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ABSTRACT

Evaluations of the n-th power moments Sn of Kloosterman sums are

known only for n 6 6. We present here substantial evidence for an eval-

uation of S7 in terms of Hecke eigenvalues for a weight 3 newform on

Γ0(525) with quartic nebentypus of conductor 105. We also prove some

congruences modulo 3, 5 and 7 for the closely related quantity T7, where

Tn is a sum of traces of n-th symmetric powers of the Kloosterman sheaf.

1. Introduction

For an odd prime p, let Fp denote a field of p elements, and write ζp =

exp(2πi/p). Consider the Kloosterman sums

(1.1) K(a) =

p−1∑

x=1

ζx+a/x
p , a ∈ Fp,

and their n-th power moments

(1.2) Sn =

p−1∑

a=0

K(a)n, n ∈ N.

It is well-known [5, §4.4] that

(1.3) S1 = 0, S2 = p2 − p, S3 =

(
p

3

)
p2 + 2p, S4 = 2p3 − 3p2 − 3p.
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The work in [8], [9] shows that S5 can be expressed in terms of the p-th eigen-

value for a weight 3 newform on Γ0(15). The work in [4] shows that S6 can be

expressed in terms of the p-th eigenvalue for a weight 4 newform on Γ0(6). See

also [1].

In Conjecture 1.1 below, we propose an evaluation of S7 in terms of the p-

th eigenvalue for a weight 3 newform on Γ0(525). This conjecture is based on

substantial numerical evidence.

Write

(1.4) K(a) = −g(a) − h(a), a 6= 0,

where g(a), h(a) are the two Frobenius eigenvalues for the Kloosterman sheaf

at a, given by

(1.5) g(a) = p1/2 exp(iθp(a)), h(a) = p1/2 exp(−iθp(a)),

with θp(a) ∈ [0, π]. (In fact, θp(a) ∈ (0, π); see [2, Theorem 6.1].) By (1.2) and

(1.4),

(1.6) Sn = (−1)n + (−1)n

p−1∑

a=1

(g(a) + h(a))n.

As noted in [5, p. 63], one should study the “more natural” related expressions

(1.7) Tn =

p−1∑

a=1

(g(a)n + g(a)n−1h(a) + · · · + h(a)n).

The summand in (1.7) is the trace of the n-th symmetric power of the Kloost-

erman sheaf at a, and equals

(1.8) pn/2Un(2 cos θp(a)),

where Un is the n-th monic Chebyshev polynomial of the second kind. We have

the bound [3, Theorem 0.2], [6]

(1.9) |1 + Tn| 6

[n− 1

2

]
p(n+1)/2, if p > n > 0,

whose proof is based on Deligne’s theory of exponential sums for varieties over

Fp. (A slightly weaker bound which holds for all p > 2 is given in [5, Theorem

4.6].)
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The expressions Sn and Tn are related by the formula

(1.10) (−1)nSn − 1 =

[n/2]∑

k=0

{(
n

k

)
−
(

n

k − 1

)}
pkTn−2k.

In [1, (1.11)], it is proved that Sn is an integer multiple of p satisfying

(1.11) Sn ≡ p(n− 1)(−1)n−1 (mod p2).

From (1.10)–(1.11), it follows by induction that

(1.12) Tn ≡ −1(mod p2), n > 0.

By (1.3) and (1.10), we have

(1.13) T0 + 1 = p, T1 + 1 = T2 + 1 = 0, T3 + 1 = −
(p

3

)
p2, T4 + 1 = −p2.

By [1, (1.8)], we have for p > 5,

(1.14) ap :=
−1 − T5

p2
=






2p− 12u2, if p = 3u2 + 5v2

4x2 − 2p, if p = x2 + 15y2

0, if ( p
15 ) = −1.

Define

(1.15) cp := (−1 − T7)/p
2.

By (1.12), ap and cp are integers, and by (1.9), we have

(1.16) |ap| 6 2p, |cp| 6 3p2.

Putting n = 7 in (1.10) yields

(1.17) S7 = p2cp + 6p3ap + 14
(p

3

)
p4 + 14p3 + 14p2 + 6p.

Hence by (1.16),

(1.18) |S7| 6 29p4 + 14p3 + 14p2 + 6p.

In view of (1.14) and (1.17), an evaluation of cp would yield an evaluation of

S7. Hence we focus on cp in Conjecture 1.1 below, and in the sequel.

Let χ5 denote the quartic Dirichlet character (mod 5) defined by χ5(2) = −i,
and let ψ denote the quartic character of conductor 105 defined by

(1.19) ψ(d) =
( d

21

)
χ5(d), d ∈ Z.
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Conjecture 1.1: For p > 7,

(1.20) cp =
( p

105

)
(−p2 + b(p)2 ψ(p)) =

( p

105

)
(−p2 + |b(p)|2),

where b(p) is the p-th Hecke eigenvalue for a weight 3 newform f on Γ0(525)

with nebentypus ψ and eigenfield Q(i,
√

6,
√

14).

In Section 2, we motivate Conjecture 1.1 and discuss the evidence for it. In

Section 3, we examine the integers cp modulo 3, 5, and 7, proving in the process

some observations of Katz [7]. Section 4, the Appendix, records a Sage [10]

session which exhibits numerical evidence for Conjecture 1.1.

2. Motivation and evidence for Conjecture 1.1

The following conjecture has been verified for each of the 396 primes p in the

interval 7 < p ≤ 2741.

Conjecture 2.1: Let p > 7, and define the signature αp := ((p
3 ), (p

5 ), (p
7 )).

Then

(2.1)
( p

105

)
cp + p2 = x(p)2

for a nonnegative number x(p) of the form:

2m
√

7 with m ≡ ±1 (mod 10), 3 ∤ m, if αp = (1,−1,−1);

4m
√

3 with m ≡ ±1 (mod 10), if αp = (−1,−1, 1);

2m
√

42 with m ≡ ±1 (mod 5), if αp = (1,−1, 1);

6m
√

2 with m ≡ ±2 (mod 5), if αp = (−1,−1,−1);

2m with m ≡ ±(3 − 2χ5(p)) (mod 10), 3 ∤ m, if αp = (1, 1, 1);

4m
√

21 with m ≡ ±(1 + χ5(p)) (mod 5), if αp = (−1, 1,−1);

2m
√

6 with m ≡ ±(2 − 2χ5(p)) (mod 5), if αp = (1, 1,−1);

6m
√

14 with m ≡ ±(2 − 2χ5(p)) (mod 5), if αp = (−1, 1, 1)

where m is a positive integer.

The values of x(p) for 7 < p < 100 are given in Table 2.1 below.

Motivated by our Conjecture 2.1, Katz [7] proposed the following scenario.

For p > 7, the number cp/p
2 (which lies in [−3, 3] by (1.16)) is the trace of

Frobp in a representation towards O(3) (the orthogonal group with respect to
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p 11 13 17 19 23 29 31

x(p) 0 2
√

7 18
√

2 8
√

6 4
√

3 6
√

14 10
√

6

p 37 41 43 47 53 59 61

x(p) 2
√

42 12
√

21 8
√

42 12
√

2 36
√

3 20
√

21 30
√

6

p 67 71 73 79 83 89 97

x(p) 12
√

42 30
√

14 38
√

7 50 78
√

2 20
√

21 38
√

7

Table 1

a trace form). This Frobp has determinant ( p
105 ), so ( p

105 )cp/p
2 is the trace of

Frobp in a representation towards SO(3). For some Dirichlet character χ, this

representation is χ(p)⊗Sym2(V ) for a 2-dimensional representation V , where

Frobp in V has eigenvalues α, β with |α| = |β| = 1 and αβ = χ(p). After

equating traces, we obtain

χ(p)
( p

105

)
cp/p

2 = χ(p) + α2 + β2,

so

χ(p)
{( p

105

)
cp + p2

}
= p2(α+ β)2.

Define b(p) := p(α + β), so that |b(p)| 6 2p and b(p)/p is the trace of Frobp in

V . In the notation of (2.1), it follows that

(2.2) χ(p)x(p)2 = b(p)2, p > 7.

Assuming the validity of Katz’s scenario, we hoped to find a Dirichlet char-

acter χ, a level N , and a weight 3 newform

(2.3) f(z) =

∞∑

m=1

f̂(m)e2πimz , f̂(p) = b(p)

on Γ0(N) with nebentypus χ such that x(p) = |b(p)| for p > 7. The equality

x(p) = |b(p)| is equivalent to (2.2), by [5, (6.57)]. Our search for N,χ, f culmi-

nated with the discovery of a weight 3 newform (2.3) on Γ0(525) with neben-

typus ψ and eigenfield Q(i,
√

6,
√

14) such that x(p) = |b(p)| for 7 < p < 100.

Equivalently,

ψ(p)x(p)2 = b(p)2, 7 < p < 100,

which is powerful evidence that (1.20) in fact holds for all p > 7.
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We proceed to describe how this newform f of level 525 was discovered. While

browsing William Stein’s Modular Forms Explorer found in his Modular Forms

Database [11], we had encountered a weight 3 newform g(z) on Γ0(168) with

quadratic nebentypus of conductor 168 and eigenfield Q(i
√

2,
√

3, i
√

7). For

each p with 7 < p < 100, |ĝ(p)| appeared to be an integer multiple of one of√
1,
√

2,
√

3,
√

6,
√

7,
√

14,
√

21,
√

42, just as was the case for x(p) (cf. Table 2.1).

Moreover, analogous to the situation in Conjecture 2.1, the particular choice

of square root occurring in |ĝ(p)| seemed to be completely determined by the

signature ((p
3 ), (p

7 ), (−8
p )). The product of the conductors of the three quadratic

characters in this signature is 3 · 7 · 8 = 168, which equals the conductor of the

nebentypus of g. It seemed reasonable to guess by analogy that the product of

the conductors of the three quadratic characters in αp, namely 3 · 5 · 7 = 105,

should be the conductor of the nebentypus χ of the newform f that we were

seeking. Since f has odd weight, χ is odd. The simplest odd character of

conductor 105 is the quartic character ψ defined in (1.19). Thus we took χ = ψ

as a first guess, and the evidence strongly suggests that this was the right choice.

As a first guess for the level N , we took N = 105, hoping that the level would

equal the conductor of the nebentypus as was the case for the newform g on

Γ0(168). However, for newforms f on Γ0(105), there were already small primes

p > 7 for which |f̂(p)| failed to equal x(p). Our next guess was that the level

equals 105 times a small prime factor. The levels 2 · 105 and 3 · 105 each failed,

but the level 5 · 105 = 525 provided a happy ending. Indeed the Sage session

in the Appendix shows the existence of a weight 3 newform f on Γ0(525) with

nebentypus ψ and eigenfield Q(i,
√

6,
√

14) such that |f̂(p)| = x(p) for all p with

7 < p < 100. As was noted above, this is powerful evidence for Conjecture 1.1.

3. Congruences for cp

Let p > 7. It follows from [1, Theorem 2.1] that S7 ≡ −( p
105 ) (mod 4). Thus,

by (1.17),

(3.1) 2 ∤ cp.

Katz [7] observed that numerical evidence moreover suggests

(3.2) 5 ∤ cp
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and

(3.3) 7 ∤ cp.

On the other hand, we conjecture that for every prime q 6∈ {2, 5, 7}, one has

q | cp for infinitely many primes p.

In Theorem 3.1, we prove (3.3). In Theorem 3.2, we give an evaluation

of cp (mod 5) which in particular proves (3.2). In Theorem 3.3, we evaluate

cp (mod 3).

Our proofs will make use of the simple fact that

(3.4) n | Sn, for prime n.

To justify (3.4), note that

Sn =

p−1∑

a=0

(p−1∑

x=1

ζx+a/x
p

)n

≡
p−1∑

x=1

p−1∑

a=0

ζn(x+a/x)
p ≡ 0 (mod n).

Theorem 3.1: For each p > 7, we have 7 ∤ cp.

Proof. By (1.17),

p2cp ≡ S7 + p3ap + p (mod 7).

Since 7 | S7 by (3.4),

(3.5) p2cp ≡
(p

7

)
ap + p (mod 7).

It remains to prove that

(3.6)
(p

7

)
ap + p 6≡ 0 (mod 7).

We may assume that ap 6= 0, since otherwise (3.6) is clear. By (1.14), either

(3.7) ap = 10v2 − 6u2 with p = 3u2 + 5v2.

or

(3.8) ap = 2x2 − 30y2 with p = x2 + 15y2.

In the case (3.7),

(p
7

)
ap + p = u2

(
3 − 6

(p
7

))
+ v2

(
5 + 10

(p
7

))
6≡ 0 (mod 7),

since (−3 + 6(p
7 ))(5 + 10(p

7 )) is a nonsquare (mod 7). In the case (3.8),
(p

7

)
ap + p = x2

(
1 + 2

(p
7

))
+ y2

(
15 − 30

(p
7

))
6≡ 0 (mod 7),
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since (1 + 2(p
7 ))(−15 + 30(p

7 )) is a nonsquare (mod 7).

Theorem 3.2: For p > 7,

cp ≡ p+ p
(p

5

)
+
( p

21

)
(mod 5).

In particular, 5 ∤ cp .

Proof. All congruences in this proof are modulo 5. By (1.17),

p2cp ≡ S7 − p3ap +
(p

3

)
p4 + p3 + p2 − p.

Since p2 ≡
(

p
5

)
, we have

(3.9) cp ≡
(p

5

)
S7 − pap +

( p
15

)
+ p+ 1 −

(p
5

)
p.

It remains to prove

(3.10) ap ≡
(p

3

)
p+

(p
5

)
p

and

(3.11) S7 ≡ 2p+
( p

105

)
,

since the theorem follows from (3.9)–(3.11).

By (1.10) and (1.13),

(3.12) p2ap = S5 − 4p3
(p

3

)
− 5p2 − 4p.

Thus

(3.13) ap ≡
(p

5

)
S5 +

(p
3

)
p+

(p
5

)
p.

This proves (3.10), since 5 | S5 by (3.4).
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To prove (3.11), observe that

S7 =

p−1∑

a=0

K(a)7 ≡
p−1∑

a=0

K(a)2
p−1∑

x=1

ζ5(x+a/x)
p =

p−1∑

a=0

K(a)2K(25a)

=

p−1∑

a=0

∑

x,y,z 6=0

ζ
x+y+z+a( 1

x
+ 1

y
+ 25

z
)

p

= p
∑

x,y,z 6=0
1

x
+ 1

y
+ 25

z
=0

ζx+y+z
p

= p
∑

x,y 6=0
x+y 6=0

ζx+y−25xy/(x+y)
p .

With the change of variables

r = x+ y, s = xy,

this becomes

S7 ≡ p
∑

r,s6=0

ζr−25s/r
p

{
1 +

(r2 − 4s

p

)}
= p

∑

r,s6=0

ζr(1−25s)
p

{
1 +

(1 − 4s

p

)}
,

where in the last step we replaced s by sr2. Replacing s by (1−s)/4, we obtain

S7 ≡ p
∑

r 6=0,s6=1

ζ
r(−21

4
+ 25s

4
)

p

{
1 +

(s
p

)}

= 2p− p2 + p
∑

r,s

ζ
r(−21

4
+ 25s

4
)

p

{
1 +

(s
p

)}

= 2p− p2 + p2
{
1 +

(21

p

)}
= 2p+ p2

( p
21

)
≡ 2p+

( p

105

)
.

This completes the proof of (3.11).

Theorem 3.3: For p > 7,

cp ≡ 1 +
(p

3

)
+
( p

35

)
(mod 3).

In particular, 3 | cp if and only if
(

p
3

)
=
(

p
35

)
= 1.

Proof. By (1.17),

cp ≡ S7 +
(p

3

)
+ p+ 1 (mod 3).
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Thus it remains to show that

(3.14) S7 ≡
( p

35

)
− p (mod 3).

We have

S7 ≡
p−1∑

a=0

K(a)

( p−1∑

x=1

ζ3(x+a/x)
p

)2

=

p−1∑

a=0

K(a)K(9a)2

=

p−1∑

a=0

∑

x,y,z 6=0

ζ
x+y+z+a( 9

x
+ 9

y
+ 1

z
)

p (mod 3).

The rest of the proof of (3.14) proceeds as in the proof of (3.11).

4. Appendix

The Sage session below shows the existence of a weight 3 newform f on Γ0(525)

with nebentypus ψ and eigenfield Q(i,
√

6,
√

14), such that the p-th Fourier

coefficients b(p) of f satisfy (1.20) for 7 < p < 100.

The session begins by setting G equal to the group of 16 Dirichlet characters

modulo 525 of order dividing 4. The elements of G are placed into a list X, whose

last element Y = X[15] equals the quartic character ψ of conductor 105 defined

in (1.19).

Let M denote a modular symbols space of level 525, weight 3, with character ψ.

This is a vector space of dimension 160 over Q(i). It has a “cuspidal subspace”

S of dimension 148, and S in turn has a “new subspace” N of dimension 92.

The space N is decomposed into 10 further subspaces, each invariant under

Hecke operators, and D denotes a sorted list of these 10 subspaces. For more

information about these spaces, see the Sage documentation at [10].

Our desired eigenfunction f lies in the fifth invariant subspace D[4], and f

gives the first 97 terms of its q-expansion. Finally, parent(f) tells us that

the Fourier coefficients of our eigenfunction all lie in the eigenfield Q(zeta4, a),

where zeta4 = i and a is a zero of

x4 + (4i+ 4)x3 + 20ix2 + (24i− 24)x− 120.

We may take a =
√

7z7−z(
√

2+
√

3), where z = exp(2πi/8). Then the eigenfield

is easily seen to be Q(i,
√

6,
√

14). Simplifying the q-expansion f, we obtain the

Fourier coefficients of f corresponding to primes 7 < p < 100 given in Table

4.1.
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p 11 13 17 19 23 29 31

b(p) 0 2
√

7z7 18
√

2z3 8
√

6 4
√

3z3 6
√

14 10
√

6z2

p 37 41 43 47 53 59 61

b(p) 2
√

42z3 12
√

21z4 8
√

42z5 12
√

2z7 36
√

3z7 20
√

21z2 30
√

6z2

p 67 71 73 79 83 89 97

b(p) 12
√

42z3 30
√

14z6 38
√

7z3 50z2 78
√

2z 20
√

21z6 38
√

7z

Comparison of Tables 2.1 and 4.1 shows that x(p) = |b(p)|, and so (1.20)

holds for 7 < p < 100.

SAGE SESSION

----------------------------------------------------------------------

| Sage Version 4.1, Release Date: 2009-07-09 |

| Type notebook() for the GUI, and license() for information. |

----------------------------------------------------------------------

sage: G=DirichletGroup(525,CyclotomicField(4));X=G.list();

sage: Y=X[15];Y;Y.conductor();Y.order()

[-1, -zeta4, -1]

105

4

sage: M=ModularSymbols(Y,3,sign=1);M

Modular Symbols space of dimension 160 and level 525, weight 3, character

[-1, -zeta4, -1], sign 1, over Cyclotomic Field of order 4 and degree 2

sage: S=M.cuspidal_subspace();S

Modular Symbols subspace of dimension 148 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2

sage: N=S.new_subspace();N

Modular Symbols subspace of dimension 92 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2

sage: D=N.decomposition();D

[

Modular Symbols subspace of dimension 2 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 2 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,
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Modular Symbols subspace of dimension 4 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 4 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 4 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 4 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 8 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 8 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 16 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2,

Modular Symbols subspace of dimension 40 of Modular Symbols space of

dimension 160 and level 525, weight 3, character [-1, -zeta4, -1], sign 1,

over Cyclotomic Field of order 4 and degree 2

]

sage: f=D[4].q_eigenform(98,"a");f

q + (1/20*zeta4*a^3 + (3/20*zeta4 - 3/20)*a^2 - 1/5*a)*q^2 + (-1/20*zeta4*a^3 +

(-3/20*zeta4 + 3/20)*a^2 + 6/5*a)*q^3 - zeta4*q^4 + ((-1/20*zeta4 + 1/20)*a^3 +

4/5*a^2 + (6/5*zeta4 + 6/5)*a + 3*zeta4)*q^6 + (-1/20*a^3 + (-13/20*zeta4 +

7/20)*a^2 + (-6/5*zeta4 + 2)*a + 2*zeta4 + 4)*q^7 + (1/4*a^3 + (3/4*zeta4 +

3/4)*a^2 + zeta4*a)*q^8 + ((1/10*zeta4 - 1/10)*a^3 - 3/5*a^2 + (-12/5*zeta4 -

12/5)*a - 9*zeta4)*q^9 + (-1/20*a^3 + (-3/20*zeta4 - 3/20)*a^2 -

6/5*zeta4*a)*q^12 + (-1/10*zeta4*a^3 + (-3/10*zeta4 + 3/10)*a^2 + 12/5*a +

2*zeta4 + 2)*q^13 + ((-3/20*zeta4 + 3/20)*a^3 + (-1/2*zeta4 + 9/10)*a^2 +

(13/5*zeta4 + 23/5)*a + 6*zeta4 + 3)*q^14 + 11*q^16 + (18*zeta4 - 18)*q^17 +

(1/4*a^3 + (-1/4*zeta4 - 1/4)*a^2 - 3*zeta4*a - 6*zeta4 + 6)*q^18 + ((-2/5*zeta4 -

2/5)*a^3 - 12/5*zeta4*a^2 + (-8/5*zeta4 + 8/5)*a)*q^19 + ((-3/10*zeta4 + 2/5)*a^3 +

(3/10*zeta4 + 11/10)*a^2 + (3/5*zeta4 - 9/5)*a - 6*zeta4 - 9)*q^21 + (1/5*a^3 +

(3/5*zeta4 + 3/5)*a^2 + 4/5*zeta4*a)*q^23 + ((-1/4*zeta4 - 1/4)*a^3 - 4*zeta4*a^2 +

(-6*zeta4 + 6)*a + 15)*q^24 + (a^2 + (2*zeta4 + 2)*a + 6*zeta4)*q^26 + (-1/20*a^3 +

(-3/20*zeta4 - 3/20)*a^2 - 6/5*zeta4*a + 18*zeta4 - 18)*q^27 + (1/20*zeta4*a^3 +

(-7/20*zeta4 - 13/20)*a^2 + (-2*zeta4 - 6/5)*a - 4*zeta4 + 2)*q^28 + ((-3/10*zeta4 +

3/10)*a^3 + 9/5*a^2 + (36/5*zeta4 + 36/5)*a + 12*zeta4)*q^29+ ((-1/2*zeta4 +

1/2)*a^3 + 3*a^2 + (2*zeta4 + 2)*a)*q^31 + (-9/20*zeta4*a^3 + (-27/20*zeta4 +

27/20)*a^2 + 9/5*a)*q^32 + ((-9/10*zeta4 - 9/10)*a^3 - 27/5*zeta4*a^2 +

(-18/5*zeta4 + 18/5)*a)*q^34 + ((1/10*zeta4 + 1/10)*a^3 + 3/5*zeta4*a^2 + (12/5*zeta4 -

12/5)*a - 9)*q^36 + ((-zeta4 + 1)*a^2 + 4*a + 6*zeta4 + 6)*q^37 + (-24*zeta4 -

24)*q^38 + ((1/10*zeta4 - 1/10)*a^3 - 3/5*a^2 + (-12/5*zeta4 - 12/5)*a -

18*zeta4)*q^39 + (6*a^2 + (12*zeta4 + 12)*a + 36*zeta4)*q^41 + ((-7/20*zeta4 -

3/10)*a^3 + (-29/20*zeta4 - 7/20)*a^2 + (-36/5*zeta4 - 3/5)*a - 30*zeta4 + 24)*q^42 +

((4*zeta4 + 4)*a^2 + 16*zeta4*a + 24*zeta4 - 24)*q^43 + 12*q^46 + (-12*zeta4 +

12)*q^47 + (-11/20*zeta4*a^3 + (-33/20*zeta4 + 33/20)*a^2 + 66/5*a)*q^48 +

((-7/10*zeta4 - 7/10)*a^3 - 21/5*zeta4*a^2 + (-14/5*zeta4 + 14/5)*a - 35*zeta4)*q^49 +

((9/10*zeta4 + 9/10)*a^3 + 27/5*zeta4*a^2 + (108/5*zeta4 - 108/5)*a)*q^51 +

(-1/10*a^3 + (-3/10*zeta4 - 3/10)*a^2 - 12/5*zeta4*a - 2*zeta4 + 2)*q^52 + (-9/5*a^3 +
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(-27/5*zeta4 - 27/5)*a^2 - 36/5*zeta4*a)*q^53 + ((-19/20*zeta4 - 19/20)*a^3 -

31/5*zeta4*a^2 + (-24/5*zeta4 + 24/5)*a + 3)*q^54 + ((-3/4*zeta4 - 3/4)*a^3 +

(-9/2*zeta4 - 5/2)*a^2 + (-23*zeta4 + 13)*a - 15*zeta4 + 30)*q^56 + (4/5*zeta4*a^3 +

(32/5*zeta4 - 32/5)*a^2 - 96/5*a - 24*zeta4 - 24)*q^57 + ((3*zeta4 + 3)*a^2 +

12*zeta4*a + 18*zeta4 - 18)*q^58 + (-10*zeta4*a^2 + (-20*zeta4 + 20)*a + 60)*q^59 +

((-3/2*zeta4 + 3/2)*a^3 + 9*a^2 + (6*zeta4 + 6)*a)*q^61 + (-30*zeta4 + 30)*q^62 +

((1/4*zeta4 - 7/5)*a^3 + (-119/20*zeta4 - 149/20)*a^2 + (-78/5*zeta4 - 6)*a -

6*zeta4 + 24)*q^63 - 71*zeta4*q^64 + ((-6*zeta4 + 6)*a^2 + 24*a + 36*zeta4 + 36)*q^67 +

(18*zeta4 + 18)*q^68 + ((-1/5*zeta4 - 1/5)*a^3 - 16/5*zeta4*a^2 + (-24/5*zeta4 +

24/5)*a + 12)*q^69 + ((-3/2*zeta4 - 3/2)*a^3 - 9*zeta4*a^2 + (-36*zeta4 + 36)*a +

60)*q^71 + (-5/4*zeta4*a^3 + (5/4*zeta4 - 5/4)*a^2 - 15*a - 30*zeta4 - 30)*q^72 +

(19/10*zeta4*a^3 + (57/10*zeta4 - 57/10)*a^2 - 228/5*a - 38*zeta4 - 38)*q^73 +

((-3/10*zeta4 + 3/10)*a^3 + 9/5*a^2 + (36/5*zeta4 + 36/5)*a + 12*zeta4)*q^74 +

((2/5*zeta4 - 2/5)*a^3 - 12/5*a^2 + (-8/5*zeta4 - 8/5)*a)*q^76+ (7/10*a^3 +

(11/10*zeta4 + 11/10)*a^2 - 6/5*zeta4*a - 6*zeta4 + 6)*q^78 + 50*zeta4*q^79 +

((zeta4 + 1)*a^3 + 6*zeta4*a^2 + (24*zeta4 - 24)*a - 9)*q^81 + (9/5*a^3 + (27/5*zeta4 +

27/5)*a^2 + 216/5*zeta4*a + 36*zeta4 - 36)*q^82 + (78*zeta4 + 78)*q^83 + ((-2/5*zeta4 -

3/10)*a^3 + (-11/10*zeta4 + 3/10)*a^2 + (9/5*zeta4 + 3/5)*a + 9*zeta4 - 6)*q^84 +

((6/5*zeta4 + 6/5)*a^3 + 36/5*zeta4*a^2 + (144/5*zeta4 - 144/5)*a - 48)*q^86 +

(-3/5*a^3 + (-9/5*zeta4 - 9/5)*a^2 - 72/5*zeta4*a - 54*zeta4 + 54)*q^87 +

(10*zeta4*a^2 + (20*zeta4 - 20)*a - 60)*q^89 + ((-7/10*zeta4 + 7/10)*a^3 + 21/5*a^2 +

(14/5*zeta4 + 14/5)*a - 14)*q^91 + (-1/5*zeta4*a^3 + (-3/5*zeta4 + 3/5)*a^2 +

4/5*a)*q^92 + (-a^3 + (-8*zeta4 - 8)*a^2 - 24*zeta4*a - 30*zeta4 + 30)*q^93 +

((3/5*zeta4 + 3/5)*a^3 + 18/5*zeta4*a^2 + (12/5*zeta4 - 12/5)*a)*q^94 + ((9/20*zeta4 -

9/20)*a^3 - 36/5*a^2 + (-54/5*zeta4 - 54/5)*a - 27*zeta4)*q^96 + (19/10*a^3 +

(57/10*zeta4 + 57/10)*a^2 + 228/5*zeta4*a + 38*zeta4 - 38)*q^97 + O(q^98)

sage: parent(f)

Power Series Ring in q over Number Field in a with defining polynomial

x^4 + (4*zeta4 + 4)*x^3 + 20*zeta4*x^2 + (24*zeta4 - 24)*x - 120 over its base field
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