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Several Theorems in Time-Dependent Density Functional Theory

Paul Hessler,* Jang Pafkand Kieron Burke

Department of Chemistry, Rutgers University, 315 Penn Street, Camden, New Jersey 08102
(Received 25 September 1998

The time dependence of the exchange-correlation energy in density functional theory is given in
terms of the exchange-correlation potential. The virial theorem for the exchange-correlation potential
is shown to hold fortime-dependenglectronic systems and is illustrated by an exactly solved model:
Hooke's atom with a time-dependent force constant. A relation between the coupling constant and
functionals evaluated on scaled densities is derived. [S0031-9007(98)08169-1]
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Ground-state electronic density functional theory (DFT)approximation [13] for frequency-dependent response
has long been used to perform electronic structure calcyproperties violates the Kohn theorem [14]. This led to
lations of solids and has recently become popular in quarseveral new approximations [15], which overcome this
tum chemistry [1]. Many useful properties can be deriveddifficulty, but remain largely untested.
from calculations of ground-state electronic energies, such In this work, we take a different approach from previ-
as geometric and vibrational structure and static responsais workers, in that we consider the energy components
functions. of the system, even though the total energy is not con-

An important part of making DFT results useful to the served. We find several simple relations satisfied by these
broad community of users has been in improving the acenergy components, which are then restrictions which ap-
curacy of approximations to the exchange-correlation enproximate functionals should satisfy. We also derive the
ergy functional Exc[n], the only part of the energy which relation between coordinate scaling and the adiabatic cou-
must be approximated in a Kohn-Sham calculation [2]pling constant.

A vital part of this approach, in turn, has been the study We begin our proofs with the Heisenberg equation
of exact conditions satisfied by density functionals, espeef motion for any operatoA on a quantum-mechanical
cially the exchange and correlation energies. A simplesystem:

example is that the correlation energy is never positive, . oA
and always finite [3]. Satisfaction of energetically rele- A= < o
vant conditions is often used to guide construction of .
approximations, such as the Perdew-Burke-Ernzerhoivhere A = (A), and the dot denotes a time derivative.
generalized gradient approximation [4]. This functional isWe apply this to a system af identical particles, with
now commonly used in electronic structure calculations. & = T + V, where T is the kinetic energy operator,

In the past several years, interest has grownirite- and V is the potential energy operator. For interacting
dependentensity functional theory (TDDFT), which is electronic systems, the potential consists of a time-
now a very active research area [5]. There is a wealtllependent one-body contributiov,(7), and a two-body
of applications for an accurate theory, such as atomsontribution, V.., the CoulomAb intgraction between the
molecules, and solids in intense laser fields [6], dynami@lectrons. Applying Eq. (1) td = H itself, we find

> + —([H AD, (1)

response properties [7], and electronic spectroscopy [8]. ) . . EYA
A fully developed TDDFT would allow, e.g., study of T+ Vee + Vet = { = > 2)
optical limiting materials [9] or electron dynamics on a
femtosecond time scale [10]. SinceVex = [d’r n(rt)vex(re),
While formal TDDFT was put on solid ground with the . . ;.
Runge-Gross theorem [11] (the analog of the Hohenberg- T+ Vee = — / d’r n(rt)vex(re). )

Kohn theorem), exploration of the exact properties

. ; . oo H So far, we have simply derived a general result for
of time-dependent functionals is still in its infancy.

S | ¢ diti h b found. includi time-dependent quantum mechanics. But we now apply
everal exact conditions have been found, INCIUCINGyis 14 the Kohn-Sham system, i.e., that fictitious system

Newton's - third Ia_vv [12], which implie_s that the net of noninteracting particles which has the same time-
exchange-correlation force must vanish, and translaaependent density(rs). Thus

tional invariance, which states that the time-dependent

exchange-correlation potentiakxc(rz) for a boosted Ts = —jd3r}:l(rt)vg(rt), )
static density will be that of the unboosted density, evalu- ’

ated at the boosted point. The latter theorem, appliedvhereTs is the noninteracting kinetic energy amg(rz)

to a harmonic potential, showed that the Gross-Kohns the Kohn-Sham potential. Analogous to the ground
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state [2], we writeTc =T — Ts and Exc = Vee — Consider¥[n] to be the splution of Eq. (12), but with
U + T., where U is the Hartree energy, whiles =  electron-electron repulsioaV,., andvZ,(r, ) chosen to

vext T vH + vxc, Where vy is the Hartree potential. keep the density fixed (at ita = 1 value). Then let

These are all time-dependent quantities here, and energy — yr! andt — Bt' and multiply through byy?. If

is not conserved. Sinde = [d*r n(rt)vy(re), we find,  we define

subtracting 'ig:; (4) from (3), W5t ...tnt) = YN2U(yry - yryBr),  (13)

XC 3 -

“ar f d*r n(rt)vxc(re). ®) e find Eq. (12) becomes

The time dependence of the exchange-correlation energy, ¥

is solely detgrmlned by th_e exchqrjge—correlatlon poter!tlal. [T +ayVee —i L2 \I,/\B[n] Ve);t\[,/\ﬁ[n]
Another simple result is the virial theorem. We write

A =Y a(r;, p:), wherer; is the position of theth particle (14)

an/dzp,- is its momentum, and choose= (r - p + p - By choosingB = 2 andy = 1/, we find ‘I'f\/;\,l/)\z[n]
r)/2: satisfies Eq. (12), i.e., is equal ®[r]. (By the Runge-
s i((r “p+p-r)=2T — Zri “V;V). (6) Gros_s_ theorem, the potentials must be i_dentical if the
- densities are the same for both wave functions.) Thus
For a stationary state, the left-hand side vanishes, yielding AFT
the customary virial theorem [16]. Sind&. is homoge- Vin] = Warlnijniy ] (15)
neous of degree-1 in the coordinates, its virial is equal and, by subtracting out Hartree and Kohn-Sham contribu-
to minus itself, yielding tions,
1
B d—<(l' “p P -r)=2T 4+ Vee —(r - Vuey). vicln](rt) = Puxclniail(Ar, A%1). (16)
(7)  Thus any functional of the density, evaluated at coupling
To further simplify the left-hand side above, we considerconstantA, can be written in terms of the physical func-

Eq. (1) for a = r?, finding md(r?)/dt = (r - p + p - tional, evaluated on a scaled density at the scaled coordi-
r). Insertion into Eq (7) yields nates. For example, following arguments first applied to
m 42 the ground state [16],
2 dt 2< 2> =2T + Vee — <l‘ : Vvext>- (8) E E > 17
In the Kohn-Sham system, this becomes xlny](0) = v Exn] (y70). @7
m d* Highly accurate calculations on time-dependent sys-
2 eV ro)y =25 — (r - Vvy). 9  tems are usually extremely demanding [5], making tests

Since the left side of Eq. (8) depends only on the densitydf exact theorems and approximations very difficult in
it is the same in both the physical and the Kohn-ShamfDDFT. We performed exact numerical calculations

systems. Since the Hartree energy is also homogeneo@§ Hooke’s atom, two interacting electrons in parabolic
of degree—1, we find potential, with a time-dependent force constakit,) =

mw?(t). This model is solvable because
\If(l’l,l’z, l) = (D(R,l)¢(ll,[), (18)

=~ / ra(eor - Voxe[n](rr). (10)  yhere R = (ri +r)/2 and u=r, —r;. Each
In deriving Eq. (10), we never requirexc to be Wwave function satisfies a single-particle time-dependent
a functional derivative, thereby avoiding the need toSchrédinger equation, e.g.,
define an action [5]. Equation (7) also implies an exact 1 pw(t) 1 .
condition on the Kohn-Sham density matrix: <_ﬁ V2 + — u? + ;)(ﬁ =i¢, (19)
[d3rr FVy (Dl = j drr - Vystr'le—r. where u = m/2 is the reduced mass. Thep is ex-
(11) panded in the adiabatic basis of instantaneous eigenstates
A last theorem relates coordinate scaling to the cou®f its Hamiltonian:
pling constant for the electron-electron repulsion [17]. .
The Schrodinger equation fof electrons is G, 1) =D bj(0)x;[w();ule oD (20)
J

Excl[n](t) + Tc[n](z)

A A .0 N
[T + Vee — la]q’(l’l ...I’Nl) = _Vextq,(rl ...I‘Nl). where

(12) 1 po? N 1 L )
[Note that we could have derived Eq. (7) by replacing 2u ;U » xj(w;u) = €j(w)xj(w;u).
by r;/y everywhere and takind/dy|,- of both sides.] (21)
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These eigenstates in turn are solved by expanding thzero yields
wave function in a power series im times a Gaussian

[18]. The coefficientd, satisfy a = _#[ a(r, ) rPdr, (23)
n(r,0)rz Jo
by = i&bit = Y bi(jIV@OlYe 79 /(e; =€), where the prime indicate$/dr, and
7k
. (2) N CI WIS Py
whereV = pwaou?, and are solved numerically. vs =5\, an 8 \n , @ @
We start our system in the ground state (24)

at t=0 with w=wy; and then let w(r) =
wo + (0w — wo){sinz(t/t; — % ]+ 1}/2, as shown The last two terms arise purely from the time dependence
in Fig. 1. We show results for the time evolution of the density. Even for a noninteracting system, they are
with wo = 0.5, w; = 1, and t; = 1 in atomic units nonzero. The exchange-correlation contribution is then
(e? = m = h = 1). The first three occupation numbers found by subtracting the external and Hartree potentials.
(in u) and the time-dependent frequency are shown in In Fig. 3, we plotv.(r?) at several times during the ex-
Fig. 1. Byt = 1.6, the system is about 30% excited. Citation. We do not plobx(r7), as this is just-vy(rz)/2
After r = 1.6, the number ofu levels in our calculation for two electrons. These curves are qualitatively simi-
(12) were no longer sufficient to guarantee the accuraclar to those in the adiabatic ground states. The strange
needed for the calculations shown below. behavior beyond- = 3 for + = 1.5 is due to numerical

In Fig. 2, we plotT, V., and V.. as a function of inaccuracy. We tested Eq. (5) on these potentials, finding
time, as well a%lmd2<r2>/dt2. Here(r - Vuey) = 2Vey. It satisfied within the accuracy of the calc_ulatit_)ns.
We find the virial theorem of Eq. (8) to be satisfied to Next, we plot the quantities appearing in Eq. (10)
within 0.1 millihartree. If we contrast our results with an in Fig. 4. We subtract out the exchange contribution,
adiabatic situation (in which the system remains in thevhich trivially satisfies the virial theorem in this case
instantaneous ground state for all times), we see That (Ex = —U/2). The line denoted virial is just the virial
remains remarkably low, as the wave function takes tim@f the correlation potential and is indistinguishable from
to respond to the stimulusVe., grows, but then drops £Ec + Tc until abouts = 1.4, where numerical inaccura-
after 1 = 0.9, while w is still increasing. The Coulomb cies arise. As noted abov&.. is very unresponsive to
repulsion barely changes during the entire run. Finallythe external potential, and this is reflectedtip. The ki-
the large value oR(T — Ve + Vee coONtrasts with its ~Netic correlation energy followg arjd starts to grow at
vanishing in any single eigenstate. aboutr = 0.8. What is remarkable is that this means that

Next, we calculate the exact Kohn-Sham potentiathe SumEc + T, which has never been found to be pos-
for this two-electron system. We have a single orbitalitive in any ground state, becomg®sitive around 1.2.
doubly occupied, but the calculation is more involved This shows that time-dependent energy components can
than for a ground state, as the phase of the Wa\,@eha\_/e very dlfferently from their ground-state anz_gllogs.
function becomes important. We write(rs) = ¢/\/n/2 To illustrate our scaling theorem, Eq. (15), consider the
and insert this form into the time-dependent Kohn-Shanplasmon frequency of a uniform gas,, where w2;27 =

equation. Requiring that the imaginary partwfrs) be ~ 4me?n/m. Under scalingn — y’n ando — /v*, so
1
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FIG. 1. Occupation numbers for thewave function ando (¢) FIG. 2. Energy components for the time-dependent Hooke’s
(atomic units). atom (hartrees); virial= 2(T — Vey) + Vee.
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FIG. 3. Time-dependent correlation potentials (atomic units).

that, according to Eq. (15Jw))* = 4me*y’n/(my?) =
Awf,, correctly. The importance of Eq. (16) is that it *Permanent address: Camden High School, Baird Avenue
applies to all inhomogeneous systems also. and Park Boulevard, Camden, NJ 08103.
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Erratum: Several Theoremsin Time-Dependent Density Functional Theory
[Phys. Rev. Lett. 82, 378 (1999)]

Paul Hesder, Jang Park, and Kieron Burke
The dependence on the initial wave function, ¥(0) = ¥ (r; ---ry,t = 0), was missing from the relations between the

scaling and coupling constant. By considering W[n; ¥(0)], the wave function with electron-electron repulsion AV,,
generating n from an initial wave function ¥ (0), one finds

VA, W(0)] = Valnijai/e; Pia0)], (15)
where ¥.,(0) = y3¥/2W(yr;--- yry,t = 0). Thus Eq. (16) becomes
v [n; W(0), ®(0)] (rt) = Avyc[ni/a s Visa(0), @1/4(0)] (Ar, A%1), (16)
where ®(0) istheinitial state in the Kohn-Sham system, while Eq. (17) becomes
Ex[nyy:; @5(0)](1) = yEx[n; ®(0)] (y*1). 17)

[We aso note that, in Eq. (14), the coordinates in the external potential should have been scaled.]
We thank Robert van Leeuwen for bringing this oversight to our attention.
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