
 Open access  Journal Article  DOI:10.1038/NATURE11677

Seventy-five genetic loci influencing the human red blood cell — Source link 

Pim van der Harst, Weihua Zhang, Irene Mateo Leach, Augusto Rendon ...+191 more authors

Institutions: University of Groningen, Ealing Hospital, Imperial College London, Wellcome Trust Sanger Institute ...+50 more
institutions

Published on: 20 Dec 2012 - Nature (Nature Publishing Group)

Topics: Expression quantitative trait loci, Candidate gene, Genome-wide association study and Red blood cell

Related papers:

 New gene functions in megakaryopoiesis and platelet formation

 
A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen
consortium

 Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium

 Genome-wide association study of hematological and biochemical traits in a Japanese population

 The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease

Share this paper:    

View more about this paper here: https://typeset.io/papers/seventy-five-genetic-loci-influencing-the-human-red-blood-
5evmjsaxvu

https://typeset.io/
https://www.doi.org/10.1038/NATURE11677
https://typeset.io/papers/seventy-five-genetic-loci-influencing-the-human-red-blood-5evmjsaxvu
https://typeset.io/authors/pim-van-der-harst-57r4bcvxuf
https://typeset.io/authors/weihua-zhang-175js5clqq
https://typeset.io/authors/irene-mateo-leach-2liraresop
https://typeset.io/authors/augusto-rendon-4aklighvxh
https://typeset.io/institutions/university-of-groningen-1unz7wt1
https://typeset.io/institutions/ealing-hospital-36mo8y49
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/institutions/wellcome-trust-sanger-institute-1w9ei4pi
https://typeset.io/journals/nature-z0raj6t0
https://typeset.io/topics/expression-quantitative-trait-loci-34eh04h4
https://typeset.io/topics/candidate-gene-3awcvym5
https://typeset.io/topics/genome-wide-association-study-1q7fmot9
https://typeset.io/topics/red-blood-cell-9453kmcj
https://typeset.io/papers/new-gene-functions-in-megakaryopoiesis-and-platelet-51qnuihdaw
https://typeset.io/papers/a-genome-wide-meta-analysis-identifies-22-loci-associated-25t72b3d52
https://typeset.io/papers/multiple-loci-influence-erythrocyte-phenotypes-in-the-charge-uy3jocx705
https://typeset.io/papers/genome-wide-association-study-of-hematological-and-2ozyf0vigf
https://typeset.io/papers/the-allelic-landscape-of-human-blood-cell-trait-variation-4kisha8hnu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/seventy-five-genetic-loci-influencing-the-human-red-blood-5evmjsaxvu
https://twitter.com/intent/tweet?text=Seventy-five%20genetic%20loci%20influencing%20the%20human%20red%20blood%20cell&url=https://typeset.io/papers/seventy-five-genetic-loci-influencing-the-human-red-blood-5evmjsaxvu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/seventy-five-genetic-loci-influencing-the-human-red-blood-5evmjsaxvu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/seventy-five-genetic-loci-influencing-the-human-red-blood-5evmjsaxvu
https://typeset.io/papers/seventy-five-genetic-loci-influencing-the-human-red-blood-5evmjsaxvu


  

Serveur Académique Lausannois SERVAL serval.unil.ch 

Author Manuscript 
Faculty of Biology and Medicine Publication 

This paper has been peer-reviewed but dos not include the final publisher 

proof-corrections or journal pagination. 

Published in final edited form as:  

 

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains 

an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. 
 

Title: Seventy-five genetic loci influencing the human red blood cell. 

Authors: van der Harst P, Zhang W, Mateo Leach I, Rendon A, Verweij 

N, Sehmi J, Paul DS, Elling U, Allayee H, Li X, Radhakrishnan A, Tan ST, 

Voss K, Weichenberger CX, Albers CA, Al-Hussani A, Asselbergs FW, 

Ciullo M, Danjou F, Dina C, Esko T, Evans DM, Franke L, Gögele M, 

Hartiala J, Hersch M, Holm H, Hottenga JJ, Kanoni S, Kleber ME, Lagou 

V, Langenberg C, Lopez LM, Lyytikäinen LP, Melander O, Murgia F, 

Nolte IM, O'Reilly PF, Padmanabhan S, Parsa A, Pirastu N, Porcu E, 

Portas L, Prokopenko I, Ried JS, Shin SY, Tang CS, Teumer A, Traglia M, 

Ulivi S, Westra HJ, Yang J, Zhao JH, Anni F, Abdellaoui A, Attwood A, 

Balkau B, Bandinelli S, Bastardot F, Benyamin B, Boehm BO, Cookson 

WO, Das D, de Bakker PI, de Boer RA, de Geus EJ, de Moor MH, 

Dimitriou M, Domingues FS, Döring A, Engström G, Eyjolfsson GI, 

Ferrucci L, Fischer K, Galanello R, Garner SF, Genser B, Gibson QD, 

Girotto G, Gudbjartsson DF, Harris SE, Hartikainen AL, Hastie CE, 

Hedblad B, Illig T, Jolley J, Kähönen M, Kema IP, Kemp JP, Liang L, 



Seventy-five genetic loci influencing the human red blood cell

Pim van der Harst1,2,*, Weihua Zhang3,4,*, Irene Mateo Leach1,*, Augusto Rendon5,6,7,8,*,

Niek Verweij1,*, Joban Sehmi4,9,*, Dirk S. Paul10,*, Ulrich Elling11,*, Hooman Allayee12,

Xinzhong Li13,14, Aparna Radhakrishnan5,6,8,10, Sian-Tsung Tan4,9, Katrin Voss5,6,8,

Christian X. Weichenberger15, Cornelis A. Albers5,6,10, Abtehale Al-Hussani3, Folkert W.
Asselbergs16,17,18, Marina Ciullo19, Fabrice Danjou20, Christian Dina21,22,23, Tõnu
Esko24,25, David M. Evans26, Lude Franke2, Martin Gögele15, Jaana Hartiala12, Micha
Hersch27,28, Hilma Holm29, Jouke-Jan Hottenga30, Stavroula Kanoni10, Marcus E.
Kleber31,32, Vasiliki Lagou33,34, Claudia Langenberg35, Lorna M. Lopez36,37, Leo-Pekka
Lyytikäinen38,39, Olle Melander40, Federico Murgia41, Ilja M. Nolte42, Paul F. O’Reilly3,

Sandosh Padmanabhan43, Afshin Parsa44, Nicola Pirastu45, Eleonora Porcu46, Laura
Portas41, Inga Prokopenko33,34, Janina S. Ried47, So-Youn Shin10, Clara S. Tang48,

Alexander Teumer49, Michela Traglia50, Sheila Ulivi51, Harm-Jan Westra2, Jian Yang52, Jing
Hua Zhao35, Franco Anni20, Abdel Abdellaoui30, Antony Attwood5,6,8,10, Beverley
Balkau53,54, Stefania Bandinelli55, François Bastardot56,57, Beben Benyamin48,58, Bernhard
O. Boehm59, William O. Cookson9, Debashish Das60, Paul I. W. de Bakker17,18,61,62, Rudolf
A. de Boer1, Eco J. C. de Geus30, Marleen H. de Moor30, Maria Dimitriou63, Francisco S.

© 2012 Macmillan Publishers Limited. All rights reserved

Correspondence and requests for materials should be addressed to J.C.C. (john.chambers@ic.ac.uk), C.G.
(christian.gieger@helmholtz-muenchen.de), P.v.d.H. (p.van.der.harst@umcg.nl), J.S.K. (j.kooner@ic.ac.uk), W.H.O.
(who1000@cam.ac.uk) and N.S. (ns6@sanger.ac.uk).
*These authors contributed equally to this work.

Supplementary Information is available in the online version of the paper.

Author Contributions Study organisation: J.C.C., C.G., P.v.d.H., J.S.K., W.H.O. and N.S. Manuscript preparation: H.A., J.S.B.,

J.C.C., G.V.D., P.D., C.G., P.v.d.H., A.A. Hicks, J.S.K., I.M.-L., W.H.O., A. Radhakrishnan, A. Rendon, S.S., J. Sehmi, N.S., D.S.P.,

M.U., N.V. and W.Z. All authors reviewed and had the opportunity to comment on the manuscript. Data collection and analysis in the

participating genome-wide association, replication and phenotype cohorts: ALSPAC: D.M.E., J.P.K., S.M.R., G.D.S; AMISH:

Q.D.G., B.D.M., A. Parsa, A.R.S.; Beta-thalassaemia: F.A., F.D., P. Fortina, R.G, L. Perseu, A. Piga, S.S., M.U.; CBR: A. Attwood,

J.D., S.F.G., H.L.-J., C. Moore, W.H.O., J. Sambrook; CoLAUS: F.B., J.S.B., M.H., P.V.; DeCODE: G.I.E., D.F.G., H.H., I.O.,

P.T.O., K.S., P.S., U.T.; DESIR: B. Balkau, C.D., P. Froguel, R. Sladek; EGCUT: T.E., K.F., A.M., E.M., A.S.; EPIC: K.-T.K.,

C.L., R.J.F.L., N.J.W., J.-H.Z.; Genebank: H.A., J.H., S.L.H., W.H.W.T.; INGI CARL: P.G., G.G., N.P.; INGI CILENTO: M.C.,

T.N., D.R., R. Sorice.; INGI FVG: A.P.d.A., A. Robino, S.U.; INGI Val Borbera: G.P., C.S., D.T., M.T.; KORA: A.D., C.G., T.I.,

C. Meisinger, J.S.R.; LBC: I.J.D., S.E.H., L.M.L., J.M.S.; LIFELINES: R.A.d.B., I.P.K., I.M.-L., G.N., P.v.d.H., L.J.v.P., N.V.,

B.H.R.W.; LOLIPOP: A. Al-Hussani, J.C.C., D.D., P.E., J.S.K., X.L., K.M., J. Scott, J. Sehmi, S.-T.T., W.Z.; LURIC: B.G., B.O.B.,

M.E.K., W.M., B.R.W.; MDC: A.F.D., G.E., B.H., C.E.H., O.M., S.P., J.G.S.; MICROS: M.G., A. AHicks, A.S.-P., P.P.P.; NESDA:

I.M.N., B.W.P., J.H.S., H. Snieder; NFBC1966: A.-L.H., M.-R.J., P.F.O., A. Pouta, A. Ruokonen.; NTR: A. Abdellaoui, D.I.B.,

E.J.C.d.G., J.-J.H., M.H.d.M., G. Willemsen; OGP: F.M., D.P., L. Portas, M.P.; PREVEND: R.A.d.B., I.M.-L., G.N., P.v.d.H.,

W.H.v.G., D.J.v.V., N.V.; QIMR: B. Benyamin, M.A.F., N.G.M., S.E.M., G.W.M., C.S.T., P.M.V., J.B.W.; SardiNIA: F.C., E.P.,

S.S., M.U.; SHIP: A.G., M. Nauck, C.O.S., A. Teumer, U.V.; SMART: A. Algra, F.W.A., P.I.W.d.B., V.T.; SORBS: V.L., I.P., M.S.,

A. Tönjes.; TwinsUK: Y.M., S.-Y.S., N.S., T.D.S.; UKBS: J.J., W.H.O., N.S., J. Stephens; Young Finns: M.K., T.L., L.-P.L., O.R.

Functional studies: Drosophila, U.E., F.S.D., A.A. Hicks, M. Novatchkova, J.M.P., U.P., C.X.W., G. Wirnsberger; expression

profiling, W.O.C., L. Franke, L.L., M.F.M., A. Rendon, E.S., H.-J.W.; FAIRE, C.A.A., P.D., W.H.O., D.S.P., A. Rendon, N.S. Data

analysis and bioinformatics: A. Al-Hussani, S.B., J.C.C., M.D., L. Ferrucci, P.v.d.H., S.K., X.L., I.M.-L., K.M., S.M., A.

Radhakrishnan, A. Rendon, R.R.-S., H. Schepers, J. Sehmi, N.S., H.H.W.S., S.T., T.T., N.V., K.V., P.V., J.Y., W.Z.

Summary statistics from the genome-wide association study are available from the European Genome–Phenome Archive (EGA, http://

www.ebi.ac.uk/ega) under accession number EGAS00000000132.

Reprints and permissions information is available at www.nature.com/reprints.

The authors declare no competing financial interests.

Readers are welcome to comment on the online version of the paper.

Full Methods and any associated references are available in the online version of the paper.

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2013 April 11.

Published in final edited form as:

Nature. 2012 December 20; 492(7429): 369–375. doi:10.1038/nature11677.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.ebi.ac.uk/ega
http://www.ebi.ac.uk/ega


Domingues15, Angela Döring64, Gunnar Engström40, Gudmundur Ingi Eyjolfsson65, Luigi
Ferrucci66, Krista Fischer24, Renzo Galanello20, Stephen F. Garner5,6,8, Bernd Genser31,

Quince D. Gibson44,67, Giorgia Girotto45, Daniel Fannar Gudbjartsson29, Sarah E.
Harris37,68, Anna-Liisa Hartikainen69, Claire E. Hastie43, Bo Hedblad40, Thomas Illig70,71,

Jennifer Jolley5,6,8, Mika Kähönen72,73, Ido P. Kema74, John P. Kemp26, Liming Liang75,

Heather Lloyd-Jones5,6,8, Ruth J. F. Loos35, Stuart Meacham5,6,8,10, Sarah E. Medland48,

Christa Meisinger76, Yasin Memari10,77, Evelin Mihailov19, Kathy Miller4, Miriam F. Moffatt9,

Matthias Nauck78, Maria Novatchkova11, Teresa Nutile19, Isleifur Olafsson79, Pall T.
Onundarson80,81, Debora Parracciani82, Brenda W. Penninx83,84,85, Lucia Perseu46,

Antonio Piga86, Giorgio Pistis50, Anneli Pouta87,88, Ursula Puc11, Olli Raitakari89,90, Susan
M. Ring91, Antonietta Robino45, Daniela Ruggiero19, Aimo Ruokonen92, Aude Saint-
Pierre15, Cinzia Sala50, Andres Salumets93,94, Jennifer Sambrook5,6,8, Hein Schepers95,96,

Carsten Oliver Schmidt97, Herman H. W. Silljé1, Rob Sladek98, Johannes H. Smit83, John M.
Starr37,99, Jonathan Stephens5,6,8, Patrick Sulem29, Toshiko Tanaka66, Unnur
Thorsteinsdottir29,100, Vinicius Tragante16, Wiek H. van Gilst1, L. Joost van Pelt74, Dirk J.
van Veldhuisen1, Uwe Völker49, John B. Whitfield48, Gonneke Willemsen30, Bernhard R.
Winkelmann101, Gerald Wirnsberger11, Ale Algra17,102, Francesco Cucca46,103, Adamo Pio
d’Adamo45, John Danesh104, Ian J. Deary36,37, Anna F. Dominiczak43, Paul Elliott3,105,

Paolo Fortina106,107, Philippe Froguel108,109, Paolo Gasparini45, Andreas Greinacher110,

Stanley L. Hazen111, Marjo-Riitta Jarvelin3,87,105,112,113, Kay Tee Khaw114, Terho
Lehtimäki38,39, Winfried Maerz31,115, Nicholas G. Martin48, Andres Metspalu24,25, Braxton
D. Mitchell44, Grant W. Montgomery48, Carmel Moore104, Gerjan Navis116, Mario Pirastu41,

Peter P. Pramstaller15,117,118, Ramiro Ramirez-Solis10, Eric Schadt119, James Scott9, Alan
R. Shuldiner44,120, George Davey Smith26, J. Gustav Smith40,121, Harold Snieder42,

Rossella Sorice19, Tim D. Spector122, Kari Stefansson29,100, Michael Stumvoll123,124, W. H.
Wilson Tang111, Daniela Toniolo50,125, Anke Tönjes123,124, Peter M. Visscher37,48,52,58,

Peter Vollenweider56,57, Nicholas J. Wareham35, Bruce H. R. Wolffenbuttel126, Dorret I.
Boomsma30, Jacques S. Beckmann27,127, George V. Dedoussis63, Panos Deloukas10,

Manuel A. Ferreira48, Serena Sanna46, Manuela Uda46, Andrew A. Hicks15,*, Josef Martin
Penninger11,*, Christian Gieger47,*, Jaspal S. Kooner4,9,128,*, Willem H. Ouwehand5,6,8,10,*,

Nicole Soranzo10,*, and John C Chambers3,4,14,128,*

1Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700

RB Groningen, The Netherlands 2Department of Genetics, University of Groningen, University

Medical Center Groningen, 9700 RB Groningen, The Netherlands 3Department of Epidemiology

and Biostatistics, Imperial College London, London W2 1PG, UK 4Ealing Hospital NHS Trust,

Middlesex UB1 3HW, UK 5Department of Haematology, University of Cambridge, Cambridge

CB2 0XY, UK 6NHS Blood and Transplant, Cambridge CB2 0PT, UK 7MRC Biostatistics Unit,

Institute of Public Health, Cambridge CB2 2SR, UK 8NIHR Cambridge Biomedical Research

Centre, Cambridge CB2 0QQ, UK 9National Heart and Lung Institute, Imperial College London,

London W12 0NN, UK 10Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
11Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
12Department of Preventive Medicine, University of Southern California Keck School of Medicine,

Los Angeles, California 90033, USA 13Institute of Clinical Sciences, Imperial College London,

London W12 0NN, UK 14NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and

Harefield NHS Foundation Trust and Imperial College London, London SW3 6NP, UK 15Center

for Biomedicine, European Academy Bozen/Bolzano (EURAC), 39100 Bolzano, Italy
16Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3508

Utrecht, The Netherlands 17Julius Center for Health Sciences and Primary Care, University

Medical Center Utrecht, 3508 Utrecht, The Netherlands 18Department of Medical Genetics,

Biomedical Genetics, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
19Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”-CNR, 80131 Naples, Italy

van der Harst et al. Page 2

Nature. Author manuscript; available in PMC 2013 April 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



20Clinica Pediatrica 2a, Dipartimento di Scienze Biomediche e Biotecnologie - Università di

Cagliari, Ospedale Regionale Microcitemie ASL8, 09121 Cagliari, Italy 21Institut National de la

Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1087, BP 70721

44007 Nantes cedex, 1 Nantes, France 22Centre National de la Recherche Scientifique (CNRS)

UMR 6291, BP 70721 44007 Nantes cedex 1, Nantes, France 23School of Medecine, Nantes

University, 44000 Nantes, France 24Estonian Genome Center of University of Tartu, 51010 Tartu,

Estonia 25Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia 26MRC

Centre for Causal Analyses in Translational Epidemiology, School of Social and Community

Medicine, University of Bristol, Bristol BS8 2BN, UK 27Department of Medical Genetics, University

of Lausanne, CH-1005 Lausanne, Switzerland 28Swiss Institute of Bioinformatics, CH-1015

Lausanne, Switzerland 29deCODE genetics, 101 Reykjavik, Iceland 30Department of Biological

Psychology, VU University, 1081 BT Amsterdam, The Netherlands 31Mannheim Institute of Public

Health, Social and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg,

D-68167 Mannheim, Germany 32LURIC Study nonprofit LLC, D-79098 Freiburg, Germany
33Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine,

University of Oxford OX3 7LJ, UK 34Wellcome Trust Centre for Human Genetics, University of

Oxford, Oxford OX3 7BN, UK 35MRC Epidemiology Unit, Institute of Metabolic Science,

Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK 36Department of Psychology, The University

of Edinburgh, Edinburgh EH8 9JZ, UK 37Centre for Cognitive Ageing and Cognitive Epidemiology,

The University of Edinburgh, Edinburgh EH8 9JZ, UK 38Department of Clinical Chemistry, Fimlab

Laboratories, Tampere University Hospital, FIN-33521 Tampere, Finland 39Department of Clinical

Chemistry, University of Tampere School of Medicine, FIN-33521 Tampere, Finland
40Department of Clinical Sciences, Lund University, SE-205 02Malmö, Sweden 41Institute of

Population Genetics, National Research Council of Italy, 07100 Sassari, Italy 42Department of

Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB

Groningen, The Netherlands 43Institute of Cardiovascular and Medical Sciences, College of

Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United

Kingdom 44University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
45Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”–Trieste, University of Trieste,

34137 Trieste, Italy 46Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle

Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy 47Institute of

Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for

Environmental Health, D-85764 Neuherberg, Germany 48Queensland Institute of Medical

Research, Brisbane, Queensland 4006, Australia 49Interfaculty Institute for Genetics and

Functional Genomics, University Medicine Greifswald, D-17487 Greifswald, Germany 50Division

of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy 51Institute for

Maternal and Child Health - IRCCS “Burlo Garofolo”- Trieste, 34137 Trieste, Italy 52University of

Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital,

Brisbane, Queensland 4102, Australia 53Inserm, CESP Centre for research in Epidemiology and

Population Health, U1018, Villejuif F-94807, France 54University Paris Sud 11, UMRS 1018,

Villejuif F-94807, France 55Geriatric Unit, Azienda Sanitaria Firenze, 50125 Florence, Italy
56Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland 57Department of

Internal Medicine, University of Lausanne, CH-1011 Lausanne, Switzerland 58Queensland Brain

Institute, The University of Queensland, Brisbane, Queensland 4072, Australia 59Division of

Endocrinology and Diabetes, Department of Medicine, University Hospital, Ulm D-89075,

Germany 60The Hatter Cardiovascular Institute, University College London, London WC1E 6HX,

UK 61Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston,

Massachusetts 02115, USA 62Program in Medical and Population Genetics, Broad Institute of

Harvard and MIT, Cambridge, Massachusetts 02142, USA 63Nutrition and Dietetics, Harokopio

University, Kallithea 17671, Athens, Greece 64Institute of Epidemiology I and Institute of

Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental

van der Harst et al. Page 3

Nature. Author manuscript; available in PMC 2013 April 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Health, D-85764 Neuherberg, Germany 65The Laboratory in Mjodd, 108 Reykjavik, Iceland
66Clinical Research Branch, National Institute on Aging, Baltimore, Maryland 21250, USA
67Instituto de Saúde Coletiva, Federal University of Bahia, Salvador, Bahia 40110-040, Brazil
68Medical Genetics Section, The University of Edinburgh, Edinburgh EH4 2XU, UK 69Institute of

Clinical Sciences, Obstetrics and Gynecology, University of Oulu FIN-90220 Oulu, Finland
70Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research

Center for Environmental Health, D-85764 Neuherberg, Germany 71Hannover Unified Biobank,

Hannover Medical School, D-30625 Hannover, Germany 72Department of Clinical Physiology,

Tampere University Hospital, FIN-33521 Tampere, Finland 73Department of Clinical Physiology,

University of Tampere School of Medicine, FIN-33521 Tampere, Finland 74Department of

Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9700 RB

Groningen, The Netherlands 75Department of Epidemiology, Department of Biostatistics, Harvard

School of Public Health, Cambridge, Massachusetts 02115, USA 76Institute of Epidemiology II,

Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764

Neuherberg, Germany 77Department of Twin Research and Genetic Epidemiology, Kings College

London, London SE1 7EH, UK 78Institute of Clinical Chemistry and Laboratory Medicine,

University Medicine Greifswald, D-17475 Greifswald, Germany 79Department of Clinical

Biochemistry, Landspitali University Hospital, 101 Reykjavik, Iceland 80Faculty of Medicine,

University of Iceland, 101 Reykjavik, Iceland 81Laboratory of Hematology and Coagulation

Disorder Center, Landspitali University Hospital, 101 Reykjavik, Iceland 82Genetic Park of

Ogliastra, Perdasdefogu, Sardinia, Italy 83Department of Psychiatry/EMGO Institute/Neuroscience

Campus, VU University Medical Centre, 1081 BT Amsterdam, The Netherlands 84Department of

Psychiatry, University of Groningen, University Medical Center Groningen, 9700 RB Groningen,

The Netherlands 85Department of Psychiatry, Leiden University Medical Centre, 2333 Leiden,

The Netherlands 86Division of Pediatrics and Thalassemia Centre, Department of Clinical and

Biological Sciences, University of Torino, 10043 Orbassano, Turin, Italy 87Institute of Health

Sciences, University of Oulu, FIN-90220 Oulu, Finland 88National Institute of Health and Welfare,

Aapistie 1, P.O. Box 310, FIN-90101 Oulu, Finland 89Department of Clinical Physiology and

Nuclear Medicine, Turku University Hospital, FIN-20521 Turku, Finland 90Research Centre of

Applied and Preventive Cardiovascular Medicine, University of Turku, FIN-20521 Turku, Finland
91The School of Social and Community Medicine, University of Bristol, Bristol BS82PS, UK
92Institute of Diagnostics, University of Oulu, FIN-90014 Oulu, Finland 93Competence Centre on

Reproductive Medicine and Biology, 50410 Tartu, Estonia 94Institute of General and Molecular

Pathology, University of Tartu, 51014 Tartu, Estonia 95Department of Experimental Hematology,

University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The

Netherlands 96Department of Stem Cell Biology, University of Groningen, University Medical

Center Groningen, 9700 RB Groningen, The Netherlands 97Institute for Community Medicine,

University Medicine Greifswald, D-17475 Greifswald, Germany 98Departments of Human

Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1B1,

Canada 99Geriatric Medicine Unit, The University of Edinburgh, Western General Hospital,

Edinburgh EH4 2XU, UK 100Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
101Clin Phenomics Study Center, D-60594 Frankfurt, Germany 102Utrecht Stroke Center,

Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University

Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 103Dipartimento di Scienze

Biomediche, Università di Sassari, 07100 Sassari, Italy 104Department of Public Health and

Primary Care, University of Cambridge, Cambridge CB1 8RN, UK 105MRC-HPA Centre for

Environment and Health, Imperial College London, London W2 1PG, UK 106Department of

Cancer Biology, Thomas Jefferson University Jefferson Medical College, Philadelphia,

Pennsylvania 19107, USA 107Dipartimento di Medicina Molecolare, Università La Sapienza,

00161 Roma, Italy 108Centre National de la Recherche Scientifique (CNRS)-Unité mixte de

recherche (UMR) 8199, Lille Pasteur Institute, Lille 59100, France 109Department of Genomics of

van der Harst et al. Page 4

Nature. Author manuscript; available in PMC 2013 April 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Common Disease, School of Public Health, Imperial College London, London W2 1PG, UK
110Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, D-17487

Greifswald, Germany 111Center for Cardiovascular Diagnostics and Prevention, Department of

Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
112Department of Lifecourse snd Service, National Institute for Health and Welfare, FIN-90101

Oulu, Finland 113Biocenter Oulu, University of Oulu, FIN-90220 Oulu, Finland 114Clinical

Gerontology Unit, Box 251, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
115Synlab Academy, D-68165 Mannheim, Germany 116Department of Internal Medicine,

University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The

Netherlands 117Department of Neurology, General Central Hospital, 39100 Bolzano, Italy
118Department of Neurology, University of Lübeck, D-23538 Lübeck, Germany 119Institute for

Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York 10029-6574, USA
120Geriatric Research and Education Clinical Center, Veterans Administration Medical Center,

Baltimore, Maryland 21201, USA 121Department of Cardiology, Lund University, 22185 Lund,

Sweden 122Department of Twin Research and Genetic Epidemiology, Kings College London,

London SE1 7EH, UK 123Department of Medicine, University of Leipzig, Liebigstr. 18, D-04103

Leipzig, Germany 124University of Leipzig, IFB Adiposity Diseases, D-04103 Leipzig, Germany
125Insitute of Molecular Genetics, CNR, 27100 Pavia, Italy 126Department of Endocrinology,

University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The

Netherlands 127Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, 1011

Lausanne, Switzerland 128Imperial College Healthcare NHS Trust, London W12 0HS, UK

Abstract

Anaemia is a chief determinant of globalill health, contributing to cognitive impairment, growth

retardation and impaired physical capacity. To understand further the genetic factors influencing

red blood cells, we carried out a genome-wide association study of haemoglobin concentration and

related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci

associated with one or more red blood cell phenotypes at P <10−8, which together explain 4–9% of

the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic

strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell

biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have

haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-

chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our

findings provide extensive new insights into genetic mechanisms and biological pathways

controlling red blood cell formation and function.

Haemoglobin, an iron-containing metalloprotein found in the red blood cells of all

vertebrates, provides the primary mechanism for oxygen transport in the circulation.

Haemoglobin levels and related red blood cell phenotypes are tightly regulated, including an

important genetic component1–5. To refine our understanding of the genetic factors

influencing red blood cell formation and function, we carried out a meta-analysis of

genome-wide association studies (GWAS) and staged follow-up genotyping of six red blood

cell phenotypes: haemoglobin, mean cell haemoglobin (MCH), mean cell haemoglobin

concentration (MCHC), mean cell volume (MCV), packed cell volume (PCV) and red blood

cell count (RBC).

Our study design is summarized in Supplementary Fig. 1. In brief, we combined genome-

wide association data from 71,861 individuals of European or South Asian ancestry, with up

to 2,644,161 autosomal single-nucleotide polymorphisms (SNPs) and 67,645 X-

chromosome SNPs. Characteristics of participants, genotyping arrays and imputation are
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summarized in Supplementary Tables 1–3. Meta-analysis was carried out among Europeans

and South Asians separately, followed by a final combined analysis of results from the two

populations. We performed replication testing of 22 loci showing suggestive association

(10−8<P <10−7) in a further 63,506 individuals using a combination of in silico data and

direct genotyping (Supplementary Tables 1, 2 and Supplementary Note). Genome-wide

significance was set at P <1 × 10−8, allowing a Bonferroni correction both for the ~106

independent SNPs tested6, as well as for the six inter-related red blood cell phenotypes

(Supplementary Note)7.

Seventy-five independent genetic loci reached genome-wide significance for association

with one or more red blood cell phenotypes (Table 1 and Supplementary Fig. 2), 43 of

which are novel. For descriptive and downstream purposes, we identified a single ‘sentinel’

SNP for each of the 75 loci, defined as the SNP with the lowest P value against any

phenotype at each locus; regional plots for the 75 loci are shown in Supplementary Fig. 3.

Full lists of the SNPs associated with phenotype at P <10−6 and of the sentinel SNPs are

provided (Supplementary Tables 4 and 5). Of the 38 loci previously reported to be

associated with red blood cell traits1–5, we replicate 32 loci (P <10−8) and find three to be

nominally associated (P <0.05; Supplementary Table 6). The remaining three loci, initially

reported in an East Asian GWAS4, were not associated with red blood cell phenotypes in

our sample (Supplementary Fig. 4 and Supplementary Note).

Among the 75 genomic loci identified, we found that 31 were associated with one red blood

cell phenotype, and 44 with two or more phenotypes, at P <10−8. The total number of locus–

phenotype associations identified at P <10−8 was 156, of which 92 are novel (Supplementary

Fig. 5 and Supplementary Table 7). In addition, at 8 of the 75 loci we found evidence for

multiple SNPs independently associated with red blood cell phenotype at P <10−8 in

conditional analyses8, suggesting the presence of possible secondary genetic mechanisms at

these loci (Supplementary Table 8).

Identification of candidate genes

There are >3,000 protein-coding genes within 1 megabase (Mb) of the sentinel SNPs from

the 75 genetic loci associated with red blood cell phenotypes. We prioritized genes as

probable candidates underlying the observed genetic associations using the following

criteria: (1) gene nearest to the sentinel SNP, and any other gene within 10 kilo-bases (kb)

(97 genes; Table 1); (2) gene containing a non-synonymous SNP in high linkage

disequilibrium (r2 >0.8) with the sentinel SNP (24 genes; Supplementary Table 9); (3) gene

with expression quantitative trait loci (eQTL) associated with sentinel SNP in peripheral

blood lymphocytes (27 genes; Supplementary Table 10); and (4) gene relationships among

implicated loci (GRAIL) literature analysis9 (9 genes; Supplementary Table 11). This

strategy identified 121 candidate genes (Table 1 and Supplementary Fig. 6).

Pathway analysis revealed that the list of candidate genes is strongly enriched for genes

known to be involved in haematological development and function (P = 10−63), as well as in

cellular proliferation, development and death, and immunological processes (Supplementary

Tables 12 and 13). Current knowledge of gene function for all 121 candidates is summarized

in Supplementary Table 14. Of note, some of the genes within these regions are known to

underlie the Mendelian red blood cell disorders of elliptocytosis, ovalocytosis and

spherocytosis (ANK1, SLC4A1, SPTA1)10, haemolytic anaemia (HK1)11 and iron

deficiency or overload (TMPRSS6, HFE, TFR2)12. Furthermore, somatic mutations of

IKZF1, KIT, SH2B3, SH3GL1 and TAL1 (also known as SCL) underlie several

haematologic proliferative disorders (Supplementary Table 14).
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Gene expression during haematopoiesis

We next explored expression of the 121 candidate genes using an atlas of 38 different

haematopoietic cell types (Supplementary Table 15)13. Ninety-seven genes could be reliably

assigned a probe on the Affymetrix HG_U133AAofAv2 array (Fig. 1a); these transcripts

were, on average, expressed at higher levels in late erythroblasts (or the precursors of red

blood cells, EB3–EB5) compared to other transcripts in the same cell type (P <0.01 after

Bonferroni correction; Fig. 1b). Furthermore, expression was more likely to be upregulated

in EB3–5 relative to other cell types (P = 1.2 × 10−6, rank-sum test).

To further investigate lineage-specific effects, we assessed temporal patterns of gene

expression during in vitro differentiation of haematopoietic stem cells to erythroblasts14. On

average, candidate genes have increasing expression over time along the erythroid lineage (P

=0.006, rank-sum test; Fig. 1c). These data support the view that the gene set identified here

is enriched for genes relevant to red blood cell biology, including a number of candidate

genes differentially regulated to increase their expression in late erythropoiesis.

Coding and regulatory sequence variants

To better capture common sequence variation at the 75 loci, we searched the 1000 Genomes

Project data set (www.1000genomes.org) and identified 39 non-synonymous SNPs that are

in high linkage disequilibrium (r2 >0.8) with sentinel SNPs at the red blood cell loci

(Supplementary Table 9). This represents a ~sixfold enrichment compared to the expectation

under the null hypothesis (P =0.01; Supplementary Note). Although re-sequencing will be

needed to obtain a complete assessment of variants at these loci, these non-synonymous sites

represent an initial set of candidates for genetic variants underlying the observed

associations with red blood cell phenotypes, potentially mediated through changes in protein

function.

We next searched for sequence variants at the red blood cell loci that might influence gene

regulation. We used formaldehyde-assisted isolation of regulatory elements followed by

next-generation sequencing (FAIRE-seq) to identify nucleosome-depleted regions (NDRs)

that may represent active regulatory elements15. We studied three haematologic cell types,

and found 103,308 unique NDRs, of which 38,014 were present in erythroblasts, 50,372 in

megakaryocytes and 34,833 in monocytes. We then searched the 1000 Genomes Project data

set and found 60 SNPs located within one of these NDRs that are either: (1) one of the 75

sentinel SNPs from the red blood cell GWAS, or (2) in high linkage disequilibrium (r2>0.8)

and located within 1 Mb of a sentinel SNP (Supplementary Table 16). The NDRs

overlapping these 60 SNPs were more likely to be erythroblast specific than expected by

chance (1.8-fold enrichment compared to background distribution of NDRs; P =0.007,

Bonferroni-adjusted binomial test); by contrast, there were fewer megakaryocyte-specific

NDRs coinciding with red blood cell SNPs (0.4-fold enrichment; P =0.007; Fig. 1d). This

pattern of erythroblast enrichment and megakaryocyte depletion was robust to the stringency

of NDR peak-calling (Supplementary Table 17). Our results indicate that regulatory

variation within the erythroid lineage may underlie the associations observed at several of

the loci identified in our red blood cell GWAS. The 19 genes closest to the 25 erythroblast-

specific NDRs were more likely to be upregulated during erythropoiesis compared to all

other expressed transcripts (P=6.3×10−6, rank-sum test; Supplementary Table 18), lending

further support to the view that the NDRs identified have a role in the regulation of genes

involved in erythropoiesis16,17. Interestingly, the SNPs associated with MCH at 16p11

overlap an erythroblast-specific NDR that coincides with the NPRL3 regulatory element in

the locus control region of the downstream haemoglobin-α locus18,19.
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Together our coding- and regulatory-variant analyses thus identify a set of ~100 SNPs

across 41 regions that are candidates for functional genomic elements influencing red blood

cell formation and function, and which constitutes a priority set for future experimental

evaluation.

Insights from mouse models

A systematic search of the Mouse Genome Informatics database reveals haematologic

phenotypes for 29 of the 100 candidate genes that have mouse homologues (Supplementary

Fig. 6 and Supplementary Tables 14, 19), including genes involved in cell cycle regulation:

CCNA2 (4q27), CCND2 (12p13) and CCND3 (6p21); genes coding for transcription factors

and their interacting proteins: BCL11A (2p16), CITED2 (6q24), IKZF1 (7p13) and TAL1

(1p32); and genes involved in growth factor or cytokine signalling: KIT (4q11), KITLG

(12q22), SH2B3 (12q24) and PTPRCAP (11q13). Among the gene products encoded at the

newly identified loci, KITLG, also known as stem cell factor, is the cognate ligand for the

KIT tyrosine kinase receptor20. KIT signalling is involved in the perinatal transition from

fetal to adult haemoglobin, in addition to maintenance, proliferation and differentiation of

haematopoietic stem cells21. Kitlg−/− and Kit−/− mice have low red blood cell

concentrations, anaemia and other haematological abnormalities. CCNA2, CCND2 and

CCND3 are cyclin-dependent kinases that contribute to initiation and progression of cell

division22. Knock-out models of these genes have a number of haematological

abnormalities, including reduced stem cell and red blood cell concentrations, and anaemia22.

Of the 29 candidate genes with a blood phenotype in mouse, 25 were identified as the genes

nearest to the sentinel SNP, and 15 through the eQTL (n =2), coding-variant (n = 6) or

GRAIL (n = 8) analyses (Supplementary Table 19).

RNAi silencing in D. melanogaster

We used haemocyte-specific RNA interference (RNAi) silencing in D. melanogaster to

further evaluate the candidate genes for their role in blood cell formation. We first carried

out permutation testing in a genome-wide D. melanogaster RNAi silencer screen

(Supplementary Note). Results confirmed that the 121 candidates are enriched for genes

with a blood cell phenotype in D. melanogaster, supporting the view that our GWAS

identifies a set of genes conserved across phyla and involved in blood cell formation or

survival.

We next created haemocyte-specific RNAi knockdowns for 96 D. melanogaster genes that

are orthologues for 74 of the 121 candidate genes, and assessed blood cell formation (crystal

cells and plasmatocytes) in early- and late-stage L3 larvae23. We found 19 out of the 74

candidate genes with orthologues in D. melanogaster to have a blood cell phenotype, of

which 5 also have a haematological phenotypes in mouse models: KIT, HK1, CCNA2,

AP3D1 and PSMB10 (Supplementary Tables 19 and 20). Among the genes highlighted,

RNAi silencing of KIT and CCNA2 orthologues was associated with a profound reduction

in plasmocyte formation (Fig. 2), consistent with their established role in cytokinesis20,22.

AP3D1 is involved in vesicular trafficking and dense granule formation in platelets24,

whereas PSMB10 is a component of a widely distributed proteasome linked to inflammation

and ubiquitin signalling25. UBE2L3 is also involved in ubiquitin signalling and immune

regulation26, and genetic variants in UBE2L3 are strongly associated with several

autoimmune diseases known to influence blood cell counts27,28. EIF5 (14q32) is involved in

activation of the ribosomal initiation complex29, whereas RPS6KB2 (22q11) is a key

component of growth factor and other signalling cascades that regulate ribosomal function,

cellular proliferation and survival30. For most of the genes identified, the mechanisms

van der Harst et al. Page 8

Nature. Author manuscript; available in PMC 2013 April 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



underlying their potential relationship to red cell biology remain to be elucidated; our gene

set thus provides a rich resource for future experimental evaluation and discovery.

Contribution to clinical phenotype

The 75 sentinel SNPs together account for between 3.9% (PCV) and 8.9% (MCV) of

population variation in red blood cell phenotypes (Supplementary Table 21). Individuals in

the highest quartile of genetic risk score (GRS; on the basis of weighted effect of the 75

sentinel SNPs) are 3–5-fold more likely to be in the highest quartile for population

distribution of MCH, MCV and RBC (Fig. 3). GRS is associated with haemoglobin

concentrations across the physiological range, including at haemoglobin levels that predict

adverse outcomes in pregnancy, cardiovascular and neurologic disease, in addition to

mortality in the elderly31–34.

We next investigated the association of the 75 sentinel SNPs with red blood cell phenotypes

in thalassaemia, a group of genetic disorders characterized by defects in haemoglobin

synthesis and anaemia. We confirmed association of several of the sentinel SNPs with

respective blood cell trait, and found that GRS predicts phenotype similarly, among 460 β-
thalassaemia heterozygotes (Supplementary Table 22 and Supplementary Note). In separate

experiments, GRS predicts time to first blood transfusion among 495 patients with

thalassaemia major (P =6.9 × 10−4); however, this effect was fully accounted for by the

MYB-HBS1L locus, which modifies the severity of thalassaemia major through its effect on

fetal haemoglobin levels (Supplementary Note)35. Together, our findings demonstrate that

the common genetic variants identified contribute to phenotypic variation in the general

population, and suggest that they may also act as genetic modifiers in clinically relevant red

blood cell abnormalities.

Conclusions

Our genome-wide association and replication study in 135,367 individuals identifies 75

genetic loci influencing red blood cell phenotypes, and 156 locus–phenotype associations;

most of these discoveries are novel. Through open-chromatin and coding-variant studies, we

identify a first set of SNPs as potential causal variants. In parallel, our bioinformatic

strategies identify a core set of genes, differentially regulated in haematologic precursor

cells, which are candidates for mediating the effects on red blood cell phenotypes. However,

despite our extensive GWAS, bioinformatic and experimental data, the precise identities of

the causal variants, regulatory regions and genes remain to be determined; definitive

identification will require further detailed experimental evaluation. Our results thus provide

new insights into the genes and gene variants that may influence haemoglobin levels and

related red blood cell indices, and will underpin a deeper knowledge of the biological

mechanisms involved in haematopoiesis and red blood cell function.

METHODS

Genome-wide association

Genome-wide association was carried out in 62,553 people of European ancestry and 9,308

people of South Asian ancestry, using up to 2,644,161 autosomal and 67,645 X-

chromosome SNPs. Imputation was done using haplotypes from HapMap Phase 2.

Characteristics of participants, genotyping arrays and imputation are summarized in

Supplementary Tables 1 and 2. Participants with extreme measurements (> ± 3 s.d. from

mean) were excluded on a per-phenotype basis. Each population cohort was approved by a

research ethics committee, and all participants gave informed consent.
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SNP associations with each phenotype were tested by linear regression using an additive

genetic model. Associations were tested separately in men and women in each cohort, with

principal components and other study-specific factors as covariates to account of population

substructure as described in Supplementary Table 2. Test statistics from each cohort were

then corrected for their respective genomic-control inflation factor to adjust for residual

population sub-structure; genomic-control inflation factors are summarized in

Supplementary Table 3. We then carried out a meta-analysis of results from the individual

cohorts using Z-scores weighted by the square root of sample size. The meta-analysis was

varied out among Europeans and South Asians separately. There were no South-Asian-

specific discoveries, but also little evidence for heterogeneity of effect at known or new

genetic loci (Supplementary Table 23); we therefore carried out a final combined analysis of

results for the two populations. SNPs with minor allele frequency <1% (weighted average

across cohorts) were removed, as were SNPs with weight <50% of phenotype sample size.

There was no evidence for inflation of test statistics at SNPs not known to be associated

with red blood cell phenotypes (Supplementary Table 3), and genomic control was not

applied to the final meta-analysis results. We used the function ‘clump’ implemented in

PLINK to cluster the SNPs into genomic loci using a 2-Mb window; clustering was done

separately for each phenotype. Inverse variance meta-analysis was used to quantify effect

sizes for SNPs of interest.

Genome-wide significance was inferred at P <1 × 10−8. This choice of statistical threshold

was grounded on the guidelines derived from studies of the ENCODE (encyclopedia of

DNA elements) regions6, combined with results of permutation testing to determine the

additional adjustment needed for the six red blood cell phenotypes studied (Supplementary

Tables 24, 25 and Supplementary Note). As an alternative strategy, a P-value threshold of P

<3.2 × 10−9 would provide correction for the number of SNP–phenotype combinations

tested without any adjustment for the correlations between the SNPs or phenotypes tested.

We note that 70 of the 75 loci identified would exceed such a highly stringent threshold,

including all four of the loci identified through the joint analysis of European and South

Asian data.

Replication testing

We carried out replication testing of 22 SNPs selected on the basis of the following criteria:

(1) the lead SNP from each of 17 loci showing suggestive evidence for association with one

or more red blood cell phenotypes in Europeans (P >10−8 and P <10−7), and (2) the lead

SNP from each of the loci identified through combined analysis of genome-wide association

data for Europeans and South Asians. Replication testing was done using a combination of

in silico results and direct genotyping among 63,506 people from four population cohorts.

In silico data were available for 34,843 people from Iceland participating in the deCODE

(diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe) study37

(Supplementary Table 1). SNPs were directly genotyped with the Illumina HumanHap300

or CNV370 chips or imputed from one or more of four sources: the HapMap2 CEU sample

(60 triads), the 1000 Genomes Project data (179 individuals) and Icelandic samples

genotyped with the Illumina Human1 M-Duo (123 triads) or the HumanOmni1-Quad chips

(505 individuals), as previously described in ref. 37. The 22 SNPs were tested for

association against their respective discovery phenotypes, under an additive genetic model;

results were combined with the genome-wide association data by weighted-Z-score meta-

analysis.

We found that for 7 of the 22 SNPs carried forward for replication, their associations with

phenotype remained inconclusive after in silico testing (P >10−8 but P <10−7). For these

SNPs we carried out additional direct genotyping using Sequenom assays, among up to
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20,066 people from three population cohorts (Supplementary Table 1). Associations were

tested in each cohort separately, and results combined across the replication cohorts, and

then with the genome-wide association data, by weighted-Z-score meta-analysis

(Supplementary Table 26).

Conditional analysis

We performed conditional-association analysis using the summary statistics from the meta-

analysis to test for the association of each SNP while conditioning on the top SNPs, with

correlations between SNPs due to linkage disequilibrium estimated from the imputed

genotype data from the atherosclerosis risk in communities (ARIC) cohort8,38. Secondary-

association signals were selected with conditional-association P <1 × 10−8.

Identification of candidate genes

We considered the nearest gene, and any other gene located within 10 kb of the sentinel

SNP, to be a candidate for mediating the association with red blood cell phenotype. We also

used coding variant, eQTL and literature analyses to identify candidate genes. On the basis

of analysis of linkage-disequilibrium relations at the 75 genetic loci, we defined genomic

region as the 1-Mb interval either side of the sentinel SNP for our functional genomic

studies (Supplementary Fig. 7).

Coding variation

We identified all non-synonymous SNPs that were in linkage disequilibrium with one or

more of the sentinel SNPs at r2 >0.8 in 1000 Genomes Project data set (released in March

2012). We considered the gene to be a candidate when the non-synonymous and sentinel

SNPs were in linkage disequilibrium at r2 >0.8 and with no evidence for heterogeneity of

effect on phenotype. This strategy identified 39 non-synonymous SNPs distributed between

24 genes (Supplementary Table 9), representing a ~sixfold enrichment compared to the

mean number expected under the null hypothesis generated by permutation testing of SNP

sets matched for allele frequency (±0.05) and number of genes in proximity (±10 kb), but

selected otherwise at random (P =0.01; Supplementary Note).

Expression analyses

To identify the possible genes influencing red blood cell phenotypes at the 75 loci, we

examined the association of the sentinel SNPs with eQTL data from two data sets: (1)

peripheral blood lymphocytes from 206 families of European descent (830 parents and

offspring)39 and (2) peripheral blood lymphocytes from 1,469 unrelated individuals40.

SNPs were tested for association with expression of nearby (1 Mb) genes (P <0.05 after

Bonferroni correction for number of SNP–transcript associations tested). Where eQTLs

were identified, we used the whole-genome SNP data available in these data sets (imputed

with HapMap Phase 2 genotypes), to identify the SNP at the locus most closely associated

with transcript level (the transcript SNP). We then tested whether the sentinel SNP and the

transcript SNP were coincident, defined as r2 >0.8 with no evidence for heterogeneity of

effect on phenotype or transcript level (P >0.05). This strategy identified eQTLs involving

28 genes from 18 loci (Supplementary Table 10).

GRAIL analyses

We carried out a literature analysis using the GRAIL algorithm9, a statistical tool that uses

text mining of PubMed abstracts to annotate candidate genes from loci associated with

phenotypic traits. We carried out the analysis using the 2006 data set to avoid confounding

by subsequent GWAS discoveries; results identified candidate genes at nine loci (P <0.05;

van der Harst et al. Page 11

Nature. Author manuscript; available in PMC 2013 April 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Supplementary Table 11). Results are also shown for a GRAIL analysis using the 2011

PubMed data set, although these were not used for the final analysis.

Gene expression in haematopoietic precursors

Cord-blood-derived CD34+ haematopoietic stem cells were differentiated in vitro along the

erythroid lineage in the presence of 6 U ml−1 erythropoietin (R&D Systems), 10 ng ml−1

inter-leukin (IL)-3 (Miltenyi Biotec) and 100 ng ml−1 stem cell factor (R&D Systems). Cells

were collected at days 3, 5, 7, 9 and 10 in three biological replicates and gene expression

was assayed using Illumina human WGv3.0 microarrays41. For each gene, we determined

the relationship of gene expression with time using linear regression, and calculated the t-

statistic for the difference in β from zero. We then classified gene-expression patterns as

increasing, decreasing or unchanged on the basis of the 2.5% and 97.5% quartiles of the t

distribution with 4 degrees of freedom. To test whether a gene set was enriched for

differentially regulated genes, a Wilcoxon signed-rank test of the t scores in the gene set

relative to all others genes that were expressed in at least one time point was calculated.

FAIRE-seq

We generated maps of chromatin accessibility (‘open chromatin’) in primary human

erythroblasts and megakaryocytes, and in peripheral blood monocytes using FAIRE-seq.

Cord-blood-derived CD34+ haematopoietic progenitor cells from two unrelated individuals

were differentiated in vitro into either erythroblasts (in the presence of erythropoietin, IL-3

and stem cell factor) or megakaryocytes (in the presence of thrombopoietin and IL-1β).
Monocytes were purified from leukocyte cones of apheresis collections from another two

individuals.

FAIRE experiments were performed as previously described in ref. 42. FAIRE DNA was

processed following the Illumina paired-end library-generation protocol. Genomic libraries

derived from erythroblast and megakaryocyte cultures were sequenced with 54-bp paired-

end reads on Illumina Genome Analyzer II. Libraries derived from monocyte extractions

were sequenced with 50-bp paired-end reads on Illumina HiSeq. Raw sequence reads were

aligned to the human reference sequence (NCBI build 37) using the read mapper Stampy43.

Reads were realigned around known insertions and deletions, followed by base-quality

recalibration using the Genome Analysis Toolkit (GATK)44. Duplicates were flagged using

the software Picard (http://picard.sourceforge.net/) and excluded from subsequent analyses.

For each cell type, we merged all read fragments into one data set. NDRs were identified as

regions of sequencing enrichment (peaks) using the software F-Seq36. We applied a feature

length of L =600 bp and a s.d. threshold of T =8.0 over the mean across a local background.

In order to reduce false-positive peak calls, we removed regions of collapsed repeats as

recently described, applying a threshold of 0.1%45. For each associated locus, candidate

functional SNPs were selected by identifying all biallelic SNPs with an r2 >0.8 and within 1

Mb of the sentinel SNP in the European samples of the 1000 Genomes Project (data released

June 2011).

D. melanogaster gene-silencing models

We used haemocyte-specific RNAi silencing to investigate whether the 121 candidate genes

identified in the red blood cell GWAS influenced blood cell formation in D. melanogaster.

We identified D. melanogaster genes predicted to be orthologues of human genes using the

Ensembl v65 Compara pipeline, an established phylogenetic-tree-based approach for

orthology prediction46; this revealed 96 D. melanogaster orthologues for 74 of the 121

human candidate genes (Supplementary Table 27). We evaluated each of the 96 orthologues

for a blood cell phenotype in D. melanogaster. We obtained all 225 available D.

melanogaster lines carrying inducible siRNA constructs from the Vienna Drosophila RNAi

van der Harst et al. Page 12

Nature. Author manuscript; available in PMC 2013 April 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://picard.sourceforge.net/


Center (VDRC)23. To achieve haemocyte-specific knockdowns, flies were crossed to the

blood-specific Hml-Gal4 line driving Gal4 expression under the control of a hemolectin

promoter47. Flies were crossed at 29 °C, and early and late L3 larvae analysed 7 days after

mating. Upstream activating sequence–green fluorescent protein enabled microscopic

visualization of plasmatocytes and evaluation of cell size and cell number (L3 larvae only).

Early- and late-stage larvae were incubated at 60 °C for 15 min, a process that turns the

crystal cells black and allows quantification of crystal cells microscopically. For each

orthologue, all available RNAi silencer constructs were investigated, and in addition, each

construct was assayed in duplicate, blind to initial result. Cell counts were quantified

visually (0–3, decreased or increased) and the mean of the duplicate measurements

calculated.

We separately carried out permutation testing in a genome-wide screen of 5,658 D.

melanogaster genes to simulate expectations under the null hypothesis (Supplementary Fig.

8 and Supplementary Note); results confirmed that the 121 candidate genes were enriched

for blood cell phenotype in D. melanogaster orthologues (P <0.05), and showed that this was

robust to threshold for calling.

Contribution of the genetic loci identified to population variation in red blood cell
phenotypes

This was investigated in participants from the Estonian Genome Center of University of

Tartu (EGCUT), LIFELINES, Ludwigshafen Risk and Cardiovascular Health Study

(LURIC) and Young Finns cohorts using samples that were not included in the discovery

experiment (Supplementary Table 1). The contribution of the SNPs to population variation

in red blood cell phenotypes was quantified using two models: model 1, limited to SNPs

associated with respective phenotype at P <1 × 10−8; and model 2, comprising all of the 75

sentinel SNPs identified. Estimates of population variance explained were made in each

study separately, and average values calculated weighted by sample size (Supplementary

Table 21).

We then investigated whether the 75 sentinel SNPs influenced the probability of being in the

highest versus the lowest quartile for population distribution of phenotype. Two SNP scores

were calculated for each phenotype: score 1, limited to SNPs associated with respective

phenotype at P <1 × 10−8, and score 2, containing all 75 sentinel SNPs identified. For both,

SNP score was calculated as the sum of number of effect (trait raising) alleles present,

weighted according to effect size. We then calculated the odds ratio for being in the highest

versus the lowest quartile of phenotype, associated with SNP scores in the second, third and

fourth quartiles, compared to first quartile of SNP score. Odds ratios were calculated in each

study separately, and then combined by inverse variance meta-analysis (Fig. 3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene-expression patterns for 121 putative candidate genes, and tissue distribution of
NDRs
a, Heat-map of candidate genes in the Differentiation Map of Hematology13. Cell acronyms

refer to original source (summarized in Supplementary Table 15). Expression above a log2

signal intensity (SI) of 6 is consistently above background. b, −log10 P of the signed-rank

test for candidate genes being more highly expressed in each cell type than non-candidate

genes. c, Time-course of differentiation of cord-blood haematopoietic stem cells cultured

along the erythroid lineage. Putative candidate genes are shown as upregulated (red),

downregulated (blue) or with the slope not being significantly different from zero (grey). d,

Tissue distribution of NDRs containing a potential causal variant. NDRs were ranked by

peak score (proportional to their peak height in FAIRE-seq). The rankings were then used to

divide the NDRs into cumulative tranches to explore the effect of calling-thresholds on

results (left bar, tranche containing the 5,000 top-ranked NDRs of each cell type;

penultimate bar, tranche containing the 50,000 top-ranked NDRs of each cell type). The

solid line indicates the number of SNPs overlapping the tranche-specific NDRs that are

potential causal variants (defined as a sentinel SNP from the red blood cell GWAS, or a SNP

in high linkage disequilibrium (r2 >0.8) and located within 1 Mb of a sentinel SNP; right-

hand y axis); the bar summarizes the tissue distribution of these SNPs (as a percentage of

tranche-specific total). The right-hand bar represents the expected tissue distribution for the

SNPs under the null hypothesis. Results show that the potential causal variants are most

commonly found in erythroblast-specific NDRs, and that this is true across the spectrum of

peak-calling thresholds.
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Figure 2. RNAi silencing in D. melanogaster
a, Plasmatocytes imaged by green fluorescent protein expression (light green spots on

posterior dorsal end of L3 larvae) from wild-type (WT) cells and cells with RNAi silencing

of orthologues of the following human genes: CRHR1 (106381, increased cell counts (CC)),

KIT (13502, decreased CC) and CCNA2 (32421, increased CC). Numbers represent the

unique Flybase IDs corresponding to the D. melanogaster orthologues. Scale bar, 0.5 mm.

Bottom right, plasmatocyte size is also increased in CCNA2 compared to wild type. Scale

bars, 0.1 mm. b, Crystal cells (black spots visualized by heating larvae to 60 °C) in wild-

type larvae, and in RNAi silencing of ATP5O (12794, increased CC), UBE2L3 (110767,

decreased CC) or ATP2B4 (101743, aggregated). Scale bars, 0.5 mm.
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Figure 3. Association of SNP score with red blood cell phenotypes
Results presented as odds ratio (95% confidence interval) for participants in each SNP score

quartile (Q) having phenotype level in the top quartile versus the lowest quartile of the

respective population distribution, compared to people in the lowest quartile of SNP score

(Q1, reference group). HB, haemoglobin; n, number of participants in the respective

comparison of SNP score quartiles.
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