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Chlamydia is a major bacterial pathogen that infects humans, as well as a wide range

of animals, including marsupials, birds, cats, pigs, cattle, and sheep. Antibiotics are

the only treatment currently available, however, with high rates of re-infection, there is

mounting pressure to develop Chlamydia vaccines. In this review, we analyzed how

Chlamydia vaccine trials have developed over the past 70 years and identified where

future trials need to be focused. There has been a strong bias toward studies targeting

C. muridarum and C. trachomatis within mice and a lack of studies matching chlamydial

species to their end target host. Even though a large number of specific antigenic

targets have been studied, the results from whole-cell vaccine targets show slightly

more promising results overall. There has also been a strong bias toward systemic

vaccine delivery systems, despite the finding that mucosal delivery systems have

shown more promising outcomes. However, the only successful vaccines with matched

chlamydial species/infecting host are based on systemic vaccine delivery methods. We

highlight the extensive work done with mouse model trials and indicate that whole

cell antigenic targets are capable of inducing an effective response, protecting from

disease and reducing shedding rates. However, replication of these results using antigen

preparations more conducive to commercial vaccine production has proven difficult. To

date, the Major Outer Membrane Protein (MOMP) has emerged as the most suitable

substitute for whole cell targets and its delivery as a combined systemic and mucosal

vaccine is most effective. Finally, although mouse model trials are useful, differences

between hosts and infecting chlamydial strains are preventing vaccine formulations from

mouse models to be translated into larger animals or intended hosts.

Keywords: Chlamydia, vaccine, MOMP (major outer membrane protein), mice, koala (Phascolarctos cinereus)

INTRODUCTION

Chlamydiae are gram-negative, obligate intracellular pathogens that infect eukaryotic cells (Oehme
et al., 1991). There are currently 16 classified and / or formally proposed species that comprise the
Chlamydiaceae family and these species infect a wide range of hosts and anatomical sites (Table 1
and Figure 1) (Taylor-Brown and Polkinghorne, 2017). Vaccines are being developed to target
some of these chlamydial species for a variety of reasons (Table 2). Vaccines targeting human
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TABLE 1 | Species and known hosts of the Chlamydiaceae family

Species Predominant host Site of disease

C. trachomatis Human Urogenital and Conjunctiva

C. pneumoniae Respiratory

C. caviae Guinea pig Urogenital, Conjunctiva and

Respiratory

C. muridarum Mice Urogenital

C. psittaci Bird Respiratory and Placenta

C. avium Respiratory

C. ibidis

C. gallinacea

C. suis Pig Urogenital and Conjunctiva

C. felis Cat Urogenital, Conjunctiva and

Respiratory

C. abortus Livestock∗ Placenta

C. pecorum Marsupials and

livestock∗

Urogenital and Conjunctiva

C. serpentis Snake Cloacal and choanal

C. poikilothermis

C. corallus

C. sanzinia Snake and turtle Cloacal and Respiratory

∗Sheep, cattle, goat, and horse.

pathogens are designed to protect human health, while vaccines
targeting livestock and wildlife pathogens aim to prevent
economic damage, protect endangered animals and prevent
zoonotic disease transmission. Although these 16 species of
Chlamydia infect a range of different hosts, the site of
infection and disease pathology within hosts are highly similar,
indicating commonalities between a seemingly diverse group of
chlamydial organisms.

Human Pathogenic Species
Chlamydia trachomatis has been dived into 13 different genotypes
based on the major outer membrane protein (MOMP) (Stevens
et al., 2010). Genotypes A, B, and C infect the conjunctiva
of humans leading to active and scarring trachoma and
eventually blindness (Garland et al., 1995). Genotypes D –
K and L1 – L3 predominantly infect the urogenital tract,
leading to inflammation, scarring and infertility. In women,
these genotypes can also result in pelvic inflammatory disease,
which increases the risk of ectopic pregnancy (Menon et al.,
2015). It has been reported that up to 80% of C. trachomatis
infections are asymptomatic (no signs of pathology), resulting
in individuals who are unaware they are infected and leading
to an extremely high rate of transmission (Korenromp et al.,
2002; Farley et al., 2003; Ljubin-Sternak and Mestrovic, 2014;
Menon et al., 2015).

Chlamydia pneumoniae predominantly infects the respiratory
tract of humans leading to pneumonia (Shi et al., 2002; Kurz
et al., 2009) as well as having some links to atherosclerosis,
Alzheimer’s disease and asthma (Balin et al., 1998; Daba et al.,
2002; Deniset et al., 2010; Iramain et al., 2016). In addition,
C. pneumoniae has been reported in a range of animals such
as mice, pigs, marsupials, birds, cats, and livestock, leading to
respiratory disease (Borel et al., 2018).

Animal Pathogenic Species With
Zoonotic Potential
Other species ofChlamydia infect a wide range of animals leading
to disease and reported zoonotic potential (Li et al., 2017; Jelocnik
et al., 2018; Pisanu et al., 2018; Torres-Mejía et al., 2018).

Chlamydia psittaci is a respiratory and reproductive pathogen
of birds with zoonotic potential for humans. C. psittaci
disease (psittacosis) outbreaks in humans date back to 1879
where humans were infected from pet parrots and finches.
In the 1930s, human pandemic outbreaks were linked to
racing pigeons imported from South America to Europe and
North America. More recently, human psittacosis outbreaks
throughout Europe have been linked to turkey and duck farming
(Beeckman and Vanrompay, 2009). Broadly, a recent review
and meta-analysis demonstrated that C. psittaci is the causative
agent in 1% of worldwide community-acquired pneumonia
(Hogerwerf et al., 2017).

Chlamydophila abortus predominantly infects the placenta of
livestock resulting in fetal death and has the zoonotic potential to
cause abortions in women if infected during pregnancy (Szeredi
and Bacsadi, 2002; DeGraves et al., 2004; Meijer et al., 2004;
Masala et al., 2007).

Chlamydophila felis infects the respiratory tract and
conjunctiva of cats, leading to respiratory disease and
conjunctivitis, respectively (Sykes, 2001; Cai et al., 2002;
Rampazzo et al., 2003). C. felis has also been reported in as
many as eight different zoonotic transmission events, however,
these all occurred within immunocompromised humans
(Browning, 2004). Other chlamydial species identified with
zoonotic potential include C. caviae in guinea pigs, where
three unrelated, zoonotic transmission events were reported in
healthy adult humans, presenting with respiratory failure due to
severe community-acquired pneumonia (Ramakers et al., 2017).
Finally, C. suis has been detected from farm workers who have
close contact to pigs, however no clinical symptoms of illness has
yet been reported, so further research is needed to evaluate the
potential risk to people (De Puysseleyr et al., 2017).

Other Animal Pathogenic Species
Chlamydia pecorum is one of the most diverse chlamydial
species and can be separated into two genetically distinct clades
based on host species. The first clade of C. pecorum infects
the conjunctiva, limb joints and urogenital tract of livestock,
leading to conjunctivitis, arthritis, cystitis and the development
of reproductive cysts resulting in infertility (Reinhold et al., 2011;
Jelocnik et al., 2014; Walker et al., 2016, 2018; Bommana et al.,
2018). Furthermore, gastrointestinal infections have been shown
to cause overall health deterioration, including increased body
temperature and decreased body weights (Reinhold et al., 2008,
2011; Li et al., 2016). The second clade of C. pecorum infect
the conjunctiva, and urogenital tract of predominantly koalas,
leading to keratoconjunctivitis, cystitis and the development of
reproductive cysts resulting in infertility (Burnard et al., 2017).

Chlamydia suis strains infect the conjunctiva, gastrointestinal
tract and respiratory tract of pigs, resulting in a range of
diseases including conjunctivitis (pink eye), intestinal lesions and
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FIGURE 1 | Phylogenetic tree analysis of the family Chlamydiaceae. Approximate likelihood phylogenetic tree analysis, MAFFT alignment of NCBI (Genbank) 16S

sequences (1,587 bp) assembled using Geneious v 11.1.4.
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TABLE 2 | Targeted host and the number of trials for each, separated by chlamydial strain.

Host Chlamydia strains (number of studies) Purpose of trials Total number of trials

Mice/Rats C. muridarum (82), Human vaccine targeting C. trachomatis or C. pneumoniae 160

C. trachomatis (60),

C. pneumoniae (14),

C. psittaci (8),

C. abortus (6), Sheep vaccine targeting C. abortus

C. pecorum (1) Sheep vaccine targeting C. pecorum

Non-Human primates C. muridarum (2), C. trachomatis (10) Human vaccine targeting C. trachomatis 11

Guinea pigs C. psittaci (4), C. trachomatis (3), C. caviae (1) Human vaccine targeting C. trachomatis or C. pneumoniae 6

Humans C. trachomatis (1) Human vaccine targeting C. trachomatis 1

Rabbits C. trachomatis (1) Human vaccine targeting C. trachomatis 1

Pigs C. abortus (2) Pig vaccine targeting C. abortus 7

C. trachomatis (5) Human vaccine targeting C. trachomatis

Cattle C. abortus (1) Cattle vaccine targeting C. abortus 1

Sheep C. abortus (3), C. pecorum (1), C. psittaci (9) Sheep vaccine targeting C. abortus, C. pecorum, or C. psittaci 13

Birds C. psittaci (5) Bird vaccine targeting C. psittaci 5

Cats C. felis (1), C. psittaci (1) Cat vaccine targeting C. felis 2

Koalas C. pecorum (11) Koala vaccine targeting C. pecorum 11

respiratory disease (Rogers and Andersen, 2000; Sachse et al.,
2004; Reinhold et al., 2005; Becker et al., 2007). C. suis has
also been reported from pig oviducts and uteri, however links
to disease development at these anatomical sites is yet to be
established (Kauffold et al., 2006).

Chlamydia avium, C. ibidis and C. gallinacea are all
predominantly infections of birds, infecting the respiratory tract
and resulting in respiratory disease (Mitura et al., 2014; Guo et al.,
2016; Chu et al., 2017).

Chlamydia serpentis, C. poikilothermis, C. corallus, and
C. sanzinia are recently discovered species of Chlamydia which
have been identified from cloacal and choanal samples of captive
and wild snakes, with C. sanzinia also recently identified from
cloacal and pharyngeal samples of turtles and tortoises. These
newly identified species have very little known about their
pathogenic potential (Taylor-Brown et al., 2016, 2017; Mitura
et al., 2017; Staub et al., 2018).

Surrogate Models
Finally, C. muridarum in mice and C. caviae in guinea pigs have
been used as models for chlamydial research. These two strains
infect the urogenital tract and conjunctiva of their respective
hosts, leading to hydrosalpinx and conjunctivitis, respectively
(Andrew et al., 2011; Wali et al., 2014; De La Maza et al., 2017).

Mice and guinea pigs are used as surrogate models as their
disease pathology mirrors diseases seen in humans, they have
very similar biological process to humans and can be utilized in
challenge trials, testing the effect of a vaccine candidate.

Immunological Response to Chlamydial
Infections
For the successful clearance of chlamydial infections, cell-
mediated and humoral immune response coordination is
required. The humoral immune response to intracellular bacteria
is a relatively new concept, with the common belief before

2004 being that humoral (antibody) immunity protected against
extracellular bacteria and cellular immunity protected against
intracellular pathogens (Casadevall, 2003, 2004). However, the
use of B cell deficient mice and the identification of monoclonal
antibodies have shed new light on the remarkable complexity of
antibody mediated immunity (AMI) (Casadevall and Pirofski,
2006). Many studies have now shown that the appearance of
serum antibodies strongly correlates with chlamydial clearance
(Casadevall and Pirofski, 2006). Furthermore, the presence of
IgA within human vaginal secretions correlates with chlamydial
clearance (Brunham et al., 1983). However, it is still well-
established that a combined humoral and cellular mediated
immune response is required for complete protection from
chlamydial infection and disease progression (Williams et al.,
1987; Ramsey et al., 1988). The cellular immune response requires
the recruitment of macrophages, dendritic cells, natural killer
cells and CD4/CD8 T cells to the mucosal site of infection
(Brunham and Rey-Ladino, 2005; Vasilevsky et al., 2014). The
primary cytokine involved in chlamydial clearance is interferon
gamma (IFNγ). Stimulated through the interleukin (IL) 12
cytokine pathway (Trinchieri, 2003; Eyerich et al., 2010), in
humans, IFNγ restricts the growth cycle of Chlamydia by
depleting tryptophan through the indoleamine 2,3-dioxygenase
(IDO) pathway. IFNγ also suppresses inflammation at the site
of infection through the downregulation of the Th2 immune
response, characterized by IL4 and IL10 (Natividad et al.,
2005). Failure to downregulate Th2 results in negative feedback,
depleting IFNγ (Holland et al., 1996). IL12 also stimulates
cytokines TNFα and IL22 involved in epithelial protective
immunity (Trinchieri, 2003; Eyerich et al., 2010; Zhao et al.,
2015). In addition to the stimulatory effects on inflammation
by IL12, evidence indicates that regulatory T cells (Tregs)
balance this response through counter-inflammatory pathways
(Faal et al., 2006).

Clearly, there is an incredibly complex interaction between
chlamydia and the host immune system. It is not possible to
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monitor all aspects of the immune response during each vaccine
trial, so the reported protection achieved from each trial must
be summarized and inferred from the data available. As such,
for the purposes of this review, trials demonstrating reduced
disease pathology when challenged and achieving a decrease in
chlamydial shedding rates (compared to controls) were denoted
as having achieved partial protection, regardless of the immune
response measured (humoral or cellular). Any study reporting
no disease pathology and no detectable chlamydial organisms
after challenge infection was denoted as having achieved full
protection. Finally, trials failing to control the onset of disease
pathology were denoted as no protection.

The purpose of this review is to highlight and summarize the
breadth of chlamydial based vaccine trials performed to date and,
based on this summary, recommend where future vaccine trial
effort should be focused.

OVERVIEW OF CHLAMYDIA VACCINE
TRIALS

Over the last 71 years (from 1946 to 2017), there have been a large
number of documents (1,489) reported in the scientific literature
relating to Chlamydia vaccine trials. A literature search of the
“Scopus” database using keywords “Chlamydia AND vaccine”
and limiting the results to full and short communications
performed on living hosts to test any form of vaccine targeted
toward any species of Chlamydia identifies 220 vaccine trials.
This represents an incredible body of work that has encompassed
different chlamydial species, vaccine formulations (Figure 2)
and approaches. Interestingly, the past 10 years have shown
the greatest interest in Chlamydia vaccine research, with an
average of 12 vaccine studies per year. To understand where the
Chlamydia vaccine field currently stands, it is worth breaking
down the 220 trials to evaluate what has been done and how
successful they were. All the studies referred to are listed in
Supplementary Table S1.

Chlamydia and Host Species Targeted
From the 220 vaccine trials reported, eight chlamydial species and
12 host species have been targeted (Table 2 and Supplementary

Table S1): The most targeted chlamydial species, C. muridarum,
has been studied in 77 vaccine trials (35.0%) using mice (77 trials)
and non-human primates (2 trials) as the host. C. trachomatis
has been used in 67 vaccine trials (30.5%) tested in mice, non-
human primates, pigs, guinea pigs, rabbits and a single human
vaccine trial. C. psittaci has been used in 23 vaccine trials (10.5%)
within a range of different hosts, including, mice, sheep, birds,
Guinea pigs and cats. Vaccines to C. pneumoniae (6.4%) have
only been tested in mice, vaccines to C. pecorum (5.5%) have
been examined in koalas, mice and sheep, vaccines to C. abortus
(5.0%) have been trialed in mice, cattle, sheep and pigs, vaccines
to C. caviae (0.5%) have only been tested in guinea pigs and
vaccines to C. felis (0.5%) have only been trialed in cats. Finally,
nine trials (4.1%) have tested vaccines targeted for cross-species
protection with a final 5 trials (2.3%) having used the resulting
disease name (psittacosis or trachoma) and not a bacterial name

as the identifier. This summary reveals that a staggering 85%
of vaccine trials have been performed in substitute hosts and is
concentrated around developing vaccines for humans. Overall
human vaccine trials have been performed in mice, non-human
primates, guinea pigs, rabbits and pigs. The only other vaccine
trials conducted in a surrogate host were for the development
of a sheep vaccine (Table 2). The majority (69.7%) of matched
chlamydial species/infected host trials have being conducted
within only two species, koalas and sheep. This indicates a major
weakness in current Chlamydia vaccine research.

Target Antigens
There have been many different forms of antigen used in vaccine
formulation. Traditionally, elementary bodies (EBs) (either live,
formalin-fixed, or UV-inactivated) and crude outer membrane
preparations were the antigens of choice. More recently (since
the 1990’s), antigens have expanded to include the use of
recombinant proteins, synthetic peptides, expression vectors and
naked DNA.

For the first 40 years of Chlamydia vaccine research, the only
published antigens used were whole-cell preparations of either
live attenuated bacteria (23 studies) or inactivated bacteria (29
studies) (Table 3 and Supplementary Table S1). Inactivation
methods for Chlamydia EBs consisting of 45% UV, 41% formalin,
10% heat, and 4% other techniques. The first protein-based
antigens appeared in 1988 and steadily increased to 130 studies
by 2017 (57.7% of all vaccine studies) (Table 3). Despite the
successes of whole cell vaccines, safety concerns and the relative
costs around the production of a whole cell vaccine has led
to significant research being focused on the production of a
protein-based vaccine.

There have been three different types of protein-based
vaccines used; 18.5% (24 studies) used crude outer membrane
protein preparations, 41.5% (54 studies) used purified
recombinant outer membrane proteins and 54.6% (71 studies)
used over 143 individual and mixed recombinant and synthetic
peptides (Table 3 and Supplementary Table S1). From this array
of antigens, MOMP has emerged as the most tested protein
(78 trials using MOMP and 71 using other antigenic targets).
DNA sequencing and computational analysis has indicated that
MOMP is the protein most likely responsible for the success
observed in whole cell trials (Stephens et al., 1987; Stephens
et al., 1998). The MOMP of Chlamydia species is approximately
40 kDa in size, with five genetically conserved domains and four
variable domains that are used to determine the serovar within
each species (Stephens et al., 1987, 1998; Stevens et al., 2010).
These domains contain multiple T-cell and B-cell epitopes that
have been shown to induce T-cell immunity and neutralizing
antibodies (Caldwell and Perry, 1982; Baehr et al., 1988; Ortiz
et al., 1996; Pal et al., 2005). Other chlamydial proteins utilized
as antigenic targets have included the polymorphic membrane
proteins (PMPs), a collection of surface exposed proteins with
highly conserved regions (ideal for inducing cross genotype
recognition) and are characterized as autotransporter adhesion
molecules involved in early chlamydial infection processes
(Vasilevsky et al., 2016). The chlamydial heat shock protein
has also been utilized as an antigenic target for multiple trials
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FIGURE 2 | Summary of vaccine formulations between 1946 and 2017. For each year examined, the blue bars represent the number of vaccine trials published that

year. Overlayed on the trial numbers is a break down the vaccine formulation tested by inclusion of an adjuvant (black line) and the use of either a protein-based

antigen (yellow line), a whole cell antigen (attenuated or in-active) (red line) or a DNA-based antigen (green line).

TABLE 3 | Chlamydial species and the different types of antigens used in trials.

Chlamydia

species

Antigen type (number of studies) Total number of

studies

C. abortus Plasmid (2), Protein (2), Virus (1), Whole

cell (7)

12

C. caviae Protein (1) 1

C. felis Whole cell (1) 1

C. muridarum DNA (1), Nanoparticle (1), Plasmid (5),

Protein (63), Virus (1), Whole cell (14)

84

C. pecorum Protein (12), Whole cell (1) 13

C. pneumoniae DNA (1), Plasmid (6), Protein (6), Virus

(1), Whole cell (1)

14

C. psittaci Plasmid (3), Protein (7), Virus (1), Whole

cell (15)

26

C. trachomatis Nanoparticle (2), Plasmid (16), Protein

(43), Virus (7), Whole cell (15)

78

and has been shown to induce a strong inflammatory response
(Morrison, 1991). Another protein tested as an antigenic target
has been the chlamydia protease-like activity factor (CPAF),
which is a cytosol secreted protein with proposed virulence
potential (Li et al., 2007).

In 1987, the first study to use a plasmid-based vaccine was
published (Taylor and Prendergast, 1987). This study achieved
negative results and no further plasmid-based work was reported
for 12 years. In 1999, three groups published five vaccine trials
using plasmids, with four showing partial protection (Brunham
and Zhang, 1999; Pal et al., 1999; Vanrompay et al., 1999b;
Zhang et al., 1999) (Table 3). These trials stimulated Chlamydia
plasmid-based vaccine research, launching 26 studies over the
next 17 years (Table 3 and Supplementary Table S1). There have
also been 13 trials (5.5% of vaccine trials) involving naked DNA

or adapted virus-based antigens (with 83% of these using either
full or partial omp gene sequences) occurring sporadically since
1993 (Table 2 and Supplementary Table S1).

Adjuvants
Within the 220 chlamydial vaccine trials conducted, 73 studies
reported no adjuvant present in the vaccine. The majority of
these adjuvant-free formulations were for vaccines using either
whole-cells or plasmid antigen sources (73%). Of the 147 trials
that used an adjuvant, 10 different adjuvants were used in 5
or more distinct trials, with the most utilized adjuvant being
CpG oligodeoxynucleotides (all classes) (31%) (Supplementary

Table S1). The use of adjuvants in combination with protein-
based vaccines (peptides or full-length MOMP) appears to
improve vaccine effectiveness, with vaccine trials reporting a
24% increase in achieving partial protection (from 58 to 82%)
and a 6% increase in achieving full protection (0 – 6%). Within
the C. pecorum koala vaccine trials, a triple adjuvant mixture has
been trialed with notable success. This adjuvant mixture contains
a synthetic host defense peptide IDR-1002, known to be anti-
inflammatory (Wu et al., 2017), a synthetic polyphosphazene
polyelectrolyte poly [di (sodiumcarboxylatoethylphenoxy)
phosphazene] (PCEP), a protein carrier shown to have immune-
stimulating properties through acid functionalities (Andrianov
et al., 2004) and polycytidylic acid (Poly I:C), a synthetic analog
of double stranded ribonucleic acid that is recognized by toll-like
receptor 3 (TLR3) and upregulates cytokines involved in Th2
immune responses (Alexopoulou et al., 2001; Matsumoto et al.,
2002; Yamamoto et al., 2003; Cheng et al., 2011a). An advantage
of this triple adjuvant formulation is that it allows for a single
dose vaccine. Sadly, with over 50 different adjuvants having
been tried in different vaccine formulations, all having unique
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TABLE 4 | Site for vaccine delivery by chlamydial species and host.

Chlamydia species Mice Non-human primate Guinea pig Rabbit Pig Minipig Bovine Ovine Avian Feline Koala

Mucosal

C. abortus 1 1

C. caviae 1

C. muridarum 19

C. pecorum 1

C. pneumoniae 2

C. psittaci 2

C. trachomatis 9 3 1 1

Total 31 3 4 0 1 0 0 1 0 0 1

Systemic

C. abortus 4 2 1 2

C. felis 1

C. muridarum 36

C. pecorum 1 11

C. pneumoniae 9

C. psittaci 5 6 3 1

C. trachomatis 32 3 1 1 1

Total 86 3 0 1 3 1 1 9 3 2 11

Duel vaccine delivery - Mucosal and Systemic

C. muridarum 20 2

C. pecorum

C. pneumoniae 3

C. psittaci 1 2

C. trachomatis 10 1 1 1

Total 33 3 1 0 1 1 0 0 2 0 0

TABLE 5 | Challenges based on Chlamydia species and anatomical site.

Site C. abortus C. caviae C. felis C. muridarum C. pecorum C. pneumoniae C. psittaci C. trachomatis Total

Nasal 1 27 13 6 5 52

Urogenital 1 1 52 1 1 50 106

Ocular 1 3 3 8 15

Oral 2 2

Systemic 8 1 8 1 18

Total 9 1 2 82 1 14 20 64 193

mechanisms of action, only limited conclusions can be made
by comparison.

Vaccine Delivery Sites
The methods for vaccine delivery within the published 220
vaccine studies were either systemically, mucosally or a
combination of both (Table 4 and Supplementary Table S1).
Systemic vaccination has involved 23 studies that used multiple
body sites and 107 studies that used a single body site for
vaccination, with the most common site being subcutaneous
(51.4%), followed by intramuscular (29.9%), intraperitoneal
(7.5%), intravenous (4.7%), epidermis (<2%), intra-abdominal
(<2%), intradermal (<2%), and transcutaneous (<2%) (Table 4).
Mucosal vaccination has involved two studies using multiple

mucosal sites and 45 studies have used a single mucosal site,
with the most common site being nasal (73.3%), followed by
oral (11.1%), ocular (8.9%), vaginal (4.4%), and gastrointestinal
(2.2%) (Table 4). Finally, 43 studies have used a combined
approach with both systemic and mucosal vaccinations involving
sites listed above (Table 4).

Vaccine Results, No Challenge
Of the 44 studies that did not include a post-vaccine Chlamydia
challenge, 18 studies were performed inmice, 11 studies in koalas,
four studies in sheep, and one or two in birds, pigs, humans,
non-human primates and rabbits. In some of these studies, such
as with the human and koala subjects, ethical restrictions most
likely prevented the study design from including a challenge
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TABLE 6 | Chlamydia vaccine trials in koalas.

Antigen Adjuvant Dose Koalas Captive/Wild Results Reference

MOMP, NrdB and

omp85a

ISC, Alhydrogel,

TiterMax

3 18 healthy females Captive ISC performed the best with

mucosal > 270 IgG

Carey et al., 2010

MOMP, NrdB ISC 2, 3 12 Healthy, 12

Diseased male and

female

Wild Increase in IgG in both health

and diseased koalas and

between 2 and 3 dose regimes

Kollipara et al., 2012

MOMP A, F and G ISC 3 12 Healthy females Captive Plasma and mucosal IgG

homologous and heterologous

recognition of MOMP types

Kollipara et al., 2013b

MOMP A, F, and G ISC 3 5 diseased, 4 Healthy

male and female

Captive and Wild Vaccination induced greater

epitope recognition compared

to natural infection (including

conserved regions)

Kollipara et al., 2013a

MOMP ISC 3 12 Healthy males Captive Intranasal increased humoral

immune response

subcutaneous increased CMI

responses

Waugh et al., 2015

MOMP A, F, and G ISC 3 60 healthy male and

female

Wild Decreased C. pecorum load

and disease prevalence in

vaccinated free-range koalas

Waugh et al., 2016b

MOMP Not stated 3 20 Healthy male and

female

Wild Increased C. pecorum IgG

neutralization effect elicited by

the vaccine

Khan et al., 2016b

MOMP A, F, and G Tri-Adj 1, 2 6 healthy females Captive Comparable humoral/cellular

immune responses in both

single and double dose regimes

Khan et al., 2014

MOMP A, F, and G ISC, Tri-Adj 1, 3 15 healthy male and

female

Wild Establishes a basis for the use

of a 1 dose vaccine that can

induce comparable and

enhanced immunological

responses compared to a

3-dose vaccine.

Khan et al., 2016a

MOMP A, F, and G Tri-Adj 1 6 disease sex not

stated

Wild Decreased conjunctival

pathology and C. pecorum

DNA shedding in both vaccine

and antibiotic treated koalas

Waugh et al., 2016a

MOMP A, F, and G

PmpG

Tri-Adj 1 63 healthy male and

female

Wild Comparable results between

antigens. However, some

development of disease post

vaccination

Desclozeaux et al.,

2017b

aUsing proteins derived from C. muridarum and C. trachomatis.

component (i.e., deliberate infection). This type of restriction will
continue to be a limitation for vaccine design in some hosts and
helps explain why theChlamydiamousemodel remains a popular
research tool. The results of these no challenge trials varied and
were dependant on the in vitro tests performed on collected
samples, predominately focused on Chlamydia specific antibody
responses (IgG and IgA). However, overall, 86% of the trials
achieved results indicating vaccination induced a measurable
antibody mediated immune response.

Chlamydia Challenge Trials
Post vaccination studies predominately use challenge trials to
test the effectiveness of the trial vaccine, however, as challenge
trials are only performed in the short term (<1 year), they
only provide information on short term immunity. Observations
of long lasting immunity (> 1 year) are lacking in chlamydial
vaccine research. From 220 vaccine studies, 176 (80%) employed

a Chlamydia challenge post-vaccination. These studies involved
159 mucosal challenge routes including urogenital (vaginal,
ovarian, uterine, penile, and urethral) (57.1%), nasal (27.3%),
ocular (8.7%), oral (0.6%), and multiple sites (4.3%) (Table 5

and Supplementary Table S1). Of the 17 studies that used
systemic routes, challenge sites included intraperitoneal (47.1%),
subcutaneous (29.4%), intradermal (17.6%), and intra-cerebral
(5.9%) (Table 4 and Supplementary Table S1). There are no
studies to date that have used a combined mucosal and systemic
challenge method. This preference for mucosal-based challenge
delivery methods is likely because studies are trying to replicate
the natural infection routes of many Chlamydia species.

Of the challenge-based vaccine studies, five different
vaccination/challenge methods were implemented; (1) mucosal
route of vaccination with a mucosal challenge (41 studies),
(2) mucosal route of vaccination with systemic challenge (2
studies), (3) systemic route of vaccination with a mucosal
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challenge (81 studies), (4) systemic route of vaccination with
a systemic challenge (15 studies) and (5) mixed route of
vaccination with a mucosal challenge (37 studies). The most
common type of vaccine was trials on mice using protein-
based vaccines and CpG oligodeoxynucleotides (all classes)
adjuvants with 39 trials (16.4%), while the next closest focus
was on koalas using a protein-based antigen with 11 trials
(5%). From all 176 challenged-based vaccine studies, only
8.5% (15/176) reported complete protection (defined as the
absence of pathology and bacterial shedding at challenge site)
with 10 of these trials using either a whole cell or MOMP-
based antigen (Supplementary Table S1). Interestingly, this
group of complete protection trials included three peptide-
based studies targeting human C. pneumoniae using the
mouse model (Tammiruusu et al., 2007; Thorpe et al., 2007;
Li et al., 2010). In fact, 66.7% (102 trials) of challenge trials
were performed with chlamydial species infecting non-native
hosts, meaning that future work will be needed to confirm
the efficacy of tested vaccines in their target hosts. Focusing
only on studies that matched chlamydial species to infecting
host (73 studies), vaccine trials that used a mucosal route of
vaccination achieved a measurable mucosal immune response
in 80% (20/25) of trials. This compared to systemic vaccination,
which showed 77% (37/48) of trials identifying a measurable
mucosal immune response.

VACCINE TRIALS FOR HUMAN
CHLAMYDIAL INFECTIONS

The need for a vaccine to manage and reduce human chlamydial
disease is well recognized. The prevalence of C. trachomatis is
estimated at approximately 4.2% among 15 to 49-year-old men
and women, making this pathogen the world’s most reported
STI (Newman et al., 2015). C. trachomatis is known to cause
serious urogenital and ocular disease outcomes (Garland et al.,
1995; Stevens et al., 2010; Menon et al., 2015). However,
with up to 80% of infections asymptomatic, most infections
are not recognized and transmission to partners is common
(Korenromp et al., 2002; Farley et al., 2003; Ljubin-Sternak
and Mestrovic, 2014; Menon et al., 2015). C. trachomatis has
been reported to have treatment failures (organisms detected
after antibiotic treatment has finished) (Jones et al., 1990;
Lefevre et al., 1997; Somani et al., 2000; Misiurina et al.,
2004; Bhengraj et al., 2010), however no genetic link to
macrolide or fluoroquinolone resistance has been reported
(Deguchi et al., 2018). Furthermore, chlamydial persistence
(organisms present in a non-infectious and non-replicating
state) has also been reported in many studies. However, the
high rate of individuals being reinfected from undiagnosed
partners makes determining whether Chlamydia detected after
treatment is the result of persistence, treatment failure or
reinfection is complex. Recent studies targeting only actively
replicating chlamydial cells have demonstrated that a high
percentage of treatment failure cases are only identifying
inactive cells (via DNA) as false positives for active infections
(Janssen et al., 2016; Phillips et al., 2018). The foundational

work necessary for developing a C. trachomatis vaccine for
human use has taken place in mouse and non-human primate
model systems. Here we discuss the range of vaccine trials
used in mouse model trials, the rationality for progression to
new complex vaccines and the relative effectiveness of each
vaccine make up.

Mouse Model Vaccine Trials
Chlamydia muridarum is known to infect mice and rats
causing conjunctivitis, respiratory disease and urogenital disease.
The mouse model has been used as a host for vaccination
trials because it is an amenable animal model, enabling post
vaccination challenge experiments and detailed analysis of
immune responses. The main purpose of studying chlamydial
vaccines within the mouse model is for future development
of a human chlamydial vaccine. Due to differences in the
efficiency of certain strains within the mouse model, many
studies chose to use C. muridarum as a surrogate for
C. trachomatis.

Early mouse model trials for Chlamydia vaccine research
started in the late 1940s and were designed to target C. psittaci
(known now to be C. muridarum post re-classification of
nomenclature) infections using live and inactivated whole cell
preparation vaccines (Morgan and Wiseman, 1946). These early
trials used rates of chlamydial shedding post challenge as a
measure of effectiveness and were successful in achieving some
protection from bacterial challenge (Morgan and Wiseman,
1946; Mitzel et al., 1970; Johnson and Hobson, 1986; Rekiki
et al., 2004b). However, since the 1990s, the predominant
focus of mouse model vaccines has been using C. muridarum
and C. trachomatis strains. Live whole cell vaccines have
demonstrated the feasibility of inducing a protective response
to Chlamydia infections. Several trials have shown that using
live chlamydial EBs can induce complete protection through
intranasal vaccination (Pal et al., 1994; Peterson et al., 1999;
Lu et al., 2002). However, further trials have failed to reproduce
these results using inactivated EBs, which is thought to be
the result of lowered peptide loading on to dendritic cells of
inactivated EBs compared to active EBs (De La Maza et al., 2017).

The first MOMP-based vaccine in mice was by Tuffrey
et al. (1992). Using a recombinant MOMP (rMOMP) from
C. trachomatis serovar L1 and direct vaccination into the Peyer’s
patches or oviducts, the trial failed to reduce colonization or
disease development. However, humoral immune responses in
plasma anti-MOMP IgG were detected along with trace levels
of mucosal anti-MOMP IgA. This disappointing result was
repeated in six additional protein-based vaccine trials over
the next 20 years, with the only improvement being that the
increases in plasma IgG responses had Chlamydia neutralizing
effects (Su and Caldwell, 1993; Knight et al., 1995; Igietseme
and Murdin, 2000; Shaw et al., 2002; Zheng et al., 2006; Jiang
et al., 2015). None of these seven trials used an adjuvant
to stimulate immune responses during vaccination, generating
a clear indication that an adjuvant-based vaccine would be
required for a successful immunological response within a
protein-based vaccine.
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The first evidence of a protein vaccine inducing protection in
mice was by Pal et al. (1997). The vaccine consisted of a detergent
prepared chlamydial outer membrane complex (COMC) or
denatured MOMP protein in Freund’s incomplete adjuvant.
This vaccine, delivered subcutaneously, decreased chlamydial
shedding rates and induced protection from disease post-
ovarian challenge, with the COMC formulation outperforming
the MOMP formulation. The promising results were replicated
by Pal et al. (2001) with the MOMP protein, whereby a native
MOMP (nMOMP) preparation outperformed the denatured
MOMP preparation. Cellular immune responses were enhanced
in the nMOMP vaccinated mice and humoral immune responses
were slightly higher in the denatured MOMP preparation. These
results indicated that conservation of the native protein structure
resulted in increased protection from disease and that this is
driven by both cellular and humoral immune responses. Pal
and colleagues went on to reproduce these results in another
three trials testing different adjuvants (CpG and Montanide
ISA 720) using nMOMP as the antigen. Furthermore, they also
observed similar levels of protection between nMOMP vaccines
and live EB vaccines post-intrabursal challenge (Pal et al., 1997,
2005). This was significant, as protein-based vaccines had not
performed as well as whole cell vaccines previously. Further
mouse model studies into the protective effects of nMOMP have
been demonstrated in the respiratory tract (Sun et al., 2009)
and the genital tract (Farris et al., 2010; Carmichael et al., 2011;
Tifrea et al., 2011). These studies confirm that nMOMP induces
protection from disease and decreased bacterial shedding from
Chlamydia challenge. They also conclude that a cellular and
humoral immune response is required for complete protection.

Although native protein vaccine production is less expensive
than whole cell vaccine production, antigen in this format is
still relatively costly. As such, significant recent research has
been focused on the production of a recombinant MOMP
(rMOMP) vaccine (where the desired protein antigen is
cloned, expressed and purified from Escherichia coli in large
quantities instead of purified directly from cultured chlamydial
cells). Since 1992, there have been 38 different vaccine
trials using an rMOMP antigen with a total of 14 different
adjuvants. The first reports of a successful rMOMP vaccine
was reported by Berry et al. (2004) using a cholera toxin
and CpG adjuvant through a transdermal vaccination route
(Berry et al., 2004). They observed both humoral and cellular
immune responses that included anti-chlamydial plasma and
mucosal IgG and mucosal IgA and IFNγ-secreting T cells.
Together, these responses reduced chlamydial shedding and
enhanced protection against pathology (Berry et al., 2004).
Further trials generated comparable results using transdermal,
oral and intranasal vaccination routes (Hickey et al., 2004,
2009, 2010). Additional vaccination route studies demonstrated
that combining both mucosal and systemic vaccination routes
induced an enhanced immune response compared to using a
mucosal route alone. Ralli-Jain et al. (2010), Carmichael et al.
(2011) and Cheng et al. (2014) all observed that vaccinations
with rMOMP and adjuvants CpG and Montanide induced the
strongest humoral and cellular immune responses (IgG, IgA
and neutralization effect and T-cell proliferation) with a dosage

regime of a mucosal priming dose, followed by a systemic
boosting dose.

Further insights into the required cellular immune response
were observed by O’Meara et al. (2013). They tested an
rMOMP antigen with a cholera toxin/CpG adjuvant and various
vaccination routes (transdermal, sublingual or intranasal) and
observed a relationship between the production of IFNγ, TNFα,
and IL17 and protection against infection (O’Meara et al., 2013).
Further studies in 2016 (using nMOMP or rMOMP antigens
with CAF01 and CAF09 adjuvants) also observed a correlation
between an increased production of IFNγ and IL17 and low
levels of IL4 with significantly reduced bacterial shedding and
protection against respiratory pathology (Pal et al., 2017b).

In the last 3 years, there has been a significant focus on
identifying the specific chlamydial outer membrane protein
epitopes that induce the highest antigenic response, with a
particular focus on the MOMP and PMPs. Pal et al. (2017a)
completed one of the largest of these trials, comparing the
vaccination effects of nine different PMPs from C. trachomatis
in mice and challenged with C. muridarum. They identified
that, although PMPs C, G and H individually elicited the
highest levels of humoral and cellular immune responses
and decreased signs of disease of the nine different PMP
antigens tested, these results were still lower than the more
effective C. muridarum MOMP vaccine response (Pal et al.,
2017a). These results show that the complexities involved
with inducing a protective response to chlamydial infections
involves the recognition of multiple epitopes. This further
indicates that the success of a future chlamydial vaccine will
probably be dependent on large recombinant proteins such as
the MOMP.

Non-human Primate Vaccine Trials
One of the most difficult aspects of Chlamydia vaccine research
is replicating mouse vaccine trial results in other host species,
specifically non-human primates. Over the last 30 years,
there have been only 12 attempts to replicate mouse model
trial results in non-human primates. The first set of non-
human primate trials utilized whole cell antigenic targets and
observed limited to no protection post challenge (Chang et al.,
1964; Whittum-Hudson et al., 1986; Taylor et al., 1987). In
fact, one study observed increased chlamydial pathology in
vaccinated owl monkeys post ocular challenge (MacDonald
et al., 1984). However, recent whole cell antigen vaccines
have produced promising results. Kari et al. (2009, 2011)
vaccinated Cynomolgus macaques (via the ocular route) with
a plasmid deficient strain of C. trachomatis and observed
increased serum AMI, specifically IgG and IgA, with neutralizing
properties, upregulation of both IFNγ and IL12 [from peripheral
blood mononuclear cells (PBMC) fractions] and demonstrated
protection from ocular challenge in five out of six vaccinated
animals (Kari et al., 2009, 2011). These results were repeated
in 2014 by the same group, using a systemic vaccination
regime (Olivares-Zavaleta et al., 2014). Alternative approaches
to reducing EB virulence, such as using a plasmid negative
chlamydial strain, failed to induce protection in rhesus macaques
(Qu et al., 2015).
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Sadly, protein based vaccine trials in non-human primates
have shown little to no promise, with six separate trials
observing some non-significant increases in both humoral and
cell mediated immunity that failed to induce complete protection
from disease (Taylor et al., 1987, 1988; Su and Caldwell, 1993;
Campos et al., 1995; Kari et al., 2009; Cheng et al., 2011b).

Mouse model trials highlight the complexities involved in
producing a vaccine response that will protect from infection
and development of disease. Although some success has been
achieved through live vaccines and MOMP-based vaccines,
failure to reproduce these results in non-human primate models
is most likely due to the differences in both host immunity
and Chlamydia species genetics. Important differences within
the tryptophan synthase genes between C. muridarum and
C. trachomatis have the potential to affect how each pathogen
will be cleared by IFNγ and IDO pathways in different hosts.
Despite this failure, mouse models have demonstrated important
characteristics that should be considered in both administration
of a Chlamydia vaccine and monitoring of the humoral and
cellular immune responses. Together, this research identifies that
a successful Chlamydia vaccine will combine a mucosal and
systemic dose regime using a MOMP-based protein with an
adjuvant. Success will likely be observed through a combination
of (a) humoral immune responses including chlamydial specific
plasma IgG andmucosal IgG and IgA responses with neutralizing
capabilities and; (b) cellular immune responses, including
upregulation of IFNγ, TNFα and IL17 and down regulation of
IL4 and IL10.

VACCINE TRIALS FOR ANIMAL
CHLAMYDIAL INFECTIONS

Beyond the quest to develop a vaccine in mice and non-
human primates to eventually combat C. trachomatis infection
in humans, there are several chlamydial species of economic and
wildlife welfare importance to merit vaccination programs of
their own. So far, concerted effort has been focused on C. psittaci
and C. pecorum for livestock applications and C. pecorum for
disease management in koalas. To date, only two chlamydial
vaccines are available commercially (as whole cell vaccine
formulations) and they target C. felis in cats and C. abortus in
sheep. While some of the lessons learnt with C. trachomatis and
C. muridarum in the mouse model can be extrapolated to other
chlamydial species and hosts, much work is still needed to tailor
specific chlamydial vaccines to their specific purposes.

Livestock Vaccine Trials – C. psittaci

Vaccines
Vaccines targeting C. psittaci have been trialed sporadically over
the last 70 years with 23 studies occurring between 1978 and
2017. However, caution must be taken when comparing early
and recent trials, as changes in 1999 to chlamydial nomenclature
significantly altering the number of strains included under this
once broad species (Everett et al., 1999; Stephens et al., 2009;
Greub, 2010).

Of the 18 trials conducted prior to 1999, 67% utilized whole
cell preparations as antigenic targets for use in sheep (six trials),
guinea pigs (three trials), mice (two trials), and cats (one trial).
These trials achieved partial protection from infection and the
majority showed reductions in disease (Nichols et al., 1978;
Malaty et al., 1981; Johnson and Hobson, 1986; Rodolakis and
Souriau, 1986; Wills et al., 1987; Rank et al., 1990; Wilsmore
et al., 1990a,b; Gajdosová et al., 1994; Westbay et al., 1994;
Jones et al., 1995). There have been three studies utilizing outer
membrane preparations (two in sheep and one in mice) and,
although the results were promising, the reductions in disease
(noted as abortion rates) were lower when compared to that
observed from whole cell preparations (46 and 70% reduction,
respectively) (Anderson et al., 1990; Tan et al., 1990; Sandbulte
et al., 1996). Finally, in 1999, there were two trials conducted in
turkeys utilizing a plasmid-based antigenic target and different
vaccination routes (systemic and mucosal), however both these
trials failed to induce a chlamydial specific antibody response
(Vanrompay et al., 1999a,b).

Post 1999, there have been only five trials of C. psittaci
vaccines. These trials utilized recombinant proteins (three trials)
or plasmids in different vectors (eukaryotic and viral) (two trials).
Results from all five studies observed partial protection from
infection and/or disease; however, each utilized a different gene
or protein making comparisons difficult (Loots et al., 2006; Qiu
et al., 2010; Liu et al., 2015; Liang et al., 2016; Ran et al., 2017).

Livestock Vaccine Trials – C. pecorum

Vaccines
There have only been two C. pecorum specific vaccine trials
performed in non-koala hosts. Rekiki et al. (2004a), vaccinated
mice with a commercial C. abortus (temperature-sensitive
mutant) live cell vaccine and challenged with C. pecorum (sheep
isolate) (Rekiki et al., 2004a). They reported some protection (as
abortion rates and progeny health) post intraperitoneal challenge,
however these pathologies are rarely related to C. pecorum
infections (Rekiki et al., 2004a). Finally, Desclozeaux et al.
(2017a), vaccinated pregnant ewes and lambs with a recombinant
PmpG protein from C. pecorum strain IPA (sheep isolate) and
a rMOMP from a C. pecorum genotype G strain (koala isolate)
(Desclozeaux et al., 2017a). They observed increases in antibody
mediated immunity (IgG and IgA) and cellular immunity
(IFNγ), however, in vitro neutralization effects were absent and
the cell mediated immune response durations appeared short
(Desclozeaux et al., 2017a). These studies show some promise in
producing an effective C. pecorum vaccine. However, as some or
all of the antigenic targets utilized, in both these studies, differed
to the infecting chlamydial species or strain of interest, these
results should be interpreted with caution, with further studies
required replicating natural conditions.

Koala Vaccine Trials
The development of a C. pecorum vaccine for koalas has
involved a systematic research program that covers 11 different
trials over a period of 7 years (Table 6 and Figure 2). The
first koala C. pecorum vaccination trial tested the safety and
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immunogenicity of recombinant forms of C. muridarum proteins
including MOMP, Ribonucleotide reductase (NrdB) and omp85
(CT0512), as well as adjuvant effects of Immunostimulating
complex (ISC), Aluminum hydroxide gel (Alhydrogel) and
TiterMax Gold (Carey et al., 2010). This first study vaccinated
healthy captive female koalas, utilizing a three-dose vaccination
regime and tested the effects of each adjuvant over a 270 days
period. The results identified strong neutralizing (C. muridarum
and C. pneumoniae) plasma derived IgG responses lasting
for > 270 days using the ISC and Alhydrogel and cloacal IgG
responses lasting for > 270 days in the ISC group (Carey et al.,
2010). This study demonstrated that a Chlamydia based vaccine
in koalas was possible and induced a significant increase in
plasma and mucosal. While the results of the first trial were
promising, they utilized antigens from C. muridarum, the mouse
pathogen, rather than from the koala pathogen, C. pecorum. The
next vaccine trial replaced C. muridarum rMOMP (genotype G)
and NrdB with C. pecorum proteins and containing only the
adjuvant ISC. This trial included koalas with signs of clinical
disease (conjunctivitis and/or cystitis) and a group of healthy
koalas receiving only two vaccine doses (all other groups received
a three dose vaccination) (Kollipara et al., 2012). This study
demonstrated similar plasma and mucosal IgG responses as in
Carey et al. (2010) for both MOMP and NrdB, with MOMP
eliciting a slightly higher elevation of the humoral immune
response compared to NrdB. Interestingly, koalas with current
signs of disease showed some clinical signs of improvement
post vaccination and the two dose vaccination regime resulted
in similar IgG levels as the three dose regime. The success
of a koala specific C. pecorum targeted vaccine lead to three
additional trials that (1) expanded the vaccine to be multi-variant
by including multiple MOMP genotypes within a single vaccine
to induce a broad antigenic memory (Kollipara et al., 2013b), (2)
observed plasma antibodies derived from koalas immunized with
rMOMP produced antibodies to both variable and conserved
domains of MOMP (Kollipara et al., 2013a), and 3) found that
different vaccination routes (mucosal via intranasal or systemic
via sub-cutaneous) had differing affects (Waugh et al., 2015).
Collectively, the koala specific C. pecorum vaccine trials indicated
that a multivalent rMOMP vaccine, delivered via a subcutaneous
and intranasal route, could elicit a cross-protective humoral and
cellular immune response in wild koalas, with or without current
Chlamydia infections and related signs of disease.

With previous trials observing strong immune responses to
vaccination, further studies aimed to determine the vaccines
ability to limit disease progression in wild koalas over extended
periods (up to 12 months) (Khan et al., 2016b; Waugh
et al., 2016b). Over two studies, koalas vaccinated with two
doses of an rMOMP mixed genotype C. pecorum vaccine
containing ISC adjuvant and were followed for 12 months.
Vaccinated koalas had decreases in both C. pecorum infecting
loads and disease prevalence at both six and 12 months post
vaccination, as well as showing a significant increase in plasma
IgG that recognized epitopes within the conserved domains
of C. pecorum 6 months post vaccination (Waugh et al.,
2016b). When compared to unvaccinated controls, naturally
infected vaccinated koalas also had a significant increase in

the neutralizing effect of the plasma derived immunoglobulins
(Khan et al., 2016b).

One major drawback to the C. pecorum koala vaccine
as it was formulated to date was that it required multiple
vaccine doses for the ISC adjuvant to induce optimal protection.
Given the challenge of a multiple vaccination strategy in a wildlife
management program, a redesign of the adjuvant component was
undertaken to allow for single dose implementation. In 2014, the
mixed genotype rMOMPs were combined with a new adjuvant
known as Tri-Adj, developed from the Veterinary Infectious
Disease Organization (VIDO), Canada (Khan et al., 2014; Waugh
et al., 2016a). The Tri-Adj combines three different components;
a synthetic host defense peptide IDR-1002 (known to be anti-
inflammatory; Wu et al., 2017), a synthetic polyphosphazene
polyelectrolyte poly [di (sodiumcarboxylatoethylphenoxy)
phosphazene] (PCEP) [a protein carrier shown to have immune-
stimulating properties through acid functionalities (Andrianov
et al., 2004)] and polycytidylic acid (Poly I:C) [a synthetic analog
of double stranded ribonucleic acid that is recognized by toll-like
receptor 3 (TLR3) and upregulates cytokines involved in Th2
immune responses (Alexopoulou et al., 2001; Matsumoto et al.,
2002; Yamamoto et al., 2003; Cheng et al., 2011a)]. This new
vaccine formulation was tested using a one and two dose regime
with healthy koalas (Khan et al., 2014). Overall, comparable
humoral and cellular immune responses were observed in both
the single and double dose regimes, indicating the efficacy of
a single dose C. pecorum vaccine in healthy koalas. Once a
single dose regime was established, Khan et al. (2016a) sought
to compare specific humoral and cellular immune responses
between the old three dose ISC adjuvant regime and the new
Tri-Adj single dose regime on free-ranging koalas using the
mixed genotype rMOMP antigens. Humoral immune responses
(plasma IgG) observed between the two groups showed an
increased plasma IgG response from the three dose ISC vaccine
group, however, when assessed for neutralizing effects on
C. pecorum EBs, there were no differences observed between
vaccine groups. As well, there were major differences in the
C. pecorum epitopes recognized by plasma IgG from the ISC
vaccine and the Tri-Adj vaccine group. The Tri-Adj vaccine
group recognized two extra epitopes with a conserved domain
and one extra epitope within variable domain compared to
the ISC vaccine group. Collectively, these results solidified the
advantages of the new Tri-Adj vaccine formulation over the old
ISC vaccine formulation.

With the establishment of a single dose vaccine, the most
recent trials have aimed at replicating the vaccine’s effectiveness
on koalas with current signs of chlamydial disease over
an extended time period (6 months) (Waugh et al., 2016a;
Desclozeaux et al., 2017b) and testing the utility of expanding
the antigenic targets included in the formulation to include PMPs
along with rMOMPs (Desclozeaux et al., 2017b). The single dose
rMOMP/Tri-Adj vaccine reduced the severity of the conjunctival
pathology and C. pecorumDNA shedding in both vaccinated and
antibiotic treated koalas and elicited a long lasting response to
C. pecorum stimulus (in vitro) (Waugh et al., 2016a; Desclozeaux
et al., 2017b). However, lasting protection from C. pecorum
reinfection appeared elusive, as both rMOMP and rMOMP/PMP
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vaccine groups contained koalas with signs of chlamydial disease
at a prevalence similar to unvaccinated controls. Further analysis
of these C. pecorum strains indicated that these strains contained
a large genetic diversity within the variable domain four of the
ompA gene, known to contain T and B cell epitopes. Their
conclusions noted that these observations indicate a possible
pitfall in using a single antigenic region (MOMP) and that
considerations should be made to develop a multi-antigenic
vaccine with the possibility of including amucosal administration
site in combination with the current sub-cutaneous route.

This systematic series of vaccine trials identifies that with
direction and persistence an effective chlamydial vaccine can
be achieved within the intended host. Future directions for the
koala vaccine may include alterations to vaccine formulations
used, such as a second vaccine dose at a mucosal site, but with
the foundation of work already completed the effects of the
alterations of vaccine effectiveness can be accurately assessed.

CONCLUSION

This review has identified that, in over 70 years of vaccine
research, withmany advances in techniques and knowledge of the
target species, no single antigen type or target, adjuvant, or route
of administration has been established as a clear front-runner
for effective vaccination. Extensive mouse model trials indicate
that whole cell antigenic targets induce an effective response,
protecting from disease and reducing shedding rates. However,
replication of these results using more commercially acceptable
antigenic preparations has proven difficult. Bothmouse and koala
trials indicate that MOMP is a highly recognized antigenic target
and is a suitable substitute for whole cell targets. However, if
MOMP is not combined with an appropriate adjuvant, it is
ineffective. There is also evidence indicating a combined systemic
and mucosal vaccine delivery is very effective, however, this is
likely to depend on the target species, host and adjuvant used.
Mouse model trials have been important in understanding the

humoral and cellular immune responses required for an effective
chlamydial vaccine, unfortunately replication of these responses
has failed in larger animals including humans. These failures
are likely due to the inherent differences in chlamydial – host
interactions, such as IFNγ induction of p47 GTPase in mice and
IDO in humans (Bonner et al., 2014).

With future trials utilizing closer related host species (i.e.,
non-human primates) with focus on the differences in these
interactions and specific adjuvant combinations, it is plausible
that an effective human vaccine is possible. With the first human
phase 1 clinical trials currently underway, this establishes a major
milestone for chlamydial vaccine development and will provide
answers to many questions related to the effectiveness of the
vaccine within the intended host.
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