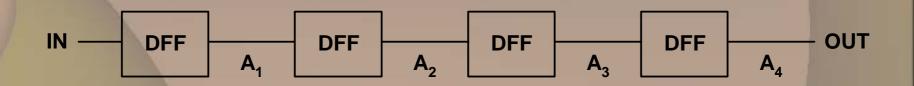

SEU-Hardened Energy Recovery Pipelined Interconnects for On-Chip Networks

A. Ejlali*, B. M. Al-Hashimi†

*Computer Engineering Dept.
Sharif University of Technology
Tehran, Iran

[†]Electronics and Comp. Science University of Southampton Southampton, UK



Overview

- Introduction
 - Pipelined On-Chip Interconnects
 - Addressed Problem
- Energy Recovery Circuits
- Energy Recovery Pipelined Interconnects
 - Proposed Designs
- Experiments

Pipelined On-Chip Interconnects

- Increased throughput
- Freedom in choosing arbitrary topologies
 - -Pipelining decouples the throughput from the interconnect length.

Addressed Problem

- Reliability of on-chip interconnects
 - In DSM technologies, flip-flops are susceptible to SEUs.
- Energy consumption of on-chip interconnects
 - Up to 50% of the total on-chip energy
 - SEU tolerance and low energy are at odds.
- In this work: Specialized energy recovery designs to achieve both the above objectives at the same time

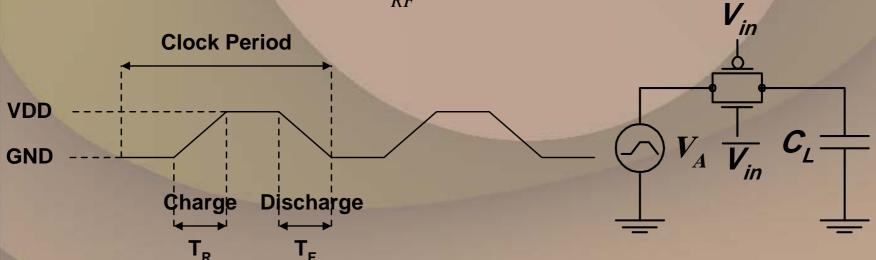
Previous Works

- 1) Energy recovery techniques for long wires
 - Voss et al., 2000.
 - Lyuboslavsky et al., 2000.

These works have not considered:

- reliability issues
- pipelined interconnects
- 2) Traditional Energy Recovery Logic Styles
 - Eight-phase dual-rail logic
 - 2LAL

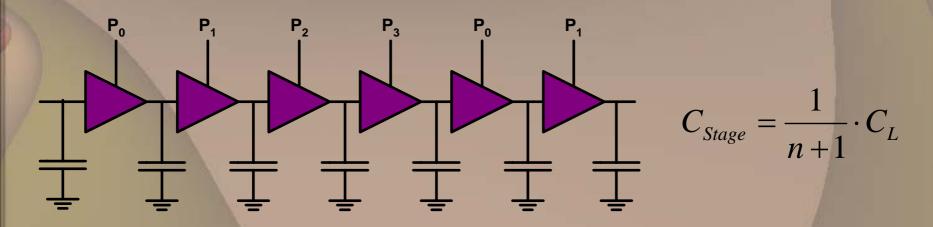
They are not suitable for pipelined on-chip interconnects.


The Principle of Energy Recovery

Conventional CMOS gates (Constant voltage charging)

$$E_{Conv} = \frac{1}{2} C_L V_{DD}^2$$

Energy recovery CMOS gates (Constant current charging)


$$E_{Cons-Cur} = \left(\frac{RC_L}{T_{RF}}\right)C_L V_{DD}^2$$

Characteristics of Energy Recovery Circuits

- The trapezoidal signals provide
 - Operating power
 - Timing information (power-clocks)
- Essentially pipelined sequential circuits
- Multiphase trapezoidal power-clock signals
- Reversible logic functions

Energy Recovery Pipelined Interconnects

Constant current charging of the non-pipelined interconnect

$$E_{non-pipelined} = \frac{RC_L}{T_{pe}} C_L V_{DD}^2$$

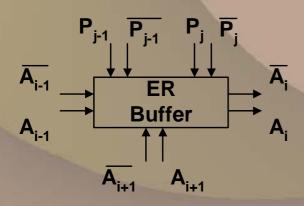
Constant current charging of the pipelined interconnect

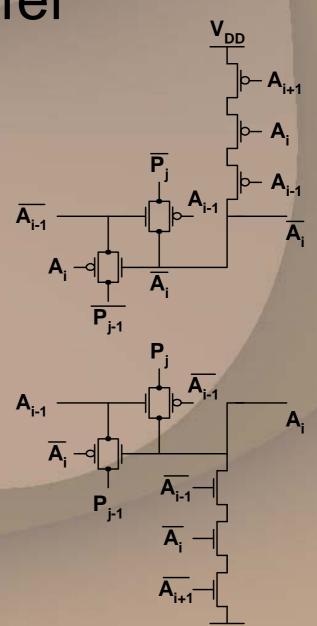
$$E_{Stage} = \frac{RC_{Stage}}{T_{RF}}C_{Stage}V_{DD}^{2} \Rightarrow E_{pipeline}(n) = (n+1)E_{Stage} = \frac{1}{n+1} \cdot \left[\frac{RC_{L}}{T_{RF}}C_{L}V_{DD}^{2}\right]$$

Energy Saving via Pipelining

- Conventional pipelined interconnects:
- Energy recovery pipelined interconnects:
 - - T_{RF} decreases
 - - T_{RF} remains unchanged

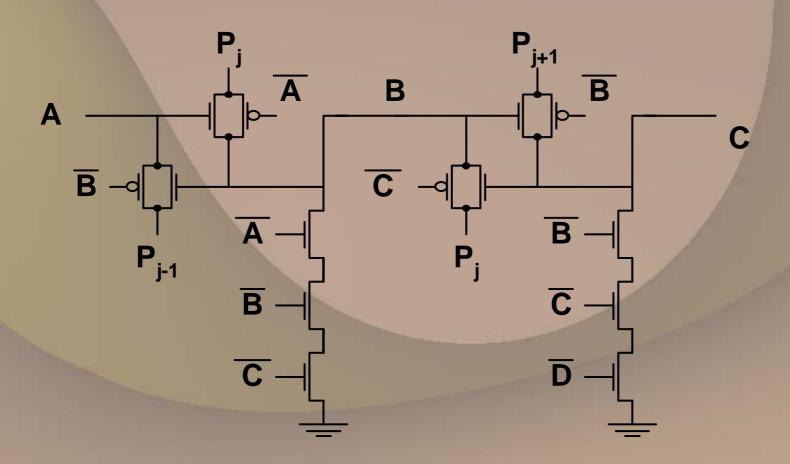
Proposed Designs

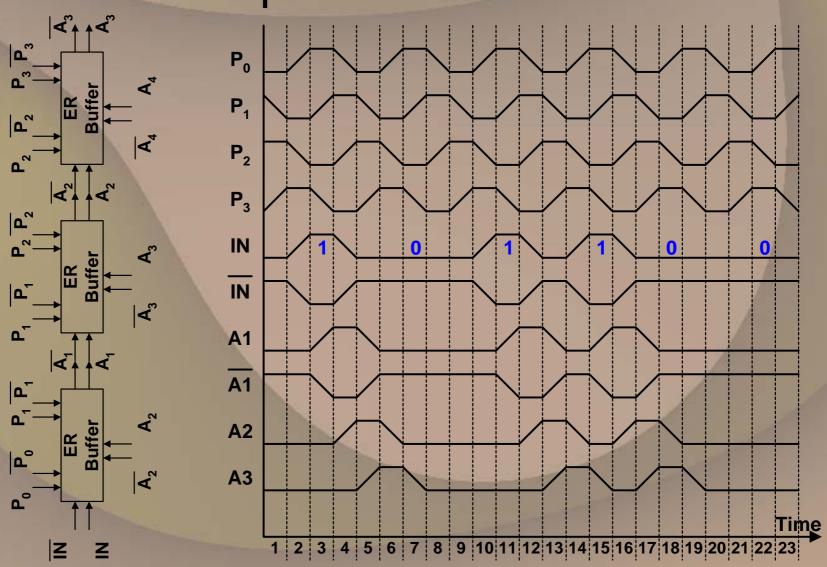

- ER
 - Energy Recovery Pipelined Interconnects
 - Energy Saving: 50%
 - Reliability: Slightly less reliable than conventional pipelines
- SHER
 - SEU-Hardened and Energy Recovery Pipelined Interconnects
 - Energy Saving: 30%
 - Reliability: Considerably hardened against SEUs


Disadvantages of Traditional Energy Recovery Logic Styles

- Eight-phase dual-rail logic
 - 8 power-clock signals
- 2LAL
 - Floating nodes
 - Problems in DSM technologies
- SEU-Hardness has not been considered

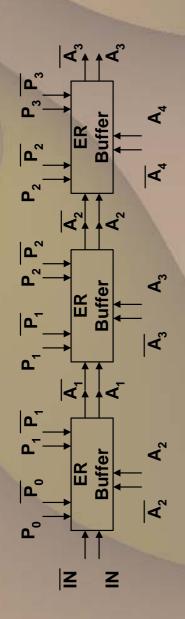
ER Buffer

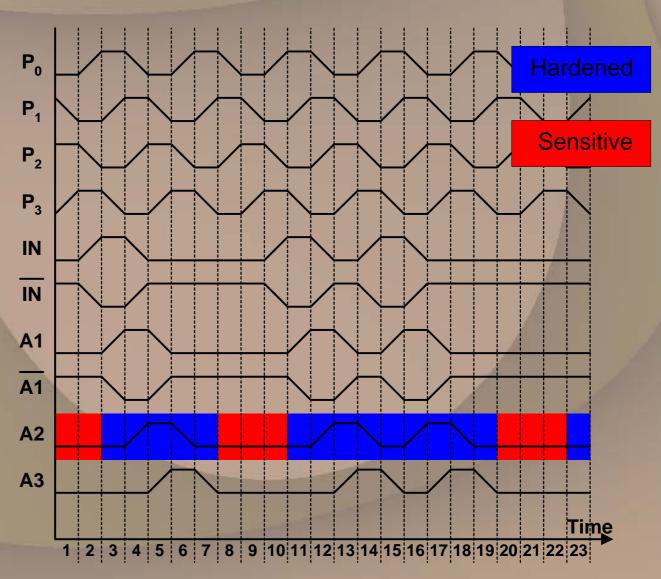

- Dual-rail logic
- 4 power-clocks
- Circuit parts:
 - Transmission gates
 - Transistor stack

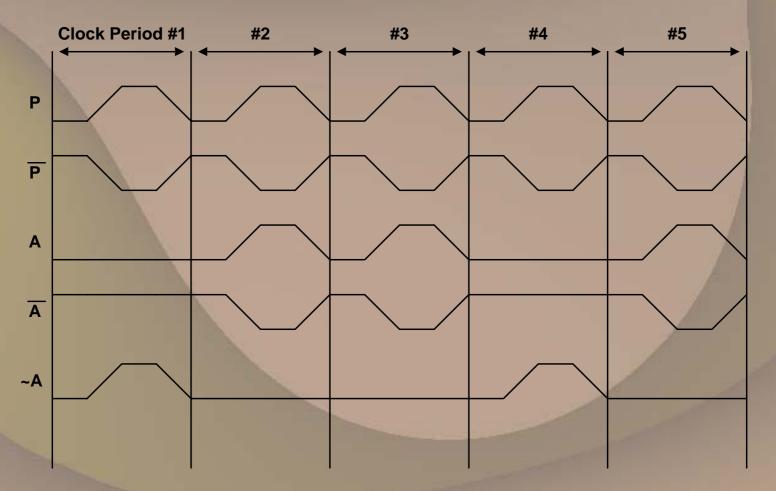


Clamp Transistor Stack

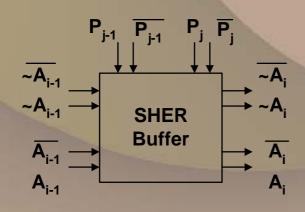
Two consecutive buffers

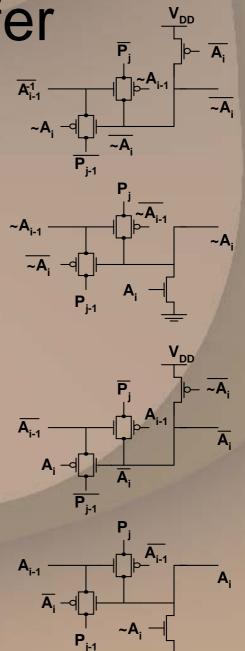



ER Pipelined Interconnects

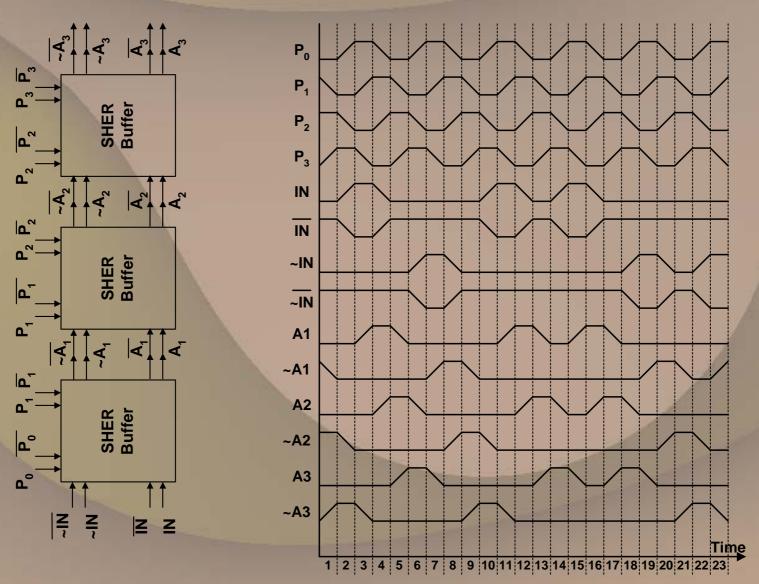

A detailed example in Pages 4 and 5 of the paper

SEU-Hardness


Voltage Inverse vs. Logical Inverse

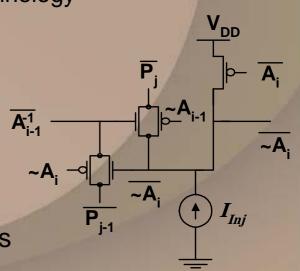


A = voltage inverse of A, ~A=logical inverse of A


SHER Buffer

- 4-rail logic
- 4 power-clocks
- Circuit parts:
 - Transmission gates
 - Clamp transistor

SHER Pipelined Interconnects



A detailed example in Pages 6, 7 and 8 of the paper

Experimental Evaluation

- SPICE simulations
 - 45nm PTM technology
- Interconnect
 - $-C_L=1pF$
 - About 5 millimeters long wire in 45nm technology
 - Throughput = 0.1 Gbps
- Estimating energy consumption
 - A random bit string consisting of 120 bits
- Estimating reliability against SEUs
 - Faults were injected using current sources

$$I_{Inj}(t) = \frac{2}{\sqrt{\pi}} \cdot \frac{Q}{T} \cdot \sqrt{\frac{t}{T}} \cdot e^{-\frac{t}{T}}$$

Energy Consumption of Pipelined On-Chip Interconnects

Pipelining Scheme	# of FFs or # of Buffers	Average Power (uW)	Energy consumption*(pJ)
Conventional	3 FFs	11.90	14.28
	4 FFs	12.14	14.57
1000	5 FFs	12.42	14.91
ER	12 BUFs	7.42	8.90
	16 BUFs	6.36	7.63
	20 BUFs	5.56	6.67
SHER	12 BUFs	11.22	13.47
	16 BUFs	9.62	11.54
	20 BUFs	8.41	10.09

^{*} The energy consumption when a bit string with 120 random bits is transmitted

Results Obtained From the Fault Injection Experiments

Pipelining Scheme	# of FFs or # of Buffers	# of SEUs	% of SEUs*	
Conventional	3 FFs	377	9.2	
	4 FFs	618	15.08	
	5 FFs	792	19.33	
ER	12 BUFs	502	12.26	
	16 BUFs	816	19.92	
	20 BUFs	844	20.61	
SHER	12 BUFs	0	0	
	16 BUFs	0	0	
	20 BUFs	2	0.05	
* 4000 C 14 (' 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

^{* 4096} faults (simulated particle strikes) were totally injected

Summary

- We have proposed the use of energy recovery techniques to construct low energy and reliable pipelined on-chip interconnects.
- We have presented two energy recovery designs:
 - ER
 - Energy Saving: 50%
 - Reliability: Slightly less reliable than conventional pipelines
 - SHER
 - Energy Saving: 30%
 - Reliability: Considerably hardened against SEUs

Future Works

Analyzing the use of frequency scaling:

$$E_{Cons-Cur} = (\frac{RC_L}{T_{RF}})C_L V_{DD}^2$$

- Analyzing the throughput/energy trade-off
 - Depth of pipelining↑ ⇒ Throughput↑
 - T_{RF} decreases
 - - T_{RF} remains unchanged

Thank You