
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-07-06

SEU-Induced Persistent Error Propagation in FPGAs SEU-Induced Persistent Error Propagation in FPGAs

Keith S. Morgan
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation

Morgan, Keith S., "SEU-Induced Persistent Error Propagation in FPGAs" (2006). Theses and Dissertations.

521.

https://scholarsarchive.byu.edu/etd/521

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F521&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/521?utm_source=scholarsarchive.byu.edu%2Fetd%2F521&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

SEU-INDUCED PERSISTENT ERROR PROPAGATION IN FPGAS

by

Keith Shearl Morgan

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

August 2006

Copyright c© 2006 Keith Shearl Morgan

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Keith Shearl Morgan

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Michael J. Wirthlin, Chair

Date Brent E. Nelson

Date Clark N. Taylor

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Keith Shearl
Morgan in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Michael J. Wirthlin
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of Engineering
and Technology

ABSTRACT

SEU-INDUCED PERSISTENT ERROR PROPAGATION IN FPGAS

Keith Shearl Morgan

Department of Electrical and Computer Engineering

Master of Science

This thesis introduces a new way to characterize the dynamic SEU cross sec-

tion of an FPGA design in terms of its persistent and non-persistent components. An

SEU in the persistent cross section results in a permanent interruption of service until

reset. An SEU in the non-persistent cross section causes a temporary interruption of

service, but in some cases this interruption may be tolerated. Techniques for mea-

suring these cross sections are introduced. These cross sections can be measured and

characterized for an arbitrary FPGA design. Furthermore, circuit components in the

non-persistent and persistent cross section can statically be determined. Functional

error mitigation techniques can leverage this identification to improve the reliabil-

ity of some applications at lower costs by focusing mitigation on just the persistent

cross section. The reliability of a practical signal processing application in use at Los

Alamos National Laboratory was improved by nearly two orders of magnitude at a

theoretical savings of over 53% over traditional comprehensive mitigation techniques

such as full TMR.

ACKNOWLEDGMENTS

I would like to first thank my wife Natalie for her many acts of selflessness.

She has stuck with me through many late nights in the lab. She has also been my

greatest support.

I would also like to thank my family, particularly my parents, for their their

encouragement and financial support.

I would also like to thank my advisor, Dr. Michael Wirthlin. He has spent

countless hours on my behalf. I particularly want to thank him for challenging me

technically and pushing me to become a better writer.

I also want to thank my professors and fellow students at BYU. They have all

helped mold me in a positive way.

Finally I want to thank the folks at Los Alamos National Laboratory. They are

not only great colleagues but friends as well. They supported this work through the

“Improving the Reliability of FPGA Designs through Automated Design Hardening”

program under contract #95952-001-04 3C.

Contents

Acknowledgments vi

List of Tables xii

List of Figures xvii

1 Introduction 1

1.1 Benchmark Designs . 3

1.2 Orbits . 3

1.3 Organization . 3

2 Radiation Effects and FPGAs 5

2.1 Space Radiation Environment . 5

2.2 Single Event Effects . 7

2.3 Static SEU Cross Section . 8

2.4 FPGA Static SEU Cross Section . 10

2.5 Orbit Specific Static SEU Rates . 12

2.6 Summary . 13

3 Dynamic Cross Section 15

3.1 Dynamic Single Event Upsets in FPGAs 16

3.2 Measuring Dynamic Cross Section . 17

3.3 Dynamic Cross Section Measurements 19

3.4 MTBF Estimation . 22

3.4.1 Calculating MTBF . 22

vii

3.4.2 Orbit-Specific MTBF Estimates 23

3.5 Summary . 23

4 Persistent Functional Errors 25

4.1 Related Research . 25

4.2 Scrubbing . 26

4.3 Non-Persistent Errors . 28

4.4 Persistent Errors . 30

4.5 Summary . 32

5 Persistent Cross Section 33

5.1 Non-Persistent Cross section . 34

5.2 Persistent Cross section . 36

5.3 Measuring Persistent Cross Section 40

5.3.1 Persistent Testing Methodologies 43

5.3.2 Persistent Cross Section Measurements 44

5.4 MTBF Estimation . 48

5.4.1 Application Service Interruption Tolerance 48

5.4.2 Calculating MTBF . 49

5.4.3 Orbit-Specific MTBF Estimates 50

5.5 Summary . 52

6 Functional Error Mitigation 53

6.1 Design Constraints . 54

6.2 Full Mitigation . 54

6.3 Partial Mitigation . 55

6.4 Modified Persistent Cross Section Measurements 56

6.5 Modified MTBF Estimates . 57

6.6 Summary . 60

7 Summary and Conclusion 61

viii

Bibliography 71

A Benchmark Designs 75

A.1 Multiplier . 76

A.2 Counter Array . 76

A.3 Synthetic . 77

A.4 DSP Kernel . 77

B Space Radiation Environment 79

B.1 Trapped Radiation . 79

B.2 Cosmic Radiation . 80

B.2.1 Galactic Cosmic Radiation . 81

B.2.2 Solar Cosmic Radiation . 82

C Testing Methodologies 85

C.1 Test-Fixture . 85

C.2 Fault-Injection . 85

C.3 Radiation Testing . 87

C.4 Testing Conclusions . 89

D Correlation of Accelerator Data to Simulation Results 91

D.1 Data Collection Hardware . 91

D.1.1 Output Error Detection . 92

D.1.2 SEU Detection . 92

D.2 Data Collection Software . 93

D.2.1 Output Error Thread . 93

D.2.2 Bitstream Fault Thread . 94

D.3 Testing Limitations . 95

D.4 Data Correlation Software . 97

D.5 Sensitivity Correlation . 101

D.6 Persistence Correlation . 104

D.6.1 Detection Algorithm 1 . 104

ix

D.6.2 Prediction Algorithm . 106

D.6.3 Detection Algorithm 2 . 106

D.7 Accounting for Testing Error . 108

E Predicting On-Orbit SEU Rates 111

E.1 Software Packages . 111

E.2 Integral Rectangular Parallelepiped Method 112

E.3 Rate Categories . 112

E.4 AP-8 Trapped Proton Model . 112

E.5 JPL 1991 Solar Proton Model . 115

E.6 CREME96 Cosmic Radiation Model 116

E.7 Static SEU Rates . 117

x

List of Tables

2.1 Xilinx Virtex XCV1000 FPGA Static SEU Proton Saturation Cross
Section[1] . 11

2.2 Proton Static Cross Section Measurements for the Configuration Memory
of a Set of Xilinx FPGAs . 12

2.3 Static SEU Rate Forecast for a Single Xilinx Virtex XCV1000 FPGA in
Several Different Orbits . 13

3.1 Dynamic Cross Section Predictions and Measurements† 20

3.2 On-Orbit Mean Time Between Failure Estimates 24

5.1 Sequence of Inputs and Outputs for a 4-bit Adder Circuit 36

5.2 Sequence of Inputs and Outputs for a 4-bit Adder Circuit 40

5.3 Persistent Cross Section Predictions and Measurements 45

5.4 Cross Section Predictions and Measurements 46

5.5 Modified On-Orbit Mean Time Between Failure Estimates 51

6.1 Modified Persistent Cross Section Predictions and Measurements 56

6.2 Modified On-Orbit Mean Time Between Failure Estimates for Tolerant
Applications . 58

A.1 Resource Utilization . 75

D.1 Confidence Intervals for Tested Designs 110

E.1 Solar Condition Categories and the Set of Values Necessary to Calculate
a Total Rate . 113

xi

E.2 Input Parameters to Predict SEU Rates in SPACERAD due to Trapped
Protons . 113

E.3 Input Parameters to Create a Trapped Proton Energy Transport File in
SPACERAD . 114

E.4 Input Parameters to Create a Spacecraft Shielding File in the SPAC-
ERAD Package . 114

E.5 Input Parameters to Create Trapped Proton Environment Files in SPAC-
ERAD . 114

E.6 Input Parameters to Create Orbit Files in SPACERAD 114

E.7 Input Parameters to Predict Solar Proton SEU Rates in SPACERAD . 115

E.8 Input Parameters to Create a Solar Proton Energy Transport File in
SPACERAD . 115

E.9 Input Parameters to Create a Solar Proton Environment File in SPAC-
ERAD . 116

E.10 Input Parameters to Create Geomagnetic Shielding Files for the SPAC-
ERAD Software Package . 116

E.11 Input Parameters to Predict Heavy Ion SEU Rates in CREME96 . . . 117

E.12 Input Parameters to Convert an Energy Transport File to an LET Spec-
trum in CREME96 . 117

E.13 Input Parameters to Create an Energy Transport File in CREME96 . . 117

E.14 Input Parameters to Create an Energy Transport File in CREME96 . . 118

E.15 Input Parameters to Create Geomagnetic Shielding Files in the CREME96
Package . 118

E.16 Static SEU Rate Forecast for a Single Xilinx Virtex XCV1000 FPGA in
Several Different Orbits . 118

xii

List of Figures

2.1 Van Allen trapped radiation belts around the earth [2]. 6

2.2 The different classes of soft and hard errors collectively known as Single
Event Effects [3]. 7

2.3 Proton SEU configuration latch per-bit cross sections for the XCV1000
FPGA fit to the Weibull distribution. 9

2.4 Heavy ion SEU configuration latch per-bit cross sections for the XCV1000
FPGA fit to the Weibull distribution. 10

2.5 A simplified schematic representation of one configurable logic block in
an FPGA. 11

3.1 Representation of an FPGA configurable logic block. The top half of
the block is programmed to perform a 2-input logical OR function. The
output of this function is latched in a user flip-flop. The bottom half of
the block is not configured. 17

3.2 Representation of a configured FPGA logic block upset by an SEU. In
this case, the particle strike corrupted the top LUT so that its function
switched to a 2-input logical XOR. 17

3.3 Comparison of the resource utilization and dynamic cross section for
a Counter Array design. The diagram on the left is a screen capture
of the resource layout of the design. The right diagram is a graphical
representation of the portion of the Counter Array design layout which
constitutes its dynamic cross section. 20

3.4 Comparison of resource utilization and dynamic cross section for the
Synthetic design. 21

3.5 Comparison of resource utilization and dynamic cross section for the
DSP Kernel design. 21

xiii

3.6 Comparison of the relative size of the dynamic to static cross section for
several designs. 22

4.1 A typical scrubbing circuit reads the configuration memory one block at
a time, compares each block against a golden copy, and repairs all upset
bits. 27

4.2 Plot of the difference between the outputs of a DUT and golden circuit
before, during and after a configuration upset. The upset generated
non-persistent functional errors. 30

4.3 Plot of the difference between the outputs of a DUT and golden circuit
before, during and after a configuration upset. The upset generated
persistent functional errors. 31

5.1 The diagram on the left represents the generic relationship between static
and dynamic cross section. The diagram on the right shows the non-
persistent and persistent components of the dynamic cross section. . . . 34

5.2 The feed-forward sections of a circuit, outlined with the dashed line,
belong to the non-persistent cross section. 35

5.3 Simplified schematic representation of a 4-bit full-adder implemented in
an FPGA. 37

5.4 Simplified schematic representation of a 4-bit full-adder implemented in
an FPGA. The bit stored at address 0x3 in the LUT second from the
top was flipped from a 0 to a 1 by an SEU. 38

5.5 The feed-back sections of a circuit belongs to the persistent cross section.
Feed-forward sections which feed into a feed-back path also belong to the
persistent cross section. Both sections are highlighted with the dashed
box. 39

5.6 Simplified schematic representation of a 4-bit accumulate adder imple-
mented in an FPGA. 41

5.7 Simplified schematic representation of a 4-bit accumulate adder imple-
mented in an FPGA. The bit stored at address 0x3 in the LUT second
from the top was flipped from a 0 to a 1 by an SEU. 42

xiv

5.8 Comparison of resource utilization, dynamic cross section and persistent
cross section for a Counter Array design. The diagram on the left is a
screen capture of the resource layout of the design. The right and left
diagrams are respectively the dynamic and persistent cross section of the
Counter Array design. 46

5.9 Comparison of resource utilization, dynamic cross section and persistent
cross section for a Synthetic design. 47

5.10 Comparison of resource utilization, dynamic cross section and persistent
cross section for the DSP Kernel design. 47

5.11 The diagram on the left represents a temporary service interruption, or
non-persistent errors. The diagram on the right depicts a permanent
service interruption, or persistent errors. 49

6.1 Comparison of the DSP Kernel design’s persistent cross section before
and after partial mitigation with TMR. 57

6.2 Plot of device utilization vs. MTBF for the DSP Kernel and Synthetic
designs in a Low-Earth Orbit at Solar Max. Both applications are as-
sumed to be non-persistent-error-tolerant. 59

A.1 A feed-forward multiplier circuit [4]. 76

A.2 A feed-forward multiplier circuit [4]. 77

A.3 A synthetic FPGA design with LFSRs and a multiplier-adder tree [4]. . 78

A.4 A digital signal processing kernel design developed at Los Alamos Na-
tional Laboratory [4]. 78

B.1 Van Allen trapped radiation belts around the earth [2]. 80

B.2 Motion of trapped particles in the Van Allen radiation belts [5]. 80

B.3 Integral trapped proton LET spectrum for a low-earth orbit at 560 km
altitude and 35.0o degrees inclination. 81

B.4 The earth’s magnetosphere [2]. 82

B.5 Integral heavy-ion LET spectrum for a low-earth orbit at 560 km altitude
and 35.0o degrees inclination. 83

xv

C.1 The SLAAC1-V configurable computing platform. 86

C.2 Fault-injection test time-line: Sequence of events in a single trial to test
a configuration bit for persistence. 87

C.3 Proton irradiation test time-line: Sequence of events in a single trial to
test a configuration bit for persistence. 89

D.1 Block diagram of the SLAAC1v configurable computing PCI board. The
SLAAC1V has three Xilinx Virtex XCV1000 FPGAs. 92

D.2 Timeline of events in the fault-injection tool to test a configuration bit
for persistence. 94

D.3 Flow diagram of the Output Error thread in the data collection software
for accelerator persistence tests. 95

D.4 Flow diagram of the Bitstream Fault thread in the data collection soft-
ware for accelerator persistence tests. 96

D.5 UML diagram of the software classes used to represent the data structure
of events parsed from the data recorded at an accelerator using the data
collection software. 98

D.6 Sample output error (OE) data log. 99

D.7 Sample read-back error (RB) data log. 100

D.8 Flow diagram of the algorithm to classify sensitive configuration bit data
collected at an accelerator. 102

D.9 Example timeline of events recorded at an accelerator. 102

D.10 Histogram of the delta time in ms between an output error event and an
configuration upset event. 103

D.11 Flow diagram of an algorithm to classify persistent configuration bit data
collected at an accelerator. 105

D.12 Example timeline of events recorded at an accelerator. 105

D.13 Flow diagram of an algorithm to classify persistent configuration bit data
collected at an accelerator. 107

xvi

D.14 Example timeline of events recorded at an accelerator. 107

xvii

Chapter 1

Introduction

Field Programmable Gate Arrays (FPGA) have become an attractive comput-

ing solution for space-destined systems. Recent government and military space-based

systems have exploited FPGAs. Writer Kevin Morris reported that 76 Actel FPGAs

were either on or orbiting mars in 2004. He also reported that Xilinx FPGAs are

used in some of the control systems for the high-profile mars rover missions [6].

The increased usage of FPGAs in space can be attributed to the many ben-

efits they provide. FPGAs have high-performance capabilities. The programmable

logic and on-chip memories are well-suited to complex high-throughput applications,

particularly those used in signal processing. FPGAs’ are also very flexible. Their on-

demand reconfiguration capability supports the use of multiple applications on the

same chip through time multiplexing. In addition, new applications can be ’uploaded’

on-mission and existing applications can be ’fixed’ if bugs are found or modifications

are desired.

Although FPGAs benefit a space system in many ways, the outer space en-

vironment poses difficult reliable operation challenges, particularly for FPGAs. The

radiation prevalent in space can upset values in the on-chip memories or flip-flops

(used by an application to store dynamic data). These incorrect values can manifest

as functional errors if they propagate to the chip’s output pins. The space radiation

can also upset the configuration memory (used to statically store an application’s

configuration), which can actually modify the configured application. In this case,

the corrupted circuit can generate invalid values which will be latched in the on-chip

memories or flip-flops. Again, these incorrect values can manifest as functional errors

1

if they propagate to the chip’s output pins. Unfixed, the configuration memory can

indefinitely induce functional errors and could permanently interrupt an application’s

proper operation without external intervention.

As a result of the reliable operation challenges, reliability-constrained FPGA

applications must mitigate some measure of functional errors in order to qualify for

space. Typical strategies immunize an FPGA application against radiation-induced

functional errors by adding redundant copies of all circuit resources and continuously

monitoring for and correcting upsets in the configuration memory. The redundancy

ensures that no single upset will manifest as a functional error at the chip’s output

pins. Monitoring and correcting the configuration memory ensures that, for the most

part, no more than a single upset exists at any given time.

Unfortunately space-destined systems also often have other design constraints

which make complete functional error mitigation infeasible. A system’s set of design

constraints typically include reliability, availability and cost (area, resources, power

etc.). In some cases a system is limited by just one of these three constraints. In

other cases a system is limited by a combination of these three constraints or even

others. An important combination of constraints for space-destined FPGA applica-

tions is reliability and resource count. A completely mitigated implementation of an

application may meet reliability constraints, but often exceeds the number of avail-

able resources in the FPGA. For these scenarios other solutions are necessary that

use fewer resources, but still provide acceptable reliability.

This thesis will introduce a novel mitigation technique that provides acceptable

reliability at lower resource costs by giving up availability. To support this technique

a system must be able to tolerate temporary interruptions of service. In an FPGA,

dynamic functional errors are the interruptions of service. This thesis will show that

dynamic functional errors can be divided into two categories based on duration of ser-

vice interruption. Non-persistent functional errors temporarily interrupt application

service. Persistent functional errors permanently interrupt application service until

reset. A system which can tolerate non-persistent functional errors only needs to

mitigate persistent functional errors. Since persistent functional errors represent only

2

a subset of all functional errors mitigating them requires fewer redundant resources.

Furthermore, mitigating only persistent functional errors reserves valuable redundant

resources for mitigating the cause of real application failures. As such, reliability can

be improved with far fewer resources.

To quantify the relative reliability improvements presented in this work, on-

orbit application failure rates will be presented throughout this thesis for four bench-

mark applications. Rates will be computed for each of the four applications in three

distinct orbits.

1.1 Benchmark Designs

The first benchmark application consists of an array of feed-forward multipliers

with no internal state. This circuit represents a typical data-flow application. The

second is a large array of 400 8-bit counters (each containing count state). This circuit

represents an application with significant amounts of internal state. The third is a

synthetic application consisting of LFSRs and a multiplier-adder tree. This circuit

represents the typical mixture of data-flow and internal state in an application. The

fourth is a Digital Signal Processing (DSP) kernel developed at Los Alamos National

Laboratory. This circuit represents a real application. More information about each

application, including size and functionality, can be found in Appendix A.

1.2 Orbits

The first orbit is a typical Low-Earth Orbit (LEO) at 560 km altitude and

35.0o inclination. The second is a Polar orbit at 833 km altitude and 98.7o inclination.

This orbit helps demonstrate the increased failure rates seen at the earth’s magnetic

poles. The final is the Global Positioning System (GPS) orbit at 22, 200 km and 55.0o

inclination. This orbit is outside the natural shielding of the earth’s magnetosphere.

Such an orbit also leads to increased failure rates.

1.3 Organization

The organization of this thesis is as follows: Chapter 2 introduces the space

radiation environment and FPGA radiation effects. Chapter 3 reviews operational

3

(dynamic) functional errors in an FPGA. Chapter 4 introduces non-persistent and

persistent functional errors. Chapter 5 presents the non-persistent and persistent

cross sections, in other words, a mapping from both non-persistent and persistent

functional errors to circuit elements. Chapter 6 shows how these mappings can be

exploited to mitigate just persistent functional errors. This method can deliver ac-

ceptable levels of reliability within other design constraints, often at much lower costs

than full functional error mitigation.

As FPGAs are used more and more in space-based systems for their perfor-

mance and flexibility, FPGA reliability improvement techniques will become more and

more essential. The technique presented in this thesis is just one of the many possible

methods. It offers one more option or design point in the space of possible reliability

enhancement solutions. Systems which can afford to give up some availability can

use this technique to improve reliability at lower resource costs.

4

Chapter 2

Radiation Effects and FPGAs

Developing a method for cost-effective FPGA functional error mitigation re-

quires estimating failure rates for a specific FPGA application. The first step to de-

termine an FPGA application’s failure rate is to quantitatively determine the FPGA’s

sensitivity to radiation. The next step is to determine the radiation flux specific to

the FPGA’s destined orbit. Based on these two values, static upset rates can be calcu-

lated. In later chapters, these rates will be used to predict upset rates for applications

before and after functional error mitigation.

This chapter reviews the space radiation environment and generic and FPGA-

specific radiation effects. The chapter concludes with a quantitative analysis of orbit-

specific upset rates for a specific FPGA in the three orbits described in Section 1.2.

Although the results presented are not direct estimates of failure rate for a specific

application, they are necessary to compute an application’s failure rate. Each of the

subsequent chapters (excluding Chapters 4 and 7) will present failure rates based on

the values presented in this chapter.

2.1 Space Radiation Environment

Several particle sources contribute to the composition of the space radiation

environment. One source, a region known as the Van Allen belts, extends from 800

kilometers above the earth out to 6 earth radii and beyond. This region, depicted in

Figure 2.1, mostly consists of trapped electrons and protons. The earth’s magnetic

field suspends the particles in orbit at a relatively fixed distance. Protons and elec-

5

trons with energies up to 10 MeV (millionelectronvolts) and several hundred MeV

respectively reside in the belts.

Figure 2.1: Van Allen trapped radiation belts around the earth [2].

The sun also contributes to the radiation environment in space. It periodically

ejects intense quantities of energetic particles into space via cosmic rays. Particles

in cosmic rays have energies up to several thousand MeV. The earth’s magnetic field

deflects a majority of these particles. As a result, the particle flux at a given point

in space is a function of the earth’s magnetic field strength at that location. Peak

particle fluxes typically exist at higher altitudes and near the earth’s magnetic poles.

In addition to particles from the sun, cosmic rays of unknown origin contribute

to particle flux, particularly at high altitudes and near the earth’s magnetic poles.

Galactic Cosmic Rays (GCR), as they are called, typically consist of about 85 percent

protons, about 14 percent alpha particles and about 1 percent heavier nuclei [5].

Particles with energy up to the GeV range exist in GCRs. More information about

6

the temporal and spatial composition of the space radiation environment can be found

in Appendix B.

2.2 Single Event Effects

Energetic particles in space, trapped in the Van Allen belts or transmitted

by cosmic rays, can deposit unwanted charge in a microelectronic device. Excess

charge can cause transient faults or even permanent damage. Figure 2.2 lists the

different types of transient and permanent faults, commonly called soft and hard

errors respectively. The set of all soft and hard errors are known as Single Event

Effects (SEE). Note that a single particle causes each of the different SEE fault types.

Other time-integrated effects also occur as the result of total radiation dose.

Figure 2.2: The different classes of soft and hard errors collectively known as Single
Event Effects [3].

This work focuses on the effects of a subset of soft errors known as Single

Event Upsets (SEU). An SEU occurs when deposited charge directly causes a change

of state in a dynamic circuit memory element (flip-flop, latch, etc.). The change in

state of one node is a single bit upset (SBU). The change in state of more than one

node is a multiple bit upset (MBU). Both types of SEUs cause faults which can be

repaired dynamically or by a power off/on.

7

2.3 Static SEU Cross Section

The total fraction of a device sensitive to SEUs is often referred to as its static

SEU cross section (measured in units of cm2) [7]. A device’s static SEU cross section

is a function of the sensitive volume at each node. A single node’s sensitive volume

corresponds to the amount of charge that must be collected (in the node) from an

external charge deposition to change its state. The static SEU cross section of an

entire device is proportional to the sum of the sensitive volumes of all nodes.

Since different particle energies deposit different amounts of charge, a node’s

SEU susceptibility varies with particle energy. E.L. Petersen et al. at the Naval

Research Laboratory proposed that per-bit static cross section vs. energy follows a

Weibull distribution [8]. Figures 2.3 and 2.4 depict the Xilinx Virtex XCV1000 FPGA

proton and heavy-ion per-bit cross sections respectively, fit to a Weibull distribution.

In both figures, the x axis is energy and the y axis is per-bit cross section. The

formula for a heavy-ion Weibull distribution is,

F (L) = σsat(1 − e−[(L−Lo)/W]s), (2.1)

where,

F (L) = Heavy Ion SEU cross section in µ2/bit,

σsat = limiting or plateau cross section in µ2,

L = effective LET (linear energy transfer) in MeV − cm2/mg,

Lo = upset threshold LET in MeV − cm2/mg,

W = dimensionless width parameter,

and

s = dimensionless exponent parameter.

The formula for a proton Weibull distribution is,

F (x) = σsat(1 − e−[(x−xo)/W]s), (2.2)

where,

F (x) = Proton SEU cross section in cm2/bit,

8

σsat = limiting or plateau cross section in cm2,

x = proton energy in MeV ,

xo = onset energy in MeV ,

W = dimensionless width parameter,

and

s = dimensionless exponent parameter.

These formulas and the specific parameter values for the Xilinx XCV100 can be found

in [9]. The figures show that at higher energies, the per-bit cross section or node

sensitivity goes up. However, above a particular energy the size of the cross section

plateaus or saturates. Total device cross section estimates, such as that shown in

Table 2.1 for the XCV1000, often assume worst-case, or saturation cross section for

each bit.

Figure 2.3: Proton SEU configuration latch per-bit cross sections for the XCV1000
FPGA fit to the Weibull distribution.

9

Figure 2.4: Heavy ion SEU configuration latch per-bit cross sections for the XCV1000
FPGA fit to the Weibull distribution.

2.4 FPGA Static SEU Cross Section

The signature of a device’s per-bit Weibull cross section varies based on the

physical characteristics of its sensitive nodes. In an FPGA, sensitive nodes include

configuration memory cells, user flip-flops and user memory cells. Figure 2.5 repre-

sents the architecture of a simplified FPGA logic block. Latch cells hold the configu-

ration of the look-up tables (LUT), inter-block routing (not shown in the figure) and

other miscellaneous configurable logic. Other memory element architectures are used

for the flip-flops and user memories. The sensitive volume characteristics of the con-

figuration cells, flip-flops and user memories dictate the shape of the Weibull per-bit

cross section distribution.

Table 2.1 enumerates the total SEU cross section of a Xilinx XCV1000 FPGA

as well as the per-bit cross section for each type of sensitive node. The sum of the

10

Figure 2.5: A simplified schematic representation of one configurable logic block in
an FPGA.

number of each node type multiplied by its respective per-bit cross section equals

the total static cross section. This particular device has approximately 5.8 × 106

configuration latches and 24 × 103 user flip-flops. The user flip-flops have a larger

per bit cross section, but have a less significant impact on total cross section due to

the smaller number of flip-flop nodes. The configuration memory cells comprise more

than 95% of the total cross section. As is the case with most RAM-based FPGAs,

the configuration memory dominates the static cross section.

Table 2.1: Xilinx Virtex XCV1000 FPGA Static SEU Proton Saturation Cross
Section[1]

Cross Number
Circuit

Section on
Cross Section % of Total

Resource
(cm2/bit) Chip

(cm2) Cross Section

Config. Latch 2.2 × 10−14 5.8 × 106 1.3 × 10−7 95.5%
Flip-Flop 1.8 × 10−14 2.4 × 104 4.3 × 10−10 0.3%

Block-RAM 4.4 × 10−14 1.3 × 105 5.7 × 10−9 4.2%
POR 1.8 × 10−14 43 7.7 × 10−13 0.0%
Total - - 1.36 × 10−7 100%

11

Like SRAM memory, an FPGA’s total static cross section scales with the

size of the device (i.e. number of bits or nodes). Table 2.2 lists the proton static

cross section for several FPGAs. Notice that the per-bit cross section is constant

for a particular device family, but the total device static cross section scales with

the number of bits. Consequently, smaller FPGAs have a smaller static cross section

while larger FPGAs have a larger static cross section.

Table 2.2: Proton Static Cross Section Measurements for the Configuration Memory
of a Set of Xilinx FPGAs

Configuration Proton Static Cross Section (cm2)
Device

Bits per-bit total
Virtex 300 1.6 × 106 2.2 × 10−14 3.5 × 10−8

Virtex 600 3.1 × 106 2.2 × 10−14 6.9 × 10−8

Virtex 1000 5.8 × 106 2.2 × 10−14 1.3 × 10−7

Virtex II 1000 2.8 × 106 3.8 × 10−14 1.1 × 10−7

Virtex II 3000 7.3 × 106 3.8 × 10−14 2.8 × 10−7

Virtex II 6000 1.6 × 107 3.8 × 10−14 6.2 × 10−7

2.5 Orbit Specific Static SEU Rates

Predicting the frequency of radiation-induced faults in a given device requires

knowledge about device’s static cross section and destined environment. Methods ex-

ist to calculate upset rates based an orbit’s estimated energy spectrum and a device’s

sensitive cross section characteristics described by a Weibull distribution [8, 10, 3, 7].

Readily available computer codes aid in automatic calculation of upset rates.

Static SEU rates for a Xilinx XCV1000 FPGA in several orbits are listed in

Table 2.3. Appendix E completely documents the software and parameters used to

generate the rates found in this table. The results shows that during Solar Minimum1

conditions in the example low-earth orbit (LEO), the configuration memory will expe-

rience approximately 2.8 configuration upsets every one-hundred hours and roughly

1See Appendix B for more information on solar conditions.

12

1.9 configuration upsets per one-hundred hours during “solar flare” conditions. In

a global positioning system (GPS) orbit, approximately 4.5 configuration memory

configuration upsets will occur every one-hundred hours during Solar Minimum and

approximately 13 configuration upsets will occur per one hour during flare conditions.

In contrast, Xilinx Corporation estimates that the XCV1000 will statically experience

one upset every 2.2 × 106 hours when operating at sea level [11].

The astute reader will notice that in some situations the Solar Maximum SEU

rates are actually smaller than the Solar Minimum SEU rates. During Solar Maxi-

mum, increased solar activity increases the particle flux outside the magnetosphere.

At altitudes below the magnetosphere, however, the magnetic field shields a large

portion of the solar particles thus the trapped particle flux dominates even during

increased solar activity.

Table 2.3: Static SEU Rate Forecast for a Single Xilinx Virtex XCV1000 FPGA in
Several Different Orbits

Solar Solar Worst Worst
Orbit

Alt. Incl.
Minimum Maximum Week Day

(km) (deg)
(SEU/hr) (SEU/hr) (SEU/hr) (SEU/hr)

LEO 560 35.0o 2.8 × 10−2 1.8 × 10−2 1.9 × 10−2 1.9 × 10−2

Polar 833 98.7o 6.9 × 10−2 5.5 × 10−2 1.1 3.8
GPS 22, 200 55.0o 4.5 × 10−2 4.6 × 10−1 3.7 1.3 × 10+1

2.6 Summary

This chapter introduced the space radiation environment and FPGA radiation

effects. The static SEU cross section of an FPGA was also defined. Radiation envi-

ronment models and static cross section measurements for a Xilinx XCV1000 FPGA

were used to calculate static on-orbit upset rates in three benchmark orbits. These

upset rates, presented in Table 2.3, do not represent failure rates for any particular

FPGA application. The following chapter will show that application failure rate de-

pends on other factors in addition to static SEU rates. All failure rates presented

13

throughout this thesis are based on the static cross section numbers reported in Ta-

ble 2.3. Each of the subsequent chapters (excluding Chapters 4 and 7) will present

failure rates based on the values presented in this chapter. These failure rates will

be used to prove that the mitigation technique introduced in this thesis provides

acceptable reliability at lower resource costs by giving up availability.

14

Chapter 3

Dynamic Cross Section

The previous chapter described the space radiation environment, introduced

the concept of single event effects and showed that a device’s sensitivity to single

event effects can be measured as a static cross section. However, any unique FPGA

configuration (user circuit design) does not typically utilize an entire device. Research

at Brigham Young University demonstrated that an SEU in an unutilized FPGA

resource typically does not affect a circuit’s proper operation. Consequently, FPGAs

have an operational (dynamic) cross section usually much smaller than their total

static cross section [12, 13, 14].

When programmed with a user circuit design, an FPGA’s configuration mem-

ory has a unique dynamic cross section. FPGA dynamic cross section is the fraction

of an FPGA’s static cross section sensitive to SEUs. A design’s utilization of pro-

grammable routing, logic, and I/O resources determines its dynamic cross section.

Specifically, nodes which generate functional errors when upset belong to a design’s

dynamic cross section. Since a design never uses all of an FPGA’s resources, the

dynamic cross section is generally much smaller than the static cross section.

Since dynamic cross section properly accounts for a circuit’s actual resource

utilization, it should be used to more accurately estimate an application’s failure rate.

Such failure rate estimates are calculated by simply scaling static SEU rate by the

size of an application’s dynamic cross section. Calculating failure rate in this manner

leads to more accurate estimates.

This chapter begins with a description of dynamic functional errors and the

methodology used to measure dynamic cross section. Next, measurements of dynamic

15

cross section for a few sample applications are presented. Finally, estimated failure

rates for these applications are reported showing how to more accurately calculate an

application’s failure rate based on its dynamic cross section.

3.1 Dynamic Single Event Upsets in FPGAs

An FPGA resource utilized by a specific design and corrupted by an SEU

in the configuration memory may generate functional errors. Figures 3.1 and 3.2

illustrate how an SEU alters an FPGA design and induces functional errors. Figure 3.1

depicts a simplified programmable logic block, the standard programmable unit in

an FPGA. The two 4-input function generators (i.e. Look-Up Tables (LUT)) store

their configuration in 16x1 memories. In the figure, the top LUT’s configuration

implements a logical 2-input OR function. Since only 2 inputs are used, 3/4 of the

LUT’s contents don’t matter. The bottom LUT is not configured so none of the

contents in this LUT matter. Figure 3.2 depicts the same logic block after a particle

strike and subsequent single bit upset (SBU) at address 0x3 in the top LUT. In this

case, the upset modified the LUT so that it now performs a 2-input logical XOR

function. Until the upset bit is restored to its proper configuration, the LUT will

execute the logical XOR function and can produce functional errors. In this example,

the affected configuration bit belongs to the dynamic cross section.

In the preceding example a particle strike and subsequent SEU in the bottom

LUT would not have adversely altered the programmed application. The unuti-

lized LUT’s configuration memory is loaded with “don’t care” values. These unpro-

grammed configuration bits belong to the non-dynamic cross section. An upset in

this LUT would change the configured logic function, but would not cause functional

errors during operation. Since only utilized resources affect a design’s proper oper-

ation, only a subset of all configuration bits belong to the dynamic cross section.

Therefore, dynamic cross section is smaller than an FPGA’s static cross section.

16

Figure 3.1: Representation of an FPGA configurable logic block. The top half of the
block is programmed to perform a 2-input logical OR function. The output of this
function is latched in a user flip-flop. The bottom half of the block is not configured.

Figure 3.2: Representation of a configured FPGA logic block upset by an SEU. In
this case, the particle strike corrupted the top LUT so that its function switched to
a 2-input logical XOR.

3.2 Measuring Dynamic Cross Section

Two techniques aid in estimating and measuring dynamic cross section. Fault-

injection predicts or estimates a design’s dynamic cross section. Particle irradiation

17

more formally measures dynamic cross section and validates fault-injection predic-

tions.

Analytical techniques such as fault-injection estimates dynamic cross section

size by injecting faults into an FPGA’s configuration bitstream and simultaneously

monitoring the FPGA’s outputs for functional errors. Configuration memory loca-

tions which induce functional errors when upset belong to the dynamic cross section.

A fault-injection tool developed by Eric Johnson at Brigham Young Univer-

sity accurately estimates dynamic cross section [15]. This tool estimates dynamic

cross section for a given FPGA design by artificially upsetting individual bits within

the configuration memory of an FPGA device under test (DUT). The tool identi-

fies “sensitive” configuration bits, or bits which belong to the dynamic cross section.

Johnson’s tool can rapidly test all configuration bits in a bitstream to create an ac-

curate and complete characterization of the dynamic cross section of a given FPGA

design. With Johnson’s tool, the entire 5.8×106 bit configuration memory of a Xilinx

Virtex XCV1000 can be tested in approximately 20 minutes [12].

The predicted size of a design’s dynamic cross section, xdp
, is equal to the

fraction of “sensitive” configuration bits identified in the design, multiplied by the

device’s measured static cross section

xdp
= xs ×

sensitive bits

total bits
, (3.1)

where,

xdp
= predicted dynamic cross section,

and

xs = measured static device cross section.

Since static cross section has units of cm2 and the ratio of sensitive to total bits is

unit-less, the result has units of cm2.

To validate fault injection estimates, more formal measurements of dynamic

cross section are taken using proton testing. Measured dynamic cross section, xdm
, is

18

the ratio of functional errors to particle fluence, or mathematically,

xdm
=

error events

fluence × cos θ
, (3.2)

where,

xdm
= measured dynamic cross section,

and

θ = incident particle angle [7, 16].

The particle fluence is scaled by the cosine of the incident particle angle to account

for variance in fluence due to angle of incidence. Since fluence has units of (#/cm2)

and functional errors has units of (#), the result has units of cm2.

3.3 Dynamic Cross Section Measurements

Fault-injection and proton irradiation were used to estimate the dynamic cross

section for the four benchmark FPGA designs introduced in Section 1.1. Johnson’s

fault-injection tool was used for estimates and the 63 MeV proton source at Crocker

Nuclear Laboratory in Davis, CA, was used for formal measurements. Table 3.1

reports the predicted and measured size of dynamic cross section for each of the

tested applications. The parameters necessary to compute dynamic cross section with

Equations 3.1 and 3.2 are also reported. The results show that fault-injection is at

least as good as an order-of-magnitude estimate of measured cross section. Previous

research by Johnson et al. showed their fault-injection tool to be accurate to within

1% [12]. Known differences between the two testing methodologies account for the

error. More information about the correlation of estimated and measured dynamic

cross section results can be found in Johnson’s thesis [4].

The signature of a design’s dynamic cross section correlates to the mapping

and routing of resources the design utilizes. To show this correlation, graphical repre-

sentations of resource utilization and dynamic cross section for the Counter, Synthetic

and DSP Kernel designs are depicted in Figures 3.3, 3.4 and 3.5 respectively. In each

19

Table 3.1: Dynamic Cross Section Predictions and Measurements†

Predicted Measured
Design sensitive size events fluence θ size

%

bits (#) (cm2) (#) (#particles
cm2) (deg) (cm2)

error††

Multiplier 516,494 1.1 × 10−8 597 7.2 × 1010 0o 8.3 × 10−9 −32.5%
Counter 192,717 4.2 × 10−9 833 2.4 × 1011 0o 3.5 × 10−9 −20.0%
Synthetic 179,384 4.0 × 10−9 862 2.7 × 1011 0o 3.2−9 −31.3%

DSP Kernel 502,082 1.1 × 10−8 2,737 3.1 × 1011 0o 8.9 × 10−9 −15.8%

†The device used in testing was a 0.22µm 5-layer epitaxial process Xilinx Virtex XCV1000 FPGA
with a static cross section of 1.28 × 10−7 cm2 [1].
††%error = (measured − predicted)/measured

figure, the left graphic is a screen capture of the design’s utilization from the re-

source editor tool, fpga editor, provided by the manufacturer. The right graphic is

a Matlab rendering of the design’s dynamic cross section as determined by Johnson’s

fault-injection tool. The marked points indicate “sensitive” configuration memory

bits, according to the physical layout. In other words, marked points indicate a bit

which caused functional errors when upset. In both circuits, the location of sensitive

bits correlates with device resource utilization.

Counter Array

FPGA Layout Dynamic Cross Section

Figure 3.3: Comparison of the resource utilization and dynamic cross section for a
Counter Array design. The diagram on the left is a screen capture of the resource
layout of the design. The right diagram is a graphical representation of the portion
of the Counter Array design layout which constitutes its dynamic cross section.

20

Synthetic Design

FPGA Layout Dynamic Cross Section

Figure 3.4: Comparison of resource utilization and dynamic cross section for the
Synthetic design.

DSP Kernel Design

FPGA Layout Dynamic Cross Section

Figure 3.5: Comparison of resource utilization and dynamic cross section for the DSP
Kernel design.

Figures 3.3, 3.4 and 3.5 allude to the large disparity between the size of static

and dynamic cross section. Figure 3.6 illustrates this disparity. The figure depicts the

relative size of the static cross section of a Xilinx Virtex XCV1000 FPGA compared

to the dynamic cross section of the four designs listed in Table 3.1. In all cases, the

dynamic cross section is at least one order of magnitude smaller than the static cross

section.

21

Figure 3.6: Comparison of the relative size of the dynamic to static cross section for
several designs.

3.4 MTBF Estimation

Measuring dynamic cross section ultimately leads to more accurate predic-

tions of a design’s reliability performance in a specific environment. Failure rate or

it’s inverse, Mean Time Between Failure (MTBF), are two metrics which measure re-

liability performance in a real system. Failure rate is the rate per unit time of critical

service interruptions in a system. MTBF is the inverse of failure rate or average time

between critical interruptions of service. This section explains how to calculate these

two quantities and presents MTBF numbers for a few sample applications.

3.4.1 Calculating MTBF

In an FPGA, an application’s on-orbit dynamic failure rate λd is calculated as

the ratio of its dynamic cross section to the FPGA’s static cross section, multiplied

by the FPGA’s static SEU rate in the specified orbit, or mathematically,

λd =
Dynamic Cross Section

Static Cross Section
× Static SEU Rate. (3.3)

In other words, the fraction of SEUs which cause design failures is directly propor-

tional to the design’s particular sensitive subset of the FPGA’s static cross section.

Since the ratio of cross sections in Equation 3.3 is unit-less, failure rate has the same

units as static SEU rate, or events per unit time.

22

Dynamic mean time between failure, MTBFd, is simply the inverse of dynamic

failure rate. Stated mathematically, the dynamic MTBF is

MTBFd =
1

λd

. (3.4)

As such, MTBFd has inverse units of λd, or time per failure.

3.4.2 Orbit-Specific MTBF Estimates

Table 3.2 reports MTBF estimates for each application listed in Table 3.1 and

introduced in Chapter 1. The MTBF values presented here were calculated using

Equations 3.3 and 3.4. For each orbit, the static SEU rate parameter in Equation 3.3

comes from Table 2.3. All numbers assume the specified design is configured into a

single Xilinx Virtex XCV1000 FPGA.

According to Table 3.2, the Multiplier application will fail once every 410

hours during Solar Minimum1 conditions in the specified Low-Earth orbit. On the

other hand, during the Worst Day1 solar conditions in the GPS orbit, the Multiplier

application will fail once every .85 hours, or approximately once every 51 minutes.

This result is consistent with characteristics of the GPS orbit’s intense radiation

environment. Since a design experiences a higher particle flux in the GPS orbit, it

will fail more often.

Table 3.2 also reveals that, in all orbits, the Counter design will fail approx-

imately three times less often than the Multiplier circuit. This results is consistent

with the cross section measurements found in Table 3.1. The Multiplier has a dy-

namic cross section of 1.1 × 10−8 cm2, while the Counter’s dynamic cross section is

approximately three times smaller at 4.2× 10−9 cm2. As a result, the Counter design

will always fail approximately three times less often than the Multiplier design when

operating in equivalent radiation conditions.

3.5 Summary

Only utilized resources in an FPGA induce dynamic functional errors when

upset. As a result, the fraction of an FPGA sensitive to an SEU is application

1See Appendix B for more information on solar conditions.

23

Table 3.2: On-Orbit Mean Time Between Failure Estimates

Mean Time Between Failure
Design

Solar
(hours)

Conditions
LEO† Polar†† GPS†††

Solar Min 4.1 × 102 1.6 × 102 2.5 × 102

Multiplier Solar Max 6.1 × 102 2.1 × 102 2.4 × 102

Worst Day 5.6 × 102 3.0 8.5 × 10−1

Solar Min 1.1 × 103 4.3 × 102 6.7 × 102

Counter Solar Max 1.6 × 103 5.5 × 102 6.5 × 102

Worst Day 1.5 × 103 8.0 2.3
Solar Min 1.2 × 103 4.7 × 102 7.2 × 102

Synthetic Solar Max 1.8 × 103 5.9 × 102 7.0 × 102

Worst Day 1.6 × 103 8.6 2.4
Solar Min 4.2 × 102 1.7 × 102 2.6 × 102

DSP Kernel Solar Max 6.3 × 102 2.1 × 102 2.5 × 102

Worst Day 5.7 × 102 3.1 8.7 × 10−1

† Low-Earth Orbit at 560 km altitude, 35.0o inclination
†† Polar Orbit at 833 km altitude, 98.7o inclination
††† Global Positioning System Orbit at 22, 200 km altitude, 55.0o inclination

specific. This fraction or dynamic cross section can be predicted with fault-injection

or measured with particle irradiation. Using dynamic cross section to estimate FPGA

application failure rates yields less pessimistic estimates than using static cross section

because dynamic cross section accounts for the unused portions of an FPGA. Dynamic

cross section was measured for four benchmark applications. The results were used

to estimate failure rates for these applications in three orbits.

24

Chapter 4

Persistent Functional Errors

As explained in Chapter 3, failure rate predictions should use dynamic cross

section since dynamic cross section accounts for the resource utilization of a particular

application. However, this prediction methodology ignores the possibility of different

functional error modes. It treats all dynamic functional errors equally. This thesis

will show that dynamic functional errors can actually be divided into two distinct

categories, non-persistent and persistent. Each error mode uniquely affects a sys-

tem’s operation. As a result, failure rate estimates should account for both types.

Furthermore, a later chapter will show that sophisticated SEU mitigation strategies

can exploit non-persistent functional errors to improve reliability at lower costs.

This chapter begins with a review of related research in error mode classifica-

tion. Next, the chapter reviews configuration memory scrubbing. Scrubbing makes

redundancy-based functional error mitigation schemes possible in an FPGA. Further-

more, scrubbing makes the distinction between non-persistent and persistent error

modes possible. Next, non-persistent and persistent functional errors are defined.

Examples are presented to demonstrate the typical signature and side-effects of each

error type. The distinction between each error type is important for a novel functional

error mitigation methodology presented in Chapter 6.

4.1 Related Research

Classification of error modes is not a new idea. For example, researchers in [17]

and [18] proposed separating control logic errors from other errors. They termed these

control logic errors Single Event Functional Interrupts (SEFI) because a single upset

25

in the control logic can render a device inoperable. Carmichael et al. also proposed

dividing FPGA functional errors into three categories: SEFIs, configuration memory

errors and user logic functional errors. Configuration memory errors occur as the

result of an upset in the user-programmable configuration memory of an FPGA. An

upset in the configuration memory can modify the programmed circuit, indirectly

causing functional errors to be latched in user memory or flip-flops. In contrast, user

logic functional errors occur as the result of an upset directly in user memory or a

user flip-flop [19].

Earl Fuller and Michael Caffrey et al. were the first to mention the concept

of different dynamic functional error modes. They suggested that some functional

errors permanently interrupt service while others only temporarily interrupt service.

Furthermore, they proposed that systems could more cost effectively improve reliabil-

ity by simply tolerating temporary blocks of bad data generated by functional errors

which temporarily interrupt service [20]. The ideas presented in this thesis are built

on these concepts.

4.2 Scrubbing

Functional errors which temporarily interrupt service are only possible in an

FPGA if some form of configuration memory scrubbing is employed. In a general

sense, scrubbing is the process of repeatedly scanning for and correcting upset bits

in the configuration memory. Carl Carmichael from Xilinx Corporation suggested

two of the many various scrubbing schemes [21]. In Carmichael’s first method, an

external circuit reads the configuration memory, compares it against a golden copy,

and repairs all upset bits. The process repeats in a round-robin manner, continuously

or at pre-defined intervals. Figure 4.1 depicts a single step in one iteration of this

method. In the figure, the highlighted box represents a single frame of data read

from the configuration memory. If any of the bits in this frame do not match the

golden copy, the entire frame is rewritten. In Carmichael’s second method the entire

configuration memory is reloaded at pre-defined intervals regardless of the presence

26

or absence of errors [21]. Other scrubbing schemes also exist. One popular method

speeds up the check-for-upsets step by using a checksum on each frame.

Figure 4.1: A typical scrubbing circuit reads the configuration memory one block at
a time, compares each block against a golden copy, and repairs all upset bits.

The frequency at which a system can perform scrubbing is a function of the

available hardware, the size of the memory to be scrubbed and the implemented

scrubbing method. The total time to perform one scrub ts is defined by the equation

ts = ntrd + ntck + ktrp, (4.1)

where trd is the time to read a single block of memory, tck is the time required to

check the contents of one block and trp is the time to repair one block of memory.

The scalar n is the number of blocks in the memory. The scalar k is the number of

blocks which require repair.

27

Many factors dictate how quickly one scrub can be performed. A method

which directly checks each value takes longer than a checksum method. The size of

the constants trd, tck and trp, which depend on the speed of the scrubbing hardware

and memory, also affect the speed of scrubbing. Additionally, the size of the scalars

n and k, which depend on memory size and SEU rate, affect the average time to

complete one scrub. The scrub time ts of a real system depends on all of these factors.

For example, a checksum version of scrubbing implemented at Los Alamos National

Laboratory for a single Xilinx Virtex XCV1000 FPGA averaged 22 milliseconds.

All scrubbing methods, regardless of speed, provide two key benefits essential

to reliability enhancement. First, scrubbing prevents the buildup of multiple faults

in an FPGA’s configuration memory. Without this benefit, combinations of multiple

faults, which individually don’t cause problems, could collectively generate functional

errors. Perhaps more importantly, redundant reliability techniques, such as Triple

Modular Redundancy (TMR), which assume just a single fault at any given time,

would be ineffective. In TMR, multiple faults could eventually form a majority and

break the redundancy.

Scrubbing also provides a second important benefit. Scrubbing limits the time

a fault exists in memory. As a result, scrubbing bounds how long a given fault can

generate functional errors. An upper bound U on error generation time is given by

the equation

U = ntrd + ntck + ntrp, (4.2)

where the scalar n on trp indicates a worst-case scenario in which every block must

be repaired. This bound guarantees that a fault does not generate functional errors

indefinitely.

4.3 Non-Persistent Errors

Although scrubbing benefits a system’s reliability in many ways, it does not

actually mitigate functional errors. Furthermore, scrubbing does not prevent func-

tional errors from occurring. Scrubbing only guarantees a corrupted circuit will be

repaired within a bounded time. Scrubbing does not and cannot eliminate functional

28

errors since the dynamic or user logic memory elements’ contents cannot be known a

priori. To force-ably clear dynamic functional errors stored in these memory elements,

a system must apply a global reset.

Reseting an entire system to eradicate functional errors may sometimes be

overly conservative. In many cases, functional output errors that occur after an SEU

exist only temporarily. Shortly after scrubbing repairs an SEU-induced fault, the

functional errors go away and all signs of system failure vanish. These functional errors

are termed non-persistent because they do not persist in a design after configuration

scrubbing. Non-persistent functional errors only require time, not reset, to flush from

a system. The ability to tolerate temporary functional errors is system dependent.

This topic will be discussed in more detail in Section 5.4.1.

An example best demonstrates the concept of non-persistent errors. Two data

streams were collected from two identical circuits operating within the fault-injection

tool introduced in Section 3.2. The arithmetic difference between these two data

streams was computed to identify the impact of configuration upsets. Zero arithmetic

difference indicated both circuits operated correctly. A non-zero arithmetic difference

signified that one of the circuits had functional errors.

Figure 4.2 illustrates the arithmetic difference between the two circuits’ data

streams for a specific snapshot in time. The x axis is cycle count and the y axis

is the arithmetic difference between the two circuits. For the first 64 time cycles in

Figure 4.2, the difference between the two data streams was zero indicating that both

circuits operated the same. At time cycle 65 an artificial SEU flipped the value of

a configuration bit in one circuit, corrupting its configuration memory. The faulty

circuit induced functional errors and immediately the outputs of the two circuits

diverged. At time cycle 130, an artificial form of scrubbing fixed the corrupted bit-

stream. At this point the faulty circuit resumed proper operation and shortly there-

after the difference between the data streams returned to zero. Functional errors only

occurred from time cycle 65 to 132.

In this example, the configuration upset caused non-persistent errors, or a tem-

porary interruption of service. A system which can tolerate non-persistent functional

29

Figure 4.2: Plot of the difference between the outputs of a DUT and golden circuit
before, during and after a configuration upset. The upset generated non-persistent
functional errors.

errors does not require a global reset to restore service after non-persistent functional

errors. These systems can simply throw away the bad data and continue operating.

The exact non-persistent error signature in Figure 4.2, both in magnitude and

time, is a function of the design used as well as the upset bit and set of input vectors.

In a general sense, however, the error signature represents the typical temporal char-

acteristics of non-persistent functional errors. The arithmetic difference between the

outputs of a DUT and golden circuit always return to zero after scrubbing. In other

words, a circuit will resume proper operation with proper output data after scrubbing

repairs a fault that induced only non-persistent errors.

4.4 Persistent Errors

Not all configuration upsets cause non-persistent errors. Although scrubbing

restores a circuit’s proper configuration, a fault can still insert incorrect functional

state into a circuit. In some cases the circuit will indefinitely propagate the incorrect

state. In this error mode the system continues to exhibit signs of system failure, or

functional errors, even after scrubbing. Permanent functional errors within a system

are termed persistent because they persist beyond repair.

30

Since the duration of persistent errors is indefinite, they represent a permanent

interruption of service. Unlike non-persistent errors, persistent errors do not disappear

after configuration scrubbing. As a result, persistent errors cannot be corrected, and

will not self-correct, without a global system reset.

Figure 4.3 depicts a persistent error, or permanent service interruption. Like

the non-persistent example shown in Figure 4.2, the plot represents the arithmetic

difference between the outputs of two identical circuits over time. For the specific

time period plotted in Figure 4.3, the output stream for the two circuits matched

for the first 64 cycles. At time cycle 65 a configuration bit in one circuit was up-

set. Immediately the arithmetic difference became non-zero, indicating the circuits’

outputs diverged. At time cycle 130 configuration scrubbing repaired the bitstream.

Unlike the non-persistent example, the output streams in this example did not con-

verge after scrubbing. The internal state trapped the errors and propagated them

even after scrubbing fixed the configuration bit. Since the application continued to

produce faulty data after repair, it needs a system reset to recover.

Figure 4.3: Plot of the difference between the outputs of a DUT and golden cir-
cuit before, during and after a configuration upset. The upset generated persistent
functional errors.

31

Like the non-persistent error example, the exact persistent error signature in

Figure 4.3, both in magnitude and time, is a function of the design used as well as the

upset bit and set of input vectors. In a general sense, however, the error signature

represents the typical temporal characteristics of persistent functional errors. The

arithmetic difference between the outputs of a DUT and golden circuit will likely

remain non-zero indefinitely. In other words, even though a circuit will resume proper

operation after scrubbing, the circuit will continue to generate bad data as a result

of the persistent functional errors still in the system.

From the overall system perspective, persistent functional errors may look

like a Single Event Functional Interrupt (SEFI). A SEFI in an FPGA completely

eliminates access to its control functions such as configure, read-back, etc. An FPGA

often requires a power off/on to recover from a SEFI [3]. Persistent functional errors,

however, are specific to the configuration programmed into the FPGA, not the FPGA

itself. In addition, service can always be restored after persistent errors with a global

reset.

4.5 Summary

An upset in an FPGA application’s dynamic cross section will induce dynamic

functional errors. In an FPGA system with configuration memory scrubbing, dynamic

functional errors can be divided into two categories: non-persistent and persistent.

Non-persistent functional errors exist temporarily. After scrubbing, non-persistent

functional errors eventually disappear. The side-effect of non-persistent errors is a

temporary block of corrupted data. In contrast, persistent functional errors per-

manently corrupt data. Even after scrubbing, persistent functional errors do not

disappear. Most applications cannot tolerate persistent functional errors, but some

applications may be able to tolerate non-persistent functional errors. Systems which

can tolerate non-persistent errors can efficiently improve reliability by focusing error

mitigation on just persistent functional errors. The following chapters will explore

these ideas in more detail.

32

Chapter 5

Persistent Cross Section

As stated in Chapter 4, an upset in the dynamic cross section results in ei-

ther non-persistent or persistent functional errors. Since the two error modes are

mutually exclusive, the dynamic cross section can be divided into two components,

non-persistent and persistent. Figure 5.1 depicts the division of the dynamic cross

section into non-persistent and persistent components. A configuration upset in the

non-persistent component of the dynamic cross section results in non-persistent er-

rors. An upset in the persistent component yields persistent errors. Systems may

realize acceptable levels of reliability, at lower costs, by focusing mitigation on just

the persistent component of a design.

The structure of this chapter is as follows: the first two sections respectively

define the non-persistent and persistent cross sections. Each section also introduces

and defines a mapping from circuit elements to the non-persistent and persistent cross

sections. The next section shows how to measure each of the cross sections. These

measurements and the mappings from circuit components to cross section are partic-

ularly important for the development and validation of a mitigation method which

focuses on just the persistent cross section. The mapping indicates specifically which

circuit elements need reliability enhancement to mitigate persistent functional errors.

Measuring the persistent cross section validates that such a mitigation scheme works.

Finally, the last section introduces the idea of tolerant and intolerant functional error

tolerance levels. In other words, this section defines what type of system can tolerate

non-persistent functional errors. Modified estimates of MTBF are reported for each

of the four benchmark applications at each tolerance level.

33

Figure 5.1: The diagram on the left represents the generic relationship between static
and dynamic cross section. The diagram on the right shows the non-persistent and
persistent components of the dynamic cross section.

5.1 Non-Persistent Cross section

A design’s non-persistent cross section corresponds to circuit structures within

feed-forward paths. Since feed-forward circuits by definition do not have feed-back,

all functional errors within a feed-forward path must exit the path within a bounded

time. Furthermore, once the source of the functional errors is repaired and stops

generating errors, all functional errors in feed-forward paths, generated by that source,

will disappear within a finite time.

Like the dynamic cross section, the size and exact footprint of the non-persistent

and persistent cross sections are design dependent. The size of a design’s non-

persistent cross section is proportional to the number of resources and routing con-

nections utilized in all feed-forward sections of the design. The exact footprint of

a design’s non-persistent cross section correlates to the mapping and routing of the

feed-forward resources.

Figure 5.2 depicts a generic circuit with both non-persistent and persistent

components. The non-persistent components are highlighted with the dashed line.

The first four elements along the bottom path (two logic stages and two flip-flops) in

addition to the final set of logic and flip-flop at the output belong to the non-persistent

cross section. In this feed-forward path, an SEU-induced fault would generate func-

tional errors and feed them downstream (to the right). As a result, once scrubbing

repairs the configuration fault, all previously generated functional errors will eventu-

ally flush from the path.

34

Figure 5.2: The feed-forward sections of a circuit, outlined with the dashed line,
belong to the non-persistent cross section.

A specific example best demonstrates which parts of a circuit belong to the

non-persistent cross section. A simple 4-bit full-adder has only a non-persistent cross

section. Figure 5.3 depicts a simplified schematic of a 4-bit adder implemented in

an FPGA. The implementation requires four LUTs, four XOR gates, four muxes and

four flip-flops. The circuit computes the 4-bit sum s of two 4-bit operands, a and

b. Table 5.1 depicts a sequence of inputs to this circuit. The table also lists the

corresponding sequence of actual and desired outputs. For the first two cycles, the

actual output and the desired output matched. During cycle three, an SEU flipped

the bit stored at address 0x3 in the LUT second from the top (see Figure 5.4). As

a result, the output on cycle three did not match the desired output. This faulty

data represents a functional error. On the next cycle, bits a2 and b2 did not exercise

the corrupted location in the affected LUT, so the actual and desired outputs again

agreed. On cycle five, the operands exercised the corrupted location, resulting in

invalid output. Finally, at the beginning of cycle six, scrubbing repaired the corrupted

LUT value. The actual and desired outputs for cycles six through eight matched.

In the preceding 4-bit adder example, the circuit is completely feed-forward.

As a result, functional errors are stored in the sum flip-flops for one cycle and then

exit the circuit completely. In other words, this circuit can only generate non-

persistent functional errors. Since an SEU anywhere within this circuit only causes

35

non-persistent functional errors, the entire circuit belongs to the non-persistent cross

section.

Table 5.1: Sequence of Inputs and Outputs for a 4-bit Adder Circuit

Cycle input a input b actual output s desired output s
1 0b0001 (1) 0b0001 (1) 0b0010 (2) 0b0010 (2)
2 0b0011 (3) 0b1001 (9) 0b1100 (12) 0b1100 (12)
3 0b0110 (6) 0b0100 (4) 0b0010 (2) 0b1010 (10)
4 0b1001 (9) 0b0010 (2) 0b1011 (11) 0b1011 (11)
5 0b0111 (7) 0b0110 (6) 0b1001 (9) 0b1101 (13)
6 0b0101 (5) 0b0010 (2) 0b1110 (7) 0b1110 (7)
7 0b0110 (6) 0b0100 (4) 0b1010 (10) 0b1010 (10)
8 0b1100 (12) 0b0010 (2) 0b1110 (14) 0b1110 (14)

5.2 Persistent Cross section

In contrast to feed-forward circuits, an SEU within a circuit that contains

feed-back and stores internal state will cause persistent errors. The feed-back circuit

structures “trap” the incorrect state and store it until appropriate reset measures are

taken. These feed-back circuit structures belong to a design’s persistent cross section.

In addition to strictly feed-back circuits, paths which feed into a feed-back

circuit can also generate persistent functional errors. A functional error generated

in one of these paths and subsequently deposited into a feed-back circuit will be

trapped and propagated by the feed-back. As a result, circuit components in feed-

forward paths upstream from a feed-back circuit also belong to a design’s persistent

cross section.

Figure 5.5 depicts a generic circuit with both non-persistent and persistent

components. The persistent components are highlighted with the dashed line. Intu-

itively, the feedback section in the top path, consisting of logic and a register, belongs

to the persistent cross section. In addition, the first two elements in the top path

which feed into the feed-back section also belong to the persistent cross section. The

36

Figure 5.3: Simplified schematic representation of a 4-bit full-adder implemented in
an FPGA.

37

Figure 5.4: Simplified schematic representation of a 4-bit full-adder implemented in
an FPGA. The bit stored at address 0x3 in the LUT second from the top was flipped
from a 0 to a 1 by an SEU.

38

feed-back loop would continuously propagate functional errors generated in any stage

of the top path of this circuit until reset.

Figure 5.5: The feed-back sections of a circuit belongs to the persistent cross section.
Feed-forward sections which feed into a feed-back path also belong to the persistent
cross section. Both sections are highlighted with the dashed box.

A specific example best demonstrates what parts of a circuit belong to the

persistent cross section. A simple 4-bit accumulate adder primarily has a persistent

cross section1. Figure 5.6 depicts a simplified schematic of a 4-bit accumulate adder

implemented in an FPGA. Note the strong similarity of this circuit to the 4-bit

adder circuit depicted in Section 5.1 as Figure 5.3. It is exactly the same circuit

with the exception of a bus which feeds the sum s back to the input as one of the

operands. This circuit computes the accumulated sum s of a series of operands a.

Table 5.2 depicts a sequence of inputs to this circuit. The table also lists the actual

and desired accumulated value after each cycle. Operand a is the next value to add

to the accumulation. Operand s is the sum from the previous iteration. The output,

or accumulated sum, after the current cycle is denoted as s′. For the first two cycles,

the actual output and the desired accumulated output matched. During cycle three,

however, an SEU flipped the bit stored at address 0x3 in the LUT second from the

1The routing on the output of a 4-bit accumulate adder circuit would technically belong to the
non-persistent cross section.

39

top (see Figure 5.7). As a result, the accumulation on cycle three did not match

the desired output. This faulty data represents a functional error. On cycle four, the

input operands did not exercise the corrupted bit, so they are added together correctly.

However, the accumulated value still did not match the desired accumulation since the

previous sum was faulty. Even after scrubbing repaired the circuit at the beginning

of cycle six the accumulated output continued to not match the desired output. In

this case, the invalid data propagated back into the circuit indefinitely. Only a global

system reset could ensure the accumulation returned to a known value.

Table 5.2: Sequence of Inputs and Outputs for a 4-bit Adder Circuit

Cycle input a input s actual output s’ desired output s’
1 0b0001 (1) 0b0000 (0) 0b0001 (1) 0b0001 (1)
2 0b0011 (3) 0b0001 (1) 0b0100 (4) 0b0100 (4)
3 0b0110 (6) 0b0100 (4) 0b0010 (2) 0b1010 (10)
4 0b0001 (1) 0b0010 (2) 0b0011 (3) 0b1011 (11)
5 0b0010 (2) 0b0011 (3) 0b0101 (5) 0b1101 (13)
6 0b0000 (0) 0b0101 (5) 0b0101 (5) 0b1101 (13)
7 0b0001 (1) 0b0101 (5) 0b0110 (6) 0b1110 (14)
8 0b0001 (1) 0b0110 (6) 0b0111 (7) 0b1111 (15)

In the preceding 4-bit accumulate adder example, the circuit is primarily a

feed-back loop. By definition a feed-back circuit propagates values backward. As

a result, functional errors are stored in the sum flip-flops for one cycle and then

propagated back as an operand on the next cycle. As such, functional errors never

completely exit the circuit. In other words an SEU anywhere within this circuit only

causes persistent functional errors. Consequently, almost the entire circuit belongs to

the persistent cross section.

5.3 Measuring Persistent Cross Section

Methodologies similar to those used to measure dynamic cross section were

used to also measure persistent cross section. Fault-injection was used to estimate

40

Figure 5.6: Simplified schematic representation of a 4-bit accumulate adder imple-
mented in an FPGA.

41

Figure 5.7: Simplified schematic representation of a 4-bit accumulate adder imple-
mented in an FPGA. The bit stored at address 0x3 in the LUT second from the top
was flipped from a 0 to a 1 by an SEU.

42

persistent cross section. To confirm these estimates, persistent cross section was also

measured at Crocker Nuclear Laboratory at the University of California, Davis. This

section will detail the two testing methodologies and report results from both types

of testing. Appendix C also describes these methodologies in more detail.

5.3.1 Persistent Testing Methodologies

To predict the size of a design’s persistent cross section, I modified and aug-

mented Johnson’s fault injection tool to identify bits which cause persistent functional

errors when upset. As such, the tool can now also rapidly create an accurate and

complete characterization of the persistent cross section of a given FPGA design.

In general, the fault-injection algorithm is as follows: A bit within the config-

uration bitstream is toggled from its correct state. The bit is left in this corrupted

state for a finite duration (corresponding to the expected scrubbing time ts). The

corrupted bit is then restored to its original state. If errors occurred during this time,

the design is allowed to operate for an additional delta time tf to let errors flush.

If at the end of tf errors still exist, then the originally corrupted bit is classified as

contributing to persistent errors (also called a “persistent bit”). Every bit within the

FPGA’s configuration memory is tested in this manner and the results are recorded.

The size of a particular design’s predicted persistent cross section, xpp
, is equal to the

fraction of “persistent bits” bits in the design multiplied by the device static cross

section. Stated mathematically, the predicted persistent cross section is

xpp
= xs ×

persistent bits

total bits
, (5.1)

where,

xpp
= predicted persistent cross section,

and

xs = static device cross section.

Persistent cross section predictions were verified at Crocker Nuclear Labo-

ratory in Davis, California using proton irradiation and a method very similar to

measuring dynamic cross section. A 63 MeV proton source caused the SEUs. Since

43

the inter-arrival time of the protons cannot be controlled, a different algorithm is

used to identify bits which cause persistent functional errors. Two processes operate

simultaneously on a host PC. The first process records the time and location of con-

figuration memory upsets as reported by on-board scrubbing circuitry. The second

process records the time of all functional errors as reported by auxiliary on-board

circuitry. When a functional error occurs, the second process logs the timestamp and

then sleeps for a delta time tf to let functional errors flush. If at the end of this time

functional errors still exist, the error is marked as persistent. Post processing of data

from the two processes matches persistent errors to configuration upsets2. The size

of the measured persistent cross section equals the number of configuration upsets

which cause persistent output errors divided by the product of the total fluence and

incident particle angle. Stated mathematically, the measured persistent cross section

is

xpm
=

persistent error events

fluence × cos θ
(5.2)

where,

xpm
= measured persistent cross section,

and

θ = incident particle angle.

5.3.2 Persistent Cross Section Measurements

Both fault-injection and proton irradiation confirm that, as expected, the per-

sistent cross section does exist. Table 5.3 reports the predicted and measured size of

the persistent cross section for each of the tested applications. The parameters neces-

sary to compute persistent cross section with Equations 5.1 and 5.2 are also reported.

The results show that fault-injection estimates are within a factor of two of actual

measured cross section. Table 5.4 repeats the predicted and measured cross section

sizes for each design along with the predicted and measured values for the design’s

corresponding dynamic cross section. The size of each design’s non-persistent cross

2See Appendix D for more information about post processing of data.

44

section is simply the difference of the persistent from the dynamic cross section. This

table shows that in all cases the persistent cross section is smaller than the dynamic

cross section.

Table 5.3: Persistent Cross Section Predictions and Measurements

Predicted Measured
Design persistent size events fluence θ size

%

bits (#) (cm2) (#) (#particles
cm2) (deg) (cm2)

error††

Multiplier 0 ‡ 0 7.2 × 1010 0o ‡ n/a
Counter 108,750 2.5 × 10−9 392 2.4 × 1011 0o 1.6 × 10−9 −56.3%
Synthetic 72,991 1.7 × 10−9 324 2.7 × 1011 0o 1.2 × 10−9 −41.7%

DSP Kernel 8,930 2.0 × 10−10 35 3.1 × 1011 0o 1.1 × 10−10 −81.8%

The device used in testing was a 0.22µm 5-layer epitaxial process Xilinx Virtex XCV1000 FPGA
with a static cross section of 1.28 × 10−7 cm2 [1].
‡No events were observed.
††%error = (measured − predicted)/measured

The signature of a design’s persistent cross section correlates to the mapping

and routing of resources in feed-back loops. This feed-back can be spread throughout

a design. To illustrate this result, graphical representations of resource utilization,

dynamic cross section and persistent cross section for the Counter, Synthetic and

DSP Kernel designs are depicted in Figures 5.8, 5.9 and 5.10 respectively. In each

figure, the left and middle graphics are repeated from Chapter 3. The left graphic is a

screen capture of the design’s utilization from the resource editor tool, fpga editor,

provided by the manufacturer and the middle graphic is a Matlab rendering of the

“sensitive” configuration memory bits or dynamic cross section. The right graphic

is a a Matlab rendering of the “persistent” configuration memory bits or persistent

cross section. Both Matlab plots are based on data generated by the fault injection

tool.

45

Table 5.4: Cross Section Predictions and Measurements

Resource Dynamic Persistent
Design Utilization Cross Section (cm2) Cross Section (cm2)

(slices) (%) Predicted Measured Predicted Measured
Multiplier 10,305 83.9 1.1 × 10−8 8.3 × 10−9 ‡ ‡

Counter 2,151 17.5 4.2 × 10−9 3.5 × 10−9 2.5 × 10−9 1.6 × 10−9

Synthetic 2,538 20.7 4.2 × 10−9 3.2−9 1.7 × 10−9 1.2 × 10−9

DSP Kernel 5,746 46.8 1.1 × 10−8 9.5 × 10−9 2.0 × 10−10 1.1 × 10−10

Counter Array

FPGA Layout Dynamic Cross Section Persistent Cross Section

Figure 5.8: Comparison of resource utilization, dynamic cross section and persistent
cross section for a Counter Array design. The diagram on the left is a screen capture
of the resource layout of the design. The right and left diagrams are respectively the
dynamic and persistent cross section of the Counter Array design.

For each of the designs of Table 5.3 estimates of persistence for fault injection

exceeded the measured values of persistence by up to a factor two. These results

suggest that there is a large disparity between the estimated persistence and the

actual measured persistence. While this is true, the purpose of these tests was not

to validate the accuracy of the fault injection tool but to demonstrate the existence

of the persistence cross section and show that this component of the sensitive cross

section is very small. Both fault injection and measured results from the radiation

source prove this point. Persistence was seen in both cases and in both cases the

percentage of sensitive configuration bits that are persistent is extremely small.

The disparity in results between the fault injection tool and the measured

results from the radiation source do suggest that the methodology used to predict

46

Synthetic Design

FPGA Layout Dynamic Cross Section Persistent Cross Section

Figure 5.9: Comparison of resource utilization, dynamic cross section and persistent
cross section for a Synthetic design.

DSP Kernel Design

FPGA Layout Dynamic Cross Section Persistent Cross Section

Figure 5.10: Comparison of resource utilization, dynamic cross section and persistent
cross section for the DSP Kernel design.

persistence and measure persistence needs to be improved. Several factors make

this very difficult to do. First, because of the small persistence cross section, it is

very difficult and expensive to obtain sufficient data from radiation measurements.

Second, it is very difficult to identify independent persistent upsets from a radiation

source because of the random nature of arrival time of high energy particles. In order

to limit the effect of independent particles causing a persistent failure, the particle

flux must be significantly reduced. Reducing the particle flux will require far more

time and expense to perform the test. A more detailed discussion of the disparity in

47

results between the fault injection tool and radiation measurements can be found in

Appendix D.

5.4 MTBF Estimation

Systems can have varying degrees of tolerance with respect to non-persistent

and persistent functional errors. This section will define the different tolerance levels

and discuss the implications of each when calculating mean time between failure

(MTBF). The section will conclude with modified estimates of the MTBF predictions

first reported in Section 3.4.2.

5.4.1 Application Service Interruption Tolerance

As stated in Chapter 4, non-persistent and persistent errors represent tempo-

rary and permanent service interruptions respectively. Figure 5.11 depicts the typical

error modes of a temporary and permanent service interruption. Most applications

cannot tolerate permanent service interruptions, but some applications can tolerate

temporary service interruptions. By tolerating temporary interruptions of service, an

application automatically fails less often. Furthermore, focusing mitigation on circuit

elements susceptible to the more critical, permanent service interruption can signifi-

cantly increase MTBF. This ability to tolerate non-persistent errors justifies analyzing

a design’s dynamic cross section for non-persistent and persistent components.

Some applications cannot tolerate any type of service interruption. These “in-

tolerant” applications cannot tolerate temporary nor permanent service interruptions.

Either type of service interruption depicted in Figure 5.11 would be considered an ap-

plication failure. Because non-persistent and persistent functional errors represent a

form of service interruption, it follows that any dynamic upset will cause an intolerant

system to fail.

Some applications, on the other hand, can tolerate temporary service inter-

ruptions. In a “tolerant” application, the left plot in Figure 5.11 simply represents a

short loss of data. Only a permanent service interruptions results in application fail-

ure. Since a “tolerant” application loses data during a temporary service interruption

48

and only fails following a permanent service interruption, it follows that only upsets

in the persistent cross section cause a tolerant application to fail.

Temporary Service Interruption Permanent Service Interruption

Figure 5.11: The diagram on the left represents a temporary service interruption, or
non-persistent errors. The diagram on the right depicts a permanent service inter-
ruption, or persistent errors.

The ability to tolerate temporary service interruptions is application specific.

Ultimately an application’s tolerance level depends on the criticality of a continuous

stream of uncorrupted output data. The user must decide an application’s level of

tolerance because it directly affects the amount and type of functional error mitigation

needed.

5.4.2 Calculating MTBF

As mentioned in Chapter 3, MTBF estimates the average time between critical

interruptions of service. Since the definition of “critical” changes with an application’s

tolerance level, calculating MTBF changes with an application’s tolerance level as

well.

Failure in an intolerant application is defined as any type of service interrup-

tion, so it follows that both non-persistent and persistent errors result in “critical”

interruptions of service. As a result, Equations 3.3 and 3.4 presented in Chapter 3

can be used to calculate MTBF in intolerant systems. The equations are repeated

49

here as

λi =
Dynamic Cross Section

Static Cross Section
× Static SEU Rate, (5.3)

and

MTBFi =
1

λi

, (5.4)

for convenience. For the same reasons mentioned in Chapter 3, intolerant failure

rate, λi, has units of event per unit time and intolerant mean time between failure,

MTBFi, has units of time per failure.

In contrast to intolerant applications, tolerant applications only fail after a

permanent interruption of service. As a result, only persistent errors cause “critical”

interruptions of service in a tolerant system. Consequently, tolerant failure rate, λt

and tolerant mean time between failure, MTBFt, are calculated as

λt =
Persistent Cross Section

Static Cross Section
× Static SEU Rate, (5.5)

and

MTBFt =
1

λt

, (5.6)

respectively. In Equation 5.5, the cross-section ratio reflects the persistent portion of

the static cross section. Since the persistent component of the dynamic cross section

is always smaller than or equal to the size of the entire dynamic cross section, λt will

always be smaller than λi. As a result, the denominator in Equation 5.6 will always

be smaller than the denominator in Equation 5.4. Thus, MTBF will always be larger

for tolerant applications.

5.4.3 Orbit-Specific MTBF Estimates

Table 5.5 is a modified version of Table 3.2, but with two MTBF values for each

combination of design, orbit and solar conditions. The two values represent MTBF

for the particular design if it cannot tolerate or can tolerate persistent functional

errors.

50

Table 5.5: Modified On-Orbit Mean Time Between Failure Estimates

Mean Time Between Failure
Design

Tolerance Solar
(hr/failure)

Level Conditions
LEO † Polar †† GPS †††

Solar Min 4.1 × 102 1.6 × 102 2.5 × 102

Intolerant Solar Max 6.1 × 102 2.1 × 102 2.4 × 102

Worst Day 5.6 × 102 3.0 8.5 × 10−1

Multiplier
Solar Min ∗ ∗ ∗

Tolerant Solar Max ∗ ∗ ∗

Worst Day ∗ ∗ ∗

Solar Min 1.1 × 103 4.3 × 102 6.7 × 102

Intolerant Solar Max 1.6 × 103 5.5 × 102 6.5 × 102

Worst Day 1.5 × 103 8.0 2.3
Counter

Solar Min 2.2 × 103 8.9 × 102 1.4 × 103

Tolerant Solar Max 3.4 × 103 1.1 × 103 1.3 × 103

Worst Day 3.1 × 103 1.6 × 101 4.7 × 100

Solar Min 1.2 × 103 4.7 × 102 7.2 × 102

Intolerant Solar Max 1.8 × 103 5.9 × 102 7.0 × 102

Worst Day 1.6 × 103 8.6 2.4
Synthetic

Solar Min 2.9 × 103 1.1 × 103 1.8 × 103

Tolerant Solar Max 4.3 × 103 1.5 × 103 1.7 × 103

Worst Day 3.9 × 103 2.1 × 101 6.0
Solar Min 4.2 × 102 1.7 × 102 2.6 × 102

Intolerant Solar Max 6.3 × 102 2.1 × 102 2.5 × 102

DSP Worst Day 5.7 × 102 3.1 8.7 × 10−1

Kernel Solar Min 2.4 × 104 9.4 × 103 1.5 × 104

Tolerant Solar Max 3.5 × 104 1.2 × 104 1.4 × 104

Worst Day 3.2 × 104 1.7 × 102 4.9 × 101

† Low-Earth Orbit at 560 km altitude, 35.0o inclination
†† Polar Orbit at 833 km altitude, 98.7o inclination
††† Global Positioning System Orbit at 22, 200 km altitude, 55.0o inclination
∗ The design has no observable persistent cross section, therefore making it impossible to calculate
tolerant MTBF for this design.

The results from Table 5.5 indicate that some applications’ failure rate may

substantially improve when they can tolerate non-persistent functional errors. For ex-

ample, when treated as a tolerant application, the DSP Kernel fails ≈ 55× less often3.

3Note that the ratio between tolerant and intolerant MTBF for a particular design is constant
across all orbits and all solar conditions. This result follows from taking the ratio of tolerant
to intolerant MTBF, or Equation 5.6 to Equation 5.4 with Equations 5.5 and 5.3 substituted in
respectively. The resulting ratio is Persistent Cross Section

Dynamic Cross Section
. Thus, the ratio of tolerant to intolerant

51

The Multiplier application does not have a measurable persistent cross section (see

Table 5.3). As such, the Multiplier should theoretically never experience permanent

service interruptions, or in other words, never fail as a “tolerant” application. Appli-

cations like the Multiplier with a persistent cross section substantially smaller than

their dynamic cross section substantially improve their failure rate by tolerating non-

persistent functional errors. For other applications, the tolerance distinction makes

less difference. For example, the Counter application only fails ≈ 2× less often when

treated as “tolerant”. Since the persistent cross section of the Counter design roughly

equals the size of it’s dynamic cross section, the distinction between “tolerant” and

“intolerant” is less important.

5.5 Summary

In this chapter, a qualitative method for determining circuit elements int the

non-persistent and the persistent cross sections was defined. Measurements of the

non-persistent and persistent cross sections for several designs were also presented.

The data indicates that the non-persistent and persistent cross sections exist and

can be measured for any arbitrary circuit. Designs that can tolerate non-persistent

functional errors can substantially improve their MTBF without any mitigation effort.

The next chapter will show that by leveraging the qualitative mapping from circuit

elements to cross section, MTBF can further be improved at lower resource costs by

focusing mitigation on just a design’s persistent cross section.

MTBF only depends on the size of a design’s persistent and dynamic cross sections, not the destined
orbit or solar conditions.

52

Chapter 6

Functional Error Mitigation

The previous chapter showed that an application’s failure rate improves sub-

stantially when it can tolerate non-persistent functional errors. Even so, tolerant

applications still fail after persistent functional errors. To further improve a tolerant

application’s failure rate, persistent functional errors must be mitigated. Many ap-

proaches exist to mitigate functional errors, but typically an application’s complete

set of design constraints dictates the approach.

The most common method of FPGA reliability enhancement, Triple Modu-

lar Redundancy (TMR), is most effective in a reliability-limited only system. In a

resource-constrained system, TMR may not be feasible. The system may simply not

have enough available resources for full triple redundancy. Furthermore, in some cases

the system cannot afford the power consumed by using 3× redundant resources in

the FPGA.

The existence of non-persistent and persistent cross sections adds a new di-

mension to the space of possible approaches for systems constrained by more than

just reliability. More specifically, a resource-limited FPGA application with relaxed

availability requirements can focus mitigation on just the persistent cross section to

efficiently improve reliability at minimum resource costs.

This chapter begins with a discussion of reliability, availability and cost con-

straints. Next, the benefits and drawbacks associated with full mitigation are dis-

cussed in terms of reliability, availability and cost. Partial mitigation, or elimination

of just a subset of an application’s functional errors, is then introduced. Next, a

novel partial mitigation strategy is introduced which focuses on just the persistent

53

functional errors. The chapter concludes with measurements of cross section and

modified mean time between failure (MTBF) estimates for two applications with just

the persistent cross section mitigated.

6.1 Design Constraints

Designing a reliable system often involves many constraints beyond reliability

including availability and cost (area, resources, power etc.). Reliability is a measure

of an application’s ability to withstand failure. Availability refers to the percentage

of time an application is available and/or performing its intended function. Cost

can have many facets. In the context of this work, resource usage and/or power are

the limiting costs. Other constraints are also sometimes important, but will not be

discussed here.

In some instances a system is limited by only one design constraint. A

reliability-limited only system requires a specific level of reliability no matter the

cost. An availability-limited only system requires maximum operation time no mat-

ter the cost. A resource-limited only system has a hard number of available resources.

In many instances a system is limited by a combination of constraints. This work

will focus on systems which are reliability and availability limited, but have a relaxed

availability constraint.

6.2 Full Mitigation

Full mitigation can typically only satisfy the constraints of a reliability-limited

only system. If the system has a resource constraint, full mitigation may not be

possible. In other words, sometimes not enough extra resources are available for the

required redundancy. Also, if the system has a power constraint, full mitigation may

not be possible.

In FPGAs, the most popular method of full functional error mitigation is

triple-modular redundancy (TMR). TMR is a simple form of single error detection

and correction (SEDAC). All circuit resources are triplicated and a majority vote

determines the circuit’s outputs.

54

Lima showed that TMR can achieve 100% reliability in the face of single bit

upsets (SBU) at a certain flux [22]. However research by Rollins et al. showed that the

cost in terms of resources and power is at least 3× and can be as high as 5× [23, 24].

6.3 Partial Mitigation

Some systems do not require maximum reliability and availability. Brendon

Bridgford et al. proposed that not all applications require full TMR nor scrubbing.

They hypothesized that a system can achieve acceptable reliability with any number

of combinations of TMR and scrubbing [25]. Gary Swift et al. proposed partial

redundancy of the input/output blocks on an FPGA [26]. Vikram Chanrasekhar et

al. introduced a method of partial redundancy based on probability analysis [27].

This work will introduce a novel partial redundancy mitigation method based on a

static analysis of a circuit’s critical components.

In some systems a certain level of reliability is required, but the system has

a tight cost constraint. If the cost of full mitigation is above this constraint then

full mitigation is not feasible. In these cases partial functional error mitigation can

sometimes meet both the reliability and cost constraints. Partial mitigation schemes

incrementally add mitigation resources until a certain level of reliability is achieved.

These methods can achieve a minimum reliability level and hopefully stay within a

specified maximum cost. All functional errors are not mitigated, but the mitigation

cost is still lower than full mitigation.

Even though partial mitigation saves cost, the evidence of the persistent and

non-persistent cross sections reveals a more efficient partial approach. Traditionally

partial mitigation strategies arbitrarily mitigate both persistent and non-persistent

functional errors, but the previous chapter showed that some applications can toler-

ate non-persistent errors. For these tolerant applications, arbitrary partial mitigation

wastes valuable resources mitigating non-persistent functional errors which do not

cause failure. For this reason, a better partial mitigation strategy for tolerant ap-

plications focuses mitigation on just the persistent cross section. Such an approach

allocates 100% of mitigation resources to eliminating failure. As a result, this method

55

realizes desired levels of reliability at a much lower cost than either arbitrary partial

mitigation or full mitigation.

Persistent-functional-error-focused partial mitigation is only possible if com-

ponents can be identified, at the circuit level, which contribute to an application’s

persistence. Section 5.2 showed that a correlation exists from persistent cross sec-

tion to its constituent circuit elements. This mapping allows circuits to be statically

analyzed to identify components in the persistent cross section. These identified

components can then be targeted for focused partial mitigation.

6.4 Modified Persistent Cross Section Measurements

Algorithms which can identify structures in a circuit’s persistent cross section

have been developed at Brigham Young University [28]. I assisted in the development

of an edif-based TMR tool that included these algorithms which apply TMR to just

circuit elements that contribute to an application’s persistent cross section. This tool

was used to mitigate the persistent cross section in a pair of the applications intro-

duced in Chapter 1. Fault-injection and particle irradiation were used to respectively

measure each application’s persistent cross section.

Table 6.1: Modified Persistent Cross Section Predictions and Measurements

Resource Persistent
Design

Mitigation
Utilization Cross Section (cm2)

Level
(slices) (%) Predicted Measured

None 2,538 20.7 1.7 × 10−9 1.2 × 10−9

Synthetic Partial 9,867 80.3 1.8 × 10−11 †
Max/Full 11,961 97.3 1.5 × 10−10 †

None 5,746 46.8 2.0 × 10−10 2.8 × 10−10

DSP Kernel Partial 8,036 65.4 2.4 × 10−12 3.4 × 10−12

Max 11,114 90.4 3.5 × 10−12

Full‡ 17,238 140.4 ‡ ‡
† Design not tested at accelerator.
‡ Theoretical design which would require more resources than available on the XCV1000.

56

Table 6.1 lists the unmitigated and partially mitigated persistent cross section

sizes. As expected, partial mitigation drastically reduced the size of the persistent

cross section in both designs. In the partially mitigated DSP kernel, its persistent

cross section sized dropped by nearly two orders of magnitude, but only increased

resource utilization by 1.4×. (Theoretically the full TMR version would increase

utilization by 3×, but as the next design shows, a practical implementation is much

larger.) Figure 6.1 graphically illustrates this reduction in cross section. Persistence

in the partially mitigated synthetic application also dropped nearly two orders of

magnitude. However in this case, resource utilization increased by 3.8×. Note that

the resource utilization increase for a full TMR version of this design was 4.7× Also

note that the persistent cross section was not completely eliminated in either design.

The remaining persistent cross section is likely from the input and output ports, and

reset and clock distribution trees, which all belong to the persistent cross section, but

could not be triplicated due to resource constraints on the FPGA.

DSP Kernel Design

Unmitigated Persistent Cross Section Partially Mitigated Persistent Cross Section

Figure 6.1: Comparison of the DSP Kernel design’s persistent cross section before
and after partial mitigation with TMR.

6.5 Modified MTBF Estimates

Reducing persistent cross section reduces failure rate and MTBF for tolerant

applications. The cross section estimates reported in the previous section were used

57

to update the MTBF estimates in Table 5.5. The results are reported in Table 6.2.

Again, MTBF values are reported in each of three distinct orbits during three different

levels of solar activity. The orbits are the same as those described in Chapter 1.

The values shown only represent MTBF for the specified application in a “tolerant”

scenario. Values are reported for each design with two different mitigation levels,

none and partial. The results corresponding to no mitigation were transferred directly

from Table 5.5. The results corresponding to partial mitigation were calculated using

Equations 5.5 and 5.6 and the cross section values in Table 6.1.

Table 6.2: Modified On-Orbit Mean Time Between Failure Estimates for Tolerant
Applications

Mean Time Between Failure
Design

Solar Mitigation
(hr/failure)

Conditions Level
LEO † Polar †† GPS †††

None 2.9 × 103 1.1 × 103 1.8 × 103

Solar Min
Partial 2.7 × 105 1.1 × 105 1.7 × 105

None 4.3 × 103 1.5 × 103 1.7 × 103

Synthetic Solar Max
Partial 4.1 × 105 1.4 × 105 1.6 × 105

None 3.9 × 103 2.1 × 101 6.0
Worst Day

Partial 3.7 × 105 2.0 × 103 5.7 × 102

None 2.4 × 104 9.4 × 103 1.5 × 104

Solar Min
Partial 1.9 × 106 7.5 × 105 1.2 × 106

DSP None 3.5 × 104 1.2 × 104 1.4 × 104

Kernel
Solar Max

Partial 2.8 × 106 9.6 × 105 1.1 × 106

Worst Day 3.2 × 104 1.7 × 102 4.9 × 101

Worst Day
Partial 2.6 × 106 1.4 × 104 3.9 × 103

† Low-Earth Orbit at 560 km altitude, 35.0o inclination
†† Polar Orbit at 833 km altitude, 98.7o inclination
††† Global Positioning System Orbit at 22, 200 km altitude, 55.0o inclination

The results in Table 6.2 indicate that, for tolerant applications, MTBF in-

creases in direct proportion to a decrease in persistent cross section. For example,

with partial mitigation focused on the persistent cross section, the Synthetic appli-

58

cation’s MTBF increased nearly two orders of magnitude in all orbits. This increase

corresponds directly to the nearly two orders of magnitude reduction in the Syn-

thetic design’s persistent cross section, after partial mitigation, from 1.7 × 10−9 cm2

to 1.8 × 10−11 cm2, reported in Table 6.1.

Figure 6.2 illustrates the incremental improvements in MTBF for the DSP

Kernel and Synthetic applications in a low-earth orbit during solar max. The appli-

cations are assumed to be non-persistent-error-tolerant. For both applications the far

left point represents the “static MTBF” if all SEUs caused failure. The next point

to the right indicates the unmitigated MTBF. The next point indicates MTBF after

persistent functional error mitigation. The final point indicates MTBF after maxi-

mum functional error mitigation (in both cases full mitigation was not feasible due

to the size of the FPGA). The slope of each line segment indicates the incremental

reliability gained from one additional resource. For both designs the slope of the line

between the unmitigated and partially mitigated data points is far steeper than the

slope of the last line segment to maximum mitigation. As expected, mitigating per-

sistent functional errors in a non-persistent-error-tolerant application is significantly

more cost-effective than mitigating non-persistent functional errors.

Figure 6.2: Plot of device utilization vs. MTBF for the DSP Kernel and Synthetic
designs in a Low-Earth Orbit at Solar Max. Both applications are assumed to be
non-persistent-error-tolerant.

59

6.6 Summary

Often a system has a set of design constraints which must be considered when

designing a reliable system. Three important constraints are reliability, availability

and cost. Some systems may have a reliability constraint which does not require full

mitigation. Others may have a cost constraint that does not allow full mitigation.

Yet other systems may have both a reliability and cost constraint which must be

balanced. This chapter introduced a new partial mitigation method to meet these

hybrid constraints at lower costs. The proposed strategy focuses on persistent func-

tional errors. The results indicate that persistent-error-focused partial mitigation can

improve MTBF to acceptable levels for non-persistent-error-tolerant applications at

significantly lower costs.

60

Chapter 7

Summary and Conclusion

As the previous chapter showed, an FPGA application which can give up

availability can improve reliability to acceptable levels with far fewer resource costs.

Specifically, Figure 6.2 shows that mitigation of just the persistent functional errors

in two benchmark applications improved reliability to levels nearly equivalent to the

reliability levels attained with maximum mitigation. In one design 21% fewer re-

sources were used than full mitigation (see Table 6.1. Most of this design consists

of feedback components and thus persistent cross section. In this case, partial TMR

was less beneficial. In a second design 38% fewer resources were used than maximum

mitigation. Far less of this design consists of feedback components. Furthermore,

maximum mitigation was not full TMR mitigation. If it could have been fully tripli-

cated, partial mitigation would theoretically use 115% fewer resources (the potential

savings would likely be larger since full TMR rarely costs just 3×). Thus in some

cases a mitigation scheme that focuses on just persistent functional errors can indeed

give up availability for a reduction in mitigation cost with nearly no loss in reliability.

The findings of this work will be of immediate benefit to any space-based

FPGA projects that have insufficient resources available for full TMR. This is imme-

diately useful at Los Alamos National Laboratory (LANL). The mitigation method

introduced in this thesis was implemented on several FPGA applications to be used in

a LANL satellite payload scheduled for launch in late 2006. One of the applications,

the DSP kernel, was presented and discussed throughout this thesis. This application

gained nearly two orders of magnitude reliability at a theoretical savings of 53% over

61

full mitigation. Other space-destined platforms with FPGAs could similarly benefit

from this work.

Other benefits of this work include finer resolution of mitigation. Designers can

select the appropriate amount of mitigation so as to not over-engineer their specific

problem. Less mitigation also provides less power consumption. This benefit is par-

ticularly attractive to space-based applications which are traditionally power-limited.

Also, less mitigation means that smaller FPGAs can be used or more functionality

can be packed into the same FPGA.

Future work is still needed to provide more options for functional error mit-

igation in FPGAs. Even in the context of this work more can be done to optimize

mitigation. The persistent cross section could be more finely characterized. Prob-

ability analysis could be used to statically assign mitigation priority levels in both

the persistent and non-persistent cross sections. Work has already been done by

Brian Pratt et al. to develop algorithms that incrementally mitigate the persistent

cross section and then the non-persistent cross section[28]. More work could be done

to optimize these algorithms. Other non-TMR approaches could also be developed

that are optimized specifically to mitigate either the non-persistent or persistent cross

section.

Future research should identify more cost-effective methods for FPGA reli-

ability enhancement. Specifically, risk analysis should be incorporated into these

reliability improvement techniques. Application and domain-aware methods are the

key to future improvements in the realm of FPGA application reliability.

62

Bibliography

[1] “Qpro Virtex 2.5v radiation hardened FPGAs,” Xilinx Corporation, Tech. Rep.,

November 5, 2001, dS028 (v1.2).

[2] [Online]. Available: http://www.eas.asu.edu/∼holbert/eee460/spacerad.html

[3] R. Baumann, “Single-Event Effects in Advanced CMOS Technology,” in 2005

IEEE NSREC Short Course, Seattle, WA, July 2005, pp. II–1 – II–59.

[4] D. E. Johnson, “Estimating the dynamic sensitive cross section of an FPGA de-

sign through fault injection,” Master’s thesis, Brigham Young University, August

2005.

[5] E. G. Stassinopoulos, “Microelectronics for the natural radiation environments

of space, chapter I: Radiation environments of space.” in 1990 IEEE NSREC

Short Course, Reno, NV, July 1990.

[6] “FPGAs in space: Programmable logic in orbit,” August 2004. [Online].

Available: http://www.fpgajournal.com/articles/20040803 space.htm

[7] L. Massengill, “SEU modeling and prediction techniques,” in 1993 IEEE NSREC

Short Course, Snowbird, UT, July 1993, pp. III–1 – III–93.

[8] E. L. Petersen, J. C. Pickel, J. H. Adams, and E. C. Smith, “Rate prediction for

single event effects-a critique.” IEEE Transactions on Nuclear Science, vol. 39,

no. 6, pp. 1577 – 1599, DEC 1992.

[9] E. Fuller, M. Caffrey, A. Salazar, C. Carmichael, and J. Fabula, “Radiation

testing update, SEU mitigation, and availability analysis of the Virtex FPGA

63

http://www.eas.asu.edu/~holbert/eee460/spacerad.html
http://www.fpgajournal.com/articles/20040803_space.htm

for space reconfigurable computing,” in 3rd Annual Conference on Military and

Aerospace Programmable Logic Devices (MAPLD), 2000, p. P30.

[10] E. Petersen, “Cross section measurements and upset rate calculations.” IEEE

Transactions on Nuclear Science, vol. 43, no. 6, pp. 2805 – 2813, DEC 1996.

[11] X. Corporation, “Radiation effects and mitigation overview.” [On-

line]. Available: http://www.xilinx.com/esp/mil aero/collateral/presentations/

radiation effects.pdf

[12] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin, “Accelerator

validation of an FPGA SEU simulator,” IEEE Transactions on Nuclear Science,

vol. 50, no. 6, pp. 2147–2157, December 2003.

[13] M. Wirthlin, E. Johnson, P. Graham, and M. Caffrey, “Validation of a fault

simulator for field programmable gate arrays,” in Proceedings of the IEEE 2003

Nuclear and Space Radiation Effects Conference, IEEE. Monterey, CA: IEEE,

July 2003, p. TBA, accepted.

[14] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Graham, “The reliabil-

ity of FPGA circuit designs in the presence of radiation induced configuration

upsets,” in Proceedings of the 2003 IEEE Symposium on Field-Programmable

Custom Computing Machines, K. Pocek and J. Arnold, Eds., IEEE Computer

Society. Napa, CA: IEEE Computer Society Press, April 2003, p. TBA.

[15] E. Johnson, M. J. Wirthlin, and M. Caffrey, “Single-event upset simulation on

an FPGA,” in Proceedings of the International Conference on Engineering of

Reconfigurable Systems and Algorithms (ERSA), T. P. Plaks and P. M. Athanas,

Eds. CSREA Press, June 2002, pp. 68–73.

[16] L. Connell, P. McDaniel, A. Prinja, and F. Sexton, “Modeling the heavy ion

upset cross section,” IEEE Transactions on Nuclear Science, vol. 42, no. 2, pp.

73–82, April 1995.

64

http://www.xilinx.com/esp/mil_aero/collateral/presentations/radiation_effects.pdf
http://www.xilinx.com/esp/mil_aero/collateral/presentations/radiation_effects.pdf

[17] “Test procedures for the measurement of single-event effects in semiconductor

devices from heavy ion irradiation,” Electronic Industries Association, Arlington,

VA, Tech. Rep., 1996.

[18] R. Koga, W. A. Kolasinksi, M. Marra, and W. Hanna, “Techniques of micropro-

cessor testing and seu-rate prediction,” IEEE Transactions on Nuclear Science,

vol. NS-32, no. 6, p. 1985p, DEC 1985.

[19] C. Carmichael, E. Fuller, J. Fabula, and F. D. Lima, “Proton testing of SEU

mitigation methods for the Virtex FPGA,” in Proceedings of the IEEE Microelec-

tronics Reliability and Qualification Workshop, Pasadena, CA, December 2001.

[20] E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, and A. Salazar, “Ra-

diation test results of the Virtex FPGA and ZBT SRAM for space based recon-

figurable computing,” in MAPLD Proceedings, September 1999.

[21] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-event upsets

through Virtex partial configuration,” Xilinx Corporation, Tech. Rep., June 1,

2000, xAPP216 (v1.0).

[22] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A fault injection

analysis of Virtex FPGA TMR design methodology,” in Proceedings of the 6th

European Conference on Radiation and its Effects on Components and Systems

(RADECS 2001), 2001.

[23] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating TMR tech-

niques in the presence of single event upsets,” in Proceedings fo the 6th Annual

International Conference on Military and Aerospace Programmable Logic Devices

(MAPLD). Washington, D.C.: NASA Office of Logic Design, AIAA, September

2003, p. P63.

[24] N. Rollins, M. Wirthlin, and P. Graham, “Evaluation of power costs in triplicated

FPGA designs,” in Proceedings of the MAPLD Conference, September 2004.

65

[25] B. Bridgford and C. Carmichael, “SEU mitigation in re-configurable FPGAs:

Picking the right tool for the job,” in Proceedings of the MAPLD Conference,

September 2005.

[26] G. M. Swift, S. Rezgui, J. George, C. Carmichael, M. Napier, J. Maksymowicz,

J. Moore, A. Lesea, R. Koga, and T. F. Wrobel, “Dynamic testing of xilinx

Virtex-II field programmable gate array (FPGA) input/output blocks (IOBs),”

IEEE Transactions on Nuclear Science, vol. 51, no. 6, pp. 3469–3474, December

2004.

[27] V. Chandrasekhar, S. N. Mahammad, V. Muralidaran, and V. Kamakoti, “Re-

duced triple modular redundancy for tolerating SEUs in SRAM-based FPGAs,”

in Proceedings of the MAPLD Conference, September 2005.

[28] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving

FPGA design robustness with partial TMR,” in Proceedings of the MAPLD Con-

ference, September 2005.

[29] R. Katz, K. LaBel, J. Wang, B. Cronquist, R. Koga, S. Penzin, and G. Swift,

“Radiation effects on current field programmable technologies,” IEEE Transac-

tions on Nuclear Science, vol. 44, no. 6, pp. 1945–1956, December 1997.

[30] R. Katz, J. J. Wang, R. Koga, K. A. LaBel, J. McCollum, R. Brown, R. A. Reed,

B. Cronquist, S. Crain, T. Scott, W. Paolini, and B. Sin, “Current radiation

issues for programmable elements and devices,” IEEE Transactions on Nuclear

Science, vol. 45, no. 6, pp. 2600–2610, December 1998.

[31] R. B. Katz and J. J. Wang, “Using IEEE 1149.1 JTAG circuitry in Actel SX

devices,” NASA/Actel, Tech. Rep., August 1998, available at www.actel.com.

[32] S. M. Guertin, G. M. Swift, and D. Nguyen, “Single-event upset test results for

the Xilinx XQ1701L PROM,” in IEEE Radiation Effects Data Workshop, 1999,

pp. 35–40.

66

[33] J. Wang, R. Katz, J. Sun, B. Cronquist, J. McCollum, T. Speers, and W. Plants,

“SRAM based re-programmable FPGA for space applications,” IEEE Transac-

tions on Nuclear Science, vol. 46, no. 6, pp. 1728–1735, December 1999.

[34] J. Fabula and H. Bogrow, “Total ionizing dose performance of SRAM-based

FPGAs and supporting PROMs,” in 3rd Annual Conference on Military and

Aerospace Programmable Logic Devices (MAPLD), 2000, p. C2.

[35] C. Carmichael, “Triple module redundancy design techniques for Virtex FP-

GAs,” Xilinx Corporation, Tech. Rep., November 1, 2001, xAPP197 (v1.0).

[36] C. Carmichael, E. Fuller, J. Fabula, and F. D. Lima, “Proton testing of SEU

mitigation methods for the Virtex FPGA,” in 4th Annual Conference on Military

and Aerospace Programmable Logic Devices (MAPLD), 2001, p. P6.

[37] P. Brinkley and C. Carmichael, “SEU mitigation design techniques for the

XQR4000XL,” Xilinx Corporation, Tech. Rep., March 15, 2000, xAPP181 (v1.0).

[38] SLAAC-1V User VHDL Guide, USC-ISI East, October 1, 2000, release 0.3.1.

[39] Virtex Series Configuration Architecture User Guide, Xilinx Application Notes

151, v1.5, Xilinx, Inc., September 2000.

[40] E. A. Bezerra, F. Vargas, and M. P. Gough, “Improving reconfigurable sys-

tems reliability by combining periodical test and redundancy techniques: A

case study,” Journal of Electronic Testing: Theory And Applications - JETTA,

vol. 17, no. 3, pp. 701–711, 2001.

[41] M. Caffrey, “A space-based reconfigurable radio,” in Proceedings of the Inter-

national Conference on Engineering of Reconfigurable Systems and Algorithms

(ERSA), T. P. Plaks and P. M. Athanas, Eds. CSREA Press, June 2002, pp.

49–53.

[42] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Reliability of pro-

grammable Input/Output pins in the presence of configuration upsets,” in Pro-

67

ceedings of the 5th Annual International Conference on Military and Aerospace

Programmable Logic Devices (MAPLD), September 2002.

[43] M. Caffrey, P. Graham, M. Wirthlin, E. Johnson, and N. Rollins, “Single-event

upsets in SRAM FPGA,” in Proceedings of the 5th Annual International Confer-

ence on Military and Aerospace Programmable Logic Devices (MAPLD), Septem-

ber 2002.

[44] P. Sundararajan, S. McMillan, and S. Guccione, “Testing FPGA devices using

JBits,” in Proceedings of the 4th Annual International Conference on Military

and Aerospace Programmable Logic Devices (MAPLD), September 2001, p. E5.

[45] P. Graham, M. Caffrey, M. Wirthlin, D. E. Johnson, and N. Rollins, “Reconfig-

urable computing in space: From current technology to reconfigurable systems-

on-a-chip,” in Proceedings of the 2003 IEEE Aerospace Conference. Big Sky,

MT: IEEE, March 2003, pp. T07 0603.1–12.

[46] ——, “SEU mitigation for half-latches in Xilinx Virtex FPGAs,” in Proceed-

ings of the IEEE 2003 Nuclear and Space Radiation Effects Conference, IEEE.

Monterey, CA: IEEE, July 2003, p. TBA, accepted.

[47] ——, “SEU mitigation for half-latches in Xilinx Virtex FPGAs,” vol. 50, no. 6,

pp. 2139–2146, December 2003.

[48] N. Cohen, T. Sriram, N. Leland, D. Moyer, S. Butler, and R. Flatley, “Soft

error considerations for deep-submicron CMOS circuit applications,” in Technical

Digest - International Electron Devices Meeting, IEEE Electron Devices Society.

Washington, D.C.: IEEE Electron Devices Society Publisher, December 1999,

pp. 315–318.

[49] M. Caffrey, M. Echave, C. Fite, T. Nelson, A. Salazar, and S. Storms, “A

space-based reconfigurable radio,” in Proceedings of the 5th Annual International

Conference on Military and Aerospace Programmable Logic Devices (MAPLD),

September 2002, p. A2.

68

[50] M. Ceshia, M. Bellato, A. Paccagnella, S. C. Lee, C. Wan, A. Kaminski,

M. Menichelli, A. Papi, and J. Wyss, “Ion beam testing of Altera Apex FPGAs,”

in Proceedings of the 2002 IEEE Radiation Effects Data Workshop, S. Crain and

T. Turflinger, Eds., IEEE Nuclear and Plasma Sciences Society. Phoenix, AZ:

IEEE, July 2002, pp. 45–50.

[51] C. Yui, G. Swift, and C. Carmichael, “Single-event upset susceptibility testing

of the Xilinx Virtex II FPGA,” in Proceedings of the 5th Annual International

Conference on Military and Aerospace Programmable Logic Devices (MAPLD).

Laurel, MD: NASA Office of Logic Design, September 2002.

[52] P. K. Samudrala, J. Ramos, , and S. Katkoori, “Selective triple modular re-

dundancy for SEU mitigation in FPGAs,” in Proceedings fo the 6th Annual In-

ternational Conference on Military and Aerospace Programmable Logic Devices

(MAPLD). Washington, D.C.: NASA Office of Logic Design, AIAA, 2003,

p. C1.

[53] W.-J. R. Huang, “Dependable computing techinques for reconfigurable hard-

ware,” Ph.D. dissertation, Stanford University, June 2001.

[54] Xilinx, “Radiation hardened Virtex-II QPRO 1.5V platform FPGAs: Introduc-

tion and overview,” Xilinx, Inc., San Jose, CA, Datasheet DS124-1, July 2003.

[55] J. Moore, “Military & aerospace,” Xilinx, Inc., Scottsdale, AZ, Presentation,

November 2003. [Online]. Available: http://www.xilinx.com/products/milaero/

MilAero.pdf

[56] P. Sundararajan, C. Patterson, C. Carmichael, S. McMillan, and B. Blod-

get, “Estimation of single event upset probability impact of FPGA de-

signs,” in Proceedings of the 6th Annual International Conference on

Military and Aerospace Programmable Logic Devices (MAPLD). Wash-

ington, D.C.: NASA Office of Logic Design, September 2003, p. P67,

http://klabs.org/richcontent/MAPLDCon03/papers/p/p67 sundararajan p.doc.

69

http://www.xilinx.com/products/milaero/MilAero.pdf
http://www.xilinx.com/products/milaero/MilAero.pdf

[57] C. Yui, G. Swift, and C. Carmichael, “Single event upset susceptibility testing

of the Xilinx Virtex II FPGA,” in Proceedings of the 5th Annual International

Conference on Military and Aerospace Programmable Logic Devices (MAPLD).

Laurel, MD: NASA Office of Logic Design, September 2002.

[58] G. M. Swift and S. M. Guertin, “In-flight observations of multiple-bit upset in

DRAMs,” IEEE Transactions on Nuclear Science, vol. 47, no. 6, pp. 2386–2391,

December 2000.

[59] R. Koga, J. George, G. Swift, C. Yui, L. Edmonds, C. Carmichael, T. Langley,

P. Murray, K. Lanes, and M. Napier, “Comparison of Xilinx Virtex-II FPGA

SEE sensitivities to protons and heavy ions,” IEEE Transactions on Nuclear

Science, vol. 51, no. 5, pp. 2825–2833, October 2004.

[60] R. Koga, K. B. Crawford, P. B. Grant, W. A. Kolasinski, D. L. Leung, T. J. Lie,

D. C. Mayer, S. D. Pinkerton, and T. K. Tsubota, “Single ion induced multiple-

bit upset in IDT 256K SRAMs,” in Proceedings of the Second European Confer-

ence on Radiation and its Effects on Components and Systems (RADECS), St.

Malo, France, September 1993, pp. 485–489.

[61] G. M. Swift, “Virtex-II static SEU characterization,” Xilinx Radiation Test Con-

sortium, Tech. Rep. 1, 2004.

[62] E. Johnson, K. Morgan, N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham,

“Detection of configuration memory upsets causing persistent errors in SRAM-

based FPGAs,” in Proceedings of the MAPLD Conference, September 2004.

[63] G. Asadi and M. B. Tahoori, “Soft error rate estimation and mitigation for

SRAM-based FPGAs,” in Proceedings of the FPGA Conference, Monterey, CA,

February 2005, pp. 149–159.

[64] A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects, 2nd ed. Oxford

University Press, 2002.

70

[65] K. S. Morgan and M. J. Wirthlin, “Predicting on-orbit SEU rates,” July 2005.

[Online]. Available: https://dspace.byu.edu/handle/1877/64

[66] ——, “Correlation of fault-injection to proton accelerator persistent cross

section measurements,” July 2005. [Online]. Available: https://dspace.byu.edu/

handle/1877/63

[67] T. L. Turflinger and M. V. Davey, “Understanding single event phenomena in

complex analog and digital integrated circuits,” IEEE Transactions on Nuclear

Science, vol. 37, no. 6, pp. 1832–1838, December 1990.

[68] “CREME96 Homepage.” [Online]. Available: https://creme96.nrl.navy.mil/

[69] “Space Radiation Associates Homepage.” [Online]. Available: http://www.

spacerad.com/

[70] Wikipedia, “Magnetosphere.” [Online]. Available: http://en.wikipedia.org/

wiki/Magnetosphere

[71] M. G. Kivelson and C. T. Russell, Introduction to Space Physics. Cambridge

University Press, 1995.

71

https://dspace.byu.edu/handle/1877/64
https://dspace.byu.edu/handle/1877/63
https://dspace.byu.edu/handle/1877/63
https://creme96.nrl.navy.mil/
http://www.spacerad.com/
http://www.spacerad.com/
http://en.wikipedia.org/wiki/Magnetosphere
http://en.wikipedia.org/wiki/Magnetosphere

72

Appendix

73

74

Appendix A

Benchmark Designs

This chapter describes the four benchmark applications referred to throughout

this thesis. The purpose of the suite of benchmarks designs is to demonstrate the

effects of the concepts presented in this thesis for a variety of typical designs. The first

is an array of feed-forward multipliers with no internal state. This circuit represents

a typical data-flow application. The second is a large array of 400 8-bit counters

(each containing count state). This circuit represents an application with significant

amounts of internal state. The third is a synthetic application consisting of LFSRs

and a multiplier-adder tree. This circuit represents the typical mixture of data-flow

and internal state in an application. The fourth is a Digital Signal Processing (DSP)

kernel developed at Los Alamos National Laboratory. This circuit is represents a real

application. The information included in this chapter includes design functionality

and size.

Table A.1: Resource Utilization

Resource Utilization
Design

slices (#) (%)
Multiplier 10,305 83.9
Counter 2,151 17.5
Synthetic 2,538 20.7

DSP Kernel 5,746 46.8

75

A.1 Multiplier

The first application is a feed-forward multiplier depicted as a block level

diagram in Figure A.1. The design takes as inputs two 36-bit operands a and b and

computes a 72-bit output o = 8 ∗ a ∗ b. In stage one, each operand enters eight

independent parallel feed-forward multiply circuits. The output of each multiply

circuit feeds the input of one of four full adders in stage two. In stage three, the

outputs of the full-adders in stage two feeds another stage with two more full-adders.

Finally, in stage four, the outputs from stage three enters a final single full-adder. In

a Xilinx FPGA this application requires 10, 305 slices (see Table A.1). This many

slices occupies 83.9% of a Xilinx Virtex XCV1000 FPGA (see Table A.1).

Figure A.1: A feed-forward multiplier circuit [4].

A.2 Counter Array

The second application is an array of 400 8-bit counters depicted as a block

level diagram in Figure A.2. The design has no inputs and generates a 50-bit output

o. Stage one has 400 8-bit counter modules. The eight outputs of each module are

paired down to a single parity-check bit through a logical XOR operation. These

76

400 bits are further reduced to 50 bits through a 3-level XOR operation. The XOR

operation allows detection of all single bit upsets in the configuration memory of this

design. In a Xilinx FPGA this application requires 2, 151 slices (see Table A.1). This

many slices occupies 17.5% of a Xilinx Virtex XCV1000 FPGA (see Table A.1).

Figure A.2: A feed-forward multiplier circuit [4].

A.3 Synthetic

The third application is a synthetic application with an array of n LFSR

modules followed by a multiplier-adder tree (see Figure A.3). Each LFSR module

contains six 20-bit LFSR circuits. Each LFSR circuit consists of a 20 bit shift-register

with an XOR’d version of a subset of its own bits as its input. In each LFSR module,

the outputs of the six LFSR circuits are XOR’d together to form a single bit output

for the module. The single bit output of the n modules feed into a multiply-add tree.

In a Xilinx FPGA this application requires 2, 538 slices (see Table A.1). This many

slices occupies 20.7% of a Xilinx Virtex XCV1000 FPGA (see Table A.1).

A.4 DSP Kernel

The fourth and final application is a DSP kernel design, depicted in Figure A.4

as a block diagram. This application was developed at Los Alamos National Labora-

77

Figure A.3: A synthetic FPGA design with LFSRs and a multiplier-adder tree [4].

tory. The application takes as input a stream of data. The data is filtered through a

polyphase filter and separated into 32 separate channels. The filter is followed by an

FFT and a magnitude operation. The output is also a stream of data. In a Xilinx

FPGA this application requires 5.746 slices (see Table A.1). This many slices occupies

46.8% of a Xilinx Virtex XCV1000 FPGA (see Table A.1).

Figure A.4: A digital signal processing kernel design developed at Los Alamos Na-
tional Laboratory [4].

78

Appendix B

Space Radiation Environment

This chapter describes both terrestrial and cosmic radiation sources, including

trapped particles and galactic and solar cosmic rays.

B.1 Trapped Radiation

Moving from the earth outward, the first major source of radiation is a re-

gion of “trapped” particles. American physicist James Van Allen is credited with

discovering this region of protons and electrons. He found that this range of particles

extends from 800 kilometers to 6 earth radii and beyond. Figure B.1 depicts these

trapped particle regions, now known as the Van Allen belts. The earth’s magnetic

field causes the particles to constantly move in a complicated pattern, shown in Fig-

ure B.2. They gyrate around and bounce along magnetic field lines. The field also

reflects the particles back and forth between regions of maximum field strength in

opposite hemispheres. In addition, electrons drift eastward while protons drift west-

ward around the earth [5]. The Van Allen belts have electrons with energies up to

10 MeV and protons with energies up to several hundred MeV; energies high enough

to easily cause SEEs in micro-electronics.

Figure B.3 is the integral Linear Energy Transfer (LET) spectrum for trapped

protons along a hypothetical low-earth orbit at 560 km altitude and 35.0o degrees

inclination. The y-axis is the integral proton flux for one revolution along this orbit

at each energy along the x-axis. Note that particles with energy above 103 do not

exist for this orbit.

79

Figure B.1: Van Allen trapped radiation belts around the earth [2].

Figure B.2: Motion of trapped particles in the Van Allen radiation belts [5].

B.2 Cosmic Radiation

Beyond the trapped radiation belts exist more energetic particles of galactic

and solar origination. These celestial particles include electrons, with energies in the

eV to GeV range. The flux of the lower-energy particles can be significant.

Fortunately the earth’s magnetic field, or magnetosphere, protects us on the

ground from the most damaging galactic and solar particles. Figure B.4 is a graph-

80

Figure B.3: Integral trapped proton LET spectrum for a low-earth orbit at 560 km
altitude and 35.0o degrees inclination.

ical representation of the magnetosphere. Near the earth, a magnetic dipole model

(slightly tilted from the rotation axis and offset from the center of the earth) approx-

imates the magnetic field [70, 71]. For this reason, the magnetosphere less effectively

deflects cosmic rays at higher altitudes, particularly near the earth’s poles. Further

away from the earth’s surface, the dipole model of the magnetic field breaks down.

Due to effects from the solar wind, the anti-solar side of the magnetic field extends

beyond 200 Re (1Re = 1 Earth Radius ≈ 6370km). For the same reasons, the sun-

ward facing side of the field is compressed so that it only extends to approximately

10Re. As such, the ability of the magnetic field to deflect particles also decreases with

increasing altitude.

B.2.1 Galactic Cosmic Radiation

Cosmic rays of unknown origin significantly contribute to particle flux at high

altitudes above the earth and near the earth’s magnetic poles. These rays, known

as Galactic Cosmic Rays (GCR), typically consist of about 85 percent protons, 14

percent alpha particles and 1 percent heavier nuclei [5]. Particles with energy in the

GeV range also sometimes exist in GCRs. Again, these energies easily induce faults

in micro-electronics.

81

Figure B.4: The earth’s magnetosphere [2].

B.2.2 Solar Cosmic Radiation

The sun also periodically ejects intense quantities of cosmic rays. The particles

in these rays can also penetrate the earth’s magnetosphere, particularly at high alti-

tudes and near the poles, and significantly increase the particle flux at those locations

1. The frequency and intensity of these solar ejections follows an approximate 22 year

cycle. For the first 11 years, known as Solar Minimum, the sun is relatively quiet.

For the next 11 years, known as Solar Maximum, the sun emits extreme amounts of

protons and heavy ions from time to time. These events, colloquially known as flares,

can last from a few hours to several days.

1In general, increased particle flux will lead to more SEEs. However, the increased particle
flux from solar ejections does not disseminate down to lower altitudes. In fact, at solar maximum,
increased solar rays in the atmosphere cause the atmosphere to expand. This allows more trapped
protons to be removed from the trapped radiation belts [68]. Consequently, low-altitude particle
flux actually decreases during Solar Maximum.

82

Figure B.5 is the combined integral LET spectrum for galactic and solar cosmic

rays along a hypothetical low-earth orbit at 560 km altitude and 35.0o inclination.

The y-axis is the integral flux for one revolution along this orbit at each energy along

the x-axis. Particles exist with significantly higher energies than trapped protons,

beyond 104 LET, but the flux significantly drops after about 103 LET. In addition,

the flux of even the lower-energy particles is orders of magnitude less than trapped

proton flux at the same energy. As such, trapped particles play the dominant role

in this hypothetical orbit. The opposite would be true for orbits at altitudes beyond

the radiation belts or near the earth’s poles.

Figure B.5: Integral heavy-ion LET spectrum for a low-earth orbit at 560 km altitude
and 35.0o degrees inclination.

83

84

Appendix C

Testing Methodologies

To validate the existence the of non-persistent and persistent cross sections

it was necessary to measure their respective sizes through fault-injection and proton

irradiation experiments. The size of the cross sections was estimated using fault-

injection. The estimates were validated by actually measuring the cross sections with

proton irradiation. This appendix will describe the test-fixture and methodology for

both of these tests. The limitations of each method will also be discussed and it will

be shown that fault-injection is a reliable alternative.

C.1 Test-Fixture

Both the fault-injection and proton irradiation tests used the SLAAC1-V con-

figurable computing board as a test-fixture. Figure D.1 is a schematic representation

of the SLAAC1-V. It has three Xilinx Virtex XCV1000 FPGAs and one smaller Xil-

inx FPGA. FPGA X1 houses the circuit Design Under Test (DUT). FPGA X2 holds

a second, “golden”, or identical copy of the circuit programmed into X1. FPGA X0

contains difference circuitry. When the outputs of X1 and X2 do not match, X0 de-

tects the difference and notifies the host PC. The fourth, smaller FPGA labeled XVPI

has the configuration circuitry to program X0, X1 and X2. During proton radiation

it also houses the scrubbing circuitry.

C.2 Fault-Injection

Fault-injection with respect to an FPGA is the process of emulating an SEU,

followed by scrubbing. In general, the emulation algorithm is as follows. A bit within

85

Figure C.1: The SLAAC1-V configurable computing platform.

the configuration bitstream is toggled from its correct state. The bit is left in this

corrupted state for a finite duration. The length of time generally corresponds to

Mean Time To Repair (MTTR) defined in Section 4.2. An upper bound on scrubbing

time to repair, MAX(TTR) can also be used. Upon expiration of this time, the

corrupted bit is toggled again, restoring its original state.

To perform these experiments the capability of an existing fault-injection tool

developed by Eric Johnson at Brigham Young University was modified and extended.

His tool estimates the size of a design’s dynamic cross section by finding the sensitive

bits. In other words, the tool identifies which bits, when upset, cause any type of

output error. A more detailed description of this tool can be found in [4].

The primary experiment tried to identify which bits, when upset, caused per-

sistent errors. Figure C.2 shows the sequence of events used to determine if a given

configuration bit contributes to persistent errors. At the beginning of the test, marked

by the diamond, the tool emulates an SEU by corrupting a bit in the configuration

memory of FPGA X1. Some of those result in a dynamic error, meaning the out-

puts of X1 and X2 no longer match. Next, the delay ts is introduced to emulate the

time that would be required for scrubbing circuitry to find and repair the corrupted

bitstream location (MTTR). At the next event, marked by the triangle, the bit is

corrected. If functional errors occurred during ts, the design is allowed to operate

86

for an additional time tf to see if the errors flush. At the final event, marked by

the circle, the bit is classified. If at this point errors still exist, then the originally

corrupted bit is classified as contributing to persistent errors. The tool tests every

bit within the configuration memory of the entire FPGA and records the result.

Figure C.2: Fault-injection test time-line: Sequence of events in a single trial to test
a configuration bit for persistence.

The estimated size of a design’s persistent cross section xp is proportional to

the sum of persistent configuration bits identified in the experiment described above.

More formally, the persistent cross section is,

xp = xs ×
persistent bits

total bits
, (C.1)

where,

xs = device static cross section.

In other words, the persistent cross section xp equals the ratio of persistent bits to

total bits multiplied by the device’s total static cross section xs. In other words, the

fraction of the original static cross section that corresponds to persistent bits.

C.3 Radiation Testing

To validate fault-injection persistent cross section estimates, proton irradia-

tion experiments were performed at Crocker Nuclear Laboratory at the University

87

of California, Davis, to actually measure the persistent cross section. Here, rather

than emulate SEUs and scrubbing, energetic particles and a scrubbing circuit were

used. At Crocker the particles are 63 MeV protons. The on-board configuration con-

troller chip (XVPI) was modified to perform scrubbing. The scrubbing circuit did a

round-robin check of the entire bitstream; reconfiguring each corrupted frame1 in the

part.

To measure persistence at an accelerator I wrote software to control the SLAAC1-

V while it was subjected to irradiation. The software ran on a host PC to which the

SLAAC1-V board was attached. Figure C.3 details the sequence of events used to de-

termine if a particular bit is within the persistent cross section of a particular design.

A proton randomly induces an SEU; i.e. a configuration bit is corrupted. Within

MAX(TTR), denoted as ts, the scrubbing circuit will find and reconfigure the cor-

rupted bit. At some point, marked by the square, the corrupted bit will potentially

cause output errors. Here the experiment begins. The DUT, configured in FPGA

X1, is allowed to operate for time tf to see if the functional errors will flush from the

design. Note that tf is set to cover both MAX(TTR) and the desired experimental

flush time. If at the end of tf functional errors still exist, then the originally corrupted

bit is classified as persistent.

The measured size of the persistent cross section, xp of a design can be calcu-

lated as,

xp =
persistent events

fluence × cos θ
, (C.2)

where,

θ = incident particle angle.

Here the persistent cross section is equal to the number of persistent events divided by

the product of the fluence and cosine of the incident particle angle. Where the number

of persistent events is defined to be the number of trials which caused persistent errors.

1A frame is the smallest divisible unit of the configuration memory which can be reconfigured in
a Xilinx FPGA.

88

Figure C.3: Proton irradiation test time-line: Sequence of events in a single trial to
test a configuration bit for persistence.

C.4 Testing Conclusions

Even though proton irradiation is expensive and time-consuming, it is a more

accurate representation of the radiation environment a system will face. The primary

purpose then in testing at a proton accelerator was to validate the accuracy of fault-

injection predictions against proton irradiation. If it can be shown that there is a high

degree of correlation between fault-injection predictions and radiation measurements,

then the fault-injection tool can be used to make future “measurements” of cross

section with a high level of confidence.

Unfortunately testing for persistence is an intractable problem which can only

be estimated. For instance, at an accelerator the corruption of bits cannot be precisely

controlled by the user due to the random flux of particles in both space and time.

Therefore, reconciliation of upset bits to persistent errors is done by post-processing of

collected data. A detailed explanation of the post-processing methodology, including

a more detailed description of the data collection method and an extended discussion

on the limitations of testing for persistence, can be found in Appendix D.

Despite the limitations in the two testing methodologies, the data collected

indicates that fault-injection is a reliable method of measuring cross section. In all test

cases, fault-injection is at least is accurate to within 1% for measuring dynamic cross

89

section and is at least as good as an order-of-magnitude estimate of the persistent

cross section [12].

90

Appendix D

Correlation of Accelerator Data to Simulation Results

In Chapter 5 a fault injection tool was introduced that can predict the size

of an FPGA design’s persistent cross section. This tool was validated using proton

irradiation testing at Crocker Nuclear Laboratory in Davis, CA to show that it can

correctly predict the cross section measured at an accelerator.

This document outlines the data collection process used at the accelerator and

the process used to correlate the results of fault-injection and proton irradiation. Sec-

tion D.1 describes the accelerator hardware and Section D.2 describes the accelerator

software. Section D.3 discusses the limitations of both fault injection and accelerator

testing. Section D.4 introduces the software developed to correlate the results of fault

injection and proton irradiation. Sections D.5 and D.6 discuss correlation for sensi-

tivity and persistence respectively. Finally, Section D.7 accounts for the differences

in persistent cross section results between fault injection and proton irradiation.

D.1 Data Collection Hardware

A SLAAC1-V configurable computing board was used as the hardware test-

fixture for radiation testing. Figure D.1 is a block diagram of the SLAAC1-V board.

It has four FPGAs on a PCI card. There are three Xilinx XCV1000s available for user

configuration, labeled X0 through X2. The fourth, smaller FPGA labeled XVPI, acts

as a configuration controller. For the persistence tests, X1 was used for the circuit

design under test (DUT) and X2 for an identical copy of X1 to be used as a “golden”

or control circuit. X0 housed the logic to compare outputs from X1 and X2. XVPI

91

contained the circuitry for configuration programming and for SEU monitoring of the

X1 configuration bitstream.

Figure D.1: Block diagram of the SLAAC1v configurable computing PCI board. The
SLAAC1V has three Xilinx Virtex XCV1000 FPGAs.

D.1.1 Output Error Detection

FPGA X0 continuously monitored the stream of outputs from the X1 DUT

and X2 golden circuits for discrepancies. On the first cycle on which a mismatch

occurred, X0 issued an interrupt via the PCI interface to indicate an output error (OE)

occurred. The interrupt remained high until it was reset externally from software.

X0 also stored several user registers. One register, R0, held the number of cycles on

which an OE occurred since the last register reset.

D.1.2 SEU Detection

FPGA XVPI continuously monitored the configuration bitstream for faults. It

used an external memory to house a “golden” copy of the bitstream for comparison.

Mismatches, i.e. faults, were logged in a FIFO by configuration bitstream offset. If

after a read of the entire bitstream it had logged one or more faults, an interrupt

was issued via the PCI interface. The interrupt remained high until it was reset

92

externally from software. Note that XVPI did not correct faults. The bitstream

remained in a corrupted state until software issued data and commands to perform

partial reconfiguration.

It is important to note that, on average, a read of the entire bitstream took 22

milliseconds. As a result, most SEUs which caused functional errors were were not

reported until some time after the functional errors were reported. In other words,

OEs induced by an SEU were actually logged and timestamped before the SEU which

could have caused it.

D.2 Data Collection Software

Software running on the host PC which housed the SLAAC1-V PCI card

continuously waited for and logged interrupts issued by the test-fixture hardware.

The software also monitored the X0 user registers and sent commands for partial

reconfiguration of the bitstream. The software contained two independent threads to

perform these functions. One thread reacted to the OE interrupt and one responded

to the bitstream fault interrupt.

D.2.1 Output Error Thread

The OE monitoring thread continuously pended on the OE interrupt. Upon

an OE interrupt, the thread gained context. It then followed the sequence of events

on the time-line in Figure D.2. Figure D.3 is a more detailed flow diagram of the

operations performed by the thread. First, the thread disabled the OE interrupt,

logged a timestamp from a generator with millisecond accuracy, and immediately

went back to sleep for tf milliseconds. After tf elapsed, context returned to the

thread. At this point the thread reset the register R0 which held the number of

cycles on which an error occurred since the last register reset. It then went back to

sleep for tm milliseconds. After tm elapsed, context returned to the thread again.

At this point the thread read the contents of R0. If R0 was non-zero, or in other

words, if OEs occurred during tm the log was annotated with a flag to indicate that

the original OE (represented by the timestamp) was persistent. Otherwise a flag was

93

added to the log to indicate a non-persistent OE occurred. After a persistent output

error (POE), the thread issued a global reset of X1 and X2. Finally it re-enabled the

OE interrupt and went back to sleep to wait for the next interrupt.

Figure D.2: Timeline of events in the fault-injection tool to test a configuration bit
for persistence.

D.2.2 Bitstream Fault Thread

The software also included a second thread which continuously pended on

the bitstream fault interrupt. This thread remained inactive until a bitstream fault

interrupt was issued at which time it gained context. The thread then disabled the

bitstream fault interrupt and logged a timestamp from the same generator used by

the OE thread. Next, it read each entry from the FIFO in XVPI and repaired the

bitstream at the reported location. Next to the timestamp in the log, each bitstream

offset was also added. Finally the bitstream fault interrupt was re-enabled and the

thread went back to sleep to wait for the next interrupt.

94

Figure D.3: Flow diagram of the Output Error thread in the data collection software
for accelerator persistence tests.

D.3 Testing Limitations

Several factors affect the ability to measure persistent cross section. Conse-

quently there are distinct differences between the fault injection and proton irradia-

tion methodologies. The first difference between the two testing methodologies is the

number of configuration bits tested. The fault-injection tool tests every configuration

bit while the radiation test only tests a small random subsection of the configuration

memory. Sampling limitations of the radiation test may produce slightly different

results than the exhaustive fault-injection tool.

The second difference between the two testing methodologies is the timing

of the configuration upsets. In the fault-injection tool, the configuration upsets are

carefully controlled and synchronized with the run time and flush time of the per-

sistence test. In the radiation test, however, protons randomly arrive and cannot

easily be correlated with run time and flush time. Although the proton flux controls

the average arrival time, the inter arrival of protons follows a Poisson distribution.

95

Figure D.4: Flow diagram of the Bitstream Fault thread in the data collection software
for accelerator persistence tests.

96

Expectedly, secondary configuration upsets occur during the flush time tf of a trial.

If this happens, the test software falsely tags an upset configuration bit as persis-

tent. The number of such false persistent events can be estimated through statistical

analysis.

Upsets of user flip-flops is the other factor which affected the accuracy of our

testing. Injection of faults into user flip-flops during dynamic operation is difficult

within the Virtex architecture. Fortunately, the ratio of flip-flops to configuration

memory latches is small, therefore it is a generally accepted practice to ignore flip-

flops during fault-injection tests. However, protons do cause SEUs within flip-flops

at an accelerator. This leads to seemingly unexplainable POEs not predicted by the

fault-injection tool. The number of such unexplainable events can also be estimated

through statistical analysis.

D.4 Data Correlation Software

Since the ultimate goal in performing radiation experiments was to validate

the use of fault-injection as an accurate method to predict cross section, the data

collected using proton irradiation had to be correlated with the data collected using

fault-injection. The first step in correlation was to parse the data collected dur-

ing proton irradiation and fault-injection and store it in a suitable data structure.

Figures D.6 and D.7 are sample data files collected by the OE and RB threads re-

spectively. Figure D.5 is a UML diagram of the classes used to store data parsed

from these files. All events are a derivative of the Entry class which simply stores a

timestamp. Each event is either a record of an OE or a bitstream fault. The only

additional information an OE Entry stores is the real-time decision made about the

persistence of that particular error. Each bitstream fault Entry holds an array of one

or more configuration upset events. Each configuration upset event in turn holds an

address or offset to the bit which was corrupted at the accelerator. In addition, each

upset event record stores a sensitive and persistent percent probability predicted by

fault-injection for that bit.

97

Figure D.5: UML diagram of the software classes used to represent the data structure
of events parsed from the data recorded at an accelerator using the data collection
software.

98

\% Radiation Effects Tests performed at UC Davis

\% by LANL in conjunction with BYU

\% Tue Jun 29 2004

\% 12:16:40

\% X1 Design: /test_designs/SSR2/ssra-new-fixed.bit

\% X2 Design: /test_designs/SSR2/ssra-new.bit

\% Frequency: 10.000000

\% Flush Time: 45 (ms)

\% Observation Time: 10 (us)

\% Beam Run Number: 10

\% OE Format:

\% Timestamp Decision

\% (note: Decision: 0=Non-Persistent, 1=Persistent)

13256 0

15391 0

15689 0

15963 0

17824 0

18881 0

18968 1

20408 0

20856 0

Figure D.6: Sample output error (OE) data log.

99

\% Radiation Effects Tests performed at UC Davis

\% by LANL in conjunction with BYU

\% Tue Jun 29 2004

\% 12:16:40

\% X1 Design: /test_designs/SSR2/ssra-new-fixed.bit

\% X2 Design: /test_designs/SSR2/ssra-new.bit

\% Frequency: 10.000000

\% Flush Time: 45 (ms)

\% Observation Time: 10 (us)

\% Beam Run Number: 10

\% RB Format:

\% Timestamp SMAPcnt FSMcnt SMAP_STAT_REG

\% [Byte-Offset Expected@Actual]. (one or more)

\% (note: Each entry is a pair of two lines)

13042 1 483 3d

537604 30b

13291 1 12 3d

162487 20a

13312 1 1 3d

633763 302

13374 1 3 3d

31034 c0c1

13499 1 6 3d

75518 2

Figure D.7: Sample read-back error (RB) data log.

100

After the parser creates the data structure for each event, all Entries are

placed in an array in chronological order by timestamp. Figures D.9, D.12 and D.14

are typical timelines corresponding to the events stored in an Entry array. The reader

will recall from Section D.1.2 that due to the timing constraints on the SEU detection

hardware, OE events come before the SEU which would have caused it.

D.5 Sensitivity Correlation

The next step in the correlation process was to re-validate the ability of the

fault injection tool to predict the size of the dynamic cross section. Correlation of

OEs to the sensitive upsets which caused them turns out to be a rather trivial process.

For each OE reported at the accelerator it is enough to find out if it was predicted by

the fault-injection tool. Figure D.8 is a flow diagram of the logic used to evaluate each

OE. If after an OE event a configuration upset was reported with a non-zero sensitive

probability within a window w, then the fault-injection tool correctly predicted that

OE. OEs not near a configuration upset with a non-zero sensitive probability were

termed unpredicted. Some of these unpredicted OEs can be attributed to upsets of

configuration bits which the fault-injection tool incorrectly identified as non-sensitive.

The remaining unpredicted OEs likely were caused by SEUs within user flip-flops.

Figure D.9 is a hypothetical snapshot in time of events recorded at the accel-

erator. The OE depicted in this graphic would have been classified as predicted if the

upset which occurred during the time w had a non-zero sensitive probability.

It is important to note how the size of the window w was selected. To make

this selection, the delta time between an OE and the first upset reported after it

chronologically was evaluated. Figure D.10 is a histogram of the deltas for a particular

design. The resulting distribution is normal. As expected, the mean is approximately

22 milliseconds which corresponds to the average bitstream read time mentioned in

Section D.1.2. Excluding the outliers (which correspond to OEs caused by an upset

of a user flip-flop), the edge of the distribution is approximately 45 milliseconds. This

worst-case fault reporting time was used as the size of the window w so as to insure

that all possible upsets which could have caused an OE were included.

101

Figure D.8: Flow diagram of the algorithm to classify sensitive configuration bit data
collected at an accelerator.

Figure D.9: Example timeline of events recorded at an accelerator.

102

Figure D.10: Histogram of the delta time in ms between an output error event and
an configuration upset event.

103

D.6 Persistence Correlation

After confirming the fault injection tool’s ability to accurately predict dynamic

cross section, several different approaches to validate its ability to predict persistent

cross section were used. Correlation of POEs to the persistent upsets which caused

them is a much more difficult process than sensitivity correlation. This section de-

scribes the inherent limitations in persistence correlation and the different algorithms

used.

D.6.1 Detection Algorithm 1

The easiest and most intuitive approach to persistence correlation is to mimic

the methodology for correlating sensitivity. For each POE reported at the accelerator,

it was determined if it was predicted by the fault-injection tool. Figure D.11 is a flow

diagram of the logic used to evaluate each POE. If after a POE event a configuration

upset was reported with a non-zero persistent probability within a window w, then

the fault-injection tool correctly predicted that POE. POEs not near a configuration

upset with a non-zero persistent probability were termed unpredicted. Some of these

POEs can be attributed to upsets of configuration bits which the fault-injection tool

incorrectly identified as non-persistent. The remaining unpredicted POEs likely were

caused by SEUs within user flip-flops.

Figure D.12 is a hypothetical snapshot in time of events recorded at the ac-

celerator. The POE depicted in this graphic would have been classified as predicted

if the upset which occurred during the time w had a non-zero persistent probability.

Again it is important to note how the size of the window w was selected.

For this and the following persistence correlation algorithms the same approach was

used. Associated with each POE in the log files was the actual flush time tf for

that particular trial. This time varied due to operating system overhead for context

switching. Due to the dynamic length of the time tf , a different w for each POE was

used. So as to insure that all upsets which could have possibly induced the POE in

question, the worst-case bitstream fault reporting time described in Section D.5 was

added to the real flush time tf for the window w.

104

Figure D.11: Flow diagram of an algorithm to classify persistent configuration bit
data collected at an accelerator.

Figure D.12: Example timeline of events recorded at an accelerator.

105

D.6.2 Prediction Algorithm

The second approach looked at configuration upsets rather than POEs. This

algorithm determined if each configuration upset with a non-zero persistent proba-

bility, as predicted by fault-injection, actually caused a POE. Due to the non-binary

probability distribution of persistence an approach which weighted the occurrence of

a configuration upset by its persistent probability was used. Figure D.13 is a flow

diagram of the logic used to evaluate each persistent upset. The algorithm keeps a

running sum of the persistent probability of each persistent upset. The sum equals

a weighted prediction of the number of POE events the fault-injection tool predicted

based on which configuration bits were upset. Next, the number of upsets that had a

POE within a window w before the upset was counted. The count equals the actual

number of POE events seen. A percent error can be calculated from the equation

(predicted − actual)/predicted.

Figure D.14 is a hypothetical snapshot in time of events recorded at the ac-

celerator. Each upset has been labeled according to its fault-injection persistent

probability. The persistent upset depicted in this graphic had a POE within a win-

dow w chronologically before it and therefore would have contributed to the count of

actual POEs. The upset’s persistent probability would have also contributed to the

sum defining the weighted prediction of POEs.

D.6.3 Detection Algorithm 2

The final approach used looked at every event within a window w after a

POE. This more detailed analysis leads to a better explanation of why each POE event

occurred. In this algorithm, each POE event was placed in one of five categories. The

different categories were 1) matched, 2) anomalous, 3) one or more sensitive upsets, 4)

one or more non-sensitive upsets, and 5) nothing in window. POEs with one or more

persistent upset within the window w were placed in the matched category. Errors

with more than three upsets within its window were called anomalous. From the

remaining POEs, those with at least one sensitive upset in the window w were placed

in the one or more sensitive category. Those with a least one upset (which by process

106

Figure D.13: Flow diagram of an algorithm to classify persistent configuration bit
data collected at an accelerator.

Figure D.14: Example timeline of events recorded at an accelerator.

107

of elimination could only be non-sensitive) were put in the one or more non-sensitive

category. And finally, the remaining errors (which by process of elimination could

have no upsets in their window) were placed in the nothing in window category.

D.7 Accounting for Testing Error

In his Master’s thesis, Eric Johnson explained how to determine confidence

intervals for dynamic radiation testing of cross section for FPGA applications with

respect to fault injection [4]. In this work Johnson showed that the bounds a and b

on a 95% confidence interval can be computed as

a = −2.81σ + µ (D.1)

and

b = 2.81σ + µ, (D.2)

where σ is the square root of the variance and µ is the mean. The magic numbers

−2.81 and 2.81 come from the 95% confidence interval for a unit normal distribution

Φ(x). For a unit normal distribution, Φ(−2.81) = 0.025 and Φ(2.81) = 0.975.

Johnson further showed that the variance σ2 and mean µ can be computed as

σ2 =
k + 1

n + 2
(
k + 2

n + 3
− k + 1

n + 2
) (D.3)

and

µ =
k + 1

n + 2
, (D.4)

where n is the number of SEU events and k is the expected number of persistent (or

sensitive etc.) events.

Based on Johnson’s derivations, 95% confidence intervals were computed for

the four designs introduced in Appendix A and referred to throughout this thesis.

The parameters, lower bound a, and upper bound b are shown in Table D.1. In

addition, the ratio of the raw persistent cross section to static cross section is also

listed for each design in column seven. This ratio is computed as

xpm:s =
1

static cross section
× # POE events

fluence
. (D.5)

108

Only the raw measured ratio for the Synthetic design falls within the expected confi-

dence interval. The discrepancies for the remaining designs may be explained due to

the effects of flux variations and user flip-flop upsets (see Section D.3). As a result,

the collected data was post-processed in various ways in an effort to show that the

data could fit within the expected confidence interval. The first method discarded

trials which had one or more additional SEUs within the flush time tf . The second

method only counted trials which had one or more upsets which were known to cause

persistent errors that occurred within the flush time tf . The ratio of the persistent

cross section to static cross section using these methods is computed as

xpm:s =
1

static cross section
× adjusted # POE events

fluence
. (D.6)

As might be expected, the second method had better agreement with fault injection.

The ratios using this method are listed in column eight of Table D.1.

In some cases adjusting the data by discarding trials moves the data to within

the 95% confidence interval. However, this adjustment also sometimes moves data

out of the confidence interval. Sometimes the raw data collected already fell within

the 95% confidence interval. Ultimately all of the data collected are close to their

expected 95% confidence interval. As Section D.3 indicated, measuring persistence

is a difficult problem. The flux, flush time and sample rate parameters can make a

significant difference in the accuracy of the collected data. In the future, more testing

could be done at much lower sampling rates with much longer flush times to collect

more accurate data.

109

Table D.1: Confidence Intervals for Tested Designs

Measured
Design

Predicted
n

expected
a b Persistence

Persistence k
Raw Adjusted

Multiplier 0.0000 5,927 0.0010 -0.0003 0.0006 0.0007 0.0001
Counter 0.0187 21,068 394.0 0.0161 0.0214 0.0132 0.0128
Synthetic 0.0126 136,727 1717.1 0.0117 0.0134 0.0122 0.0094

DSP Kernel 0.0014 30,697 41.7 0.0008 0.0020 0.0026 0.0009

110

Appendix E

Predicting On-Orbit SEU Rates

In order to calculate Mean Time Between Failure (MTBF) it is necessary to

first predict static Single-Event Upset (SEU) rates for device-orbit pairs. Many meth-

ods and associated computer programs exist to forecast on-orbit SEU rates. For this

work, the Space Radiation 5.0 (SPACERAD) [69] and CREME96 [68] software pack-

ages were used for prediction. This appendix documents the parameters necessary to

recreate the MTBF values, found in Tables 3.2, 5.5 and 6.2, based on the static SEU

rates found in Table 2.3.

E.1 Software Packages

As mentioned in Chapter 2, the space radiation environment contains elec-

trons, protons and heavy-ions of various originations. Of importance to SEU calcu-

lations are typically protons, both trapped and solar, and heavy-ions. The computer

program SPACERAD was used to predict static SEU rates from trapped protons and

solar protons. According to its website [68], SPACERAD models the ionizing space

and atmosphere environments. It includes models for trapped protons and electrons,

solar protons, galactic cosmic radiation and neutrons. In addition to SEU rates,

SPACERAD can also predict total ionizing dose, solar cell damage and Single-Event

Latchup (SEL) for any orbit or trajectory. More information can be found at the

SPACERAD website [68].

The Cosmic Ray Effects on Micro-Electronics 1996 (CREME96) suite of soft-

ware programs was used to predict static SEU rates from cosmic rays, both solar

and galactic. A public web-based interface exists to access this software package [68].

111

Using CREME96, heavy ion SEU rates and total ionizing dose can be predicted for

a particular orbit. More information can be found at the CREME96 website [68].

E.2 Integral Rectangular Parallelepiped Method

The underlying method in both SPACERAD and CREME96 used for static

SEU rate prediction is the well-established Integral Rectangular Parallelepiped (IR

PP) technique. More details on the procedure and mathematics of this technique can

be found in [7, 8].

E.3 Rate Categories

The energy spectrum used for IRPP SEU rate forecasting is based on particle

flux. Trapped protons, solar protons, heavy-ions and even trapped electrons all have

different models to describe their respective flux at varying locations in space. As

such, the component of a device-orbit SEU rate due to each particle type must be

computed separately.

Each particle model has different categories to describe the variations in flux

due to changing space conditions. For example, trapped proton flux has two cat-

egories, solar min and solar max, corresponding to the peak and minimum of the

approximately 22 year solar activity cycle. Heavy ion rates can also be divided into

solar min and solar max, but additional categories are also available to describe con-

ditions during the worst week and worst day of solar activity. Consequently, it is

important to combine the separate particle SEU calculations in a meaningful and

valid manner. Table E.1 indicates which components were included for the different

categories used to report SEU and MTBF rates found elsewhere in this work.

E.4 AP-8 Trapped Proton Model

The parameters to do an IRPP prediction of trapped proton SEU rates from

within SPACERAD are found in Table E.2. The Weibull characteristics are entered

directly, but the energy spectrum is based on a independently generated file. The file it

depends on is an energy transport file. An energy transport file represents the energy

112

Table E.1: Solar Condition Categories and the Set of Values Necessary to Calculate
a Total Rate

Trapped Proton Solar Proton Heavy Ion
Category Solar Solar Solar Solar Solar Solar Worst Worst

Min Max Quiet Stormy Min Max Week Day
Solar Min

√ √ √

Solar Max
√ √ √

Worst Week
√ √ √ √

Worst Day
√ √ √ √

outside the device after it has gone through spacecraft shielding. The parameters to

create an energy transport file can be found in Table E.3. Here, no values are entered

directly, but the energy transport file does depend on both a spacecraft shielding file

and a trapped proton energy environment file, which are independently created. A

trapped proton energy environment file represents the energy spectrum outside the

spacecraft. The parameters for spacecraft shielding and trapped proton environment

files are listed in Tables E.4 and E.5 respectively. Spacecraft shielding files are stand-

alone, or in other words, all values are entered directly, but a trapped proton energy

environment file depends on an orbit file. Orbit files are also stand-alone. The

parameters for the orbits represented in this work are listed in Table E.6.

The categories for trapped proton SEU rates are solar min and solar max. The

category is selected by the model picked for the energy environment file. (See column

column three of Table E.5.)

Table E.2: Input Parameters to Predict SEU Rates in SPACERAD due to Trapped
Protons

Energy Transport Cross Section Energy Threshold Weibull Weibull
Spectrum (cm2) (MeV) Shape Width

∗(see Table E.3) 1.276x10−7 10 2 30

113

Table E.3: Input Parameters to Create a Trapped Proton Energy Transport File in
SPACERAD

Trapped Proton Environment Spacecraft Shielding
∗(see Table E.5) ∗(see Table E.4)

Table E.4: Input Parameters to Create a Spacecraft Shielding File in the SPACERAD
Package

Material Density Shell Thickness
Aluminum 2.698 g/cm3 100 mils

Table E.5: Input Parameters to Create Trapped Proton Environment Files in SPAC-
ERAD

Orbit Model Year Geomagnetic Peak
Orbit Model Year Field Model Flux

Solar Max ∗(see Table E.6) AP8MAX 0 IGRF/DGRF No
[Epoch=1970] Internat. Geo.

Ref. Field[10]
Solar Min ∗(see Table E.6) AP8MIN 0 IGRF/DGRF No

[Epoch=1964] Internat. Geo.
Ref. Field[10]

Table E.6: Input Parameters to Create Orbit Files in SPACERAD

Apogee Perigee Incl. Duration Long. Asc. Node Perigee to Precession
(km) (km) (deg) (days) Asc. Node to Perigee Spacecraft

(deg) (deg)
450 450 51.6o 365 0o 0o 0o Yes
560 560 35.0o 365 0o 0o 0o Yes
800 800 22.0o 365 0o 0o 0o Yes
833 833 98.7o 365 0o 0o 0o Yes

1, 200 1, 200 65.0o 365 0o 0o 0o Yes
22, 200 22, 200 55.0o 365 0o 0o 0o Yes
36, 000 36, 000 0.0o 365 0o 0o 0o Yes

114

E.5 JPL 1991 Solar Proton Model

In a similar fashion to trapped protons, the component of SEU rates due

to solar protons can be determined using SPACERAD and the JPL 1991 model.

The parameters to do a Weibull prediction of solar proton SEU rates are found in

Table E.7. Again, the Weibull values can be entered directly, but the calculation

also depends on an energy transport file, representing the energy at the device after

it has gone through spacecraft shielding. The parameters to create a solar proton

energy transport file are listed in Table E.8. The energy transport spectrum for solar

protons depends on the solar proton energy environment outside the spacecraft, in

addition to the spacecraft and geomagnetic shielding. The parameters to create solar

proton environment, spacecraft shielding and geomagnetic shielding files are found in

Tables E.9, E.4 and E.10 respectively. All three file types are stand-alone.

The categories for solar proton SEU rates are Quiet magnetosphere and Stormy

magnetosphere, corresponding to the level of disturbance within the earth’s magnetic

field, typically caused by the sun. The category is determined by the field condition

selected when creating the geomagnetic shielding file.

Table E.7: Input Parameters to Predict Solar Proton SEU Rates in SPACERAD

Energy Transport Cross Section Energy Threshold Weibull Weibull
Spectrum (cm2) (MeV) Shape Width

∗(see Table E.8) 1.276x10−7 10 2 30

Table E.8: Input Parameters to Create a Solar Proton Energy Transport File in
SPACERAD

Trapped Proton Environment Spacecraft Shielding Geomagnetic Shielding
∗(see Table E.9) ∗(see Table E.4) ∗(see Table E.10)

115

Table E.9: Input Parameters to Create a Solar Proton Environment File in SPAC-
ERAD

Model Mission Duration (years) Confidence Level (%)
JPL 1991 1 95

Table E.10: Input Parameters to Create Geomagnetic Shielding Files for the SPAC-
ERAD Software Package

Orbit Integration Earth’s Shadow Particle Arrival Field Condition
Orbit-Average Include Omni directional Quiet
Orbit-Average Include Omni directional Stormy

E.6 CREME96 Cosmic Radiation Model

The methodology for calculating SEU rates using CREME96 is very similar

to that with SPACERAD, just with a different user-interface. Just as with solar

protons and trapped protons, an IRPP prediction of SEU rates can be made. The

appropriate Weibull values for heavy ions are listed in Table E.11. The heavy ion

IRPP calculation also requires an energy transport spectrum, but CREME96 requires

it to be first converted to Linear Energy Transfer (LET). The parameters used to

create an LET file are listed in Table E.12. Again, the energy transport spectrum

being converted represents the energy at the device after it has been transported

through spacecraft shielding. Table E.13 enumerates the parameters to create an

energy transport file. The energy transport files depend on the heavy ion environment.

An heavy ion environment file can be created using the parameters in Table E.14.

In turn, the environment depends on the orbit and consequent geomagnetic shielding

in that orbit. CREME96 uses one file to represent an orbit and its geomagnetic

shielding. The parameters to create an orbit file can be found in Table E.15.

The categories for heavy ion SEU rates are solar min, solar max, worst week

and worst day. Solar min and solar max only account for the non-solar anomalous cos-

mic rays. Worst week and worst day account for “solar flare enhanced” flux averaged

over the respective time period.

116

Table E.11: Input Parameters to Predict Heavy Ion SEU Rates in CREME96

Energy X Y Z Funnel Weibull Weibull Weibull Weibull
Spectrum (µ) (µ) (µ) (µ) Onset Width Exponent X-sctn

(MeV) (µ2)
∗(see Table E.12) 0 0 0 0 1.2 30 2 8

Table E.12: Input Parameters to Convert an Energy Transport File to an LET Spec-
trum in CREME96

Energy Transport Lightest Heaviest Min. Energy Device
Spectrum z# z# (MeV/nuc) Material

∗(see Table E.13) 2 28 0.1 Silicon

E.7 Static SEU Rates

The combined SEU rates for trapped protons, solar protons and heavy ions

can be found in Table E.16. The rate for each orbit and each category is listed.

Table E.13: Input Parameters to Create an Energy Transport File in CREME96

Cosmic Radiation Environment Shielding Material Shielding Thickness (mils)
∗(see Table E.14) Aluminum 100

117

Table E.14: Input Parameters to Create an Energy Transport File in CREME96

Environment Lightest Heaviest Geomagnetic
Model z# z# Shielding

Solar Min 1 28 ∗(Table E.15)
Solar Max 1 28 ∗(Table E.15)

Worst Week 1 28 ∗(Table E.15)
Worst Day 1 28 ∗(Table E.15)

Table E.15: Input Parameters to Create Geomagnetic Shielding Files in the
CREME96 Package

Apogee Perigee Incl. Duration Environment Magnetic Orbit
(km) (km) (deg) (days) Model Weather Section
450 450 51.6o 365 † † Whole
560 560 35.0o 365 † † Whole
800 800 22.0o 365 † † Whole
833 833 98.7o 365 † † Whole

1, 200 1, 200 65.0o 365 † † Whole
22, 200 22, 200 55.0o 365 † † Whole
36, 000 36, 000 0.0o 365 † † Whole

1

Table E.16: Static SEU Rate Forecast for a Single Xilinx Virtex XCV1000 FPGA in
Several Different Orbits

Alt. Incl. Solar Solar Worst Worst
Orbit (km) (deg) Minimum Maximum Week Day

(SEU/hr) (SEU/hr) (SEU/hr) (SEU/hr)
LEO 450 51.6o 2.0x10−2 3.5x10−3 4.0x10−1 1.4
LEO 560 35.0o 2.8x10−2 1.8x10−2 1.9x10−2 1.9x10−2

LEO 800 22.0o 9.6x10−2 6.6x10−2 6.7x10−2 6.7x10−2

Polar 833 98.7o 6.9x10−2 5.5x10−2 1.1 3.8
Const. 1, 200 65.0o 2.5x10−1 2.0x10−1 1.0 3.1
GPS 22, 200 55.0o 4.5x10−2 4.6x10−1 3.7 1.3x10+1

GEO 36, 000 0.0o 4.5x10−2 5.5x10−1 3.7 1.3x10+1

118

	SEU-Induced Persistent Error Propagation in FPGAs
	BYU ScholarsArchive Citation

	Title Page
	Copyright
	College Signatures
	Department Signatures
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Benchmark Designs
	Orbits
	Organization

	Radiation Effects and FPGAs
	Space Radiation Environment
	Single Event Effects
	Static SEU Cross Section
	FPGA Static SEU Cross Section
	Orbit Specific Static SEU Rates
	Summary

	Dynamic Cross Section
	Dynamic Single Event Upsets in FPGAs
	Measuring Dynamic Cross Section
	Dynamic Cross Section Measurements
	MTBF Estimation
	Calculating MTBF
	Orbit-Specific MTBF Estimates

	Summary

	Persistent Functional Errors
	Related Research
	Scrubbing
	Non-Persistent Errors
	Persistent Errors
	Summary

	Persistent Cross Section
	Non-Persistent Cross section
	Persistent Cross section
	Measuring Persistent Cross Section
	Persistent Testing Methodologies
	Persistent Cross Section Measurements

	MTBF Estimation
	Application Service Interruption Tolerance
	Calculating MTBF
	Orbit-Specific MTBF Estimates

	Summary

	Functional Error Mitigation
	Design Constraints
	Full Mitigation
	Partial Mitigation
	Modified Persistent Cross Section Measurements
	Modified MTBF Estimates
	Summary

	Summary and Conclusion
	Bibliography
	Benchmark Designs
	Multiplier
	Counter Array
	Synthetic
	DSP Kernel

	Space Radiation Environment
	Trapped Radiation
	Cosmic Radiation
	Galactic Cosmic Radiation
	Solar Cosmic Radiation

	Testing Methodologies
	Test-Fixture
	Fault-Injection
	Radiation Testing
	Testing Conclusions

	Correlation of Accelerator Data to Simulation Results
	Data Collection Hardware
	Output Error Detection
	SEU Detection

	Data Collection Software
	Output Error Thread
	Bitstream Fault Thread

	Testing Limitations
	Data Correlation Software
	Sensitivity Correlation
	Persistence Correlation
	Detection Algorithm 1
	Prediction Algorithm
	Detection Algorithm 2

	Accounting for Testing Error

	Predicting On-Orbit SEU Rates
	Software Packages
	Integral Rectangular Parallelepiped Method
	Rate Categories
	AP-8 Trapped Proton Model
	JPL 1991 Solar Proton Model
	CREME96 Cosmic Radiation Model
	Static SEU Rates

