity as a function of W/v, for T , / T ~  = 1.0 The r.m.s. particle velocity 
decreases slowly with W/u, as a result of increasing effective inertia. The relative 
velocity increases with W/u, and agrees very well, under the Kolmogorov scaling, for 
different flow Re numbers. 

In summary, we observe an increase in the mean settling speed of heavy particles in 
a uniform turbulence of zero mean velocity. The qualitative feature of the relative 
increase follows Kolmogorov scaling in terms of the values of the parameters T,/Tk and 
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W/u, while the actual magnitude of the increase value may be affected by fluid motion 
of various scales. 

4.2. Concentration jield and preferential sweeping 
We shall now explore the mechanism for the faster settling rate observed. Since the 
particle motion is stationary after the initial transient interval, the mean particle 
velocity is time-independent and the equation of motion (3.1) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(AK) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (u(Y(t),t).g). lgl 

The average zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u( Y(t), t)) is the ensemble averaged fluid velocity as measured following 
a particle trajectory. This average differs in nature from both a Eulerian, fixed-point 
average and a Lagrangian average following a fluid element. If the particle 
concentration field is uniform, this average fluid velocity reduces to the Eulerian spatial 
average of the fluid velocity, which should be zero for our simulated flows. The fact 
that this average was shown to be positive has two implications: (i) the long-time 
particle concentration field is not uniform and (ii) a particle may be found relatively 
more often in regions where the component of the flow velocity in the direction of 
gravity is positive. Indeed, both features were observed for heavy particles in a cellular 
flow (Maxey & Corrsin 1986). The inertial bias discussed by Maxey (1987) leads to such 
a non-uniform concentration and this was confirmed by the direct numerical 
simulations of Squires & Eaton (1991 b) for the concentration field of heavy particles 
without gravitational settling. However, the first implication alone does not answer the 
question of the observed particle settling rate. In this subsection the particle 
concentration field for a typical case where both 7, and Ware non-zero is investigated. 
Such a case has not been examined previously and it will allow us to verify the second 
implication in relation to the change in the settling rate. 

Figure 11 shows the normalized particle concentration field and the scalar-vorticity 
field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(52 = (wi o($/((wi  w$))  at the five consecutive time frames (from top to bottom) 
on a plane section, x, = n, 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, < 2n, starting from t = 0.18. As noted earlier, the 
concentration field is statistically stationary. The direction of gravity is in the positive 
x,-direction. The concentration field is very non-uniform, regions of either near zero 
or at least twice the mean are both shown visually and account for a significant portion 
of the whole section. These fields may be compared with those shown previously in 
figure 5 for the initial period following the particles as an initially uniform distribution. 
A maximum concentration of about 20 - 50 times the mean are observed in the 
simulations. A comparison between the concentration of the 52 field demonstrates that 
the regions of high vorticity correlate well with the regions of low particle 
concentration. 

There is a further important feature in figure 11. The regions of higher particle 
concentration tend to appear as long, connected patches or sheets that are aligned 
vertically. At the second time frame, a long particle patch is clearly seen near the right 
vertical edge of the section. It then seems to be broken by the stretching and rotation 
of the vortical region near the patch. However, another patch forms by the fifth time 
frame in the left half of the box, where the local vorticity field has changed little during 
the time interval covered. The next question is how are these long patches formed and 
what is their relationship to the local flow field. Figure 12 shows vector plots of the 
velocities of those particles in the region of high particle concentration at the second 
time frame of figure 11. The starting point of each vector represents the position of a 
particle and the vector length denotes the magnitude of the particle velocity. The 
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FIGURE 1 1. Normalized concentration field (left-hand side) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow scalar-vorticity field (right-hand 
side) at five consecutive time frames (from top to bottom) in the (xl ,  xJ-plane at x3.= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+L, starting 
from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.18. The time interval is 0.009, which is roughly equal to 7,. Note the time interval here is 
exactly half that in figure 5. The particle concentration field is expected to be stationary. Particle 
parameters are 7J7, = 1.0 and W/u, = 1.0 and the grid resolution is 4S5, Re, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31. 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a). For caption see facing page. 

second plot of figure 12 gives the vector components of flow velocity field on the same 
plane together with some selected particle velocity vectors. The higher concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' sheet' formed by the clustered particles is located precisely in the channel-like, 
downflow regions in the velocity field which form between neighbouring regions of 
vorticity. This is a direct reason for the increase in the particle mean settling rate, 
consistent with the proposed second implication. 

The reason for this preferential sweeping is illustrated by figure 13. Consider a heavy 
particle settling through a flow region with three local vortical structures as shown. The 
inertial bias implies that when encountering a vortical structure, the particle does not 
move along a flow streamline and has to make its path along the periphery of the 
vortical structure. With this in mind, now suppose the particle approaches the first 
vortical region at point A ,  the local induced flow velocity will move the particle to the 
right and thus the particle passes the first vortical region on the right, the downflow 
side. The process repeats as the particle approaches the second vortical region at point 
B. The particle may move to the right- or to the left-hand side of the region according 
to the local direction of fluid rotation. In either case, the particle tends to travel on the 
downflow side. Should a particle start to be swept upward by the local flow, for 
example, near the bottom of a vortical structure, it would begin to be entrained within 
the vortex and follow a closed path. This is countered by the inertial bias which causes 
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FIGURE 12. (a) The position and velocity plots at the second time frame shown in figure 11.3167 
particles are found near the slice, i.e. in the region n-0.58 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxg < n+0.56, S is the grid spacing. The 
starting point of each vector arrow is the particle’s position and the length of an arrow represents the 
relative magnitude of the velocity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) The vector velocity field (dot-line arrow) of the flow in the same 
plane overlaid by particle velocity vector (solid-line arrow) for those (621) particles within a distance 
of 10% grid spacing. 

the particle to curve outwards away from the vortex. This response is surprisingly 
similar to the particle motion in cellular flows (Maxey & Corrsin 1986) even though 
these are steady and laminar. Without particle inertia there is no net effect on the 
average settling rate in a statistically homogeneous flow. In short, the preferential 
sweeping is due to the inertial bias, the local induced velocity field, and the fact that 
the particles approach them usually from above. In a turbulent flow the configuration 
of the flow structures changes with time and thus the formation of long particle patches 
depends on the relative persistence of the instantaneous structures. Ruetsch & Maxey 
(1992) examined the ability of the intense localized flow structures to mix a passive 
scalar. They found the persistence rather than the intensity of certain physical flow 
quantities, in this case the local straining rate, has a dominant effect on the generation 
of intense scalar gradient. Similarly, one may argue that persistent but not necessarily 
intense vortical structures can have a significant effect on the local particle transport. 
According to Hunt et al. (1987), a large part of a turbulent flow field may be classified 



54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL.-P. Wang and M .  R. Maxey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

” \  

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvelocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.. 
Local 
flow 

Local 
vortical 
structure 

l -  

-/ 

t 
Particle path 

FIGURE 13. Sketch showing the preferential sweeping mechanism for a heavy particle interacting 
with local flow vortical structures under its inertia and body force. 

into eddy, rotational, convergence or streaming zones. The above qualitative reasoning 
for preferential sweeping is relevant to the edges of eddy and rotational zones. Particles 
may be temporarily moved upwards by other flow zones, as can be seen in figure 11. 
Furthermore, the combined effect of inertia bias and preferential sweeping may send 
particles into streaming zones with downward fluid velocity. Since the largest scales 
contain most of the flow energy, the magnitude and configuration of the fluid velocity 
in the channel-like region of figure 12 is likely to be strongly affected by the large scales. 
A test was made to see to what extent the lower wavenumber range governed the fluid 
velocity field. This was done by low-pass filtering the velocity field of figure 12 in 
Fourier space, retaining only modes within the range 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlk] < 6 and 0 < lkl < 3 for 
this simulation on a 483-grid. It was found that many of the general features were 
retained including the downflow streaming channel, and indicates the influence at this 
lower Reynolds number of the large-scale motions on the increase in the settling 
velocity. 

We now proceed to quantify some aspects of the above observations. Figure 14 
shows the correlation between the conditionally averaged concentration and the vor- 
ticity or the strain rate of the flow. The plot was constructed in the following way. The 
normalized scalar-vorticity 52 value was divided into one of many bins, O.l(m- 1) < 
52 < O.lm, m = 1,2,3, ...; then all the 483 grid points at each time frame were 
scanned to find the number of grid points, n(m), where the value 52 fell into the range 
for the mth slot. The conditionally averaged concentration for this slot was then 
defined as the number of particles counted on these n(m) grid points divided by n(m). 
The process was repeated for 10 time frames starting from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 0.180 with an interval 
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FIGURE 14. Correlation between the local particle concentration and the flow vorticity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASZ or the 
rate of strain S as given by the conditionally averaged concentration ( C ) .  

of 0.009, the data shown in figure 14 is actually an average over these ten frames. The 
same was done for the normalized rate of strain, with S = ( s i j .  si j ) i / ( (sz j .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs&, where 
s6* = @ui/i3xj + i3uj/i3xi). The results demonstrate that regions of higher concentration 
are well correlated (monotonically) with the regions of lower vorticity. It is also shown 
that the region of higher concentration is correlated with the region of higher rate of 
strain for 0.5 < S < 2.5. For larger values of S the correlation between the 
concentration and the rate of strain seems to diminish. This may be related to the 
observation that regions of high strain-rate often surround the vortex tubes that 
characterize the regions of more intense vorticity (Ruetsch & Maxey 1991). 

Similarly, we present in figure 15 the correlation between the concentration and the 
fluid velocity near the particles. While there is no noticeable bias between the positive 
and the negative values in the horizontal fluid velocity u2, a clear bias is seen in the 
vertical fluid velocity u,. The vertical fluid velocity for the higher concentration regions 
tends to have a positive value. Since the gravity is oriented in the +x, direction, this 
is just a restatement that particles are found more often in the downflow regions than 
in the upflow regions. 

The above discussion indicates that preferential sweeping in addition to preferential 
concentration due to inertial bias results in the faster settling rate. What is surprising 
is the similarity of these processes in an evolving turbulent flow and the results for the 
steady cellular flow fields of Maxey & Corrsin (1986). 

4.3. Kolmogorov scaling of local accumulation 
We now quantify the degree of local accumulation directly to find out under what 
condition the strongest local accumulation occurs. Qualitatively the local accumulation 
is related to the notion of inertial bias, i.e. the interaction of particles with flow vorticity 
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FIGURE 15. Correlation between the local particle concentration and the vertical or horizontal fluid 
velocity as given by the conditionally averaged concentration ( C ) .  Note the gravity is assigned in 
+ x1 direction. 

field, in particular the intense vortical regions. As the intense vortical regions are a 
feature of the small-scale, dissipation-range flow dynamics (She et al. 1990), the degree 
of this inertial bias is likely to be maximized when the particle parameters are 
comparable to the dissipation-range scales, namely the Kolmogorov scales. In the 
study of Squires & Eaton (1991 b), the particle response time was normalized by the 
integral timescale of the flow, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, = L,/u'. They studied the particle concentration field 
at three particle parameters 7,/T,  = 0.075,0.150,0.520 (all for zero W) and found that 
the degree of non-uniformity of the concentration field owing to inertia bias was the 
greatest at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,/T, = 0.150. If we re-normalize the particle response time by the 
Kolmogorov scale in their simulation, the three cases are 7,/7g = 0.326, 0.651, 2.26. 
Then their results suggest that the degree of local accumulation is the greatest when 
7,/rk is close to one. Thus their results are consistent with the hypothesis for 
Kolmogorov scaling for the local accumulation. In this section global measures of local 
accumulation are developed to verify the above hypothesis. 

We start with the two probability functions introduced in $2.3. Figure 16 shows the 
two probability functions computed from a typical simulation at t = 0.216 for the case 
of ~ , / 7 ~  = W/v,  = 1. The exact solution for the case of uniform concentration is 
shown as a comparison. The probability of finding a void region with no particles, 
P,(C = 0), is 0.5824, almost twice the value for the random uniform distribution case, 
see (3.15). P, is smaller than the value of P," for intermediate concentrations, C = 1,2, 
3, but larger for C >, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The relative contribution of a given concentration to the total 
number of particles, P,, is also very different from P i .  It was computed that P,(C < 
2) = 84 YO yet P,(C Q 2) = 29 YO. This means that most of the particles are located in 
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FIGURE 16. Probability functions P, and P, against C, computed at time t = 0.216, for T , / T ~  = 1 = 
W/vk on 48* grid for Re, = 3 1 ; the results for a uniform random distribution shown as a solid curve. 

a small portion of space where the concentration is much greater than the mean. The 
maximum concentration observed here is 59, about 50 times the mean concentration. 

Clearly the differences between the probability functions and their respective values 
for the random distribution case are what really measure the local accumulation. 
Therefore, we introduce a global measure of local accumulation as an integrated 
square deviation for each probability function, 

Each of these provides a single number that quantifies the local accumulation. 
Furthermore, these global measures are expected to be computed accurately even when 
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FIGURE 17. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe two global measures D, and D ,  of local particle accumulation as a function of 
t / rk  for r,/rk = W/vk = 1. 

the total number of particles is not large as compared to that needed for a reasonable 
visual representation of the concentration field. In this sense, they are more useful than 
the probability functions. 

Figure 17 shows how the global measures change with time for the case of r,/rk = 
W/v, = 1. They increase with time monotonically. For t /7k < 4 they show little 
change, indicating that a certain time is needed for the particles to adjust their initial 
velocity to the local flow field. A rapid change occurs for the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.8 < t /7,  < 9.5 
when the particles respond efficiently to the dynamics of flow structures, which agrees 
with the qualitative features observed in figure 5.  The measures then change slowly and 
level off to asymptotic values. Intuitively, the asymptotic values represent a balance 
between the accumulation due to local vortical structures and random stirring at large 
scales. We note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, is relatively flat while D, still increases slowly for t / 7L  > 20. In 
$3.2, the average settling rate is found to reach its asymptotic value for t > 2T,. Here 
we observe that small final adjustment in the concentration distribution is likely even 
for t > 2T,. The behaviour of the mean settling rate with time is arguably related more 
directly to D, rather than D,, thus these results are consistent. 

We are now in a position to show the dependence of D, and D, on particle 
parameters. In figure 18, D, and D, are plotted as a function of particle response time 
for a fixed W/u, at various times. The particles have the same initial distributions. Of 
significance is the fact that both D, and D, reach a maximum around 7,/rk z 1.0, a 
feature that becomes very clear in the long term when the concentration field is 
approximately statistically stationary. This further supports the hypothesis of 
Kolmogorov scaling for the local accumulation. The time for the asymptotic value of 
the measures to become established seems to be independent of the particle inertial 
response time over the parameter range studied. We note the timescale separation in 
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FIGURE 18. The two global measures of local particle accumulation as a function of particle inertial 
timescale T,JT~ for a fixed ratio of W/uk = 1. 0,  t / T k  = 6.8; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, t / T k  = 13.6; a, t / T k  = 20.4; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 
t /Tk  = 27.2. Simulations are performed on 483 grid, Re, = 31. 

the flow field, z/7k, is about 8 ; at this value of 7,/7& the degree of local accumulation 
would be expected to be very small compared to the maximum. In this regard, the flow 
scale separation is adequate for us to draw the conclusion of Kolmogorov scaling. This 
Kolmogorov scaling partly explains why the relative increase in the settling rate is 
maximized when the particle parameters are comparable to flow Kolmogorov scales. 
The degree of local accumulation only slightly depends on the terminal velocity, as 
shown in figure 19. This is different from the dependence of ( A 0  on the terminal 
velocity of figure 8. The value of ( A 0  should be small for small W, as in this case the 
particle fluctuation velocity may be much larger than Wand the preferred direction for 
the particle to approach a local structure is lost, i.e. the preferential sweeping effect is 
weak. While for large W, the relative residence time for a particle to interact with a 
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FIGURE 19. The two global measures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, and D, of local particle accumulation as a function of the 
terminal velocity for a fixed ratio of r , /rk = 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, f / r k  = 6.8; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, t /rk = 13.6; ., t / r p  = 20.4; U, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t / r p  = 27.2. Simulations are performed on 4g3 grid, Re,, = 3 1. 

local structure is short and again (AV) should not be large. This would be a reason 
for the much stronger dependence of (AV) than D ,  (or D,) onW. Consequently, the 
inertial bias or local accumulation is only a part of the reason for the observed faster 
settling. 

The above discussions are restricted to the 483 grid. We may compute in a similar 
manner the global measures on the 963 grid at a higher Reynolds number based on the 
amount of particles used for the settling rate computation (§3.2), i.e. compute D, and 
D, with 4096 particles and then average over the six orientations. Figure 20 shows the 
results. Note the values of D, and D ,  are very small because of the number of particles 
and the grid resolution, but the relative uncertainty is expected to be comparable to 
that associated with the settling rate of figure 7. Thus the results are still meaningful 
although the concentration field cannot be adequately simulated with this number of 
particles. The overall features in figure 20 are similar to that of figure 18. At this 
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FIGURE 20. The two global measures D, and D, of local particle accumulation as a function of particle 
inertial time for 963 grid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARe, = 62, W/u, = 1. Only 6 x 4096 particles are followed, as in the 
computation of mean settling rate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  t / r k  = 20; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, t / rk  = 60. 

Reynolds number the separation of flow timescales is much greater, the ratio of TJ7, 

is now about 16. But in both figures 18 and 20 the peak accumulations occur around 

In summary, the changes in settling velocity and the local accumulation of particles 
are more features of small-scale turbulence processes than large scales. This is in 
contrast to the problem of particle dispersion which is dominated by the bulk stirring 
of the large scale eddies. 

7J7, = 1.  

5. Effect of nonlinear drag 
In the preceding discussions the fluid drag force on th.e particle has been based on a 

linear, Stokes drag law. More generally, a nonlinear relation for the drag force, 
dependent on the particle Reynolds number, should be used if this Reynolds numbers 
is not small. In this section a brief discussion is given of the modifying effects of such 



62 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL.-P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWang and M .  R.  Maxey 

a nonlinear drag force relation on the average particle settling velocity. A problem that 
immediately arises is exactly what is the appropriate representation of the fluid force 
on the particle as it accelerates in a non-uniform flow field when the particle Reynolds 
number is not small. This is a limitation of the theoretical analysis of retarded settling 
for particles in simple oscillatory flows mentioned earlier in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 1 (Tunstall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Houghton 
1968; Schoneborn 1975; Hwang 1985). A commonly used representation is that of 
Odar & Hamilton (1964) but this has not been entirely satisfactory. Recent 
computational studies by Rivero (1991) and Chang (1992) on the unsteady flow past 
a sphere may help to resolve these issues. 

For the present we shall adopt an empirical relationship forf(Re,)  based on the 
instantaneous value of the particle Reynolds number Re,, 

f (Re , )  = 1 +0.15Re:687. (5.1) 

This relationship given by Clift et al. (1978) is valid for values of Re, < 40 under steady 
flow conditions to within about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 %. It follows that the terminal velocity, WT) ,  in still 
fluid satisfies 

Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWT) is, in general, different from the Stokes settling velocity W = rug.  The 
particle Reynolds number may be written as 

Noting that the viscosity v is related to the Kolmogorov scales by v = rk v i ,  we obtain 

Re, = 4.243 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe)0'5 x kr'5 x -. I v-ul 
' k  

(5.4) 

Therefore, only the density ratio needs to be added in the parameterization of the effect 
of nonlinear drag. For the remaining calculations we take a typical value of p,/p, = 
877 for water droplets in air (a higher density ratio will result in an even weaker effect 
of drag nonlinearity for the parametric range studied here). All the simulations in this 
section were performed on the 4X3 grid at Re, = 31. 

As we are mainly interested in the range where the particle inertial time r, is of the 
order of rk which is much less than the large-scale eddy turnover time, we anticipate 
that the particle responds reasonably well to the overall local fluid velocity fluctuations, 
which implies (I V- ul) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ( V,) x W ( T ) .  We can then estimate that the average value of 
Re, varies from 0 to 1 for 0.0 < r, /rk < 3 and 0 < W/vk < 4. It is possible, however, 
that the maximum Re, value can be (or much) larger than the above range. (The actual 
range will be given below.) Nevertheless, the effect of nonlinear drag is to modify only 
slightly the results of settling rate, as will be shown in the following. The CPU time for 
the extra computations of nonlinear drag coefficient was found to be negligible 
compared to the total time. 

Figure 21 compares the simulation results utilizing the nonlinear drag with cor- 
responding results for the linear drag. Several interesting observations can be made. In 
94.1, we only present results for a single fixed value of r,/rk as W/v, is varied. Figure 21 
shows that for other fixed r , / T k  values and the use of the linear drag, (AV,) depends on 
W/v, in a similar manner to the case of 7,/7-, = 1. In particular, the maximum (AV,) 
is attained at about the same W/v,. (AV,) approaches zero rather slowly for large 
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FIGURE 21. The relative increase in the mean settling velocity as a function of W/v, for three different 
inertial response times T J T ~  = 0.342, 1.0, 2.74: 0, linear drag force; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, nonlinear drag force. 

settling rate as the relative inertial response time becomes small. Secondly, the results 
for the nonlinear drag case (A V, = V, - WT))  is only slightly different from (less than) 
those based on the linear drag. The difference becomes larger for larger 7, and large 
W. While an increase in the settling rate is always observed for the linear drag case, a 
net decrease in the settling rate occurs for one case (7,/7k = 2.74 and W/u, = 4.0) 
under nonlinear drag. This net reduction is explained in the following. 

We can approximate the equation of motion as 

where the fluctuation in f is neglected, which is a valid approximation as shown later. 
The mean settling velocity is then 

The still fluid settling velocity may be written as 

where 
2 a ~ T )  0.687 

f s =  1+0.15x(?) . 

(5.74 

(5.7b) 

The relative change in the settling rate under nonlinear drag may result from two 
reasons. The first is due to the preferential sweeping mechanism that is represented by 
a non-zero, positive (u( Y, t)) as discussed for the linear drag case. This increases the 
particle settling rate. The second is related to the difference between cf) and f" 
resulting from the fluid turbulence fluctuations. The nonlinear factor cf> must be 
slightly larger thanfS owing to the larger fluctuating slip velocities that arise when the 
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FIGURE 22. The probability distribution of the slip velocity of both -, the linear and . . . , the 
nonlinear drag. A :  r,/rk = 1.0, W/v,  = 0.4; B :  r,/rk = 1.0, W/v,  = 3.0; C :  rJrk = 2.7, Wlv, = 3.0. 

particle is in a turbulent flow. This second effect, opposite to the preferential sweeping, 
reduces the settling rate and exists even when the first effect is not present. This relative 
reduction associated with the drag nonlinearity has been realized earlier by Tunstall & 
Houghton (1968) and Hwang (1985) in simple oscillatory flows and recently by Mei 
(1990) for random flow fields. This is the reason for a slightly smaller (AV,) when the 
nonlinear drag is used. Obviously, it is possible to observe a net settling rate reduction 
when the dr?g nonlinearity effect offsets the preferential sweeping effect. Finally, we 
note that the nonlinear drag can also modify the quantitative value of the bias term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(u( Y, t ) )  since the effective particle inertia response time is slightly reduced (7, = 7a/ 

cf>). This coupling may either reduce or enhance the bias term depending on the 
particle response time relative to 7k (see figure 7). 

To substantiate the above reasoning, we computed the p.d.f. distribution for the slip 
velocity IV-u( shown in figure 22. The distributions are computed based on 49152 
independent data points and when the particle motion is stationary. For all three 
parameter sets, the distribution for the nonlinear drag is slightly more concentrated 
than the corresponding linear drag case. This is due to the fact that the effective inertial 
response time is smaller for the nonlinear drag case and as such the particle follows 
more closely the local fluid fluctuations. The distribution is broader as either the 
response time or the terminal velocity is increased. Further statistics, such as the mean 
slip velocity, (f) and the r.m.s. fluctuating value of f ,  denoted byf ,  can be easily 
computed using the distribution of the slip velocity and are displayed in table 2; also 
listed is the extreme case with a net settling rate reduction. First we notice that the 
maximum slip velocity realized in the simulations is quite large, resulting in the 
maximum Re, being as large as about 3 .  The mean Re, is at most O(1). Both the mean 
slip and the maximum slip velocity for the nonlinear drag case are slightly less than 
those for the linear drag case owing to a lower effective inertial response time. The 
standard deviation off is at most 3 YO of cf). Most importantly, (f) is larger than 

f s  by about 2 YO. When the inertial bias is small and W is large, such as for the case of 
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UO UO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7,/7t, WlVA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< I  v-4) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV - k a z  Re, Re,.,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU )  f” - 

(1.0,0.4) 0.41 1 1.986 0.170 0.823 1.0432 1.0216 0.015 

(1.0,3.0) 1.169 3.104 0.484 1.286 1.0905 1.0856 0.015 

(2.7, 3.0) 1.325 4.069 0.909 2.790 1.1384 1.1211 0.031 

(2.7,4.0) 1.624 4.469 1.114 3.065 1.1598 1.1462 0.030 

(0.426)t (2.150) 

(1.191) (3.371) 

(1.379) (4.270) 

The data in the parentheses are the cbrresponding value for the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr,  and W and when the 
linear Stokes drag is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused. 

TABLE 2. Statistics for simulations with the nonlinear drag 

T a / r k  = 2.7 and W/uk = 3.0, the change in the settling rate due to this difference in the 
f is given as W ( f s -  cf))/f” (about 0 . 0 2 ~ ~ )  and can be important. The quantitative 
difference in the settling rate change between the nonlinear drag and the linear one 
shown in figure 21 at r,/rk = 2.7 and W8/vk  = 3.0 is consistent with this estimation. 

In summary, the effect of nonlinear drag in the present study where Re, is O(1) is 
to slightly reduce the settling rate increase compared to the case for linear drag. The 
bias term dominates the settling rate change and we still observe a net increase in the 
settling rate, except for one set of particle parameters. 

6. Concluding remarks 
The average settling rate of heavy particles suspended in a turbulent flow has been 

computed, using the velocity field obtained from direct numerical simulations. It is 
shown that the settling rate is greater than the terminal velocity in still fluid, which is 
consistent with the results in a random flow field (Maxey 1987). However, the relative 
increase in the settling rate is found to be as high as 40 N 50 YO of the terminal velocity 
and much larger than that found in the previous study. A major distinction between 
the present study and that based on a random flow field is that here the flow evolves 
dynamically with the appropriate spatial and temporal structures, including the 
organized features of the dissipation range dynamics. In the random flow fields there 
was no such dynamical organisation, even though the averaged energy spectrum, was 
prescribed. While for all our simulations, TE is comparable to T, or Lf/u’ (see Yeung 
& Pope 1989); according to the results of Maxey (1987), the relative change in the 
settling rate should be very small. Our results, however, suggest that a much larger 
increase in the settling rate is possible even when TE N Lf/u’. This implies that the 
dynamical interactions of particles with coherent eddy structures are much stronger 
than in the case of random flow field and possibly last over a longer period of time. The 
results presented here demonstrate that the maximum increase occurs when the particle 
parameters are made comparable to the flow Kolmogorov scales. The mechanism by 
which the settling rate changes is due to the two physical processes. First, the inertial 
bias causes particles to accumulate in the peripheries of local vortical structures, and 
this characterizes in large part the direct interactions of heavy particles with the small- 
scale, dissipation-range flow dynamics. Secondly, the particles tend to move on the 
downflow sides of such local structures due to a combination of the local velocity field, 
particle inertia, and the fact that the particles approach them usually from above. The 
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above processes may oversimplify the motion of heavy particles in turbulence, but they 
are nevertheless the essential features for the settling rate. We also quantify the degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of local accumulation due to inertial bias and reveal that it does follow Kolmogorov 
scaling, namely, the strongest accumulation happens when the particle response time 
is comparable to the Kolmogorov timescale. 

This Kolmogorov scaling indicates that the small-scale flow dynamics plays a 
significant role on certain aspects of particle transport in fully developed turbulence. 
This is in contrast with the traditional approach that the large-scale, energy-containing 
fluid motions dominate the transport of particles, in particular, the dispersion process. 
This does not invalidate the traditional approach, but implies that the traditional 
approach may not be adequate for many aspects of multiphase flow processes. We have 
demonstrated here that at least when the settling rate and local accumulation are 
considered, a proper account of small-scale flow dynamics is essential. There are other 
problems, such as the degree of mixing of heavy particles, where the small-sale flow 
dynamics cannot be overlooked. Further, we hope the present study indicates that the 
structural view of turbulent flows can contribute to the development of multiphase flow 
modelling, in addition to the more commonly used statistical view. 

Two quite different forcing schemes have been used to provide flow energy at large 
scales. The qualitative features of the results are the same while the quantitative values 
differ. Further, the qualitative features are not altered as the flow Reynolds number is 
changed. Although only turbulent flows at moderate Reynolds numbers, noticeably 
lacking any inertial subrange, can be studied in the present approach we anticipate the 
same qualitative features will be observed for higher-Reynolds-number turbulent 
flows. Quantitative features of local accumulation await future investigations and 
establishment owing to the limited Reynolds number range that has been used here. 
However, this may be of secondary importance. In naturally occurring turbulent flows 
such as atmospheric turbulence, the flow scales are widely separated so the settling rate 
of small aerosols or droplets is likely to be affected only by a limited range of flow scales 
near the dissipation range. A few cases in this study have implied this situation. A wider 
scale separation implies that the vortical structures are more localized spatially. Then 
the particlevortical structure interactions become a truly local phenomenon. Just as 
the small-scale features of turbulence, the dissipation-range dynamics, and the inertial- 
range dynamics all bear some universal properties, the qualitative aspects of the results 
presented here can also be regarded as universal. In fact, for extremely high-Reynolds- 
number flows, even the quantitative values can be independent of the large-scale fluid 
motions and thus some universal scaling would apply. 

There are a number of other inferences that may be drawn from the present study. 
The effect of intense and persistent local vortical structures can modify quickly the 
particle concentration field near these local regions. In a shear mixing layer the 
organized, large-scale vortical structures can greatly influence the global transport, 
dispersion, and mixing of heavy particles (Wang zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1992). The small-scale vortical 
structures in turbulent flows may have a similar effect on the local transport and mixing 
of heavy particles. The strong local accumulation of particles may also significantly 
enhance the local flow dissipation in two-phase systems, indicating that the local 
feedback effect of heavy particles on the turbulence may be significant for a gas-solid 
particle system even at a nominally low mass-loading. By the same consideration, the 
particleparticle interactions may also be important locally. 
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