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Seven centuries of reconstructed Brahmaputra
River discharge demonstrate underestimated high
discharge and flood hazard frequency
Mukund P. Rao 1,2✉, Edward R. Cook1, Benjamin I. Cook3,4, Rosanne D. D’Arrigo1, Jonathan G. Palmer 5,

Upmanu Lall6, Connie A. Woodhouse 7, Brendan M. Buckley1, Maria Uriarte 8, Daniel A. Bishop 1,2,

Jun Jian 9 & Peter J. Webster10

The lower Brahmaputra River in Bangladesh and Northeast India often floods during the

monsoon season, with catastrophic consequences for people throughout the region. While

most climate models predict an intensified monsoon and increase in flood risk with warming,

robust baseline estimates of natural climate variability in the basin are limited by the short

observational record. Here we use a new seven-century (1309–2004 C.E) tree-ring recon-

struction of monsoon season Brahmaputra discharge to demonstrate that the early instru-

mental period (1956–1986 C.E.) ranks amongst the driest of the past seven centuries (13th

percentile). Further, flood hazard inferred from the recurrence frequency of high discharge

years is severely underestimated by 24–38% in the instrumental record compared to pre-

vious centuries and climate model projections. A focus on only recent observations will

therefore be insufficient to accurately characterise flood hazard risk in the region, both in the

context of natural variability and climate change.
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T
he Brahmaputra River contributes nearly half of the
~40,000 m3/s mean annual discharge of the Ganga–
Brahmaputra–Meghna river system (Fig. 1). This makes it

the joint third largest river system in the world (tied with the Río
Orinoco, Venezuela) in terms of its mean annual discharge
after the Amazon and Congo1. Known as the Jamuna in
Bangladesh, the high discharge rates of the Brahmaputra are
caused, in part, by annual precipitation (rain and seasonal snow)
in excess of 3000 mm/year for much of the watershed (Supple-
mentary Fig. 1) and snowmelt from its highly glaciated upper
basin encompassing the Eastern Himalaya and parts of the
Southern Tibetan Plateau2–6. The river and its tributaries provide
important societal, ecological, cultural, and economic services to
more than 60 million people in Bangladesh, North-eastern India,
Bhutan, and Tibet, China1,7. These benefits include fish (a pri-
mary source of protein in the region), water to irrigate many
seasonal rice varieties that need annual flood waters to survive,
the deposition of fresh sediment to sustain the large inhabited
riverine islands (known as chars), and the prevention of salt-
water intrusion from the Bay of Bengal into the low-lying Sun-
darban delta7–9.

Although the Brahmaputra River provides these important
benefits, it is also a frequent cause of human suffering from flooding
in Bangladesh and Northeast India (primarily in Assam)10,11. Long-
duration (>10-day) floods that cause the most widespread disrup-
tions are most common during the monsoon season between July
and September11–14. The main driver of monsoon season
July–August–September (JAS) discharge in the Brahmaputra is
upper basin precipitation (Fig. 1a and Supplementary Figs. 2–4),
along with smaller contributions from glacial melt, snow melt, and
base flow15,16. For example, the year 1998 witnessed intense
monsoon flooding between July and September in both Bangladesh
and Assam, inundating nearly 70% of Bangladesh, affecting over 30
million people and causing a humanitarian emergency in the
region12,13,15,17. Similar floods in 1987, 1988, 2007, and 2010 along
with the currently ongoing inundation from flooding in 2020 have

caused large fatalities, permanent loss of livelihoods, and the dis-
placement of thousands of people to urban centres like Dhaka, in
addition to raising regional food security concerns due to famine
from damaged crops12,13,18,19.

While anthropogenic sulphate aerosol emissions caused a
reduction in South Asian Summer Monsoon (SASM) activity
during the latter half of the twentieth century20–23, increasing
carbon-dioxide emissions and decreased aerosol loading are
projected to intensify the South Asian Summer Monsoon through
the twenty-first century24. This intensification of the monsoon,
along with the accelerated warming-driven glacial melt, is
expected to lead to greater flow in the Brahmaputra River3,16 and
likelihood of flood hazard in the region14,25–27.

Studies of long-term flood hazard in the Brahmaputra water-
shed have, however, been hampered by the relatively short and
fragmentary instrumental discharge records available15,28. The
longest instrumental record of Brahmaputra discharge comes
from the Bahadurabad gauging station in Bangladesh, shortly
after the river enters the country from Assam, India (Fig. 1).
The Bahadurabad discharge record spans about six decades
from 1956 to 2011, interspersed with some missing data (Figs. 2
and 3a). Such a short record makes it difficult to assess and
put into perspective the magnitude of projected future changes
relative to natural variability, especially at decadal and centennial
timescales15,24.

Tree-ring reconstructions of hydroclimate (including stream-
flow) are used to extend instrumental records to evaluate the
severity of past droughts and pluvials29–34, as a reference to
interpret recent climate extremes relative to those in the past35–37,
and to contextualise natural climate variability in the system38

relative to climate change projections35,39,40. To that end, we
develop a monsoon season reconstruction of mean JAS Brah-
maputra River discharge at Bahadurabad, Bangladesh.

We use our reconstruction, along with historical documenta-
tion of flood events10,11 to evaluate the connections between
discharge and monsoon season flooding. We then derive
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Fig. 1 Climate-streamflow-tree-growth relationships in the Brahmaputra watershed (red dashed lines). The figures also highlight the larger

Ganga–Brahmaputra–Meghna watershed (black dashed line), and the locations of the 28 tree-ring predictors (diamonds) used in the mean

July–August–September (JAS) streamflow reconstruction at the Bahadurabad gauge, Bangladesh (red star). a Infill shading in diamond markers represent

the Pearson correlation between mean JAS discharge at Bahadurabad and each tree ring predictor (1956–1998 C.E.). Background shading is the spatial field

correlation between mean JAS discharge at Bahadurabad and mean JAS precipitation (1956–2011 C.E.) b Spatial field correlation between the first principal

component (PC1) of the 28 tree ring predictors (variance explained: 24.86%) and mean JAS precipitation (1956–1998 C.E.). Spatial correlations in (a) and

(b) are against CRU Ts 4.01 precipitation. Together, (a) and (b) show that monsoon season JAS flow in the Brahmaputra is positively related to upper basin

precipitation in a region largely co-located with the tree ring predictor network. They also demonstrate that the predictor network effectively captures

regional JAS precipitation independent to its correlation with JAS Brahmaputra discharge. Note that the locations of predictors are jittered for display. Only

correlations significant at p < 0.05 using a 2-tailed t-test are shown. See Supplementary Table 1 for more information on the predictor network and

Supplementary Fig. 2 for similar analyses with GPCC precipitation.
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projections of future Brahmaputra River discharge from climate
model simulations (historical and RCP8.5) participating in the
fifth phase of the Coupled Model Intercomparison Project
(CMIP5—ref. 41). We use these models and our reconstruction to
evaluate two situations. The first is how the recurrence of high
discharge events (used here as a proxy for flood hazard) in recent
decades compares to longer-term estimates over the last several
centuries. The second is how the increase in Brahmaputra River
discharge caused by projected regional wetting16 compares to
natural climate variability estimated by the instrumental data and
our tree-ring derived reconstruction. In this paper we define flood
hazard as an exceedance of mean JAS discharge of 48,800 m3/s
corresponding to observed discharge in 2007, the lowest discharge
of 6 instrumental period flood years between 1956 and 2011.

Results
Seasonal hydrograph and recent flood events in the observed
record. The most severe monsoon-season floods by the Brah-
maputra River are those that cause inundation for more than 10
consecutive days. Such floods most commonly occur during JAS,
the season with largest discharge during the year13. The annual
maximum 10-day mean discharge hydrograph at Bahadurabad
between 1956 and 2011 shown in Fig. 2a describes the evolution
of discharge from a dry, low-flow period between November of
the prior year through May of the current year, and a period of
peak discharge during the monsoon season in JAS42. As tree rings
typically provide information regarding seasonal hydroclimate43,
we then attempted to determine whether JAS monsoon season
discharge is related to sub-seasonal flow at the 10-day timescale
relevant to regional flooding. We found a strong and significant
positive relationship between mean JAS seasonal discharge
and the maximum 10-day mean discharge in each year
(Spearman r= 0.79; Pearson r= 0.82; n= 55, p < 0.001, Fig. 2b).
This coupling between ‘instantaneous’ and ‘seasonal’ discharge is
a common feature among large river basins across the world,
including the Brahmaputra28,44.

This relationship is further supported by comparing the 10-day
mean discharge hydrograph of six instrumental period flood years
(i.e. 1966, 1987, 1988, 1998, 2007, and 2010) to the overall 10-day

mean discharge hydrograph between 1956 and 2011 (Fig. 2a, also
see ref. 15). In each of these known flood years, 10-day mean
discharge exceeded the 50th and 95th percentile of daily discharge
for an extended duration. The median number of discharge days
that exceeded the 50th percentile and 95th percentile of daily JAS
discharge during these flood years were 76 and 17, respectively,
representing 82% and 18% of the total of 92 days in the 3-month
JAS period (Supplementary Fig. 5). In particular, in the year 1998,
peak 10-day mean discharge was ~94,000 m3/s. This was greater
than twice the median flow for the season1,12,15, with daily flow
exceeding the 95th percentile of daily flow for a total of 39 of the
92 days, or 42% of the days in the JAS season. These results
confirm the use of JAS discharge as a proxy for 10-day discharge
and as an indicator for the likelihood of flood hazard.

Predictor selection and reconstruction model fidelity. To
extend the short instrumental record, we developed a recon-
struction of mean JAS monsoon season discharge extending from
1309 to 2004 C.E. (Common Era) for the Brahmaputra River at
Bahadurabad, Bangladesh, using Bayesian Regression (see
‘Methods’ section). We used a pool of 28 annually dated tree-ring
series that were proximally located to the Brahmaputra watershed
boundary (Supplementary Table 1). All chosen series correlate
well with mean JAS streamflow at Bahadurabad (p < 0.10, using a
2-tailed t-test) during the 1956–1998 model calibration-validation
period. Of these 28 predictors, 5 are located relatively distant
(~670 km) to the watershed. We retained these 5 predictors as
they contributed additional model skill, as is commonly found in
tree-ring hydroclimate and streamflow reconstructions31,45–50,
consistent with spatial autocorrelation in climate fields51–53.

The first principal component (PC1) of the 28 tree-ring
predictors explained 24.86% of the total variance in the set of
predictor chronologies. The PC1 timeseries of these predictors
also correlated significantly with JAS discharge at Bahadurabad
between 1956 and 1998 (r= 0.73, n= 42, p < 0.01, 2-sided t-test),
and with mean JAS precipitation in the Brahmaputra basin
(Fig. 1b and Supplementary Fig. 2b). The loadings of each
predictor on PC1 (and PC2) are described in Supplementary
Table 1. The correlation between the PC1 series and regional
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Fig. 2 Discharge characteristics of the Brahmaputra at Bahadurabad, Bangladesh between 1956 and 2011 C.E. a Annual 10-day mean discharge

hydrograph. The brown and green envelopes represent the 5th, 50th, and 95th percentiles of 10-day mean discharge, respectively. The 5 grey and 1 red line

represent 10-day mean discharge during instrumental period flood years in 1966, 1987, 1988, 1998 (in red), 2007, and 2010 C.E. b Scatter plot of mean JAS

discharge against maximum 10-day mean daily discharge. The six flood years are highlighted in red. The vertical dashed line highlights mean JAS discharge

in 2007 (48,800m3/s), the lowest discharge of the 6 instrumental period documented flood years. The bootstrapped Pearson and Spearman rank

correlations are calculated as the median and 5th and 95th percentile of 1000 draws with replacement. The grey uncertainty envelope (±2σ) is derived

from the best-fit linear regression (blue line).
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precipitation in Fig. 1b indicates that the ‘shared variance’
between the selected predictors captures regional hydroclimate
variability independent to their statistical relationship with
Brahmaputra streamflow.

Median calibration-validation statistics of our reconstruction
between 1309 and 2004 C.E. are as follows: i. CRSQ (calibration
period coefficient of multiple determination): 65.58%, ii. VRSQ
(validation period square of the Pearson correlation): 45.61%, iii.
VRE (validation period reduction of error): 0.41, and iv. VCE
(validation period coefficient of efficiency): 0.31. A comparison of
the correlations between reconstructed discharge and upper basin

climate variables indicates that the reconstruction captures the
climate-streamflow relationships inherent in the instrumental
observations (Supplementary Fig. 4). However, these climate-
streamflow relationships are slightly weaker for reconstructed
discharge than for instrumental discharge. The calibration-
validation statistics for each model nest are shown in Supple-
mentary Fig. 6 along with the number of tree ring predictors
used in each nest (maximum 28, minimum 10). That VRE
and VCE values are consistently greater than zero across the
full reconstruction period indicates that the model has some
skill32.
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Fig. 3 Instrumental observations, the reconstruction, and CMIP5 projections of mean JAS discharge at Bahadurabad. a JAS instrumental discharge and

its mean (43,350m3/s) compared against reconstructed JAS discharge and its long-term mean (46,993 ± 812 m3/s). b Reconstructed discharge for each

year between 1309 and 2004 C.E. as a departure from the reconstructed mean (as green and brown bars), along with the 50-year low-pass filtered

reconstruction (solid black) highlighting multi-decadal variability. The instrumental JAS discharge and its mean between 1956 and 2011 C.E. is shown in the

blue and dashed blue lines, respectively. Red triangles mark 18 documented flood years between 1787 and 2010 C.E. The 3 dark green lines represent the

50-year low-pass filtered interquartile range (IQR—25th, 50th, and 75th percentiles) of the multi-model CMIP5 RCP8.5 ensemble (20 models; 42 runs;

Supplementary Table 2) along with the full range of variability (light green lines) during both the ‘historical’ (1850–2005 C.E.) and ‘future’ (2006–2099 C.

E.) simulation period of these runs. c Kernel density profiles of the median reconstruction (in red), instrumental period (in blue), the full 42 member CMIP5

RCP8.5 end of the century simulation period (2050–2099 C.E.) ensemble suite (in green) and their respective means. The observed mean discharge of the

6 instrumental period flood years from Fig. 2 are shown in purple. The inset figure d shows the kernel density profiles of mean JAS instrumental discharge

(in red) and reconstructed mean JAS discharge (in blue) over the calibration-validation period (1956–1998 C.E.) along with their means. The reconstruction

matches the features of instrumental discharge such at its mean and variance in this period.
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Reconstruction of past discharge. The reconstructed discharge
estimates during the observational period are shown in Fig. 3a
and our full reconstruction between 1309 and 2004 C.E. is pre-
sented in Fig. 3b. While the reconstruction is calibrated to the
instrumental mean and variance in the reconstruction procedure
(Fig. 3c, d), we found that the mean reconstructed discharge over
the full reconstructed period between 1309 and 2004 C.E. was
significantly higher than the instrumental mean between 1956
and 2011 C.E. (46,993 ± 812m3/s cf. 43,350 m3/s, difference of
means= 3,644 m3/s, t-statistic= 5.11, p < 0.01) (Fig. 3a). The
uncertainty range around the mean was derived from the 5th and
95th percentiles of the means across all 400 iterations of the
median reconstruction. The reconstruction was also significantly
(p < 0.01) wetter than the instrumental period even if we used the
1956–2004 C.E. instrumental mean of 43,442 m3/s or the
1956–1998 C.E. calibration-validation period instrumental mean
of 43,233 m3/s. This difference between the instrumental and
reconstructed mean is largely driven by the first three decades of
the instrumental observations between 1956 and 1986 C.E. that
was unusually dry in the long-term context of the past seven
centuries54. The instrumental mean between 1956 and 1986 C.E.
was 41,206 m3/s. We also compared mean JAS discharge during
these 4 intervals (i.e. 1956–1986, 1956–1998, 1956–2004, and
1956–2011) to random block bootstrap draws from the full
reconstruction. We found all four intervals to be significantly
drier (p < 0.05) than the reconstruction (Supplementary Fig. 7).

The 31-year 1956–1986 C.E. instrumental mean of 41,206 m3/s
ranked in the 13th percentile of our 696-year reconstruction. The
1956–2004 C.E. mean of 43,233 m3/s and the full 56-year
1956–2011 C.E. instrumental mean of 43,350 fell in the 22nd
percentile of the full reconstruction. These results highlight the
unusually dry nature of the modern instrumental period relative
to the full reconstructed record, although we do observe dry
periods of similar or greater magnitude in the early 1400s, late
1600s, early 1800s, and late 1800s (also see Supplementary Fig. 8,
refs. 54,55 for perspectives on upper Brahmaputra watershed May-
June hydroclimate, and refs. 56,57). On the other hand, the
reconstruction indicates long multidecadal wet periods of above
normal discharge between ~1560–1600 C.E., 1750–1800 C.E., and

~1830–1860 C.E. that have no analogues in the instrumental data
(Fig. 3 and Supplementary Fig. 8, also see ref. 55). We do note that
both instrumental observations and the reconstructions show a
return to wetter conditions starting in 1987 (also see refs. 58,59).
For example, more recent instrumental observations of discharge
between 1987–1998 C.E., 1987–2004 C.E., and 1987–2011 C.E.
are relatively wetter than the instrumental data prior to 1987 and
fall in the 59th, 48th, and 39th percentile of full reconstruction
(Supplementary Fig. 7). However, the lack of more up-to-date
streamflow data preclude us from being able to contextualise
more recent years of discharge relative to the longer term
reconstructed mean.

Historical flood events. Next, we evaluated the relationship
between discharge and 12 historical Brahmaputra flood years in
1787, 1842, 1858, 1871, 1885, 1892, 1900, 1902, 1906, 1910, 1918,
1922 C.E. identified from refs. 10–12 and 6 recent instrumental
period flood years in 1966, 1988, 1987, 1998, 2007, 2010 C.E.15.
These flood years (18 total) are marked as red triangles in Fig. 3b.
The mean observed JAS discharge during these six instrumental
period flood years was ~53,800 m3/s (purple line in Fig. 3c). The
reconstructed discharge of 60,312 m3/s in 1998 C.E. that was
concurrent with large scale flooding in Bangladesh is only
exceeded five times in the 696-year reconstruction. While our
reconstruction model underpredicts the instrumental discharge of
62,840 m3/s in 1998 C.E. by ~2500 m3/s (Fig. 3a), this comparison
still suggests that within the reconstruction, discharge that year
was unusually high12,15 even in the long-term context of the past
seven centuries.

Following this, we tested the probability of random association
between the 16 flood years and high discharge over the
reconstruction period (excluding 2007 and 2010 as the recon-
struction ends in 2004) using superposed epoch analysis (SEA—
ref. 60; see ‘Methods’). We found that mean reconstructed flows
across these 16 years are significantly wetter (p < 0.001) and
approximately one standard deviation higher than would be
expected by chance (Fig. 4a). This result is consistent with our
finding using the instrumental discharge data (Fig. 2) that flood
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Fig. 4 Discharge characteristics of wet and dry periods and flood years. a Superposed epoch analysis (SEA) showing higher than normal flows in historical

and instrumental period flood years (in year t+0) between 1780 and 2004 C.E. than would be expected by chance. The response is the 5th, 50th, and 95th

percentiles of mean flow across 1000 unique draws of 10 flood years at random out of 16. The horizontal dotted lines indicate the threshold required for

epochal anomalies to be statistically significant using random bootstrapping at three different statistical thresholds. These thresholds were calculated by

compositing 10,000 draws of 10 years at random (or ‘pseudo-flood years’) from the reconstruction between 1780 and 2004 C.E. b Recurrence intervals

(in years) of discharge greater than the 2007 C.E. flood year JAS discharge calculated from 1000 draws of 30 years with replacement form the instrumental

data (1956–2011 C.E.), the reconstructions (over the instrumental period, 1956–2004 C.E.), and the full 42 ensemble member CMIP5 RCP8.5 simulation suite

between 2050–2074C.E. and 2075–2099 C.E. The median recurrence interval for each dataset is noted below each boxplot. The median recurrence interval

for instrumental discharge between 1956–2004 C.E. and 1956–1998 C.E. remains 4.35 (Supplementary Fig. 11).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19795-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6017 | https://doi.org/10.1038/s41467-020-19795-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


events co-occur with high seasonal JAS discharge. However, we
found this relationship to be much weaker in the reconstructions.
Six of the 12 pre-1956 C.E. flood events occurred in relatively dry
years. SEA of the 12 flood years prior to 1956 did show a median
result of wet conditions in the year in which a flood was
documented (Supplementary Fig. 9). However, this result was not
statistically significant at p < 0.05 despite the 95th percentile of
bootstrapped discharge responses being significant at p < 0.001.
This asymmetric response may be partly due to some of these
historical flood years being undivided Bengal (Bangladesh, and
West Bengal, India) flood years and not solely Brahmaputra flood
years, and lack of information regarding the magnitude of
flooding in the historical sources that we used.

Projections of future discharge. We calculated projections of
runoff for the Brahmaputra River at Bahadurabad using an
ensemble of 20 CMIP5 climate models (42 ensemble members)
that provided continuous simulations from 1850 through 2099 C.
E. (historical simulation from 1850–2005 C.E.; high emissions
RCP8.5 scenario from 2006–2099 C.E.) (Supplementary Table 2).
During the historical simulation period, the multi-model
ensemble interquartile range (IQR—25th, 50th, and 75th per-
centiles) of the 20 climate models shows a decreasing trend from
~1940–1980 C.E. (shown in solid green, Fig. 3b), with a recovery
in discharge between 1980–2005 C.E. Future projections of the
IQR of multi-model ensemble discharge suggest a large increase
in discharge relative to the instrumental mean starting ~2025 C.E.
that is expected to persist and intensify through to the end of the
century.

We find that towards the end of the century, between 2050 and
2099 C.E., the 25th percentile of CMIP5 multi-model discharge
remains relatively constant but there are large increases in the
50th and 75th percentiles of projected discharge. This can also be
observed in a comparison of the kernel density profile of all 42
ensemble members of CMIP5 RCP8.5 scenario discharge
projections between 2050 and 2099 C.E., compared to the kernel
density profiles of both the instrumental data between 1956 and
2011 C.E. and the full period of the reconstruction between 1309
and 2004 C.E. (Fig. 3c). The kernel density profile of discharge
over instrumental observations between 1956 and 2011 C.E. and
the horizontal line representing the instrumental mean in this
period also illustrate that the instrumental observations are drier
than the long-term mean variability in the river system suggested
by the reconstruction, and likely drier than future projected
runoff.

High discharge related flood hazard relative to instrumental
observations. We then calculated the difference in the likelihood
of high discharge in the instrumental observations (1956–2011 C.
E.) against the final median reconstruction (1309–2004 C.E.) and
the 20 model CMIP5 RCP8.5 end-of-the-century discharge pro-
jections split between 2050–2074 C.E. and 2075–2099 C.E. We
divided the end-of-the-century CMIP5 RCP8.5 discharge simu-
lations into two halves (2050–2074 C.E. and 2075–2099 C.E.) to
estimate the sensitivity of our results to different levels of
global mean warming relative to the pre-industrial era with
continued anthropogenic carbon-dioxide emissions under the
RCP8.5 scenario (+3.05 °C by 2050–2074 C.E., and +4.30 °C by
2075–2099 C.E.; Supplementary Fig. 10). The 3.05 °C warming of
global mean annual temperatures that we estimate here by
2050–2074 C.E. under RCP8.5 is roughly equivalent to the pro-
jected warming that will be achieved by 2099 C.E. under the lower
emission RCP4.5 scenario (see Fig. 1 in ref. 61). Using these
datasets, we then calculated the recurrence interval of JAS dis-
charge greater than 48,800 m3/s (Fig. 4b). This discharge

exceedance threshold was equal to JAS discharge in 2007 C.E., the
lowest discharge of all instrumental period flood years (Fig. 2b).
The recurrence intervals were calculated by sampling 1,000 draws
of 30 years with replacement from all datasets (see ‘Methods’
section).

The median recurrence intervals (in years) were: (i) 4.35 for the
instrumental observations between 1956 and 2011 C.E., (ii) 3.57
for the reconstruction between 1956–2004 C.E., (iii) 2.7 for the
full reconstruction (1309–2004 C.E.), (iv) 2.5 across all RCP8.5
discharge projections between 2050–2074 C.E., and (v) 2.17 for
RCP8.5 discharge projections between 2075 and 2099 C.E. The
median recurrence interval for instrumental observations between
1956–2004 C.E. and 1956–1998 C.E. were also 4.35 (Supplemen-
tary Fig. 11).

The estimated difference in the recurrence of high discharge
greater than 48,800 m3/s between the full reconstruction relative
to recent decades, therefore, lies between 24.37% and 37.93%,
calculated as (3.57–2.7)/3.57*100 and (4.35–2.7)/4.35*100. As our
reconstruction shows a slight wet bias with more recurrent
exceedances of the flooding threshold relative to observations
over the instrumental period (3.57 years cf. 4.35 years), the
24.37% lower bound of our estimate accounts for this bias
explicitly by comparing the full reconstruction only against tree-
ring reconstructed instrumental period flows. However, there is
substantial overlap in the full distributions of flood hazard
recurrence intervals calculated during the instrumental observa-
tions (1956–2011 C.E.) and the reconstruction’s instrumental
period (1956–2004 C.E.) (first two columns in Fig. 4b). This result
remains consistent even if we use instrumental observations
between 1956–2004 C.E. or 1956–1998 C.E. (Supplementary
Fig. 11).

The difference in the recurrence of high discharge greater than
48,800 m3/s between the instrumental data and CMIP5 RCP8.5 in
the intervals spanning 2050–2074 C.E. and 2075–2099 C.E. are
42.53% and 50.11%, respectively62,63. Therefore, using the
reconstruction as a baseline for long-term discharge variability
and the CMIP5-simulated discharge as an estimate of climate
change impacts on discharge in the basin, we find that recent
decades underestimate the frequency of high discharge and in
turn flood hazard from natural variability by 24.37–37.93% and
climate change impacts by 42.53–50.11%.

In the instrumental observations, mean JAS discharge exceeded
48,800 m3/s in 13 years (Fig. 2b). Despite high discharge during
these 13 years, more than half of these years (n= 7) experienced
no flood. While our recurrence interval analysis focusses on the
frequency of high discharge that is associated with the likelihood
of flood hazard, many other factors play a role in determining
whether high discharge translates to a flood event. These may
include rainfall intensity and pattern, landscape heterogeneities,
antecedent soil moisture conditions, and land use and forest cover
change64–66. Our return interval analyses also rely on the
assumption that these high discharges will continue to be
associated with an increased likelihood of flood hazard in the
future, disregarding (for example) potential changes in policy,
land use, or infrastructure that may ameliorate ‘flood risk’. The
occurrence of a flood event that impacts society is however closely
intertwined with highly localised human exposure and
vulnerability67,68. Therefore, our calculations of underestimated
high discharge and associated likelihood of flood hazard in the
return interval analyses in Fig. 3b only contributes one
component of the multiple dimensions of flood risk.

Climate teleconnections. We did not find any meaningful or
statistically consistent relationship between monsoon season flow
in the Brahmaputra River and variance in ocean sea surface
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temperatures (SSTs) or indices such as the El Niño-Southern
Oscillation (ENSO) or the Indian Ocean Dipole (IOD) (Supple-
mentary Fig. 12). This is consistent with prior studies15,28,69, even
though we used a more up-to-date discharge dataset that extends
up through 2011.

Discussion
We found the magnitude of peak 10-day Brahmaputra River
discharge during the JAS monsoon season is tightly coupled to
mean discharge for the entire JAS monsoon season. We also show
that flood events have almost always occurred during years of
high seasonal discharge. Our tree-ring reconstruction of mean
JAS Brahmaputra River discharge between 1309 and 2004 C.E.
helps inform us about past and long-term hydroclimate varia-
bility in this river system. Additionally, the frequency of recur-
rence of high discharge in the reconstruction relative to the
instrumental observations provides us valuable information
regarding the likelihood of flood hazard in the region. While the
Brahmaputra River has experienced large floods in the past few
decades, most notably in 1998 C.E., our reconstruction suggests
that the instrumental period that informs our current baseline
assessments of flood hazard in the region is actually one of the
driest periods over the past seven centuries. This finding and the
wet and dry periods we described in our reconstruction are also
consistent with other hydroclimate reconstructions in the
Southeast Tibetan Plateau covering the upper Brahmaputra
watershed54,55,70,71, and a southward (northward) shifted central
Indo-Pacific Intertropical Convergence Zone (ITCZ) during the
twentieth century (Little Ice Age, ~1400–1850 C.E.)72,73. Climate
model simulations under the RCP8.5 scenario suggest wetting
over the Brahmaputra River basin leading to increased discharge
towards the end of the twenty-first century. While this projected
wetting falls within paleo-discharge natural variability estimates,
taken in conjunction, the wetter reconstruction and projections
relative to the instrumental period suggest that we may be cur-
rently underestimating the reconstructed and future frequency of
high discharge in the Brahmaputra River watershed.

A limitation of our analyses regarding flood hazard is that we
reconstruct Brahmaputra mean JAS monsoon season discharge
and not flood years per se. Paleohydrology cross-proxy synthesis
between tree-rings and other archives such as geomorphic field
stratigraphy74–77 and speleothems78–80, the documentation of
tree-ring flood-scars that can precisely date past flood events81–83,
and additional tree-ring sampling in the region of traditional57,84

and non-traditional species85–87 can help establish more skillful
reconstructions of Brahmaputra discharge, its flooding history,
and its flooding frequency in future work88. Additionally, we
focus on the likelihood of high discharge as a proxy for flood
hazard, and not on flood exposure and vulnerability89,90. In
recent years, large advances have been made in the region with
accurate flood warnings being made available with lead times of
~8–10 days. Villages taking specific actions have been able to
minimise economic and social loss. Therefore, developing such
adaptive capabilities to extreme events lends well towards better
preparedness in times of increased flood hazard to reduce overall
risk91. Finally, as lower basin Brahmaputra discharge in Bangla-
desh is closely tied to upper basin discharge and precipitation,
greater availability of real-time river discharge data across all
basin states (China, India, Bhutan, and Bangladesh) will help
advance these efforts.

Methods
Tree ring network. As an initial selection criterion, we first downloaded tree-ring
data located between 20°N–35°N and 86°E–101°E available in the International
Tree Ring Databank (ITRDB) that are approximately located within ~670 km or
less from the basin boundaries, consistent with spatial autocorrelation in regional

hydroclimate32. We then ‘standardised’92,93 each of annual raw ring-width series
using the signal free (SF) method94 to reduce the influence of non-climatic growth
factors on tree growth and maximize the preservation of common median fre-
quency at decadal to centennial timescales and truncated each chronology to the
section with an Expressed Population Signal > 0.8595,96. Finally, we retained a tree-
ring series as a potential predictor if it correlated significantly with p < 0.1 using a
2-tailed t-test with mean JAS flow at Bahadurabad, Bangladesh in its ‘raw’ and ‘pre-
whitened’ (i.e. serial-autocorrelation removed) forms. We allowed for the inclusion
of lag t+ 1 predictors in our model, where tree-growth lagged climate and con-
sequently streamflow by 1 year. This is because tree-growth in the current year is
often influenced by previous year climate97. The details of the series (e.g. species,
location, chronology length, lag t+ 0 or lag t+ 1) retained as predictors in our
reconstruction model are described in Supplementary Table 1. The two tree ring
series located in Myanmar are developed by us.

Reconstruction. We used the Bayesian Linear Regression model prescribed
below37,98 to reconstruct streamflow (yt) in year t, as function of an intercept, slope,
and predictor vector X.

yt
�

�α; β ¼ αþ β*Xt þ εt

with non-informative priors modelled as

α � N 0; 104
� �

and β � N 0; 104
� �

The matrix X in the equation above contained the principal component scores
(PCs—ref. 99) for all tree ring predictors with eigenvalues greater than 1. We used
this Kaiser–Guttman cutoff criteria100,101 as an estimate of common shared signal
(versus noise) between the tree ring predictors. In the reconstruction procedure, we
explicitly incorporated the covariance between the streamflow series and the tree-
ring series by weighting each tree-ring predictor series by a power of its correlation
with the streamflow data during the 1956–1998 C.E. calibration period102. This
weighting can be expressed by the following equation

wTR ¼ uTR*rp

where wTR represents the final correlation-weighted matrix of tree ring
chronologies, uTR is the matrix of unweighted tree-ring series normalised to N(0,1)
over the calibration period, r is the absolute value of the calibration period
Pearson’s correlation, and p is a range of exponent powers (0, 0.1, 0.25, 0.5, 0.67,
1.0, 1.5, 2.0)32,95. We use this range of powers, as there is no a priori reason for any
single correlation weight to be more suitable than any other weight32,95.

To develop the reconstruction, we chose the 43-year period between 1956 and
1998 C.E. as calibration-validation period to maximize the number of tree-ring
predictors available as most tree-ring series ended in 1998 C.E. We used a ‘nested’
reconstruction approach where we sequentially dropped shorter tree-ring series
until the predictor suite was exhausted and developed a new reconstruction model
each time a shorter tree-ring series was dropped. We then appended each
reconstruction ‘nest’ together by scaling its variance to the calibration period to
develop the longest possible reconstruction of flow possible. Due to the relatively
short instrumental period of 43 years (1971 missing) available for calibration-
validation, we used a leave-10-out at random calibration-validation approach. In
each iteration we calibrated a model on 32 years of streamflow data and validated it
on the remaining 10 years. This choice of a 32-year calibration and 10-year
validation period provided a trade-off between retaining sufficient years for
calibration while developing a conservative estimate of model skill. This is because
leave-one-out-cross-validation skill thresholds are easier to pass than leave-k-out
validation. For each nest and for each PCA matrix correlation weight, we developed
50 such reconstructions. These 50 leave-10-out-cross-validations when taken
together with the 8 different correlation weights used in the PCA analysis gave us
400 reconstructions. The final reconstruction shown in Fig. 3 was calculated as the
median of this 400-reconstruction ensemble.

We evaluated the fidelity of our reconstruction using the following metrics: (i)
CRSQ (calibration period coefficient of multiple determination), (ii) VRSQ
(validation period square of the Pearson correlation), (iii) VRE (validation period
reduction of error), and (iv) VCE (validation period coefficient of efficiency) that is
equivalent to the Nash-Sutcliffe efficiency test103. The full description of these
metrics is provided in the supplemental material in Cook et al. ref. 32. The CRSQ
and VRSQ were calculated on the 32-year calibration and 10-year validation
periods, respectively.

Flood hazard and recurrence interval. The list of flood years prior to the start of
the instrumental gauge records in the 1950s at Bahadurabad were primarily col-
lated from Coleman et al. and Chowdhury et al. refs. 10,12. Flood years from these
two studies include 1842, 1858, 1871, 1885, 1892, 1900, 1902, 1906, 1918, and 1922
C.E. Additional records of Brahmaputra floods in 1910 C.E. and in 1787 C.E., when
severe heavy rains in the upper basin caused a major flood and the Teesta River
changed its course to flow into the Brahmaputra River north of Bahadurabad are
from ref. 11.

To calculate the recurrence interval of flood events we computed 1000
bootstrapped draws with replacement of 30 years each from (i) the instrumental
observations (1956–2011 C.E.), (ii) the reconstruction over the instrumental period
(1956–2004 C.E.), (iii) the full reconstruction period (1309–2004 C.E.), (iv) CMIP5
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RCP8.5 2050–2074 C.E. period runoff simulations, and (v) CMIP5 RCP8.5
2075–2099 C.E. period runoff simulations. For the draws from the reconstruction,
we used the median reconstruction, while for the CMIP5 data we included all 42
ensemble members of the 20-model suite to represent the full range of variability in
the model simulations of discharge. In each draw, we calculated the percentile (P)
of the 2007 C.E. JAS discharge of 48,800 m3/s. We then calculated the return
interval as 100/(100-P), to give an estimate of the likelihood of the occurrence of
high discharge related flood hazard in any given year. For example, if in a random
draw of 30 years, the 2007 C.E. flood year discharge placed in the 90th percentile,
its return interval probability would be once every 100/(100-90)=10 years.
However, if it placed in 80th percentile its return interval would be more frequent
at once every 100/(100−80)= 5 years. An alternate approach to the bootstrap
sampling we apply here could be to explicitly fit an extreme value distribution to
the JAS discharge data.

Climate models. We obtained the surface runoff parameter output in the spatial
domain upstream of the Bahadurabad gauging station within the Brahmaputra
watershed from a 20-model ensemble suite of phase five of the Coupled Model
Intercomparison Project (CMIP5, ref. 41). This was done both for the 1850–2005 C.
E. ‘historical’ simulation period, and 2006–2099 C.E. ‘future’ simulation period. For
the future simulation period, we used the representative concentration pathway 8.5
(RCP8.5) scenario that represents a net radiative imbalance of 8.5W/m2 in earth’s
radiative budget by the end of the twenty-first century104. Supplementary Table 2
lists all CMIP5 models and their respective ensemble members used. We only
chose a model run where the same simulation scenario was available both for the
historical and RCP8.5 simulation period, to be able to compare ‘future’ and ‘his-
torical’ discharge against each other. As a preliminary check, we first tested that the
standardised annual hydrographs of the instrumental discharge data and the
CMIP5 runoff data matched reasonably well both over the 1956–1998 C.E. cali-
bration period from the CMIP5 historical runs and the RCP8.5 2050–2099 C.E.
future simulation period (Supplementary Fig. 13). We did this to ensure that the
models accurately capture seasonal runoff dynamics within the watershed, such as
the wet JAS monsoon season period and the dry January through April winter
period (Fig. 2a). When comparing the variability across model members for the
RCP8.5 2050–2099 C.E. simulation period to the instrumental data and the CMIP5
historical data, we found that it showed a large increase in runoff in the months of
June through September. Before computing the annual runoff hydrograph using
the CMIP5 models and all runoff projections, we bi-linearly interpolated all the
CMIP5 runoff data into a common 0.25*0.25 grid, and lagged regions in the upper
basin lying in an isochrone greater than 16 days refs. 13,15 by one month to account
for the temporal delay between surface runoff in the CMIP5 simulations in the
upper part of the basin and the time it would take to reach the Bahadurabad
gauging station located in the lower part of the basin (Supplementary Fig. 14).
Finally, to develop the CMIP5 estimates of historical and future discharge, we
computed z-scores of each runoff simulation using its 1956–1998 C.E. mean and
standard deviation, and then scaled these z-scores to discharge (in m3/s) by using
the 1956–1998 C.E. instrumental mean and standard deviation. This scaling to the
1956–1998 C.E. instrumental period allowed us to directly compare the recon-
structions with the CMIP5 projections, and the magnitude of projected change into
the ‘future’ compared to the ‘historical’ period and instrumental discharge.

Superposed epoch analysis (SEA). We tested the probability of the association
between higher than normal discharge during flood years occurring by chance
using a modified double bootstrap SEA60,105. To do this, we first calculated the
variability in discharge based on 5th, 50th, and 95th percentile of mean discharge
across 1000 unique draws of 10 flood years out of the total 16 between 1780 and
2004 C.E. We then determined the statistical significance of this response by
comparing its probability distribution to that generated from 10,000 unique draws
of 10 years at random (‘pseudo-flood years’) from the reconstruction between 1780
C.E. and 2004 C.E. We subtracted the five-year pre-event mean across both draws
of the ‘flood years’ and ‘pseudo-flood year’ to reduce the impact of low-frequency
variability on the overall composite mean response. We also conducted SEA using
only the 12 pre-1956 C.E. instrumental period in a similar fashion with recon-
structed discharge. In this SEA, we used 495 unique event year draws 8 of the 12
flood years due to the lower available sample size.

Data availability
Tree Ring Data from International Tree Ring Data Bank (ITRDB) [https://www.ncdc.

noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring]. Tree ring data are from

refs. 32,34,46,106–108. CMIP5 data [https://esgfnode.llnl.gov/search/cmip]. Huffman,

et al.109 TRMM precipitation data from the IRI Data Library [http://iridl.ldeo.columbia.

edu/SOURCES/.NASA/.GES-DAAC/.TRMM_L3/.TRMM_3B42RT/.v7/.daily/.

precipitation/]; Harris et al. ref. 51 https://www.CRU data [http://www.cru.uea.ac.uk/

data/]; Schneider et al. ref. 110 GPCC v7 precipitation data [https://www.esrl.noaa.gov/

psd/data/gridded/data.gpcc.html#detail]; https://www.ERA-5111 runoff—[https://cds.

climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?

tab=form]. We downloaded shapefiles for country boundaries from [https://github.com/

nvkelso/natural-earth-vector/] and [https://www.igismap.com/]. Reconstructions and

Bangladesh Meteorological Department (BMD) Bahadurabad instrumental discharge

data is available through to the NOAA-NCEI Paleoclimatology Data repository [https://

www.ncdc.noaa.gov/paleo/study/31172]. Any other associated data may also be made

available by request from the authors. Source data are provided with this paper.

Code availability
Our R and JAGS code are available in Supplementary Data 1 along with all

28 standardised tree-ring predictor series, the final reconstruction, and the instrumental

discharge data at Bahadurabad.
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