Several Differentiation Formulas of Special Functions. Part IV

Bo Li
Qingdao University of Science and Technology
China

Peng Wang
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we give several differentiation formulas of special and composite functions including trigonometric function, polynomial function and logarithmic function.

MML identifier: FDIFF_8, version: 7.8.03 4.75.958

The notation and terminology used here are introduced in the following papers: [13], [15], [1], [16], [2], [4], [10], [11], [17], [5], [14], [12], [3], [7], [6], [9], and [8].

For simplicity, we adopt the following convention: x, a, b, c denote real numbers, n denotes a natural number, Z denotes an open subset of \mathbb{R}, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

Next we state a number of propositions:
(1) If $x \in \operatorname{dom}($ the function $\tan)$, then (the function $\cos)(x) \neq 0$.
(2) If $x \in \operatorname{dom}($ the function $\cot)$, then (the function $\sin)(x) \neq 0$.
(3) If $Z \subseteq \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)$, then for every x such that $x \in Z$ holds $\left(\frac{f_{1}}{f_{2}}\right)(x)_{\mathbb{Z}}^{n}=\frac{f_{1}(x)_{\mathbb{Z}}^{n}}{f_{2}(x)_{\mathbb{Z}}^{n}}$.
(4) Suppose $Z \subseteq \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)$ and for every x such that $x \in Z$ holds $f_{1}(x)=$ $x+a$ and $f_{2}(x)=x-b$. Then $\frac{f_{1}}{f_{2}}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{f_{1}}{f_{2}}\right)^{\prime}{ }_{Y}(x)=\frac{-a-b}{(x-b)^{2}}$.
(5) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=x$. Then (the function \ln) $\cdot \frac{1}{f}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left((\text { the function } \ln) \cdot \frac{1}{f}\right)_{Y Z}^{\prime}(x)=-\frac{1}{x}$.
(6) Suppose $Z \subseteq \operatorname{dom}(($ the function $\tan) \cdot f)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) (the function $\tan) \cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function tan) $\cdot f)^{\prime}{ }_{Y}(x)=$ $\frac{a}{\text { (the function } \cos)(a \cdot x+b)^{2}}$.
(7) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) $\cdot f)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) (the function cot) $\cdot f$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\cot) \cdot f)^{\prime}{ }_{Z}(x)=$ $-\frac{a}{\text { (the function } \sin)(a \cdot x+b)^{2}}$.
(8) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan) \cdot \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) (the function $\tan) \cdot \frac{1}{f}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\left.\tan) \cdot \frac{1}{f}\right)^{\prime}{ }_{Y}(x)=$ $-\frac{1}{\left.x^{2} \text {.(the function } \cos \right)\left(\frac{1}{x}\right)^{2}}$.
(9) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function cot $\left.) \cdot \frac{1}{f}\right)$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) (the function cot) $\cdot \frac{1}{f}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function cot) $\left.\cdot \frac{1}{f}\right)^{\prime}{ }_{Y}(x)=$ $\frac{1}{\left.x^{2} \text {.(the function } \sin \right)\left(\frac{1}{x}\right)^{2}}$.
(10) Suppose $Z \subseteq \operatorname{dom}\left(\left(\right.\right.$ the function tan) $\left.\cdot\left(f_{1}+c f_{2}\right)\right)$ and $f_{2}={ }_{\mathbb{Z}}^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+b \cdot x$. Then
(i) (the function tan) $\cdot\left(f_{1}+c f_{2}\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left((\text { the function } \tan) \cdot\left(f_{1}+c f_{2}\right)\right)_{Z}^{\prime}(x)=$ $\frac{b+2 \cdot c \cdot x}{\left(\text { the function cos) }\left(a+b \cdot x+c \cdot x^{2}\right)^{2}\right.}$.
(11) Suppose $Z \subseteq \operatorname{dom}\left(\left(\right.\right.$ the function cot) $\left.\cdot\left(f_{1}+c f_{2}\right)\right)$ and $f_{2}=\frac{2}{\mathbb{Z}}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+b \cdot x$. Then
(i) (the function cot) $\cdot\left(f_{1}+c f_{2}\right)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function cot) $\left.\cdot\left(f_{1}+c f_{2}\right)\right)^{\prime}{ }_{Z}^{\prime}(x)=$ $-\frac{b+2 \cdot c \cdot x}{(\text { the function } \sin)\left(a+b \cdot x+c \cdot x^{2}\right)^{2}}$.
(12) Suppose $Z \subseteq \operatorname{dom}(($ the function $\tan) \cdot($ the function $\exp))$. Then
(i) (the function $\tan) \cdot($ the function \exp) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \tan) (the function $\exp))^{\prime}(x)=\frac{(\text { the function } \exp)(x)}{(\text { the function cos) (the function exp)(x) })^{2}}$.
(13) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) $\cdot($ the function $\exp))$. Then
(i) (the function cot) •(the function \exp) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function cot) •(the function $\exp))^{\prime}{ }_{Z}(x)=-\frac{(\text { the function } \exp)(x)}{(\text { the function sin) })(\text { (the function } \exp)(x))^{2}}$.
(14) Suppose $Z \subseteq \operatorname{dom}(($ the function $\tan) \cdot($ the function $\ln))$. Then
(i) (the function $\tan) \cdot($ the function \ln) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function tan) •(the function $\ln))^{\prime}{ }^{\prime}(x)=\frac{1}{x \cdot(\text { the function } \cos)((\text { the function } \ln)(x))^{2}}$.
(15) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) $\cdot($ the function $\ln))$. Then
(i) (the function cot) • (the function \ln) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function cot) \cdot (the function $\ln))^{{ }_{\gamma}}(x)=-\frac{1}{x \cdot(\text { the function } \sin)((\text { the function } \ln)(x))^{2}}$.
(16) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot($ the function tan $))$. Then
(i) (the function $\exp) \cdot($ the function $\tan)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\exp)$ •(the function $\tan))^{\prime}{ }_{Z}(x)=\frac{(\text { the function } \exp)((\text { the function } \tan)(x))}{\text { (the function } \cos)(x)^{2}}$.
(17) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot($ the function cot $))$. Then
(i) (the function $\exp) \cdot($ the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\exp) \cdot$ (the function $\cot))^{\dagger}(x)=-\frac{\text { (the function exp) }(\text { (the function } \cot)(x))}{\text { (the function sin) }(x)^{2}}$.
(18) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function $\tan))$. Then
(i) (the function \ln) •(the function $\tan)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\ln) \cdot($ the function $\tan))^{\prime}{ }^{\prime}(x)=\frac{1}{(\text { the function } \cos)(x) \cdot(\text { the function } \sin)(x)}$.
(19) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function cot $))$. Then
(i) (the function $\ln) \cdot($ the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\ln) \cdot($ the function $\cot))^{\prime}{ }_{Z}(x)=-\frac{1}{(\text { the function sin) }(x) \cdot(\text { the function } \cos)(x)}$.
(20) Suppose $Z \subseteq \operatorname{dom}\left(\left(_{\mathbb{Z}}^{n}\right) \cdot(\right.$ the function $\left.\tan)\right)$ and $1 \leq n$. Then
(i) $\binom{n}{\mathbb{Z}} \cdot($ the function $\tan)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\binom{n}{\mathbb{Z}} \cdot(\text { the function } \tan)\right)^{\prime}{ }_{Z}(x)=$ $\frac{n \cdot(\text { the function } \sin)(x)_{\mathbb{Z}}^{n-1}}{\text { (the function } \cos)(x)_{\mathbb{Z}}^{n+1}}$.
(21) Suppose $Z \subseteq \operatorname{dom}((\underset{\mathbb{Z}}{n}) \cdot($ the function cot) $)$ and $1 \leq n$. Then
(i) $\binom{n}{\mathbb{Z}} \cdot($ the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(\begin{array}{l}\mathbb{Z}\end{array}\right) \cdot(\text { the function } \cot)\right)^{\prime}{ }_{Z}(x)=$ $-\frac{n \cdot(\text { the function } \cos)(x)_{\mathbb{Z}}^{n-1}}{(\text { the function } \sin)(x)_{\mathbb{Z}}^{n+1}}$.
(22) Suppose that
(i) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan)+\frac{1}{\text { the function cos }}\right)$, and
(ii) for every x such that $x \in Z$ holds $1+($ the function $\sin)(x) \neq 0$ and $1-($ the function $\sin)(x) \neq 0$.
Then
(iii) (the function $\tan)+\frac{1}{\text { the function cos }}$ is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds $\left((\text { the function } \tan)+\frac{1}{\text { the function } \cos }\right)^{\prime}{ }_{Y}(x)=$ $\frac{1}{1-(\text { the function } \sin)(x)}$.
(23) Suppose that
(i) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan)-\frac{1}{\text { the function cos }}\right)$, and
(ii) for every x such that $x \in Z$ holds $1-$ (the function $\sin)(x) \neq 0$ and $1+($ the function $\sin)(x) \neq 0$.
Then
(iii) (the function \tan) $-\frac{1}{\text { the function cos }}$ is differentiable on Z, and
(iv) for every x such that $x \in Z$ holds $\left((\text { the function } \tan)-\frac{1}{\text { the function cos }}\right)^{\prime}{ }_{Z}(x)=$ $\frac{1}{1+(\text { the } \text { function } \sin)(x)}$.
(24) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan)-\mathrm{id}_{Z}\right)$. Then
(i) (the function $\tan)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function $\left.\tan)-\mathrm{id}_{Z}\right)_{\mid Z}^{\prime}(x)=$ $\frac{(\text { the function } \sin)(x)^{2}}{(\text { the }}$.
(25) Suppose $Z \subseteq \operatorname{dom}\left(-\right.$ the function $\left.\cot -\mathrm{id}_{Z}\right)$. Then
(i) -the function $\cot -\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-the function $\left.\cot -\operatorname{id}_{Z}\right)_{\mid Z}^{\prime}(x)=$ $\frac{(\text { the function } \cos)(x)^{2}}{(\text { the function } \sin)(x)^{2}}$.
(26) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{a}((\right.$ the function $\left.\tan) \cdot f)-\operatorname{id}_{Z}\right)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x$ and $a \neq 0$. Then
(i) $\frac{1}{a}(($ the function $\tan) \cdot f)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{a}((\right.$ the function tan $) \cdot f)-$ $\left.\mathrm{id}_{Z}\right)^{\prime}{ }_{Y}(x)=\frac{(\text { the function } \sin)(a \cdot x)^{2}}{(\text { (the function } \cos)(a \cdot x)^{2}}$.
(27) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{a}\right)((\right.$ the function $\left.\cot) \cdot f)-\operatorname{id}_{Z}\right)$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x$ and $a \neq 0$. Then
(i) $\quad\left(-\frac{1}{a}\right)(($ the function cot $) \cdot f)-\mathrm{id}_{Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\frac{1}{a}\right)((\right.$ the function $\cot) \cdot f)-$ $\left.\operatorname{id}_{Z}\right)^{\prime}{ }_{Y}(x)=\frac{(\text { the function } \cos)(a \cdot x)^{2}}{\text { (the function sin) }(a \cdot x)^{2}}$.
(28) Suppose $Z \subseteq \operatorname{dom}(f$ (the function $\tan))$ and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) $\quad f$ (the function \tan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(f(\text { the function } \tan))^{\prime}{ }_{Y}(x)=$ $\frac{a \cdot(\text { the function } \sin)(x)}{\text { (the function } \cos)(x)}+\frac{a \cdot x+b}{(\text { the function } \cos)(x)^{2}}$.
(29) Suppose $Z \subseteq \operatorname{dom}(f$ (the function cot)) and for every x such that $x \in Z$ holds $f(x)=a \cdot x+b$. Then
(i) f (the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(f$ (the function $\cot))^{\prime}{ }_{Z}(x)=$ $\frac{a \cdot(\text { the } \text { function } \cos)(x)}{(\text { the function } \sin)(x)}-\frac{a \cdot x+b}{(\text { the function } \sin)(x)^{2}}$.
(30) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp)$ (the function tan)). Then
(i) (the function \exp) (the function \tan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function exp) (the function $\tan))_{\mid Z}^{\prime}(x)=\frac{(\text { the function exp })(x) \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)}+\frac{\text { (the function } \exp)(x)}{\left(\text { the function cos) }(x)^{2}\right.}$.
(31) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp)$ (the function cot)). Then
(i) (the function \exp) (the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function exp) (the function $\cot))^{\prime}(x)=\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)}-\frac{(\text { the function } \exp)(x)}{(\text { the function } \sin)(x)^{2}}$.
(32) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function $\tan)$). Then
(i) (the function \ln) (the function \tan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \ln) (the function $\tan))^{\prime}(x)=\frac{\frac{(\text { the function } \sin)(x)}{(\text { (the function } \cos)(x)}}{x}+\frac{(\text { the function } \ln)(x)}{(\text { the function } \cos)(x)^{2}}$.
(33) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function cot)). Then
(i) (the function \ln) (the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function \ln) (the function $\cot))^{\prime}(x)=\frac{\frac{(\text { the function } \cos)(x)}{(\text { the function sin) })(x)}}{x}-\frac{(\text { the function } \ln)(x)}{(\text { the function } \sin)(x)^{2}}$.
(34) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f}\right.$ (the function $\left.\left.\tan \right)\right)$ and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) $\frac{1}{f}$ (the function \tan) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{f}(\text { the function } \tan)\right)^{\prime}{ }_{Z}(x)=$ $-\frac{\frac{(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)}}{x^{2}}+\frac{\frac{1}{x}}{(\text { the function } \cos)(x)^{2}}$.
(35) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{f}\right.$ (the function cot)) and for every x such that $x \in Z$ holds $f(x)=x$. Then
(i) $\frac{1}{f}$ (the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\frac{1}{f}(\text { the function } \cot)\right)^{\prime}{ }_{Y}(x)=$ $-\frac{\frac{(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)}}{x^{2}}-\frac{\frac{1}{x}}{(\text { the function } \sin)(x)^{2}}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[7] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received September 29, 2006

