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Abstract

Mathematical models for multilayer sandwich plates consisting of alternating stiff
and compliant layers are derived. Two main types of models are described. First an
initial model (analogous to the three-layer Rao-Nakra model) is derived under Kirch-
hoff plate assumptions for the stiff layers and Mindlin shear-deformable displacement
assumptions for the compliant layers. The second type of model can be obtained from
the original model by dropping the in-plane and rotational inertia. The resulting model
is a generalization of the well-known model of Mead and Markus. Well-posedness and
continuous parameter dependence results are described. Some variations of the initial
model corresponding to thin compliant layers are described and shown to be regular
perturbations of the initial model.
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1 Introduction

Vibration of layered plate composites has been an area of considerable research over the
past fifty years due to the importance of layered composites in a wide range of industrial
and aerospace applications. Early on, it was found that plate models based upon the Kirch-
hoff hypothesis (that normal sections remain normal during deformation) gave acceptable
predictions only for very thin plates where the compliances of the layers are comparable.
(See Nosier and Reddy, [17] or Kapania and Raciti [10].) This is due to the fact that the
effects of shear become significant when the compliances of the layers differ greatly. In fact,
when a dissipative, compliant layer of an appropriate thickness is “sandwiched” between two
relatively stiff layers, significant damping due to the shear motions in the compliant layer
can be produced. This is often referred to as “constrained layer damping”.

The first investigations of the mechanics of constrained layer damping were due to Ross,
Unger, Kerwin [21] and Kerwin [9]. Their analysis of a sandwich beam consisting of two stiff
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face plates and a flexible core layer indicated that the dominant contribution to the flexural
damping was due the shear (as opposed to extension) and moreover, an optimal level of shear
damping in the compliant layer exists that leads to the best flexural damping (at a given
frequency). Later, a number of three-layer sandwich beam and plate models were derived
and the relationship between damping coefficients in the core layer and energy dissipation
was studied in greater detail; e.g., DiTaranto [2], Mead and Markus [14], Yan and Dowell
[23], Rao and Nakra [18], and others. (See Sun and Lu [22] for more background and further
references.)

The sandwich model of Mead and Markus [14] and independently of DiTaranto [2] is
perhaps the most well-known due to its simplicity and good agreement with experiment. In
the one-dimensional case, this model (henceforth the “Mead-Markus model” in this paper)
is based upon Euler-Bernoulli beam theory in the outer layers (ignoring longitudinal and
rotational inertia), while the central core layer only includes transverse inertia and resistance
to shear (i.e., longitudinal momentum, bending and extensional stresses are ignored in the
core). The three layers are assumed to be bonded perfectly so that no slip occurs and the
displacements are assumed to vary linearly in each layer, subject to the Kirchhoff hypothesis
in the outer layers. Furthermore, as is standard in most beam and plate theories, the
transverse normal stresses are assumed to be negligible.

The model of Rao and Nakra [18] is based upon similar displacement assumptions, how-
ever, all the inertial terms (in-plane and rotational) that are ignored in the Mead-Markus
model are included. The core layer includes shear stresses, but bending stresses are as-
sumed to be negligible. Rao and Nakra used a spectral analysis to compare their model
with the Mead-Markus model. This analysis provided some indication of when (in terms
of thicknesses, stiffnesses, frequencies, etc.,) it is necessary to include the rotational and
translational inertia in the modeling.

In this paper we derive multilayer generalizations of the Rao-Nakra model and the Mead-
Markus model consisting of alternating “stiff” and “compliant” layers. The multilayer Rao-
Nakra model is derived under the same type of a-priori displacement assumptions from
which the three-layer model is derived, namely Mindlin displacement assumptions for the
compliant layers and Kirchhoff displacement assumptions for the stiff layers. However, in
our formulation it is not necessary to neglect any of the membrane or bending stresses in
the compliant layers. The variational equations of motion are obtained through application
of Hamilton’s principle. A multilayer generalization of the Mead-Markus model is then
obtained from the multilayer Rao-Nakra model by omitting the dynamic terms that originate
from rotational and translational kinetic energy. We show that the resulting system has a
variational description. Existence and uniqueness results for each model are given.

One of the main goals of sandwich plate theory is to determine how damping in the
compliant layer influences the dynamic behavior of the whole plate. In the above mentioned
models for sandwich beams and plates, damping is treated by the so called “complex modu-
lus” method (see e.g., Jones, [8]) which assumes a periodic solution (and hence ignores initial
conditions). For the purposes of this paper, we assume a standard time-domain model for
damping so that a boundary value problem can be studied. For simplicity the case of linear
viscous damping in the compliant layers is assumed. (It is not difficult to adjust the system
to allow for more general viscoelastic damping.) In the case of the multilayer Rao-Nakra
model we show that damping due to shear in the compliant layers is mild enough so that
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the topology of the solution space is not changed.
In the modeling of layered plate systems, it is often unclear which forces can be safely

ignored and which must be included in the model. As a step toward addressing this issue
we prove a continuous parameter dependence result (Theorem 2.2) and identify two corre-
sponding regular perturbations that result in a simpler form of the system of equations. The
first, referred to as the “thin compliant layer model” is obtained by dropping all kinetic and
force terms except those due to shear stresses in the compliant layers. That this is a regular
perturbation lends justification to the modeling assumption used by Rao and Nakra [18],
where the bending stresses were assumed to be negligible in the compliant layer. The second
perturbation results in a model that can be viewed as a laminated plate model consisting of
some number of layers bonded together by a thin adhesive. This model is obtained from the
Rao-Nakra model by letting the thicknesses of the compliant layers tend to zero at a rate
proportional to the shear parameter of those layers. Some special cases of the laminated
plate with adhesive layers have been investigated in several papers [6], [5], [7].

We also mention that other approaches have been used to model multilayer beams and
plates with multiple damping layers; some numerical models and models for beams are
referenced in Sun and Lu [22] and an approach based on an analogy with classical three-
layer theory is described in [8]. In addition there are a huge number of models for laminated
plates which could potentially be used as a starting point for a multilayer sandwich plate
model (see, e.g., surveys articles by Noor and Burton [16], and Kapania and Raciti [10]).
Most of the laminate theories avoid treating each layer separately by averaging in various
ways the stresses and elastic moduli through the depth. For example, classical laminate
theory is based on Kirchhoff’s theory for a single layer plate using an averaged cross-sectional
stiffness; first-order shear deformation laminate theories are similarly based on the (single-
layer) Reissner [20], or Mindlin theory [15]. Higher-order theories have been developed that
allow for quadratic and cubic behavior of the displacement as a function of the depth variable.
In all of these approaches the number of equations is independent of the number of layers.

Laminate theories that treat each layer separately (the approach taken here) have been
referred to as discrete layer theories. (See [16].) This approach has the advantage of retaining
the geometry of the plate by allowing each layer to deform independent of other layers.
Although these models are more complicated in the sense that the number of equations
depends upon the number of layers, there is evidence that this approach leads to more
accurate predictions than other laminate theories. (See Noor and Burton [16] for comparisons
of several laminate theories to certain exact solutions.) Examples of dynamical discrete
layer models include Hansen [4], Green and Naghdi [3], Reddy [20]. The main modeling
difference here is that the Kirchhoff hypothesis is assumed to hold in the stiff layers due
to the sandwich plate assumption that the compliances of alternate layers differ by several
orders of magnitude.

This paper is organized as follows: In Section 2 we derive the multilayer Rao-Nakra plate
model and prove existence, uniqueness and continuous parameter dependence of solutions.
Some regular perturbations corresponding to thin adhesive layers of the initial model are
described in Section 3. In Section 4 the multilayer Mead-Markus model is described. In
Section 5 examples of some of the models described in this paper are written out in an
explicit form for the case of a 3-layer plate.

3



2 Derivation of multilayer Rao-Nakra plate model

In this section a multilayer version of the the Rao-Nakra sandwich plate model is derived.
Well-posedness results are proved for the associated variational equations of motion. This
model serves as a foundation for the derivation the other multilayer sandwich plate and
laminated plate models described in this paper.

2.1 Initial modeling assumptions

The multilayer plate is assumed to consist of n = 2m + 1 layers that occupy the region
Ω × (0, h) at equilibrium, where Ω is a smooth bounded domain in the plane. The total
thickness h is assumed to be small in comparison to the dimensions of Ω. The plate is
assumed to consist of alternating “stiff” and “compliant” plate layers, with stiff layers on
the top and bottom. The layers are indexed from 1 to n, with odd indices for stiff layers and
even indices for compliant layers.

It is assumed that (i) no slip occurs along the interfaces, (ii) within each layer the dis-
placements vary linearly as a function of the transverse variable x3, (iii) within each layer
the transverse displacements are constant with respect to x3, (iv) the Kirchhoff hypothesis
applies to the stiff layers, i.e., normal sections remain normal during deformation.

Once the conservative equations of motion are obtained, the effects of damping can be
included via the viscoelastic correspondence principle. Of particular interest is the case of
damping due to shear in the compliant layers. (This is considered the dominant source of
damping in most sandwich plate applications.)

Our derivation of the initial multilayer plate model is similar to the multilayer Reissner-
Mindlin model derived in Hansen, [4]. Here however, alternate layers are modeled under
Kirchhoff plate assumptions.

Let

0 = z0 < z1 < . . . < zn−1 < zn = h, hi = zi − zi−1, i = 1, 2, . . . , n.

We use the rectangular coordinates x = {x1, x2} to denote points in Ω and {x, x3} to denote
points in Q = ∪ni=1Qi, where Qi is the reference configuration of the ith layer given by

Qi = Ω × (zi−1, zi), i = 1, 2, . . . , n.

For {x, x3} ∈ Q let U(x, x3) = {U1, U2, U3}(x, x3) denote the displacement vector (from refer-
ence configuration) and define ui = {ui1, u

i
2} and ui3, i = 0, 1, 2, . . . n by uij(x) = Uj(x, zi) j =

1, 2, 3, ∀x ∈ Ω.
Throughout this paper the index i will refer to a particular layer or interface within the

composite plate. For vector quantities whose components vary from layer to layer, the index
i will be superscripted, while for scalar quantities the i will be subscripted.

Due to the assumption (iii) the transverse displacements ui3(x) are independent of i,
thus we may simply define the transverse displacement w(x) as the scalar function w(x) =
ui3(x), any i, x ∈ Ω. Due to the assumptions (i) and (ii), the displacement U(x, x3) can
be completely specified in terms of w, u0, . . . , un. For i = 1, 2, . . . , n define ψi = {ψi1, ψ

i
2},
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ϕi = {ϕi1, ϕ
i
2}, and vi = {vi1, v

1
2} by

ψi =
ui − ui−1

hi
, ϕi = ψi + ∇w, vi =

ui−1 + ui

2
. (2.1)

In addition, let u, ψ, v, ϕ denote the matrices with ith rows ui, ψi, vi, ϕi, respectively. The
components ψij of ψi can be viewed as the total rotation angles (with negative orientation) of
the deformed filament within the i-th layer in the xj-x3 plane. The components of ϕ represent
the (small angle approximation for the) shear angles within each layer. The components of
vi represent the in-plane displacements of the midplanes of the i-th layer.

A notation is needed to indicate the even and odd indexed rows of vector and matrix
quantities. Let ψE denote the matrix consisting of the even indexed rows of ψ, i.e, ψiE = ψ2i,
for i = 1, 2, . . .m. Analogously define the quantities ϕE, vE. Likewise define ψO, ϕO, vO, as
the matrix consisting of the odd-indexed rows of ψ, ϕ, v. As further notation is developed,
the same system regarding the subscripts O and E will be used.

Due to assumption (iv) regarding the Kirchhoff hypothesis, the odd components of ϕ
vanish. Thus from (2.1) we have the following equivalent equations:

ϕO = 0; ψO = −~1O∇w, (2.2)

where ~1O denotes the m+ 1-vector of 1’s. Similarly, with ~1E denoting the m-vector of 1’s,

ϕE = ψE +~1E∇w. (2.3)

Define ẑi = (zi−1+zi)/2. Under Mindlin displacement assumptions [15], the displacement
within the ith layer can be written as

U1(x, x3) = vi1(x) + (x3 − ẑi)ψ
i
1(x) zi−1 < x3 < zi

U2(x, x3) = vi2(x) + (x3 − ẑi)ψ
i
2(x) zi−1 < x3 < zi

U3(x, x3) = w(x) zi−1 < x3 < zi.
(2.4)

In the stiff layers (i odd) the above is adjusted by (2.2).
The displacement equations (2.2), (2.4) should be interpreted in terms of a minimal set

of state variables. Note that due to (2.2) the in-plane displacements U1 and U2 within the
stiff layers are completely determined by vO and ∇w. This in turn completely determines
the variables u, and consequently all other variables through the system of equations (2.1).
Therefore vO and w can be regarded as state variables and all other variables appearing in
(2.4) can be expressed in terms of these.

Let σjk, ǫjk (j, k = 1, 2, 3) denote the stress and strain tensors, respectively. Each layer is
assumed to be homogeneous and transversely isotropic, however the material properties can
vary from layer to layer. For the compliant layers we apply Mindlin constitutive assumptions,
while for the stiff layers Kirchhoff displacement assumptions are applied.

The Mindlin stress-strain assumptions are

σ11 = Ei

1−ν2

i

(ǫ11 + νiǫ22) σ12 = Ei

1+νi
ǫ12

σ22 = Ei

1−ν2

i

(νiǫ11 + ǫ22) σ13 = 2Giǫ13

σ33 = 0 σ23 = 2Giǫ23,

(2.5)
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where Ei > 0 denotes the in-plane Young’s modulus, Gi > 0 denotes the transverse shear
modulus, and νi denotes the in-plane Poisson’s ratio (0 < νi < 1/2), all for the ith layer.

For a small displacement theory it is assumed that

ǫjk(x) =
1

2

(

∂Uj(x)

∂xk
+
∂Uk(x)

∂xj

)

, ∀x ∈ Q. (2.6)

Substituting (2.4) into (2.6) gives an expression for the strain within the i-th layer:

ǫ11 =
∂vi

1

∂x1
+ (x3 − ẑi)

∂ψi
1

∂x1
ǫ22 =

∂vi
2

∂x2
+ (x3 − ẑi)

∂ψi
2

∂x2

ǫ12 = 1
2

[

∂vi
1

∂x2
+

∂vi
2

∂x1
+ (x3 − ẑi)

(

∂ψi
1

∂x2
+

∂ψi
2

∂x1

)]

ǫ13 = 1
2
(ϕi1) ǫ23 = 1

2
(ϕi2).

(2.7)

Since the stiff layers do not allow shear, (2.5) and (2.7) are adjusted in the odd layers by
setting

ǫ13 = ǫ23 = 0 in odd indexed layers. (2.8)

2.1.1 Expressions for potential and kinetic energy

The strain energy P =
∑n
i=1 Pi and kinetic energy K =

∑n
i=1 Ki for the composite plate are

given by

Pi =
1

2

∫

Qi

3
∑

j,k=1

ǫjkσjkdx dx3, Ki =
1

2

∫

Qi

ρi(U̇
2
1 + U̇2

2 + U̇2
3 )dx dx3,

where . = d/dt and ρi > 0 denotes the mass density per unit volume within the i-th layer.
From (2.5) and (2.7) the strain energy of the ith layer can be written as

Pi =
h3

i

2

∫

ΩDi

[

(

∂ψi
1

∂x1

)2

+
(

∂ψi
2

∂x2

)2

+ 2νi

(

∂ψi
2

∂x2

∂ψi
1

∂x1

)

+
(

1−νi

2

)

(

∂ψi
1

∂x2
+

∂ψi
2

∂x1

)2
]

dx

+hi

2

∫

Ω12Di

[

(

∂vi
1

∂x1

)2

+
(

∂vi
2

∂x2

)2

+ 2νi

(

∂vi
1

∂x1

∂vi
2

∂x2

)

+
(

1−νi

2

)

(

∂vi
1

∂x2
+

∂vi
2

∂x1

)2
]

+Gi((ϕ
i
1)

2 + (ϕi2)
2)dx

(2.9)

where Di = Ei/12(1− ν2
i ). Dih

3
i is the modulus of flexural rigidity for the ith layer and hiGi

is the modulus of elasticity in shear for the ith layer. For a stiff (odd-indexed) layer, the
shear vanishes and hence the last term in (2.9) is absent and ψO = −~1O∇w.

Likewise the kinetic energy of the ith layer is

Ki =
1

2

∫

Ω
ρihi(ẇ)2 +

ρih
3
i

12
|ψ̇i|2 + ρihi|v̇

i|2dx. (2.10)

Define the following n by n matrices:

h = diag (h1, h2, . . . , hn) D = diag (D1, D2, . . . , Dn)
p = diag (ρ1, ρ2, . . . , ρn) G = diag (G1, G2, . . . , Gn).
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If K represents a diagonal matrix, we let KO and KE represent the associated diagonal
matrices of odd-indexed and even-indexed diagonal elements, respectively.

If θ and ξ are matrices in Rlm, by θ · ξ we mean the scalar product in Rlm. We also
denote

(θ, ξ)Ω =
∫

Ω
θ · ξ dx, (θ, ξ)Γ =

∫

Γ
θ · ξ dΓ.

The expressions for the kinetic and potential energy can be rewritten as

K(t) = c̃(v̇, ψ̇, ẇ; v̇, ψ̇, ẇ)/2 P(t) = ã(v, ψ, ϕ; v, ψ, ϕ)/2

where c̃(· ; ·) and ã(· ; ·) denote the bilinear forms

c̃(ψ, v, w; ψ̂, v̂, ŵ) = ((h · p)w, ŵ)Ω + ((ph3/12)ψ, ψ̂)Ω + (hpv, v̂)Ω

ã(ψ, v, ϕ; ψ̂, v̂, ϕ̂) = ℓ(h3Dψ; ψ̂) + 12ℓ(hDv; v̂) + (Ghϕ, ϕ̂)Ω

ℓ(ψ, ψ̂) =
∑n
i=1 ℓ

i(ψi; ψ̂i)

ℓi(ψi; ψ̂i) =
(

∂ψi
1

∂x1
,
∂ψ̂i

1

∂x1

)

Ω
+
(

∂ψi
2

∂x2
,
∂ψ̂i

2

∂x2

)

Ω

+
(

νi
∂ψi

2

∂x2
,
∂ψ̂i

1

∂x1

)

Ω
+
(

νi
∂ψi

1

∂x1
,
∂ψ̂i

2

∂x2

)

Ω

+
(

(

1−νi

2

)

(

∂ψi
1

∂x2
+

∂ψi
2

∂x1

)

,
(

∂ψ̂i
1

∂x2
+

∂ψ̂i
2

∂x1

))

Ω
.

(2.11)

We can further decompose the energy as follows:

c̃(ψ, v, w; ψ̂, v̂, ŵ) = ((h · p)w, ŵ)Ω + cE(ψE, vE; ψ̂E, v̂E) + cO(ψO, vO; ψ̂O, v̂O)

ã(ψ, v, ϕ; ψ̂, v̂, ϕ̂) = aE(ψE, vE; ψ̂E, v̂E) + aO(ψO, vO; ψ̂O, v̂O) + (GEhEϕE, ϕ̂E)Ω

(2.12)

where

cE(ψE, vE; ψ̂E, v̂E) = (pEh3
EψE, ψ̂E)Ω/12 + (hEpEvE, v̂E)Ω

cO(ψO, vO; ψ̂O, v̂O) = (pOh3
OψO, ψ̂O)Ω/12 + (hOpOvO, v̂O)Ω

aO(ψO, vO; ψ̂O, v̂O) = ℓO(h3
ODOψO; ψ̂O) + 12ℓO(hODOvO; v̂O)

aE(ψE, vE; ψ̂E, v̂E) = ℓE(h3
EDEψE; ψ̂E) + 12ℓE(hEDEvE; v̂E)

and the forms ℓO and ℓE are defined by the natural decomposition:

ℓ(ψ; ψ̂) = ℓO(ψO; ψ̂O) + ℓE(ψE; ψ̂E).

Using the relations (2.1), (2.2), (2.4) one can solve for vE, ψE, ϕE in terms of vO, ∇w:

vE = AvO + 1
4
BhO~1O∇w

hEψE = BvO + AhO~1O∇w

ϕE = ψE +~1E∇w = h−1
E BvO + ~N∇w,

(2.13)

where ~N = h−1
E AhO~1O + ~1E and where A = (aij), B = (bij) are the m× (m+ 1) matrices

defined by

aij =

{

1/2 if j = i or j = i+ 1
0 otherwise

bij =

{

(−1)i+j+1 if j = i or j = i+ 1
0 otherwise.
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Now define the forms a and c by

a(vO, w; v̂O, ŵ) = ã(ψ, v, ϕ; ψ̂, v̂, ϕ̂)

c(vO, w; v̂O, ŵ) = c̃(ψ, v, w; ψ̂, v̂, ŵ)

where the variables on the right hand side are expressed using (2.13) in terms of vO, w and
v̂O, ŵ. For example, the form c explicitly becomes

c(vO, w; v̂O, ŵ) = (p · hw, ŵ)Ω + cO(−~1O∇w, vO;−~1O∇ŵ, v̂O)+

cE(h−1
E (BvO + AhO~1O∇w), AvO +

1

4
BhO~1O∇w;

h−1
E (Bv̂O + AhO~1O∇ŵ), Av̂O +

1

4
BhO~1O∇ŵ)

= (p · hw, ŵ)Ω + (
1

12
pEhE(BvO + AhO~1O∇w), (Bv̂O + AhO~1O∇ŵ))Ω

+(pEhE(AvO +
1

4
BhO~1O∇w), (Av̂O +

1

4
BhO~1O∇ŵ))Ω

+(
1

12
pOhO(−~1O∇w), (−~1O∇ŵ))Ω + (hOpOvO, v̂O)Ω. (2.14)

2.1.2 Applied forces, expression for work

In order to write down an equation of motion some boundary conditions need to be specified.
To set ideas we suppose that the plate is clamped on a portion of its boundary Γ0 ⊂ Γ of
positive measure. This means w, its normal derivative ∂w

∂n
and v are assumed to vanish on

Γ0. Let Γ1 = Γ − Γ0 denote the free portion of the boundary.
Suppose the composite plate is subject to a volume distribution of forces F = (f̃1, f̃2, f̃3)

and a surface distribution of forces G = (g̃1, g̃2, g̃3) along Γ1. For consistency with the
assumption that the transverse normal stresses vanish it is appropriate to assume that f̃3

and g̃3 are independent of x3. Furthermore for consistency with the Kirchhoff hypothesis
(i.e, that transverse shear strains vanish) it is appropriate to assume that f̃1 and f̃2 are
independent of x3 in the odd layers. Thus at the cost of possibly neglecting force moments
within the even layers, we assume for simplicity that F and g̃3 are independent of x3.

The work done on the plate by transverse forces is

Wtrans =
∫

Ω
wf3 dx+

∫

Γ1

wg3 dΓ,

where (with t suppressed) f3(x1, x2) =
∫ h
0 f̃3 dx3; and g3(x1, x2) =

∫ h
0 g̃3 dx3.

Next let f i(x1, x2), g
i(x1, x2) and mi(x1, x2) be the resultants

f i =
∫ zi

zi−1

(f̃1, f̃2) dx3, gi =
∫ zi

zi−1

(g̃1, g̃2) dx3, mi =
∫ zi

zi−1

(g̃1, g̃2)(x3 − ẑi) dx3.

Define f and g to be the matrices with ith rows f i and gi, respectively. In addition let fO, fE
denote the corresponding matrices containing only the odd and even rows of f , respectively.
Define the other force matrices gO, gE, mE and mO in a likewise manner.

8



The work due to in-plane forces within the odd layers is given by

WO =
∫

Ω
vO · fO dx+

∫

Γ1

−~1O∇w ·mO + vO · gO dΓ.

A similar expression exists for the work on the even layers:

WE =
∫

Ω
vE · fE dx+

∫

Γ1

ψE ·mE + vE · gE dΓ.

However, using (2.13) WE can be expressed in the same form as WO. Hence, by renaming
fO, mO, and gO, the contribution from WE may be included in the expression for WO.

When the work due to transverse forces is included, the total work done by external
forces is expressed as

W(vO, w)(t) =
∫

Ω
wf3 + vO · fO dx+

∫

Γ1

wg3 −∇Ow ·m+ vO · gO ds

=
∫

Ω
wf3 + vO · fO dx+

∫

Γ1

wg3 − wnMn − wτMτ + vO · gO ds

= (f3, w)Ω + (fO, vO)Ω

+
∫

Γ1

gOvO −Mnwn + (g3 +
∂Mτ

∂τ
)w ds (2.15)

where
M =

∑

i odd

mi, Mτ = M · ~τ , Mn = M · ~n (2.16)

with ~n = (n1, n2) being the normal vector to Γ and ~τ = (−n2, n1) the tangent vector. In the
second line of (2.15) we have written ∇w = wn~n+wτ~τ , (normal and tangential components)
and have integrated Mτ by parts on Γ1 to obtain the last equality in (2.18).

Let us redefine g3 to include the term next to it in (2.15):

[g3]new = [g3 +
∂Mτ

∂τ
]old. (2.17)

This way the total work done by external forces can be written as:

W(vO, w)(t) = (f3, w)Ω + (fO, vO)Ω +
∫

Γ1

gOvO −Mnwn + g3w ds (2.18)

2.1.3 Weak form of equations of motion

The Lagrangian L on (0, T ) is defined by

L =
∫ T

0
K(t) + W(t) − P(t)dt

=
∫ T

0

1

2
(c(v̇O, ẇ; v̇O, ẇ) − a(vO, w; vO, w)) + W(vO, w) dt

According to the principle of virtual work, the solution trajectory is the trajectory which
renders stationary the Lagrangian under all kinematically admissible displacements.
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Let {v̂O, ŵ} denote a test function on Ω × (0, T ) (with dimensionality matching that of
{vO, w}) for which {v̂O, ŵ} = {∂v̂O

∂n
, ∂ŵ
∂n
} = 0 on Γ0 × (0, T ) and

{v̂O, ŵ}|t=0 =
∂

∂t
{v̂O, ŵ}|t=0 = {v̂O, ŵ}|t=T =

∂

∂t
{v̂O, ŵ}|t=T = 0 in Ω

where n is the outward unit normal to Γ. We set

0 = lim
ǫ→0

L ((vO, w) + ǫ(v̂O, ŵ)) − L(vO, w)

ǫ

to obtain the equations of motion in weak form:

∫ T
0 c
(

v̇O, ẇ; ˙̂vO, ˙̂w
)

− a (vO, w; v̂O, ŵ) −W(v̂O, ŵ) dt = 0. (2.19)

2.2 Existence, uniqueness, continuous parameter dependence

We first consider the variational formulation of the initial/boundary value problem.
Define the spaces

H1
Γ0

= {ϕ : ϕ ∈ H1(Ω), ϕ = 0 on Γ0}
H2

Γ0
= {ϕ ∈ H1

Γ0
: ∂
∂xi
ϕ ∈ H1

Γ0
, i = 1, 2}

L2
O(Ω) = {vO = (vij), i = 1, 3, 5, . . . n, j = 1, 2 : vij ∈ L2(Ω)}
H1
O,Γ0

= {vO ∈ L2
O(Ω) : vij ∈ H1

Γ0
, vO = 0 on Γ0}

L2
E(Ω) = {φE = (φij), i = 2, 4, . . . 2m, j = 1, 2 : φij ∈ L2(Ω)}
H1
E,Γ0

= {φE ∈ L2
E(Ω) : φij ∈ H1

Γ0
, φE = 0 on Γ0}.

The energy space is V ×H, where

V = {{vO, w} ∈ H1
O,Γ0

×H2
Γ0
}, H = L2

O(Ω) ×H1
Γ0
.

The variational formulation of the IBVP (initial boundary value problem) is:
VP1: Find y = {vO, w} such that

y ∈ C([0, T ],V) ∩ C1([0, T ],H) (2.20)

c(ÿ; ŷ) + a(y; ŷ) = W(ŷ) ∀ ŷ = {v̂O, ŵ} ∈ V (2.21)

(in the sense of distributions on (0, T ))

y |t=0= y0 given in V , ẏ |t=0= y1 given in H (2.22)

The forces {fO, f3, gO, g3,Mn} that define W are assumed to be in the class L2 in time
and space (on (0, T )×Ω for fO, f3 and (0, T )×Γ for the others). The parameters that define
the forms a and c are assumed to satisfy the following: the thicknesses hi and Poisson’s
ratios νi are assumed to be positive constants (with νi < 1/2), the densities ρi and shear
moduli Gi are assumed to be continuous on Ω̄ and the stiffnesses Di are assumed to be C1

on Ω̄ for i = 1, . . . n. For simplicity all coefficients are assumed to be time-independent.
Let a(·), c(·) denote the (nonnegative) quadratic forms associated with the bilinear forms

a and c; e.g., a(u,w) = a(u,w;u,w).
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Lemma 2.1 Assume (in addition to the conditions described for VP1) that all coefficients
appearing in the definition of the forms a and c are nonnegative and those corresponding
to odd layers are positive. Then the bilinear forms a(· ; ·) and c(· ; ·) are symmetric and
continuous on V × V and H ×H, respectively. Furthermore there exist δ > 0, independent
of all coefficients within even layers, for which

a(vO, w) ≥ δ‖{vO, w}‖
2
V

∀{vO, w} ∈ V

c(vO, w) ≥ δ‖{vO, w}‖
2
H

∀{vO, w} ∈ H.

Proof: It is easy to see that both bilinear forms a and c are symmetric. Furthermore c(· ; ·)
is continuous on H×H since it is a composition of continuous functions. Likewise a(· ; ·) is
easily seen to be continuous on V × V . From inspection of (2.14) we see that

c(vO, w) ≥ (h · pw,w)Ω + (pOh3
O
~1O∇w,~1O∇w)Ω + (pOhOvO, vO)Ω

≥ δ{‖w‖2
H1(Ω) + ‖vO‖

2
L2

O
(Ω)} = δ‖{vO, w}‖

2
H
.

Thus the estimate for c(vO, w) is valid.
If ψi ∈ H1

Γ0
, Poincaré’s inequality together with Korn’s inequality (see e.g., Lagnese and

Lions [12]; pp. 44–47) implies the coercivity:

ℓi(ψi;ψi) ≥ C‖ψi‖2
H1(Ω) ∀ψi ∈ H1

Γ0

where C > 0 and i represents an odd layer. It follows that (using a different C > 0)

ℓO(ψO;ψO) ≥ C‖ψO‖
2
H1

O,Γ0

∀ψO ∈ H1
O,Γ0

.

Since w and ∂w
∂n

vanish on Γ0, ∇w must also vanish on Γ0. Hence Poincaré’s inequality gives

ℓO(~1O∇w;~1O∇w) ≥ C‖~1O∇w‖
2
H1

O,Γ0

≥ C‖w‖2
H2 ∀w ∈ H2

Γ0

where C > 0. Thus for some δ1 > 0 and δ > 0

a(vO, w) ≥ aO(−~1O∇w, vO)

= ℓO(h3
ODO

~1O∇w;~1O∇w) + 12ℓO(hODOvO; vO)

= ℓO(h
3/2
O D

1/2
O
~1O∇w;h

3/2
O D

1/2
O
~1O∇w) + 12ℓO(h

1/2
O D

1/2
O vO;h

1/2
O D

1/2
O vO)

≥ δ1‖{D
1/2
O h

1/2
O vo,D

3/2
O h

1/2
O w}‖2

V

≥ δ‖{vo, w}‖2
V
.

Thus the first inequality of the lemma also holds. ✷

Lemma 2.2 Assume in addition to the hypothesis of Lemma 2.1 that the diagonal elements
of h−1

E GE lie in a fixed bounded set Q ⊂ C(Ω̄,Rm). Then there exist M > 0, independent
of all coefficients within even layers (but depending upon Q), for which

a(v, w) ≤M‖{v, w}‖2
V

∀{v, w} ∈ V

c(v, w) ≤M‖{v, w}‖2
H

∀{v, w} ∈ H.

11



Proof: From inspection of the energy terms cE, cO, aE and aO and the expression for ψE
in (2.13) it is clear that the only possible difficulty in bounding the energies is when hE
becomes singular. All terms in cE, cO, aE and aO that contain a ψE also have an h3

E which
is more than enough to prevent a problem as an even-indexed thickness in hE tends to zero.
The only other possible problem is the shear term (GEhEϕE, ϕ̂E)Ω. By (2.13) we have

ϕE = ψE +~1E∇w

= h−1
E BvO + h−1

E AhO~1O∇w +~1E∇w. (2.23)

Thus as h−1
E becomes unbounded, so does ϕE. On the other hand, when h−1

E GE remains
bounded,

(GEhEϕE, ϕE)Ω = ((GEh−1
E )hEϕE,hEϕE)Ω

≤ C((vO, vO)Ω + (∇w,∇w)Ω)

≤ C‖{vO, w}‖
2
V
, ∀{vO, w} ∈ V ,

where again C is a positive constant. This completes the proof. ✷

Theorem 2.1 Assume the coefficients satisfy the hypothesis of Lemma 2.1. Then the varia-
tional problem VP1 is well-set; i.e, there is a unique y = {vO, w} that satisfies (2.20)–(2.22).

For simplicity the following result is stated for the case of constant coefficients in the
even layers, but a similar result could be worded and proved the same way for coefficients
with the regularity of Lemmas 2.1, 2.2.

Let Qα denote the space of nonnegative parameters appearing as the diagonal elements
of the matrices {hE,pE,GE,DE} ⊂ R4m, such that ‖diag (h−1

E GE)‖Rm ≤ α.

Theorem 2.2 Assume the coefficients satisfy the hypothesis of Theorem 2.1 and for some
α > 0 the even coefficients belong to Qα. Let Pǫ → P0 in Qα. Then given any T > 0, for fixed
initial conditions and no applied forces, the corresponding solutions {yǫ, ẏǫ} converge to a
solution {y0, ẏ0} to the variational problem with parameters P0 in the space L2((0, T );V×H).

Proof: It is enough to show that solutions vary continuously with respect to a single pa-
rameter ǫ (e.g., ǫ := D2 or ǫ = ρ4, etc.,) as ǫ → 0. For each ǫ ∈ [0, 1] the corresponding
variational problems are: Find yǫ = {vǫO, w

ǫ} such that

y ∈ C([0, T ],V) ∩ C1([0, T ],H) (2.24)

cǫ(ÿǫ; ŷ) + aǫ(yǫ; ŷ) = 0 ∀ ŷ = {v̂O, ŵ} ∈ V (2.25)

{yǫ, ẏǫ} |t=0= {Y 0, Y 1} given in V ×H (2.26)

Let X denote the Hilbert space L2((0, T ),V ×H). For {φ, ψ} in V ×H define ‖{φ, ψ}‖2
Eǫ =

aǫ(φ;φ) + cǫ(ψ;ψ). Due to the uniform estimates in Lemmas 2.1 and 2.2, for ǫ ∈ [0, 1], the
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energy norm ‖ · ‖Eǫ is equivalent to ‖ · ‖V×H. Therefore, instead of the standard norm for X,
we may define for {φ, φ̇} ∈ X,

‖{φ, φ̇}‖X = (
∫ T

0
‖{φ, φ̇}‖2

E0 dt)1/2.

Using conservation of energy and the previously mentioned equivalence of energy norms, the
solutions satisfy

‖{yǫ, ẏǫ}‖X ≤ C‖{Y 0, Y 1}‖V×H,

where C is independent of ǫ ∈ (0, 1). Since X is a Hilbert space, a weakly convergent
subsequence can be extracted so that {yǫk , ẏǫk} → {ȳ, ˙̄y} (weakly) in X. The continuity of c
and a in Lemma 2.1 implies that {ȳ, ˙̄y} are solutions of the limiting variational problem. Thus
by uniqueness of solutions, ȳ = y0. If one assumes that {yǫ, ẏǫ} does not converge weakly
to {y0, ẏ0} then there exists {W, Ẇ} ∈ X so that a subsequence < {yǫj , ẏǫj}, {W, Ẇ} >X→
K 6=< {y, ẏ}, {W, Ẇ} >X . But this is impossible since one can take a subsequence of this
subsequence, if necessary, to obtain that < {yǫj , ẏǫj}, {W, Ẇ} >X→< {y0, ẏ0}, {W, Ẇ} >X .
Thus {yǫ, ẏǫ} converges weakly to {y0, ẏ0}.

Let Eǫ(t) = aǫ(yǫ; yǫ)+cǫ(ẏǫ; ẏǫ). From conservation of energy we know that for ǫ ∈ [0, 1],
∫ T
0 Eǫ(t) dt = TEǫ(0). Furthermore

Eǫ(0) = aǫ(Y 0;Y 0) + cǫ(Y 1;Y 1) → a0(Y 0;Y 0) + c0(Y 1;Y 1) = E0(0).

Hence it follows that
∫ T

0
a0(yǫ; yǫ) + c0(ẏǫ; ẏǫ) dt→

∫ T

0
a0(y0; y0) + c0(ẏ0; ẏ0) dt, as ǫ→ 0.

Therefore ‖{yǫ, ẏǫ}‖X → ‖{y0, ẏ0}‖X and hence the strong convergence follows. ✷

2.3 Inclusion of damping

Damping may be introduced into any of the plate layers by replacing the stress-strain relation
(2.2) by an appropriate dissipative constitutive law. In the case of strain-rate damping, the
stresses depend not only on the strains, but also the strain rate, so that (2.5) is modified to

σ11 = E+Ẽ d/dt
1−ν2 (ǫ11 + νǫ22) σ12 = E+Ẽ d/dt

1+ν
ǫ12

σ22 = E+Ẽ d/dt
1−ν2 (νǫ11 + ǫ22) σ13 = 2(G+ G̃ d

dt
)ǫ13

σ33 = 0 σ23 = 2(G+ G̃ d
dt

)ǫ23.

(2.27)

where Ẽ and G̃ may depend upon i and are assumed to be nonnegative.
Of course, general viscoelastic could also be considered; see e.g., Lagnese and Lions [12].
By the viscoelastic correspondence principle (e.g., see [12]) the equations of motion are

given by simply replacing E and G by E+Ẽd/dt and G+G̃d/dt, respectively. The variational
equation of motion (2.21) is modified to

c (v̈O, ẅ; v̂O, ŵ) + b (v̇O, ẇ; v̂O, ŵ) + a (vO, w; v̂O, ŵ)

=
∫

Ω ŵf3 + v̂O · fO dx+
∫

Γ1
ŵg3 − ŵnMn + v̂O · gO ds (2.28)
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where the form b(· ; ·) is defined in an identical fashion as the way a(· ; ·) was defined, however,
with E and G replaced by Ẽ and G̃. (Of course, since D and G are defined in terms of E
and G, one also has to replace D and G by appropriate matrices, say D̃ and G̃, that are
defined accordingly.)

In order for the standard variational theory to apply, it is enough that the bilinear form
b(· ; ·) be symmetric, nonnegative and continuous on V × V. (See Lions and Magenes [13]
or Dautray and Lions [1].) However, this is automatic when the correspondence principle
is applied since b satisfies the same estimates as a. Hence, given an initial condition of the
form (2.22), there is a unique solution y = {vO, w} to (2.28) within an appropriate function
space.

In the case of shear damping, b in (2.28) is defined by

b({vO, w}, {v̂O, ŵ}) = (G̃EhEϕE, ϕ̂E)Ω ∀{v̂O, ŵ} ∈ H, (2.29)

where ϕE and ϕ̂E are related to {vO, w} and {v̂O, ŵ} (respectively) by (2.13).
Here it is easy to see that b(· ; ·) be symmetric, nonnegative and continuous on H ×H.

(This would not be true of damping which includes the extensional damping terms Ẽ in
(2.27).) In this case the function space of well-posedness remains the same as the undamped
case (see Dautray and Lions [1]). Therefore the following result holds.

Proposition 2.1 Given any y0 = {v0
O, w

0} ∈ V and any y1 = {v1
O, w

1} ∈ H there exists
a unique variational solution y = {vO, w} to (2.28) such that y(0) = y0, ẏ(0) = y1. More
precisely, the variational problem VP1, but with (2.21) replaced by the variational differential
equation (2.28)–(2.29) is well set.

3 Regular perturbations of initial model

In this section two perturbations of the multilayer Rao-Nakra system VP1 are described.
The first, which we call the thin compliant layer Rao-Nakra model is obtained by letting
ρE and DE tend to zero in the bilinear forms aE and cE. This approximation retains the
potential energy of shear and transverse kinetic energy for the compliant layers. The second
approximation can be viewed as a laminated plate with adjacent layers bonded together by
an infinitesimally thin adhesive. We obtain this model (henceforth, the laminated plate with
adhesive bonding, by letting GE and hE both tend to zero at a proportionate rate (in each
layer the rate can be different) in the thin compliant layer Rao-Nakra model.

In order to write out the associated boundary value problems some notation will be
needed. To keep thing simple, in this section it will be assumed that the stiffness Di and
Poisson’s ratios νi are constant (but can depend upon i). (This allows the strong form of
the equations of motion to take a slightly simpler from.)

3.1 Some notation for differential and boundary operators

Define for i = 1, 2, . . . n and sufficiently smooth φ = {φ1, φ2}(x) the operators Mi[φ] by

Mi[φ] =

(

ε11 + νiε22 (1 − νi)ε12

(1 − νi)ε12 νiε11 + ε22

)

; εjk(φ) =
1

2

(

∂φj
∂xk

+
∂φk
∂xj

)

.
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Thus Mi[φ] is a symmetric matrix for every x ∈ Ω.
We define the divergence of a symmetric matrix to be the divergence of each column:

div

(

a11 a12

a12 a22

)

=

{

div

(

a11

a12

)

, div

(

a12

a22

)}

.

Then
Liφ = {Li1φ, L

i
2φ} = div (Mi[φ]) (3.30)

defines a second order operator which is given explicitly by

Li1φ = ∂
∂x1

[(∂φ1

∂x1
+ νi

∂φ2

∂x2
)] + ∂

∂x2
[(1−νi

2
)(∂φ1

∂x2
+ ∂φ2

∂x1
)]

Li2φ = ∂
∂x2

[(∂φ2

∂x2
+ νi

∂φ1

∂x1
)] + ∂

∂x1
[(1−νi

2
)(∂φ2

∂x1
+ ∂φ1

∂x2
)].

Also define the boundary operators Biφ = {Bi1(φ1, φ2), (B
i
2(φ1, φ2)} by

Biφ = Mi[φ]~n, (3.31)

where n = (n1, n2) denotes the outward unit normal to Γ. Explicitly one has

Bi1(φ1, φ2) =
[(

∂φ1

∂x1
n1 + νi

∂φ2

∂x2
n1

)

+
(

1−νi

2

) (

∂φ1

∂x2
+ ∂φ2

∂x1

)

n2

]

Bi2(φ1, φ2) =
[(

∂φ2

∂x2
n2 + νi

∂φ1

∂x1
n2

)

+
(

1−νi

2

) (

∂φ2

∂x1
+ ∂φ1

∂x2

)

n1

]

.

The following Green’s formula is valid for all sufficiently smooth φ̂, φ:

ℓi(φ, φ̂) = (Biφ, φ̂)Γ − (Liφ, φ̂)Ω. (3.32)

For ξ = (ξij) (i = 1, 2, . . . , n, j = 1, 2) define the matrices Lξ and Bξ by

(Lξ)ij = (Lijξ
i), (Bξ)ij = (Bijξ

i), i = 1, 2, . . . , n, j = 1, 2.

Furthermore we define the operators LO, LE, BO, BE from L and B based upon the conven-
tion that O and E subscripts refer to the parts of the operators that act upon odd and even
rows respectively.

In particular, we will need Green’s formulas for the expressions ℓO(hODOvO, v̂O) and
ℓO(h3

ODO
~1O∇w,~1O∇ŵ). In the first case, using (3.32) we have

ℓO(hODOvO, v̂O) = (hODOBOvO, v̂O)Γ − (hODOLOvO, v̂O). (3.33)

In the latter case using (3.32) we obtain

ℓO(h3
ODO

~1O∇w,~1O∇ŵ) = (DOBOh3
O
~1O∇w,~1O∇ŵ)Γ1

− (LOh3
ODO

~1O∇w,~1O∇ŵ)Ω

= (~n ·~1TODOBOh3
O
~1O∇w, ŵn)Γ1

+ (div ~1TOLOh3
ODO

~1O∇w, ŵ)Ω

−(
∂

∂τ
{~τ ·~1TODOBOh3

O
~1O∇w} + (~1TOLOh3

ODO
~1O∇w) · ~n, ŵ)Γ1

where ~n is unit normal vector and ~τ is the unit tangent vector, and ∂
∂τ

refers to the derivative
of a scalar function in the direction of the tangent to Γ.
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Define the rigidity K and average Poisson’s ratio ν̄ by

K = ~1TODOh3
O
~1O =

∑

i odd

Dih
3
i , ν̄ =

∑

i odd

Dih
3
i νi/K. (3.34)

One can check (since Di and νi are constant here) that

divLi∇w = ∆2w, (~1TOLODOh3
O
~1O∇w) · ~n = K(∆w)n.

Now let B̄ denote the boundary operator defined as Bi in (3.31) (any i) with νi replaced
by ν̄. With this notation it follows that

ℓO(h3
ODO

~1O∇w,~1O∇ŵ) = K[(∆2w, ŵ)Ω + ((B̄∇w) · ~n, ŵn)Γ1

−( ∂
∂τ
{(B̄∇w) · ~τ} + (∆w)n, ŵ)Γ1

]. (3.35)

3.2 Thin compliant layer model

In the three-layer Mead-Markus model, the only energy accounted for in the compliant layer
is the potential energy due to shear and the transverse kinetic energy. The same can be
accomplished in the multilayer case by limiting to zero the coefficients DE and pE that
appear in the forms aE and cE in (2.12). The resulting thin compliant layer Rao-Nakra
retains the same existence and uniqueness properties that the multilayer Rao-Nakra models
does since the limit model satisfies the hypothesis of Theorem 2.1. Moreover, by Theorem
2.2 we know that this perturbation is regular in the sense that solutions to VP1 vary
continuously under this limit.

When pE → 0 we have

c(vO, w; v̂O, ŵ) = (h · pw, ŵ)Ω +
1

12
(pOh3

O
~∇Ow, ~∇Oŵ)Ω + (hOpOvO, v̂O)Ω

= (mw, ŵ)Ω + (α∇w,∇ŵ)Ω + (hOpOvO, v̂O)Ω (3.36)

where

m = h · p =
n
∑

i=1

hiρi, α =
1

12
~1TOpOh3

O
~1O =

1

12

n
∑

i odd

ρih
3
i . (3.37)

In this case the forms a and c become:

a(vO, w; v̂O, ŵ) = ℓO(h3
ODO

~1O∇w,~1O∇ŵ) + 12ℓO(hODOvO; v̂O) + (GEhEφE, φ̂E)Ω

c(vO, w; v̂O, ŵ) = (mw, ŵ)Ω + (α∇w,∇w)Ω + (hOpOvO, v̂O)Ω. (3.38)

Note that the only potential energy remaining associated with the even layers is the shear
energy term (GEhEφE, φ̂E).

The explicit formulation of the variational differential equation in (2.21) is

(mẅ, ŵ)Ω + α(∇ẅ,∇ŵ)Ω + (hOpOv̈O, v̂O)Ω + ℓO(h3
ODO

~1O∇w;~1O∇ŵ)

+12ℓO(hODOvO; v̂O) + (GEhEϕE,h
−1
E Bv̂O + ~N∇ŵ)

=
∫

Ω ŵf3 + v̂O · fO dx+
∫

Γ1
ŵg3 − ŵnMn + v̂O · gO ds. (3.39)
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Using integrations by parts one obtains the following

(E1, ŵ)Ω + (E2, v̂O)Ω + (E3, ŵ)Γ1
+ (E4, ŵn)Γ1

+ (E5, v̂O)Γ1
= 0 (3.40)

where under the assumptions that the Di, hi, and νi are constant in each layer,

E1 = mẅ − α∆ẅ +K∆2w − div ~NTGEhEϕE − f3

E2 = hOpOv̈O − 12hODOLOvO +BTGEϕE − fO

E3 = αẅn −K(
∂

∂τ
(B̄∇w) · ~τ) −K(∆w)n + ~NTGEhEϕE · ~n− g3

E4 = K(B̄∇w) · ~n+Mn E5 = 12DOBOhOvO − gO.

In the above, ∂
∂τ

refers to the tangential derivative, while the subscript n indicates a normal
derivative.

The associated boundary value problem is

mẅ − α∆ẅ +K∆2w − div ~NTGEhEϕE = f3

hOpOv̈O − 12hODOLOvO +BTGEϕE = fO

}

in Ω × (0,∞) (3.41)

αẅn −K( ∂
∂τ

(B̄∇w) · ~τ) −K(∆w)n
+ ~NTGEhEϕE · ~n = g3

K(B̄∇w) · ~n = −Mn, 12DOBOhOvO = gO











on Γ1 × (0,∞) (3.42)

w = wn = 0, vO = 0 on Γ0 × (0,∞). (3.43)

Appropriate initial conditions compatible with finite energy solutions are of the form

{vO(0), w(0)} = {v0
O, w

0}, {v̇O(0), ẇ(0)} = {v1
O, w

1} (3.44)

From Theorem 2.1, the following holds:

Proposition 3.1 Given any y0 = {v0
O, w

0} ∈ V and y1 = {v1
O, w

1
O} ∈ H there exists a

unique variational solution y ∈ C([0, T ],V) ∩ C1([0, T ],H) to (3.41)–(3.43).

It is also a consequence of Theorem 2.2 that the solution {y, ẏ} is the limit in L2(0, T ;V×
H) of solutions to VP1 (with parameters DE, pE) as DE, pE tend to zero in Rm.

3.2.1 Thin compliant layer model with shear damping

To write out equations of motion with shear damping included one simply applies the cor-
respondence

GEϕE → (GEϕE + G̃Eϕ̇E) (3.45)

The equations of motion become

mẅ − α∆ẅ +K∆2w − div ~NT (GEhEϕE + G̃EhEϕ̇E) = f3

hOpOv̈O − 12hODOLOvO +BT (GEϕE + G̃Eϕ̇E) = fO

}

in Ω × (0,∞)

αẅn − ( ∂
∂τ

(~τ ·KB̄∇w)) −K(∆w)n
+ ~NT (GEhEϕE + G̃EhEϕ̇E) · ~n = g3

KB̄∇w · ~n = −Mn

12DOBOhOvO = gO























on Γ1 × (0,∞)

vO = 0, w = 0, wn = 0 on Γ0 × (0,∞)
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where ϕE = h−1
E BvO + ~N∇w.

It follows from Proposition 2.1 that the above damped system is well-posed on the same
function space C([0, T ],V) ∩ C1([0, T ],H) as the undamped system (i.e., as in Proposition
3.1).

3.3 Laminated plate with adhesive bonding

In a laminated plate model, many layers of one or more materials may be bonded together
by an adhesive. With many adhesive layers it becomes increasingly important to include the
effect of shear from the adhesive layers. One possibility to model such a plate is to estimate
the ratios of shear modulus to thickness (γi := Gi/hi) in the compliant layers and then pass
to the limit as the thicknesses and shear moduli of the compliant layers tend to zero in VP1

(or equivalent, in (3.41)–(3.43)) such that γi, i even, are fixed. Therefore define

γ = h−1
E GE. (3.46)

Also define
s = BvO + AhO~1O∇w =: BvO + ~M∇w, ( ~M = AhO~1O). (3.47)

Note that s is independent of hE and GE.
Theorem 2.2 will apply to the limit of VP1 as hE → 0, GE → 0 such that γ is fixed

provided the limiting variational forms a and c satisfy the appropriate estimates in Lemmas
2.1 and 2.2. To this end we have the following:

Lemma 3.1 Let hE and GE tend to 0 such that γ is fixed. Then for fixed vO, v̂O, w, ŵ,
with s and ŝ defined as in (3.47) the following holds:

(GEhEϕE, ϕ̂E)Ω → (γs, ŝ)Ω as h→ 0,

aE(ψE, vE; φ̂E, v̂E) → 0 as h→ 0,

cE(ψE, vE; φ̂E, v̂E) → 0 as h→ 0

The forms aO and cO are unchanged by this limit.

Proof: In each case one simply expresses the forms in terms of the state variables and
calculates the limit. To compute the first one,

(GEhEϕE, ϕ̂E)Ω = (GEhE(h−1
E BvO + ~N∇w),h−1

E Bv̂O + ~N∇ŵ)Ω

= (γ(BvO + (AhO~1O + hE~1E)∇w), Bv̂O + (AhO~1O + hE~1E)∇ŵ)Ω

→ (γs, ŝ)Ω

The next two limits are computed the same way. ✷

It follows that the limiting form of the equations of motion can be obtained from (3.41)–
(3.43) from the correspondence:

GEhE → γ

ϕE → s
h−1
E B → B
~N → ~M := AhO~1O

(3.48)
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One then obtains the following laminated plate system

mẅ − α∆ẅ +K∆2w − div ~MT
γs = f3

hOpOv̈O − 12hODOLOvO +BT
γs = fO

}

on Ω × (0,∞) (3.49)

αẅn −
∂
∂τ

(~τ ·KB̄∇w) −K(∆w)n + ~MT
γs · ~n = g3

−KB̄∇w · ~n = Mn

12DOBOhOvO = gO











on Γ1 × (0,∞) (3.50)

vO = 0, w = 0, wn = 0 on Γ0 × (0,∞), (3.51)

where s is given in (3.47).
It is easy to check, using Lemma 3.1 that the limiting forms a and c satisfy the estimates

in Lemmas 2.1 and 2.2 and consequently Theorems 2.1 and 2.2 remain valid for limiting
system.

Proposition 3.2 Given any y0 = {v0
O, w

0} ∈ V and any y1 = {v1
O, w

1} ∈ H there exists a
unique variational solution y = {vO, w} ∈ C([0, T ],V) ∩ C1([0, T ],H) to (3.49)–(3.51) such
that y(0) = y0, ẏ(0) = y1.

It is also worth noting (since we have verified that the result of Theorem 2.2 applies) that
solutions to (3.49)–(3.51) can be obtained as the limit as hE → 0, GE → 0 with γ fixed of
VP1 (or to (3.49)–(3.51)) in the space L2((0, T ),V ×H), as is described in Theorem 2.2.

Remark 3.1 To include shear damping in the laminated plate model (3.49)–(3.51), simply
apply the correspondence

γs→ (γs+ γ̃ṡ). (3.52)

The diagonal matrix γ̃ is defined analogous to the way γ was defined, i.e., γ̃ = G̃Eh−1
E in the

damped thin compliant layer model (Section 3.2.1) and the damped laminated plate model
is obtained by passing to the limit as hE → 0, GE → 0 and G̃E → 0 with γ and γ̃ fixed.

Since
(γ̃s, s)Ω = (γ̃(BvO + ~M∇w), BvO + ~M∇w)Ω ≤ C‖{vO, w}‖

2
H

Proposition 2.1 applies to damped system. Hence the damped system (i.e., (3.49)–(3.51)
with the correspondence (3.52)) has the same existence and uniqueness properties described
in Proposition 3.2 for the undamped system.

4 Multilayer Mead-Markus model

In the three-layer Mead-Markus model, the in-plane and rotational inertias of all layers are
ignored (along with the bending stresses in the core layer). An analogous multilayer model
which we call the “multilayer Mead-Markus model” can be obtained by dropping the dynamic
terms v̈O, −α∆ẅ in the thin compliant layer model (3.41)–(3.43). This type of perturbation
is singular, and hence one would not expect solutions to behave continuously with respect
to this perturbation. Nevertheless dispersion relations (Rao, Nakra [18]) and eigenvalue
investigations (Hansen, Spies [6]) indicate that this type of approximation provides a close
approximation to the original (three-layer) Rao-Nakra system in the low-frequency range.
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In order to allow slightly more generality, here we include the rotational inertia term
−α∆ẅ, with the understanding that α ≥ 0, with α = 0 corresponding to the classical
Mead-Markus model. The boundary value problem for the multilayer Mead-Markus model
is

mẅ − α∆ẅ +K∆2w − div ~NTGEhEϕE = f3

−12hODOLOvO +BTGEϕE = fO

}

in Ω × (0,∞) (4.53)

αẅn −K( ∂
∂τ

(~τ · B̄∇w) + (∆w)n)

+ ~NTGEhEϕE · ~n = g3

KB̄∇w · ~n = −Mn

12DOBOhOvO = gO























on Γ1 × (0,∞) (4.54)

vO = 0, w = 0, wn = 0 on Γ0 × (0,∞) (4.55)

where hEϕE = BvO + hE ~N∇w (4.56)

Initial conditions are specified for {w, ẇ}.
Define

Hα =

{

L2(Ω) if α = 0
H1

Γ0
if α > 0

The variational form of this problem can be written
VP2: Find y = {vO, w} such that

y ∈ C([0, T ],V), ẇ ∈ C([0, T ],Hα) (4.57)

m(ẅ, ŵ)Ω + α(∇ẅ,∇ŵ)Ω +KℓO(∇w;∇ŵ) + (GEhEϕE, ϕ̂E)Ω

+12ℓO(hODOvO; v̂O) = W(ŷ) ∀ ŷ = {v̂O, ŵ} ∈ V (4.58)

(in the sense of distributions on (0, T ))

{w,wt} |t=0= {w0, w1} given in H2
Γ0

×Hα. (4.59)

In (4.58), ϕE is given by (4.56) and ϕ̂E is related to ŵ, v̂O by the same equation. All forces
included in W are assumed to have the same regularity as described in VP1. Here however,
we take m, K to be positive constants, the diagonal elements of hO, DO, hE are positive
constants, α is a nonnegative constant, and the diagonal elements of GE are nonnegative
and continuous on Ω̄.

Theorem 4.1 There is a unique solution y = {vO, w} to VP2.

Actually, we will first solve for vO in terms of ∇w and obtain an equivalent variational
problem.

The boundary value problem

−12hODOLOvO +BTGEh−1
E BvO = u in Ω

12DOBOhOvO = z on Γ1

vO = 0 on Γ0











(4.60)

is easily seen to be associated with the variational equation

12ℓO(hODOvO; v̂O) + (GEh−1
E BvO, Bv̂O)Ω = (u, v̂O)Ω + (z, v̂O)Γ1

∀ v̂O ∈ H1
O,Γ0

. (4.61)
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The matrix GEh−1
E is diagonal and positive and hence the term (GEh−1

E BvO, Bv̂O)Ω in
(4.61) does not alter the continuity or positivity of the form ℓO. It hence follows from the
coercive estimates in Lemma 2.1 that (4.61), and hence also (4.60) has a unique solution in
H1
O,Γ0

whenever u ∈ L2
O(Ω) and z ∈ L2

O(Γ1). By superposition there are continuous operators
T1 : L2

O(Ω) → H1
O,Γ0

(Ω) and T2 : L2
O(Γ1) → H1

O,Γ0
(Ω) such that

vO = T1u+ T2z. (4.62)

Define J : (L2(Ω))2 → (H1
Γ0

)2 by

J = ~NTGEBT1B
TGE

~N. (4.63)

Using these operators the shear term in the first equation in (4.53) becomes

−div ~NTGEhEϕE = −div ~NTGE(BvO + hE ~N∇w)

= − ~NTGEhE ~N∆w − div ~NTGEB(T1(fO −BTGE
~N∇w) + T2gO)

= − ~NTGEhE ~N∆w + div J∇w − div ~NTGEB(T1fO + T2gO).

Therefore the first equation in (4.53) becomes

mẅ − α∆ẅ +K∆2w − ~NTGEhE ~N∆w + div J∇w = f̃3 in Ω × (0,∞) (4.64)

where f̃3 = f3 + div ~NTGEh−1
E B(T1fO + T2gO).

Similarly the boundary conditions for w are easily obtained:

αẅn −K
∂

∂τ
[(B̄∇w) · τ ] −K(∆w)n

−(J∇w) · n+ ~NTGEhE ~Nwn = g̃3 on Γ1 × (0,∞) (4.65)

(where g̃3 = g3 − ~NTGEB(T1fO + T2gO) · ~n)

−K(B̄∇w) · ~n = Mn on Γ1 × (0,∞) (4.66)

w = wn = 0 on Γ0 × (0,∞). (4.67)

Let us see that the above system corresponds to a well-posed variational problem.
We multiply (4.64) by ŵ ∈ H2

Γ0
and obtain after integrations by parts

(mẅ, ŵ)Ω + α(∇ẅ,∇ŵ)Ω +KℓO(∇w; ∇̂w) + ~NTGEhE ~N(∇w,∇ŵ)Ω

−(J∇w,∇ŵ)Ω = (f̃3, ŵ)Ω + (g̃3, ŵ)Γ1
∀ŵ ∈ H2

Γ0
(4.68)

Thus VP2 has been reduced to the following problem.
VP2.1: Find {w} such that

w ∈ C([0, T ], H2
Γ0

), ẇ ∈ C([0, T ],Hα) (4.69)

(4.68) holds (in the sense of distributions on (0, T ))

w |t=0= w0 given in H2
Γ0
, ẇ |t=0= w1 given in Hα (4.70)
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Proposition 4.1 There exists a unique solution w that solves VP2.1. Moreover, y :=
{vO, w}, with vO = T1(fO −BTGE

~N∇w) + T2(gO) is the unique solution to VP2.

Proof: First, let us see that VP2.1 is well set. Since we already have from Lemma 2.1 that
the form a(w; ŵ) := ℓO(∇w,∇w) is continuous, symmetric and coercive on H2

Γ0
, and the

form c(w; ŵ) := (mw, ŵ)Ω + (α∇w,∇ŵ)Ω is continuous, symmetric and coercive on Hα (the
case α = 0 is trivial) it is enough to show that the form determined by the remaining terms
in (4.68) are symmetric, nonnegative and continuous on H2

Γ0
. To this end let q(w, ŵ) =

~NTGEhE ~N(∇w, ∇̂w)Ω − (J∇w,∇ŵ)Ω. Let r = −T1B
TGE

~N∇w (so r plays the role of vO)

and likewise define r̂ in terms of ∇ŵ. Let s = h−1
E Br+ ~N∇w (so s plays the role of ϕE) and

likewise define ŝ in terms of ŵ and r̂. Then

q(w, ŵ) = (GEhE ~N∇w, ~N∇ŵ)Ω − (GEBT1B
TGE

~N∇w, ~N∇ŵ)Ω

= (GEhEs, ~N∇ŵ)Ω

= (GEhEs, ŝ)Ω − (GEs, Br̂)Ω

= (GEhEs, ŝ)Ω − (GEh−1
E Br,Br̂)Ω − (BTGE

~N∇w, r̂)

= (GEhEs, ŝ)Ω + 12ℓO(hODOr; r̂)

where the last line was obtained using (4.61) and the definition of T1u in (4.62) with u =

−BTGE
~N∇w and z = 0.

Thus q is symmetric and nonnegative. Furthermore, using the continuity of ℓO on (H1
Γo

)2

and of T1 from L2
O(Ω) to H1

Γ0
, one easily sees that q is continuous on H2

Γ0
: Since

‖r‖H1

O,Γ0

≤ C‖∇w‖H1

Γ0

≤ C‖w‖H2

Γ0

‖r‖L2

O
≤ C‖∇w‖H1

Γ0

≤ C‖w‖H2

Γ0

‖s‖L2

E
≤ C(‖r‖L2

O
+ ‖∇w‖L2(Ω)) ≤ C‖w‖H2

Γ0

it follows that

q(w,w) ≤ C(‖s‖2
L2

E
+ ‖r‖2

H1

O,Γ0

)

≤ C(‖r‖L2

O
+ ‖∇w‖L2(Ω))

2 + ‖∇w‖2
H1

Γ0

≤ C‖w‖2
H2

Γ0

.

Hence the continuity requirement is satisfied. In addition it is easily checked using the
definition of f̃3 and g̃3 in (4.64) and (4.65) that f̃3 and g̃3 are L2 functions. Hence there is a
unique solution w to VP2.1.

Finally, the previous calculation shows that when external forces fO and gO vanish, the
variational differential equations in VP2 and VP2.1 are equivalent. Essentially the same
calculation but with vO = T1(fO−B

TGE
~N∇w)+T2gO (and using the definition of f̃3 and g̃3

as in (4.64) and (4.65)) shows that one obtains the variational differential equation in VP2.
The regularity and initial conditions in VP2 follow from those in VP2.1. This completes
the proof. ✷
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Remark 4.1 In the same way the laminated plate model (3.49)–(3.51) was obtained from
VP1 by letting GE and hE tend to zero at constant ratio, one can obtain a laminated Mead-
Markus model with adhesive bonding from VP2 or VP2.1 by the same limit. Again, the
equations of motion are easily obtained from (4.53)–(4.56) by the correspondence in (3.48).
One obtains the system

mẅ − α∆ẅ +K∆2w − div ~MT
γs = f3 on Ω × (0,∞)

−12hODOLOvO +BT
γs = fO on Ω × (0,∞)

αẅn − ( ∂
∂τ

(~τ ·KB̄∇w)) −K(∆w)n + ~MT (γs) · ~n = g3 on Γ1 × (0,∞)
−KB̄∇w · ~n = Mn on Γ1 × (0,∞)

12DOBOhOvO = gO on Γ1 × (0,∞)
vO = 0, w = 0, wn = 0 on Γ0 × (0,∞),

(4.71)

where s is defined by (3.47). Initial conditions are specified for w, ẇ.
All the steps described in this section for the multilayer Mead-Markus model remain valid

for the above model and hence the same existence and uniqueness properties described in
Theorem 4.1 and Proposition 4.1 remain valid for the above system.

Remark 4.2: Damping can be included in the multilayer Mead-Markus model (or the lam-
inated model of the previous remark) as discussed in Section 3. In particular, the multilayer
Mead-Markus model with shear damping takes the form:

mẅ − α∆ẅ +K∆2w − div ~NThE(GEϕE + G̃Eϕ̇E) = f3

−12hODOLOvO +BT (GEϕE + G̃Eϕ̇E) = fO

}

in Ω × (0,∞)

αẅn −K( ∂
∂τ

(~τ · B̄∇w) + (∆w)n)

+ ~NThE(GEϕE + G̃Eϕ̇E) · ~n = g3

KB̄∇w · ~n = −Mn

12DOBOhOvO = gO























on Γ1 × (0,∞)

vO = 0, w = 0, wn = 0 on Γ0 × (0,∞)

where hEϕE = BvO + hE ~N∇w

In this case initial conditions are specified for w, ẇ and vO.
Existence and uniqueness, and stability of the analogous damped beam model for various

specialized cases has been studied in several papers: [5], [6], [7].

5 Examples

In order to review the various models and notation, two of the plate systems of this paper
are written out in detail for the case of a three layer plate.

5.1 Thin compliant layer model

First we write out the thin compliant layer model (3.41) for the case of three layers (n = 3).
The various matrix quantities involved are

A =
(

1
2

1
2

)

, B =
(

−1 1
)

, hO = diag (h1, h3), hE = h2,
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~1O =

(

1
1

)

, ~1E = 1, ~N = h−1
E AhO~1O +~1E =

h1 + 2h2 + h3

2h2

,

DO = diag(D1, D3), pO = diag (ρ1, ρ3), GE = G2.

Other parameters appearing are

m = ρ1h1 + ρ2h2 + ρ3h3, α = (ρ1h
3
1 + ρ3h

3
3)/12, GEhE = G2h2,

K = D1h
3
1 +D3h

3
3, ν̄ = (ν1h

3
1D1 + ν3h

3
3D3)/K.

The state variables are w and vO, where vO =

(

v1

v2

)

=

(

v1
1 v1

2

v2
1 v2

1

)

. The variable ϕE =

(ϕ2
1 ϕ2

2 ) is defined in terms of the state variables by

ϕE = h−1
E BvO + ~N∇w;

=
v3 − v1

h2

+
h1 + 2h2 + h3

2h2

∇w; ∇w =
(

∂w
∂x1

∂w
∂x2

)

.

The operators LO and BO defined by

LOvO =

(

L1
1v

1 L1
2v

1

L3
1v

3 L3
2v

3

)

, BOvO =

(

B1
1v

1 B1
2v

1

B3
1v

3 B3
2v

3

)

,

where the Lij and Bij operators are given explicitly in (3.30), (3.31).
Thus, the equations of motion on Ω × (0,∞) become

mẅ − α∆ẅ +K∆2w −
1

2
(h1 + 2h2 + h3)G2divϕ2 = f3 (5.72)

h1ρ1{v̈
1
1, v̈

1
2} − 12h1D1{L

1
1v

1, L1
2v

1} −G2{ϕ
2
1, ϕ

2
2}

h3ρ3{v̈
3
1, v̈

3
2} − 12h3D3{L

3
1v

3, L3
2v

3} +G2{ϕ
2
1, ϕ

2
2}

=
{f 1

1 , f
1
2}

{f 3
1 , f

3
2}.

(5.73)

The boundary conditions (3.42), (3.43) can be used, or others are easily obtained. For
example, in the case of pinned boundary conditions with applied moments on all of Γ, the
boundary conditions are

−Kwnn = Mn, w = 0 vO = 0, on Γ × (0,∞)

where wnn is the second derivative in the outward normal direction along Γ.

5.2 Laminated plate model with damping in adhesive layers

Next we write out the damped laminated plate model of (3.49)–(3.50) in the case of shear
damping, again for the case of three layers.

First recall that the damped laminated plate model can be obtained from the damped
thin compliant layer model of Section 3.2.1 by letting GE, G̃E and hE tend to zero in such
a way that γ = h−1

E GE and γ̃ = h−1
E G̃E are fixed. In the three layer case, the matrices γ
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and γ̃ reduce to the scalars γ2 and γ̃2, respectively. The variable s = s2 = {s2
1, s

2
2} is defined

in terms of the state variables vO, w by

s = BvO + ~M∇w = v3 − v1 +
h1 + h3

2
∇w.

The equations of motion on Ω × (0,∞) become

mẅ − α∆ẅ +K∆2w −
1

2
(h1 + h3)div (γ2{s

2
1s

2
2} + γ̃2{ṡ

2
1, ṡ

2
2}) = f3

h1ρ1{v̈
1
1, v̈

1
2} − 12h1D1{L

1
1v

1, L1
2v

1} − γ2{s
2
1, s

2
2} − γ̃2{ṡ

2
1, ṡ

2
2}

h3ρ3{v̈
3
1, v̈

3
2} − 12h3D3{L

3
1v

3, L3
1v

3} + γ2{s
2
1, s

2
2} + γ̃2{ṡ

2
1, ṡ

2
2}

=
{f 1

1 , f
1
2}

{f 3
1 , f

3
2}.

If the plate is clamped on Γ0 and subject to general forces on Γ1, as in (3.50), (3.51) (but
for the damped case). Then

{vi1, v
i
2} = 0, i = 1, 3; w = 0, wn = 0 on Γ0 × (0,∞).

The boundary operators involving B̄ used in (3.50) become (using (x, y) for (x1, x2)):

(B̄∇w(x, y)) · ~n = ν̄∆w + (1 − ν̄)(wxxn
2
1 + wyyn

2
2) + 2(1 − ν̄)wxyn1n2

(B̄∇w(x, y)) · ~τ = (1 − ν̄)(n2
1 − n2

2)wxy + n1n2(1 − ν̄)(wyy − wxx))

where ~n = (n1, n2) is the outward unit normal to Γ and ~τ = (−n2, n1) is the unit tangent
vector to Γ.

Suppose, for simplicity that Γ1 is flat, e.g., so ~n = (1, 0)T . Then (using that ∂
∂n

= ∂
∂x

and ∂
∂τ

= ∂
∂y

) the force boundary conditions (3.50) (with damping included) on Γ1 × (0,∞)
become:

αẅx −K(1 − ν̄)wxyy −K(wxx + wyy)x +
h1 + h3

2
(γ2s

2
1 + γ̃2ṡ

2
1) = g3

−K(wxx + ν̄wyy) = Mn

12DOBOhOvO =
{12D1h1((v

1
1)x + ν1(v

1
2)y), 12D1h1

1−ν1
2

[(v1
2)x + (v1

1)y]}
{12D3h3((v

3
1)x + ν3(v

3
2)y), 12D3h3

1−ν3
2

[(v3
2)x + (v3

1)y]}
=

{g1
1, g

1
2}

{g3
1, g

3
2}
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