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Several Theorems in Time-Dependent Density Functional Theory
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The time dependence of the exchange-correlation energy in density functional theory is given in
terms of the exchange-correlation potential. The virial theorem for the exchange-correlation potential
is shown to hold fortime-dependentelectronic systems and is illustrated by an exactly solved model:
Hooke’s atom with a time-dependent force constant. A relation between the coupling constant and
functionals evaluated on scaled densities is derived. [S0031-9007(98)08169-1]
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Ground-state electronic density functional theory (DFT)
has long been used to perform electronic structure calcu-
lations of solids and has recently become popular in quan-
tum chemistry [1]. Many useful properties can be derived
from calculations of ground-state electronic energies, such
as geometric and vibrational structure and static response
functions.

An important part of making DFT results useful to the
broad community of users has been in improving the ac-
curacy of approximations to the exchange-correlation en-
ergy functional,EXCfng, the only part of the energy which
must be approximated in a Kohn-Sham calculation [2].
A vital part of this approach, in turn, has been the study
of exact conditions satisfied by density functionals, espe-
cially the exchange and correlation energies. A simple
example is that the correlation energy is never positive,
and always finite [3]. Satisfaction of energetically rele-
vant conditions is often used to guide construction of
approximations, such as the Perdew-Burke-Ernzerhof
generalized gradient approximation [4]. This functional is
now commonly used in electronic structure calculations.

In the past several years, interest has grown intime-
dependentdensity functional theory (TDDFT), which is
now a very active research area [5]. There is a wealth
of applications for an accurate theory, such as atoms,
molecules, and solids in intense laser fields [6], dynamic
response properties [7], and electronic spectroscopy [8].
A fully developed TDDFT would allow, e.g., study of
optical limiting materials [9] or electron dynamics on a
femtosecond time scale [10].

While formal TDDFT was put on solid ground with the
Runge-Gross theorem [11] (the analog of the Hohenberg-
Kohn theorem), exploration of the exact properties
of time-dependent functionals is still in its infancy.
Several exact conditions have been found, including
Newton’s third law [12], which implies that the net
exchange-correlation force must vanish, and transla-
tional invariance, which states that the time-dependent
exchange-correlation potentialyXCsrtd for a boosted
static density will be that of the unboosted density, evalu-
ated at the boosted point. The latter theorem, applied
to a harmonic potential, showed that the Gross-Kohn

approximation [13] for frequency-dependent response
properties violates the Kohn theorem [14]. This led to
several new approximations [15], which overcome this
difficulty, but remain largely untested.

In this work, we take a different approach from previ-
ous workers, in that we consider the energy components
of the system, even though the total energy is not con-
served. We find several simple relations satisfied by these
energy components, which are then restrictions which ap-
proximate functionals should satisfy. We also derive the
relation between coordinate scaling and the adiabatic cou-
pling constant.

We begin our proofs with the Heisenberg equation
of motion for any operator̂A on a quantum-mechanical
system:

ÙA ­

*
≠Â
≠t

+
1

i
h̄

kfĤ, Âgl , (1)

where A ­ kÂl, and the dot denotes a time derivative.
We apply this to a system ofN identical particles, with
Ĥ ­ T̂ 1 V̂ , where T̂ is the kinetic energy operator,
and V̂ is the potential energy operator. For interacting
electronic systems, the potential consists of a time-
dependent one-body contribution,Vextstd, and a two-body
contribution, Vee, the Coulomb interaction between the
electrons. Applying Eq. (1) tôA ­ Ĥ itself, we find

ÙT 1 ÙVee 1 ÙVext ­

*
≠Vext

≠t

+
. (2)

SinceVext ­
R

d3r nsrtdyextsrtd,

ÙT 1 ÙVee ­ 2
Z

d3r Ùnsrtdyextsrtd . (3)

So far, we have simply derived a general result for
time-dependent quantum mechanics. But we now apply
this to the Kohn-Sham system, i.e., that fictitious system
of noninteracting particles which has the same time-
dependent densitynsrtd. Thus

ÙTS ­ 2
Z

d3r ÙnsrtdySsrtd , (4)

whereTS is the noninteracting kinetic energy andySsrtd
is the Kohn-Sham potential. Analogous to the ground
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state [2], we write TC ­ T 2 TS and EXC ­ Vee 2

U 1 TC, where U is the Hartree energy, whileyS ­
yext 1 yH 1 yXC, where yH is the Hartree potential.
These are all time-dependent quantities here, and energy
is not conserved. SinceÙU ­

R
d3r ÙnsrtdyHsrtd, we find,

subtracting Eq. (4) from (3),
dEXC

dt
­

Z
d3r ÙnsrtdyXCsrtd . (5)

The time dependence of the exchange-correlation energy
is solely determined by the exchange-correlation potential.

Another simple result is the virial theorem. We write
Â ­

P
asri , pid, whereri is the position of theith particle

and pi is its momentum, and choosea ­ sr ? p 1 p ?

rdy2:
1
2

d
dt

ksr ? p 1 p ? rdl ­ 2T 2

*X
i

ri ? =iV

+
. (6)

For a stationary state, the left-hand side vanishes, yielding
the customary virial theorem [16]. SinceVee is homoge-
neous of degree21 in the coordinates, its virial is equal
to minus itself, yielding

1
2

d
dt

ksr ? p 1 p ? rdl ­ 2T 1 Vee 2 kr ? =yextl .

(7)

To further simplify the left-hand side above, we consider
Eq. (1) for a ­ r2, finding mdkr2lydt ­ kr ? p 1 p ?

rl. Insertion into Eq. (7) yields
m
2

d2

dt2 kr2l ­ 2T 1 Vee 2 kr ? =yextl . (8)

In the Kohn-Sham system, this becomes
m
2

d2

dt2 kr2l ­ 2Ts 2 kr ? =ySl . (9)

Since the left side of Eq. (8) depends only on the density,
it is the same in both the physical and the Kohn-Sham
systems. Since the Hartree energy is also homogeneous
of degree21, we find

EXCfng std 1 TCfng std

­ 2
Z

d3r nsrtdr ? =yXCfng srtd . (10)

In deriving Eq. (10), we never requireyXC to be
a functional derivative, thereby avoiding the need to
define an action [5]. Equation (7) also implies an exact
condition on the Kohn-Sham density matrix:Z

d3r r ? =gsrr0tdjr0­r ­
Z

d3r r ? =gSsrr0tdjr0­r .

(11)

A last theorem relates coordinate scaling to the cou-
pling constant for the electron-electron repulsion [17].
The Schrödinger equation forN electrons is(

T̂ 1 V̂ee 2 i
≠

≠t

)
Csr1 . . . rN td ­ 2V̂extCsr1 . . . rNtd .

(12)

[Note that we could have derived Eq. (7) by replacingri

by r0
iyg everywhere and takingdydgjg­1 of both sides.]

ConsiderClfng to be the solution of Eq. (12), but with
electron-electron repulsionlV̂ee, andyl

extsr, td chosen to
keep the density fixed (at itsl ­ 1 value). Then let
ri ! gr0

i and t ! bt0 and multiply through byg2. If
we define

Cgbsr1 . . . rNtd ­ g3Ny2Csgr1 · · · grN btd , (13)

we find Eq. (12) becomes(
T̂ 1 lgV̂ee 2 i

g2

b

≠

≠t

)
Cl

gbfng ­ 2g2V̂ l
extC

l
gbfng .

(14)

By choosingb ­ g2 andg ­ 1yl, we findC
l
1yl,1yl2 fng

satisfies Eq. (12), i.e., is equal toCfng. (By the Runge-
Gross theorem, the potentials must be identical if the
densities are the same for both wave functions.) Thus

Clfng ­ Cll2 fn1yl,1yl2 g (15)

and, by subtracting out Hartree and Kohn-Sham contribu-
tions,

yl
XCfng srtd ­ l2yXCfn1yl,1yl2 g slr, l2td . (16)

Thus any functional of the density, evaluated at coupling
constantl, can be written in terms of the physical func-
tional, evaluated on a scaled density at the scaled coordi-
nates. For example, following arguments first applied to
the ground state [16],

EXfngg2 g std ­ gEXfng sg2td . (17)

Highly accurate calculations on time-dependent sys-
tems are usually extremely demanding [5], making tests
of exact theorems and approximations very difficult in
TDDFT. We performed exact numerical calculations
on Hooke’s atom, two interacting electrons in parabolic
potential, with a time-dependent force constant,kstd ­
mv2std. This model is solvable because

Csr1, r2, td ­ FsR, tdfsu, td , (18)

where R ­ sr1 1 r2dy2 and u ­ r2 2 r1. Each
wave function satisfies a single-particle time-dependent
Schrödinger equation, e.g.,√

2
1

2m
=2 1

mv2std
2

u2 1
1
u

!
f ­ i Ùf , (19)

where m ­ my2 is the reduced mass. Thenf is ex-
panded in the adiabatic basis of instantaneous eigenstates
of its Hamiltonian:

fsu, td ­
X

j

bjstdxjfvstd; uge2iej fvstdgt , (20)

where√
2

1
2m

=2 1
mv2

2
u2 1

1
u

!
xjsv; ud ­ ejsvdxjsv; ud .

(21)
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These eigenstates in turn are solved by expanding the
wave function in a power series inu times a Gaussian
[18]. The coefficientsbk satisfy

Ùbk ­ i Ùekbkt 2
X
jfik

bjk jj ÙV stdjkle2isej2ekdtysej 2 ekd ,

(22)

where ÙV ­ mv Ùvu2, and are solved numerically.
We start our system in the ground state

at t ­ 0 with v ­ v0 and then let vstd ­
v0 1 sv1 2 v0d hsinfpstyt1 2

1
2 dg 1 1jy2, as shown

in Fig. 1. We show results for the time evolution
with v0 ­ 0.5, v1 ­ 1, and t1 ­ 1 in atomic units
(e2 ­ m ­ h̄ ­ 1). The first three occupation numbers
(in u) and the time-dependent frequency are shown in
Fig. 1. By t ­ 1.6, the system is about 30% excited.
After t ­ 1.6, the number ofu levels in our calculation
(12) were no longer sufficient to guarantee the accuracy
needed for the calculations shown below.

In Fig. 2, we plot T , Vext, and Vee as a function of
time, as well as12 md2kr2lydt2. Herekr ? =yextl ­ 2Vext.
We find the virial theorem of Eq. (8) to be satisfied to
within 0.1 millihartree. If we contrast our results with an
adiabatic situation (in which the system remains in the
instantaneous ground state for all times), we see thatT
remains remarkably low, as the wave function takes time
to respond to the stimulus.Vext grows, but then drops
after t ­ 0.9, while v is still increasing. The Coulomb
repulsion barely changes during the entire run. Finally,
the large value of2sT 2 Vextd 1 Vee contrasts with its
vanishing in any single eigenstate.

Next, we calculate the exact Kohn-Sham potential
for this two-electron system. We have a single orbital,
doubly occupied, but the calculation is more involved
than for a ground state, as the phase of the wave
function becomes important. We writefsrtd ­ eia

p
ny2

and insert this form into the time-dependent Kohn-Sham
equation. Requiring that the imaginary part ofySsrtd be

FIG. 1. Occupation numbers for theu wave function andvstd
(atomic units).

zero yields

a0 ­ 2
1

nsr , tdr2

Z r

0
Ùnsr 0, tdr 02dr 0, (23)

where the prime indicatesdydr, and

yS ­
1

2r

√
n0

n

!
1

n00

4n
2

1
8

√
n0

n

!2

2
1
2

a02 2 Ùa .

(24)

The last two terms arise purely from the time dependence
of the density. Even for a noninteracting system, they are
nonzero. The exchange-correlation contribution is then
found by subtracting the external and Hartree potentials.

In Fig. 3, we plotyCsrtd at several times during the ex-
citation. We do not plotyXsrtd, as this is just2yHsrtdy2
for two electrons. These curves are qualitatively simi-
lar to those in the adiabatic ground states. The strange
behavior beyondr ­ 3 for t ­ 1.5 is due to numerical
inaccuracy. We tested Eq. (5) on these potentials, finding
it satisfied within the accuracy of the calculations.

Next, we plot the quantities appearing in Eq. (10)
in Fig. 4. We subtract out the exchange contribution,
which trivially satisfies the virial theorem in this case
(EX ­ 2Uy2). The line denoted virial is just the virial
of the correlation potential and is indistinguishable from
EC 1 TC until aboutt ­ 1.4, where numerical inaccura-
cies arise. As noted above,Vee is very unresponsive to
the external potential, and this is reflected inEC. The ki-
netic correlation energy followsT and starts to grow at
aboutt ­ 0.8. What is remarkable is that this means that
the sumEC 1 TC, which has never been found to be pos-
itive in any ground state, becomespositive around1.2.
This shows that time-dependent energy components can
behave very differently from their ground-state analogs.

To illustrate our scaling theorem, Eq. (15), consider the
plasmon frequency of a uniform gas,vp where v2

p ­
4pe2nym. Under scaling,n ! g3n andv ! vyg2, so

FIG. 2. Energy components for the time-dependent Hooke’s
atom (hartrees); virial­ 2sT 2 Vextd 1 Vee.
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FIG. 3. Time-dependent correlation potentials (atomic units).

that, according to Eq. (15),svl
pd2 ­ 4pe2g3nysmg4d ­

lv2
p , correctly. The importance of Eq. (16) is that it

applies to all inhomogeneous systems also.
Last, we discuss the implications of Eqs. (5) and (10)

for the construction of approximate time-dependent func-
tionals. These are usually written as approximations to
the exchange-correlation potential. If an approximation
implies an assumption about energy components, then
Eqs. (5) and (10) should be checked. If not, then Eqs. (5)
and (10) can be used to construct energy components.
An adiabatic approximation employs only the instanta-
neous density to approximate the potential at any given
time. Such an approximation satisfies Eqs. (5) and (10)
if it satisfies them in the ground state. If it is an ac-
curate approximation for the energy components, it will
then be accurate for the virial of the potential, provid-
ing a constraint on the approximate potential. This may
explain the “surprising” accuracy of approximate poten-
tials in Ref. [19]. The oldest and most commonly used
[20] is adiabatic local-density approximation (ALDA),

FIG. 4. Time-dependent energy components (hartrees).

which simply constructs properties, such as the time-
dependent exchange-correlation potential, using ground-
state uniform gas functions, at the given instant in time.
On the other hand, in regions where the time-dependent
energy components differ qualitatively from their ground-
state counterparts, such approximations will fail badly.
For example,EALDA

C 1 TALDA
C , 0 always.
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Erratum: Several Theorems in Time-Dependent Density Functional Theory
[Phys. Rev. Lett. 82, 378 (1999)]

Paul Hessler, Jang Park, and Kieron Burke

The dependence on the initial wave function, C�0� � C�r1 · · · rN , t � 0�, was missing from the relations between the
scaling and coupling constant. By considering Cl�n; C�0��, the wave function with electron-electron repulsion lV̂ee

generating n from an initial wave function C�0�, one finds

Cl�n; C�0�� � Cll2 �n1�l,1�l2 ; C1�l�0�� , (15)

where Cg�0� � g3N�2C�gr1 · · · grN , t � 0�. Thus Eq. (16) becomes

yl
XC�n; C�0�, F�0�� �rt� � l2yXC�n1�l,1�l2 ; C1�l�0�, F1�l�0�� �lr, l2t� , (16)

where F�0� is the initial state in the Kohn-Sham system, while Eq. (17) becomes

EX�ngg2 ; Fg�0�� �t� � gEX�n; F�0�� �g2t� . (17)

[We also note that, in Eq. (14), the coordinates in the external potential should have been scaled.]
We thank Robert van Leeuwen for bringing this oversight to our attention.
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