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Abstract. Severe surface wind gusts produced by thunderstorms have the potential to damage infrastructure and are a
major hazard for society. Wind gust data are examined from 35 observing stations around Australia, with lightning

observations used to indicate the occurrence of deep convective processes in the vicinity of the observed wind gusts. A
collation of severe thunderstorm reports is also used to complement the stationwind gust data. Atmospheric reanalysis data
are used to systematically examine large-scale environmental measures associated with severe convective winds.We find

that methods based on environmental measures provide a better indication of the observed severe convective winds than
the simulated model wind gusts from the reanalysis data, noting that the spatial scales on which these events occur are
typically smaller than the reanalysis grid cells. Consistent with previous studies in other regions and idealised modelling,
the majority of severe convective wind events are found to occur in environments with steep mid-level tropospheric lapse

rates, moderate convective instability and strong background wind speeds. A large proportion of events from measured
station data occur with relatively dry environmental air at low levels, although it is unknown to what extent this type of
environment is representative of other severe wind-producing convective modes in Australia. The occurrence of severe

convective winds is found to be well represented by a number of indices used previously for forecasting applications, such
as the weighted product of convective available potential energy (CAPE) and vertical wind shear, the derecho composite
parameter and the total totals index, as well as by logistic regressionmethods applied to environmental variables. Based on

the systematic approach used in this study, our findings provide new insight on spatio-temporal variations in the risk of
damaging winds occurring, including the environmental factors associated with their occurrence.
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1 Introduction

Severe convective winds (SCWs) can be caused by thunder-
storm downdrafts and outflow, including phenomena such as

downbursts and gust fronts. The Australian Bureau ofMeteorol-
ogy (BoM) defines severe-wind producing thunderstorms based
on 3-second average wind gust speeds exceeding 25m s�1.

SCWs present a major risk to some industries, including for
the energy sector, which is susceptible to transmission line
failures from SCWs (Bureau of Meteorology 2016; Australian
Energy Market Operator 2017). Therefore, understanding risk

factors associated with the occurrence of SCWs is valuable for
planning and enhanced resilience in relation to damaging wind
events.

The sparseness of high-quality wind observations is one of
the limiting factors for understanding SCWs in Australia.
Reports of severe thunderstorms can be used (Allen et al.

2011), although these are biased towards areas of greater
population density, are not consistent over time and may
overestimate wind speeds in some instances (Edwards et al.

2018). Geerts (2001) and Holmes et al. (2018) used station wind
data to estimate some observed climatological characteristics in

Australia, although these investigations were regional, for the
individual Australian states of New South Wales and South
Australia, respectively. Based on the observational data limita-

tions and research done to date, considerable knowledge gaps
remain for the climatology of SCWs in general throughout
Australia.

Given these limitations for SCW observations, some studies
have examined atmospheric environments in which convective
hazards occur. Environmental conditions based on model data
have been found to provide a useful indication of the occurrence

of severe thunderstorms globally (Brooks et al. 2003), in Europe
(Taszarek et al. 2019) and in Australia (Allen and Karoly 2014).
Such methods have also been used in Australia to estimate

the mean occurrence of hail events (Niall and Walsh 2005;
Bednarczyk and Sousounis 2012; Bedka et al. 2018), cool-
season tornadoes (Kounkou et al. 2009) as well as thunder-

storms and convective rainfall (Dowdy 2020). Recently, this
method has been applied to SCWs throughout Australia using
model environments on a seasonal-mean basis (Spassiani 2020).

However, environmental analysis on an event basis is yet to
be achieved, noting that Brown and Dowdy (2019) examined
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SCW events and their associated environments in the state of
South Australia.

Previous severe weather research has provided knowledge of
SCW environments, although the extent to which these environ-
ments are applicable across the Australian continent has not

been systematically tested. Early findings from field campaigns
indicated that days with thunderstorms that produce downbursts
can be differentiated from days with thunderstorms that do not

produce downbursts, based on the profile of temperature and
humidity near an event (Wakimoto 1985; Atkins andWakimoto
1991). Similarly, idealised numerical model studies have
investigated downburst occurrences in relation to atmospheric

environments (Srivastava 1985; Proctor 1989), with the results
of such studies suggesting that favorable environments include a
relatively dry subcloud layer and melting level, with steep

temperature lapse rates. Conceptually, dry low-levels assist
downdraft intensification by allowing for increased melting
and evaporation of precipitation within a thunderstorm, with

the associated latent heat change leading to cooler and therefore
heavier air parcels. In addition, high amounts of liquid water and
ice may also aid downdraft initiation through precipitation
loading, although this depends on other factors such as the

steepness of the lapse rate (Srivastava 1985).Meanwhile, a steep
temperature lapse rate creates a more unstable atmosphere,
indicating a favorable environment for convection to form.

Those previous studies suggest a broadly similar set of large-
scale environments to those identified by various recent obser-
vational studies (Doswell and Evans 2003; Kuchera and Parker

2006; Hurlbut and Cohen 2014), including based on a combina-
tion of strong lapse rates and moisture sources, while noting a
wide range of other factors that can potentially influence the

occurrence of hazardous weather phenomena associated with
severe thunderstorms, which may vary with convective mode.

Environmental diagnostics are often used in operational
weather forecasting applications to indicate the chance of severe

thunderstorms occurring. Statistical regression methods based
on a wide range of environmental conditions are also sometimes
used, including for systematic studies of thunderstorm occur-

rences over long time periods (i.e. complementary to case
studies or weather forecasting of individual events). For exam-
ple, binary logistic regression has been applied in relation to hail

occurrence in the United States (Allen et al. 2015), Germany
(Mohr et al. 2015) and Spain (Gascón et al. 2015), lightning
activity in Australia (Bates et al. 2018) as well as convective
hazards in China (Pang et al. 2019).

Two historicalmodel datasets (or reanalyses) are used here to
investigate environments associated with SCWs in Australia.
The reanalysis datasets are the BoM Atmospheric Regional

Reanalysis for Australia (BARRA: Su et al. 2019) and ERA5,
from the European Centre for Medium-Range Weather Fore-
casts (Hersbach et al. 2020). We examine various established

diagnostics commonly used in forecasting severe thunder-
storms, in addition to wind gusts as provided in the reanalysis
datasets, in relation to their ability to indicate the observed

SCWs. This is done using two observed SCW datasets: one
dataset based on station wind observations, with lightning data
used to indicate the occurrence of deep convective processes in
the vicinity of the observedwind gusts; aswell as another dataset

based on severe thunderstorm reports as collated by BoM. A set
of logistic regressionmodels is then developed for indicating the

chance of SCWs occurring, which is shown to improve skill over
traditional indices.

In this work, the ‘Data and methods’ section contains the

observed event datasets, the reanalysis datasets, the environ-
mental diagnostics tested, and the logistic regression approach.
The ‘Results’ includes evaluation of the environmental diag-

nostics and reanalysis wind gust data in relation to the observed
SCW datasets, as well as the development of a logistic
regression model for indicating the chance of SCWs occurring;
followed by the ‘Discussion and conclusion’.

2 Data and methods

2.1 Observed wind gusts

Two observed SCW datasets are used, spanning 2005–2018.
The first of these, referred to throughout this study as ‘‘mea-

sured’’ SCW events, is from station wind gust data with
lightning observations used to indicate the occurrence of deep
convective processes in the vicinity of the station (as detailed
below). The second of these, referred to as ‘‘reported’’ SCW

events, is from severe wind events listed in the reports collated
by BoM for severe thunderstorm hazards.

For the measured SCW dataset, daily wind gust data are

provided from automatic weather stations (AWS) managed by
the BoM. The speed, direction and local time of the daily
maximum 3-second average gust at a height of 10m above

ground level is archived. We use data from 35 AWS stations
which have a long and reliable wind gust record covering most
of the continent (Azorin-Molina et al. 2019). Data is available at

most stations for the full 14-year observational period, with the
exceptions being Amberley (12.1 years), East Sale (12.1 years),
Coffs Harbour (10.4 years) andHalls Creek (4.6 years). The data
have been quality controlled by the BoM and gusts flagged for

potentially large measurement error are removed. The AWS
stations are listed in Table 1 alongwith the length of each record,
with their locations shown in Fig. 1.

Dailymaximumvalues of themeasured station gusts are used
throughout this study and are classed as ‘convective’ based on
lightning data. The lightning data are combined stroke counts

from two ground-based networks of lightning detectors: the
World-Wide Lightning Location Network (WWLLN; Virts
et al. 2013) and the Global Position and Tracking System
(GPATS). The lightning data are collated on a 0.258 latitude-
longitude grid with 6-hourly periods used for the temporal
spacing, covering 2005–2018 (defining the observational period
used in this study). A wind gust is classed as convective for the

purposes of this study only if there are two or more lightning
strokes detected within 50 km of the AWS station that recorded
the wind gust during the 6-hourly time period of the lightning

data that corresponds to when the gust occurred. A gust of
25m s�1 or above is classed as severe, otherwise it is classed as
non-severe. Although these thresholds used for the lightning

data are somewhat arbitrary in their specific magnitudes, this
method can provide observation-based evidence that deep
convection occurred around the region and time that a severe
wind gust was recorded. This is based on the idea that lightning
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is caused by strong potential differences from electrically
charged regions of a cloud and that these charged regions are

generated by strong updrafts resulting from deep convective
processes (Lang and Rutledge 2002).

The reported event dataset is the BoM Severe Thunderstorm

Archive (STA), which has been used previously for severe
thunderstorm analysis (Allen et al. 2011). Each report contains
a latitude-longitude location, the time of the report and an

estimated wind gust speed. It is noted that there are significant
biases within this dataset, for example, the tendency of reports to
be located in regions of high population density and for gust
speeds to be overestimated (Edwards et al. 2018). In addition,

the STA has not been maintained in some regions of Australia
from 2015 onwards, and so periods of null reports may be
present during the latter portion of the archive. Reports are only

used if they are within 50 km of the 35 AWS locations in Table 1
during the 2005–2018 period, so that each observational dataset
is sampling the same locations and types of atmospheric

environment. If there is more than one report at a location on

a single day, only the report with the highest estimatedwind gust
speed is retained.

In addition, events with nearby tropical cyclones (TCs) from
the BoMbest-track database are removed. This is due to the high
potential for synoptic-scale processes and winds associated with

TCs to be mis-classified as SCWs (as considered for the
purposes of this study with a focus on thunderstorm-related
wind gusts), while noting that TCs also have convective

processes embedded in their structure as a key aspect of their
development. Consequently, severe wind gusts are not consid-
ered in this study if the center of a TC is within 500 km of the
AWS station on the same day as the gust. This process

eliminates eight measured severe wind gusts and 14 reported
events, leaving a remainder of 202 measured and 510 reported
events from 2005–2018.

The spatial distribution of reported and measured SCWs in
Australia is presented in Fig. 1 for the 35 locations examined in
this study. The population density bias in the reported dataset is

clear, with local maxima in each of the mainland state capital

Table 1. Description of each of the 35 stations used for the observed SCW datasets

Station ID Name Latitude Longitude Record length (years)

023034 Adelaide Airport –34.9524 138.5196 13.8

015590 Alice Springs Airport –23.7951 133.8890 13.8

040004 Amberley –27.6297 152.7111 12.1

003003 Broome Airport –17.9475 122.2352 14.0

031011 Cairns Aero –16.8736 145.7458 13.9

006011 Carnarvon Airport –24.8878 113.6700 13.8

018012 Ceduna –32.1297 133.6976 13.8

044021 Charleville Aero –26.4139 146.2558 13.5

048027 Cobar –31.4840 145.8294 13.8

059040 Coffs Harbour –30.3107 153.1187 10.4

014015 Darwin Airport –12.4239 130.8925 13.8

085072 East Sale –38.1156 147.1322 12.1

009789 Esperance –33.8300 121.8925 13.7

013017 Giles Meteorological Office –25.0341 128.3010 13.8

014508 Gove Airport –12.2741 136.8201 13.9

002012 Halls Creek Meteorological Office –18.2291 127.6636 4.6

094029 Hobart (Ellerslie Road) –42.8897 147.3278 13.9

012038 Kalgoorlie-Boulder Airport –30.7847 121.4533 13.8

033119 Mackay –21.1172 149.2169 13.7

007045 Meekatharra Airport –26.6136 118.5372 13.8

086282 Melbourne Airport –37.6655 144.8321 14.0

076031 Mildura Airport –34.2358 142.0867 14.0

026021 Mount Gambier Aero –37.7473 140.7739 13.8

029127 Mount Isa Aero –20.6778 139.4875 13.7

041359 Oakey Aero –27.4034 151.7413 13.7

009021 Perth Airport –31.9275 115.9764 13.8

004032 Port Hedland Airport –20.3725 118.6317 13.4

039083 Rockhampton Aero –23.3753 150.4775 13.9

066037 Sydney Airport –33.9465 151.1731 13.6

015135 Tennant Creek Airport –19.6423 134.1833 13.8

032040 Townsville Aero –19.2483 146.7661 13.9

072150 Wagga Wagga –35.1583 147.4575 13.8

027045 Weipa Aero –12.6778 141.9208 13.7

061078 Williamtown RAAF –32.7939 151.8364 13.5

016001 Woomera Aerodrome –31.1558 136.8054 13.8
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cities (including Perth Airport, Darwin Airport, Adelaide Air-
port, Melbourne Airport, Sydney Airport and Amberly near the

city of Brisbane). Therefore, there is low confidence in this
reported SCW dataset for indicating spatial characteristics of
SCWs, although this is not a focus of this study.

The annual time series of each dataset is also shown in Fig. 1,

showing relatively large interannual variability, ranging from 24
to 66 events in a year in the reported dataset, and 5 to 20 in the
measured dataset. There appears to be little association in

variability between the two datasets in terms of the interannual
time series, although it is noted that the STA is not consistently
maintained across all Australian states and territories.

2.2 Environmental diagnostics from reanalyses

The environmental conditions associated with SCWs are inves-
tigated using various convective diagnostics based on data

obtained from two atmospheric reanalyses: BARRA and
ERA5. The choice of environmental diagnostics to consider in
this study was informed by previous studies of thunderstorms

and convective hazards including severe wind gusts, and
includes both diagnostic variables and diagnostic indices, the
distinction of which is discussed byDoswell and Schultz (2006).

Diagnostic variables are broadly defined here as either basic
observable quantities, physical quantities derived from observ-

able variables, or the result of a mathematical/statistical opera-
tion on those observed/derived variables. The diagnostic
variables investigated here are listed in the Appendix
(Table A1), including things such as the temperature lapse rate

between two layers, water vapour mixing ratio averaged over
various vertical layers, the magnitude of vertical wind shear
between two layers, storm relative helicity, wind speed at

various heights and averaged over certain vertical layers, the
parametrised hourly maximum model wind gust at a height of
10m and convective available potential energy (CAPE). Note

that the computation of CAPE uses four different starting parcel
definitions (see Table A1) and provides equilibrium level (EL),
lifting condensation level (LCL) and convective inhibition
(CIN) as additional diagnostics.

In contrast to the above definition of diagnostic variables,
diagnostic indices are broadly defined as the combination of
variables into formulae, which may be based on physical

processes, or arbitrarily designed to match observations such
as based on statistical regression. The full list of indices used is
provided in Table A1. Generally, all diagnostics are identical to
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Fig. 1. (a, b) Average annual number of severe convective wind (SCW) events observed at 35 locations (listed in

Table 1), based on the time period 2005–2018, and (c) the total number of events for each year at all stations.Maps are

shown for the measured SCW dataset using (a) station observations of wind gusts in combination with lightning data

and (b) the reported dataset using severe thunderstorm-related wind reports collated by the BoM.
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their definition within the National Oceanic and Atmospheric
Administration (NOAA) Storm Prediction Center (SPC), unless

noted otherwise in Table A1.
Diagnostics are calculated on hourly BARRA and ERA5

reanalysis data, using all pressure levels below 100 hPa and

including surface level data. These environmental diagnostics
calculated from the reanalysis data are spatiotemporally
matched to the observed SCW events using the following

method. For each of the observed SCW events, the diagnostics
are calculated from the grid cell of the reanalysis data that is
closest (using land points only) to the location of the station
where the observed SCW was recorded. This is done for the

most recent hourly time-step prior to the time that the
observed SCW event was listed as occurring in the station
record or report database. There is an exception to this method

for the parameterised model wind gust from the reanalyses,
where the time-step after each observed wind gust is used,
given that this diagnostic is defined as the maximum in the

previous hour. A range of different time steps and spatial
proximity definitions were tested for associating diagnostics
with SCWevents, with the resulting skill generally insensitive
to the method used (see Section 3.1 and Appendix Figs. A2,

A3). Given that the pre-convective environment is being
sampled, and both models use convective parameterization,
convective contamination in the reanalysis environmental

conditions is not considered to be a limiting factor for the
purposes of this study (noting that Appendix Fig. A1 shows
that the environmental diagnostics calculated from reanalyses

are broadly consistent with those calculated from observa-
tions using radiosonde soundings).

Both reanalysis datasets have hourly data, as used in this

study for calculating the environmental diagnostics. ERA5 has
horizontal grid spacing of 0.258 on 37 pressure levels (27 of
which are at or below 100 hPa), whereas BARRA data has
horizontal grid spacing of 0.118 (37 pressure levels, 22 levels

below 100 hPa).
To calculate the diagnostics listed in Table A1, multiple

software packages using Python were applied to three-

dimensional fields of air temperature, relative humidity, geo-
potential height, zonal wind, meridional wind and vertical wind.
In addition, some diagnostics were taken directly from the

reanalysis data (e.g. the modelled wind gust at 10m as provided
in the reanalysis datasets). For the calculation of all CAPE
diagnostics and some vertical interpolation routines, wrf-python
(Ladwig 2017) was used. MetPy (May et al. 2019) was utilised

for the computation of various physical quantities. SHARPpy
(Blumberg et al. 2017) provided some routines for SPC-defined
convective indices, and SkewT (https://pypi.org/project/

SkewT/) provided parcel lifting routines which were adapted
to calculate downdraft convective available potential energy
(DCAPE). Further details on the diagnostics are provided in the

Appendix section, including examining values based on radio-
sonde data in addition to reanalysis data.

2.3 Diagnostic testing: Heidke skill score and the relative
operating characteristic curve

Model diagnostics are tested on their ability to identify the
occurrence of observed SCW events by using the optimal

Heidke skill score (HSS) with a fixed threshold for event
identification, as well as the area under the relative operating

characteristic (ROC) curve (area under curve; AUC). The HSS
is a measure of skill relative to random chance and uses all
elements of the contingency table (Joint Working Group on

Forecast Verification Research 2015). For a given diagnostic, an
optimal HSS/threshold is considered in this study only if the
diagnostic correctly identifies at least two-thirds of the SCW

events. Note that in addition to testing diagnostics, the HSS is
also used to optimise the set of predictors used in the logistic
regression model (Section 2.4).

It has been suggested that the HSS is appropriate for rare

event forecasting (Doswell et al. 1990), given that it includes
correct negatives (when the diagnostic correctly identifies a
null-event) in a controlled way. The HSS ranges from –1 to 1

(with 1 being a perfect forecast and 0 representing no skill), but
is sensitive to the number of events, so tends towards zero for
extremely rare events (such as SCWs as examined here). This is

examined further in the Appendix (Fig. A4) and is not expected
to impact on results regarding the relative skill of each
diagnostic or statistical model.

The ROC curve shows the false positive rate and false

negative rate for a diagnostic over a range of thresholds and is
therefore indicative of the overall usefulness of a diagnostic. The
AUC quantifies the area under the ROC curve and is a measure

of how a diagnostic can separate events from non-events, which
can be shown to be equivalent to the Mann–Whitney U-statistic
(Mason and Graham 2002). The AUC ranges from 0 to 1, with 1

representing a perfect separation of events and non-events, and
0.5 representing the baseline for skill.

2.4 Application of logistic regression with environmental
diagnostics

For SCW environment identification, we develop a statistical
model using binary logistic regression, utilizing both the Python

Scikit-learn package (Pedregosa et al. 2011) and the statsmodels
package (Seabold and Perktold 2010). The logistic regression
model will be fit to observed events and use environmental

diagnostic variables from reanalyses as predictors (diagnostic
indices are ignored). The general form of the equation resulting
from the logistic regression is

P ¼ 1

1þ e�z
ð1Þ

where P is the probability of an environment supportive of

SCW, and z is a linear combination of diagnostic variables plus
an intercept term. The optimal set of diagnostic variables for use
in Eqn 1 is achieved by a stepwise forward selection algorithm,

similar to previous studies using logistic regression for convec-
tive hazards (Gascón et al. 2015; Mohr et al. 2015; Prein and
Holland 2018). This type of selection ensures that variables

which have the greatest multivariate skill are included in the
model. The process is as follows.

1. Begin by fitting a logistic regression model to observed
events without using any variables, resulting in a null model
(intercept only with HSS¼ 0).
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2. For each variable which has been attained from the reana-
lyses (n¼ 72, ignoring indices), add the variable to themodel

from the previous step, and fit the model again.
3. For each new model from step 2 (n¼ 72), calculate the

probability that each regression term is statistically signifi-

cant (coefficient is different from zero), and that a statisti-
cally significant increase in theHSS is achieved by themodel
(estimated by 1000-time bootstrap procedure using random

resampling).
4. If, for any of the newmodels from step 2, the null hypothesis

is rejected for each test in step 3 (a¼ 0.05), then the variable
which provided the greatest increase in HSS is retained for

use in the model. If not, the procedure is halted.
5. Repeat steps 2–4 until no further improvement is made.

This process is repeated for both reanalyses and for both
observed datasets, resulting in four logistic regression models.
When reporting the HSS for the fitted models, cross-validation

is used to ensure there has been no over-fitting. Cross-validation
is achieved by randomly resampling 80% of each observed
dataset to use as a training dataset, 16 times, and using the

remaining 20% of the dataset for testing, with the mean,
maximum and minimum HSS reported in Section 3.2.

3 Results

3.1 Relative skill of environmental diagnostics

Diagnostics are tested here on their ability to identify SCWevents
at 35 locations around Australia. As discussed in Section 2.3, our

method is to apply a range of thresholds for each diagnostic to
optimise the HSS, in addition to requiring a successful detection
of at least two-thirds of events. As noted in Section 2.2, the closest

model spatial point to each event has been used for all diagnostics
at the most recent instantaneous hourly time step (with the
exception of the modeled wind gust), although skill scores are
generally similar for other methods of spatial and temporal

proximity, shown in the Appendix (Figs. A2, A3). Note that the
overall magnitude of the HSS shown here is not a reflection of the
absolute skill of the diagnostics considered, but rather the rarity of

SCW events in the observed datasets (see Section 2.3 and
discussion in the Appendix, Fig. A4). Diagnostic skill is also
demonstrated in theAppendix by usingROC curves and theAUC

score,which is not sensitive to event frequency and incorporates a
range of possible thresholds for event identification (Fig. A5).
However, here we focus on the HSS, given that relative skill for
an optimal threshold is of greater interest.

For the ERA5 and BARRA reanalyses, results indicate that
total totals is the most skillful diagnostic (i.e. based on the
highest HSS value) for identifying the occurrence of measured

SCW events (Fig. 2a). Total totals is based on the temperature
lapse rate in the 850–500 hPa layer and the 850 hPa dewpoint,
and has traditionally been used as an indicator for thunderstorm

development in forecasting. Its ability to identify hazardous
convective environments using model data has been noted
previously (Dowdy 2015; Miller and Mote 2018), as well as

its usefulness in predicting downbursts from satellite data
(Ellrod 1989).

In addition to indicating environments favorable for convec-
tion, the relative skill of the total totals diagnostic may result

from it being a simple index of convective instability that could

be more reliably represented at the relatively coarse scale
resolved in reanalysis datasets, in contrast to some of the other
stability diagnostics which integrate throughout the vertical

(such as CAPE and other related quantities). Another possibility
may be that the vertical layer used to compute total totals ismore
frequently unstable within the reanalyses in comparison to other

levels which are considered by vertically integrated diagnostics.
The emphasis on mid-level instability may relate to SCW
mechanisms but could also suppress non-meteorological factors
and biases. For example, model bias in surface variables is

often greater than for above the boundary layer (as for some
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wind diagnostics demonstrated in Appendix Section A2, for

example).
For reported SCW events, MLCS6 is the most skillful

diagnostic from BARRA, whereas the derecho composite
parameter (DCP) is the most skillful from ERA5 (Fig. 2b).

MLCS6 represents the weighted product of mixed-layer CAPE
and vertical wind shear following Brooks et al. (2003), which
has been adapted for Australia by climatological studies using

reanalyses (Allen and Karoly 2014; Dowdy 2020). The DCP has
been developed for environments supporting mesoscale squall
lines, which are a leading mode of SCW production in the

United States (Smith et al. 2012). In contrast to the

environmental diagnostics, the results in Fig. 2 also reveal that

model wind gusts (WindGust10) do not provide a good indica-
tion of the observed SCW events.

The above-mentioned environmental diagnostics (total
totals, MLCS6, DCP as well as WindGust10) are examined

further in Fig. 3, showing their occurrence frequency distribu-
tions as a function of measured wind gust speeds. SCW events
are highlighted in Fig. 3 using black crosses. This shows that the

wind gust speeds from the reanalysis datasets (WindGust10)
underestimate the magnitude of the observed severe wind gusts.
The WindGust10 values follow the observed values reasonably

well for the lower magnitudes, but this is not the case for the
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more extreme values, particularly for those associated with

convective processes (i.e. the SCW events shown in black). It
is noted that reanalysis gusts are intended to be representative of
an area larger than the spatial scale of SCWs, and it follows that

BARRA and ERA5 are not expected to be used for convective
extremes. However, gridded datasets are often used for studying
extreme events (including for wind), so it is useful to document
this limitation of reanalyses for simulating SCW events. How-

ever, reanalyses may potentially be suitable for examining
extreme winds when the spatial scale approaches the reanalysis
grid spacing, such as for synoptic events including cyclones and

fronts.
The other three environmental diagnostics (total totals, DCP

and MLCS6) have threshold values higher than many of their

commonly occurring values (i.e. the dark blue shaded regions in
Fig. 3), which results in better skill for indicating the occurrence
of SCW events, as compared to the skill for the wind gust data

from reanalyses. The threshold for the DCP (,0.15) shown in
Fig. 3 is lower than the conventional forecasting guidance of 1 as
is sometimes used for operational severeweather prediction, and
the threshold ofMLCS6 (,9000 forBARRA,,5000 for ERA5)

is lower than the value of 25 000 used for severe thunderstorms
in Allen and Karoly (2014). Although, the thresholds reported
here are broadly similar to the values around 10 000 used for

classifying thunderstorms and convective rainfall climatology
throughout Australia (Dowdy 2020). The threshold for total
totals (,48) compares well with traditional guidance (e.g.

Miller (1972) suggests values above 44 are useful for indicating
thunderstorm occurrences). Variations in diagnostic thresholds
such as these could be expected to some degree due to the
different datasets used for different applications and studies. For

example, station observations, radiosonde data and fine-
resolution numerical weather prediction (NWP) data are often
used for operational weather forecasting applications, whereas

coarser-scale data such as gridded reanalyses are often used for

longer-term climatological studies. In addition, SCW gusts are
known to be produced by a wide range of convective modes,
some of which may not require large amounts of instability (see

Section 3.2 for further discussion). This could somewhat explain
the relatively low thresholds for the DCP and MLCS6.

3.2 Logistic regression model development

Logistic regression models for indicating the occurrence of
SCWs are considered in this section, with models constructed
based on combining a selected set of environmental diagnostics.

Selection is achieved through a stepwise forward selection
process (Section 2.4), based on the inclusion of diagnostics
which provide the largest multivariate increase in HSS. The

results of the selection process, presented for each reanalysis
model and observed dataset, is shown in Table 2 and discussed
here. The final logistic regression models, including variable

coefficients and cross-validated skill, are presented in Table 3.
As for the diagnostics presented in the previous section, SCW
environments are identified by the logistic regression models
using a fixed diagnostic threshold based on optimizing the HSS

(Section 2.3), and these thresholds are also shown in Table 3.
For the BARRA and ERA5 logistic models fitted to reported

SCW events, the first two variables selected are similar. These

are, in order of selection, the effective bulk wind difference
(EBWD) and the pressure-weighted mean wind speed. For
BARRA, the mean wind speed from 800 to 600 hPa is selected

(Umean800–600), whereas for ERA5, the 0–6 km layer above
ground level is used. For ERA5, CAPE using a mixed-layer
starting parcel (MLCAPE) and the temperature lapse rate from
1–3 kmabove ground level (LR13) are then selected, resulting in

a model with four predictors. For BARRA, LR13 is also then
selected, followed by the equilibrium level of the mixed-layer
convective parcel (MLEL) and the minimum relative humidity

Table 2. Results of the forward selection algorithm for logistic regression variable selection

Performed separately for each reanalysis and observed event dataset (four times). For each selection process, the information presented includes the variable

selected at each step (from 1 to 7, left to right), the HSS at that point in the process, the AUC score for the new variable based on separating observed events and

non-events and the confidence interval for the AUC score (CI). The CIs are 99% of the range of AUC based on 1000-times bootstrapping

1 2 3 4 5 6 7

BARRA AWS Vars. EBWD LR13 Umean03 MLEL RHMin03 – –

HSS 0.009 0.020 0.027 0.039 0.045 – –

AUC 0.835 0.793 0.690 0.810 0.667 – –

CI (0.797, 0.872) (0.761, 0.828) (0.63, 0.755) (0.772, 0.841) (0.625, 0.707) – –

BARRA STA Vars. EBWD Umean800–600 LR13 MLEL RHMin13 – –

HSS 0.019 0.031 0.038 0.046 0.049 – –

AUC 0.804 0.740 0.715 0.773 0.747 – –

CI (0.774, 0.832) (0.712, 0.768) (0.691, 0.736) (0.745, 0.799) (0.726, 0.77) – –

ERA5 AWS Vars. EBWD Umean800–600 LR13 RHMIN13 SRHE Q-Melting Eff-LCL

HSS 0.007 0.015 0.020 0.027 0.032 0.035 0.041

AUC 0.816 0.740 0.788 0.759 0.757 0.806 0.797

CI (0.772, 0.854) (0.69, 0.788) (0.761, 0.814) (0.731, 0.79) (0.707, 0.805) (0.779, 0.83) (0.752, 0.839)

ERA5 STA Vars. EBWD Umean06 MLCAPE LR13 – – –

HSS 0.014 0.026 0.034 0.040 – – –

AUC 0.792 0.715 0.776 0.707 – – –

CI (0.774, 0.832) (0.677, 0.743) (0.749, 0.805) (0.685, 0.729) – – –
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over the 1–3 km layer above ground level (RHMin13), resulting
in five predictors. MLEL quantifies the height at which the

mixed-layer convective parcel becomes neutrally buoyant with
respect to the environment and can be interpreted as the potential
height of convection (e.g. convective cloud-top height), based
on the available energy in the environment for lifting the parcel.

RHMin13 is hypothesised by Kuchera and Parker (2006) to
promote dry air entrainment, which is relevant for downdrafts.
MLCAPE and LR13 both relate to atmospheric and convective

instability, whereas Umean06 and Umean800–600 are relevant
for convective organization and mixing of strong upper-level
winds to the surface. EBWD is defined as the magnitude of

vertical wind shear between the base of the effective layer and
half of the equilibrium level, and therefore relates to convective
organization and separation of updrafts and downdrafts in the
cloud layer. In addition, the EBWD contains information about

CAPE and convective inhibition (CIN), given that the effective
layer is defined as a contiguous layer of pressure levels that have
CAPE greater than 100 J.kg�1 and CIN less than 250 J.kg�1

(Thompson et al. 2007). If no effective layer is present, then the
value of this diagnostic (or any other diagnostic which uses the
effective layer) is zero.

For models that are fitted to measured SCW events, the first
three variables selected are similar between reanalyses, and to
those chosen for the reports-based models. These are the

EBWD, LR13 and the pressure weighted mean wind speed
(Umean03 for BARRA and Umean800–600 for ERA5). As

discussed above, these diagnostics are most likely related to
instability, convective organization and vertical mixing. The
discrepancy between the mean wind speed layer selected
between ERA5 and BARRA could potentially relate to the

vertical resolution of each dataset, which is greater for ERA5
than for BARRA (Section 2.2). For BARRA, the next two
variables selected are the MLEL and RHMin03 (similar to

RHMin13 as discussed above), resulting in five predictors.
For ERA5, the next variables selected are RHMin13, the
effective-layer storm relative helicity (SRHE), the water vapor

mixing ratio at the height of the melting level (Q-Melting), and
the effective-layer parcel lifting condensation level (Eff-LCL),
resulting in seven predictors. SRHE is related to the potential for
a convective system with a persistent, rotating updraft or

mesocyclone, such as a supercell. In addition to supercells,
Grams et al. (2012) show that effective layer diagnostics such as
SRHE can be useful for discrete and clustered convective

modes. Eff-LCL approximates the height of the cloud base
using an effective-layer convective parcel, whereas Q-Melting
relates to themoisture available for evaporative cooling within a

downdraft (Srivastava 1985).
To demonstrate that each selected variable provides a

statistically meaningful separation of the observed datasets,

Table 3. Results of logistic model development, including the optimal set of predictors/variables and their coefficients for use in Eqn 1

The optimal probability threshold and the resultingHSS are also shown, aswell as the best-performing diagnostic indices fromFig. 2 and associatedHSS.Here,

cross-validated HSS and thresholds are reported, calculated as the mean over 16 testing datasets, with the maximum and minimum representing the range of

HSS. This is presented individually for each reanalysis and observed dataset

SCW event dataset Reanalysis

dataset

Logistic model variable combina-

tion (equivalent to z in Eqn 1)

Mean cross-validated probability

threshold (mean HSS, HSS range)

Optimal diagnostic and mean cross-validated

threshold (mean HSS, HSS range)

Measured gust BARRA 1.2e-01 � EBWD 0.83 (0.046 (0.021, 0.066)) Total totals, 48.9 (0.016 (0.010, 0.022))

þ9.9e-01 � LR13
þ2.1e-01 � Umean03

þ2.4e–04 � MLEL

þ2.0e-02 � RHMin03

–1.2eþ 01

ERA5 6.1e-02 � EBWD 0.83 (0.037 (0.019, 0.059)) Total totals, 48.0 (0.015, (0.009, 0.026))

þ1.5e-01 � Umean800–600

þ9.4e-01 � LR13
þ3.9e-02 � RHMin13

þ1.7e-02 � SRHE
þ3.8e-01 � Q-Melting

þ4.7e-04 � Eff-LCL
–1.3eþ 01

Reported gust BARRA 8.8e-02 � EBWD 0.75 (0.049 (0.034, 0.061)) MLCS6, 12 758 (0.026 (0.019, 0.036))

þ1.8e-01 � Umean800–600

þ4.2e-01 � LR13
þ2.2e-04 � MLEL

þ1.1e-02 � RHMin13

–7.4eþ 00

ERA5 1.3e-01 � EBWD 0.72 (0.041 (0.030, 0.051)) DCP, 0.13 (0.019 (0.013, 0.026))

þ1.7e-01 � Umean06

þ1.6e-03 � MLCAPE

þ4.1e-01 � LR13
–5.6eþ 00
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relative operating characteristic (ROC) curves, along with the
area under the curve (AUC) is computed for each variable. The

AUC quantifies the extent to which each diagnostic can separate
SCW events from non-events and is equivalent to the Mann–
Whitney U-statistic (Section 2.3), which is a commonly used

test for the significance of statistical predictors, but potentially
not as useful as the AUC for very large datasets given that it is
based on hypothesis testing. The AUC results shown in Table 2

suggest that all predictors are skillful in a univariate sense for
separating measured and reported SCW events from non-events
(i.e. the AUC is significantly greater than 0.5), with the AUC
ranging from 0.835 for the EBWD to 0.667 for RHMin03

(Table 2).
To further investigate the relationship between candidate

variables and SCW at these 35 locations, a probability density

function (PDF) for each diagnostic is calculated, as presented in
Fig. 4. The PDFs are calculated by using a Gaussian kernel
estimate, and can be interpreted as the likelihood of the

diagnostic being inside a continuous range of values, for a given
subset of the event space. This method is used to compare the
occurrence frequencies of environmental variable magnitudes
for SCW events, non-severe convective gusts and non-

convective gusts based on measured wind gusts and lightning.
All distributions are shifted towards higher diagnostic values

for SCW events as compared to gusts not classed as convective.

Convective instability diagnostics or diagnostics which use the
effective layer (MLEL, MLCAPE, Eff-LCL, EBWD and
SRHE) are higher for convective gusts compared to non-

convective gusts, as are Q-Melting, RHMin13 and RHMin03.
The lapse rate distribution (LR13) for gusts classed as convec-
tive become attenuated at around the typical value of the moist

adiabatic lapse rate (58C km�1), whereas days classed as non-
convective tend to have lower environmental lapse rates. The
distribution of the environmental wind speed (Umean800–600,
Umean03, Umean06) is broadly similar for days classed as

convective and non-severe, and non-convective.
Comparing non-severe and severe convective gust distribu-

tions, it appears that LR13 is generally higher for the severe

events. This is also the case for wind diagnostics (Umean800–
600, Umean03, Umean06), SRHE and EBWD. CAPE is more
frequently moderate (from 250 to 1000 J kg�1) and less fre-

quently high (.1000 J kg�1) for SCW events relative to non-
severe convective events. Less frequent high values of CAPE
occurwith relatively low equilibrium levels during SCWevents,
indicating the potential for SCWs to occur in reduced-buoyancy

environments, as has been suggested by previous research
(Geerts 2001; Sherburn et al. 2016). In addition, it appears the
environment is relatively dry at low levels during measured

SCW events relative to non-severe events, which is evident in
the distributions of RHMin13 andRHMin03, potentially reflect-
ing the prominence of dry-microburst events in the measured

dataset.
It is noted that all distributions during observed events have

been constructed without knowledge of the convective mode.

This is important given that different convective modes may
have distinct environmental characteristics (Grams et al. 2012).
It follows that uncertainty is introduced in, for example, the role
of low-level moisture (RHMin13 and RHMin03) in identifying

SCW environments in general. Low-level moisture diagnostics
may vary considerably between, for example, a supercell

compared with a dry microburst producing-mode. Therefore,
the distributions in Fig. 4 may reflect the dominant convective
mode within the measured events, and this potential limitation

will be explored further in the discussion.
These results for variable selection are now used for produc-

ing the logistic regression models. This is done individually for

both reanalysis datasets and both observed datasets, resulting in
four different statistical models. The details for each of these
models are presented in Table 3, including the scaling coeffi-
cients used for each model, noting that all coefficients are

positive. Each logistic regression model out-performs the most
skillful diagnostics from Fig. 2 in terms of cross-validated HSS
(Table 3), and also in terms of AUC (shown in the Appendix). It

is noted that co-linearity can be a problem for logistic regression,
and so this is quantified for each model with results shown in the
Appendix (Section A6). It is concluded that co-linearity is not

significant in any of the models, based on the variance influence
factor (VIF).

3.3 Evaluation of SCW environment characteristics relative
to observations

To provide some further insight on the environmental diagnostic

approaches examined in previous sections, we compare their
climatological characteristics to those of the SCW observations
including their mean monthly and hourly occurrence frequen-

cies, as well as for their measured gust direction. This is
presented for the statistical models based on logistic regression
(Table 3) and for the best-performing diagnostics from Sec-

tion 3.1 (total totals, MLCS6 and DCP).
Fig. 5 presents the normalised occurrence frequency dis-

tributions for each month and hour as well as for measured wind
direction. This is presented for the two observed SCW datasets

and for times when a favorable environment is identified by the
diagnostic variables and logistic regression models. A favorable
environment is defined using hourly reanalysis data, applying

the same thresholds producing the optimal cross-validated HSS
as shown previously in Table 3. Reanalysis wind gust direction
distributions are constructed using hourly station observations

when a favorable environment is detected. Hourly gust direction
observations have been provided by the BoM at the same set of
locations as in Table 1.

The monthly frequency distributions of measured and

reported observed SCWs have maxima during the warmer
months of the year (from around September to March). The
considerable agreement between the two independent observed

SCW datasets suggests that they have a suitable level of
reliability for the purposes of this study. Each environmental
diagnostic can broadly replicate the warm-season SCW peak,

although total totals has a bi-modal distribution indicating too
many cool-season events. MLCS6 and the DCP also broadly
represent the warm-season peak but with potentially too few

cool-season events, noting that the MLCS6 diagnostic has been
developed for warm-season convection (Allen et al. 2011). The
logistic regression models generally lag behind the observed
event datasets in terms of the annual cycle, with the peak shifted
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to later in the warm season, as has been found for logistic
regression techniques by other studies (Allen et al. 2015).

The observed SCWs have a diurnal distribution that is
broadly as expected for convective activity with a strong peak

in the mid/late afternoon (Fig. 5b, e), accompanied by some
evening events and a small number of nocturnal events. SCW

reports entered in the STA without a time are assigned 00:00
UTC, hence there may be an artificially increased number of
reports at around 10:00 LST in that dataset. All of the
diagnostics can reproduce the observed peak during the after-

noon, although each has a flatter distribution than the results for
the observed SCWdatasets. This could be related to biases in the
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reanalyses in terms of the diurnal cycle, but also potentially due
to relevant environmental factors not being represented by these
diagnostics, such as convective inhibition and initiation which
could have some diurnal variation. In addition, the relatively

small diurnal variability could be related to the use of hourly
reanalysis, compared with daily maximum observations.

The ERA5 diagnostic distributions all reach their maxima

somewhat too early in the day relative to observations. For
BARRA diagnostics, MLCS6, the logistic regression model
fitted to measured events, and the total totals diagnostic peak

slightly too late in the day, whereas the logistic regressionmodel
fitted to the reported events has a peak timing which is slightly
before the observed peak. A somewhat earlier timing of these

diagnostic measures as compared to the observed SCWs might
be expected for environmental approaches such as these, which
identify some of the pre-cursor environments that can be
associated with the occurrence of convective hazards.

Observed SCW events are most frequently westerly in
direction (Fig. 5c, f). Westerly measured wind gust direction
occurs 11% of the time in the report database and 18% of the

time for measured events. It is noted that there is an observa-
tional bias towards cardinal compass points, which is evident in
the distribution for all hourly observations (shown in Fig. 5c, f).

The wind direction distribution is broadly replicated by the
logistic regression models, including a peak in the westerly
direction. Total totals, MLCS6 and the DCP have a slightly
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flatter wind direction distribution than is the case for the
observed SCWs, with more frequently easterly and southerly

gusts. There is an artificial northerly peak in all distributions
using hourly gust observations, due to directions associated with
zero wind speed reported as 08.

These findings indicate that broad-scale characteristics of
observed SCWs can be replicated by environmental measures in
some cases, with variations depending on the method applied.

The discrepancies for the environmental diagnostics as com-
pared to the observed SCWs are largest for total totals in relation
to the monthly distributions, also noting cool-season environ-
ments are less frequently identified by MLCS6 and DCP,

consistent with definitions based on warm-season severe thun-
derstorms. Examples such as these suggest that although these
types of indices may be useful in representing some types of

environments associated with severe thunderstorms, logistic
regression methods that consider a broad range of variables
could be beneficial for some specific applications (such as the

focus of this study on SCW identification).

4 Discussion and conclusion

In this study, we examined SCW environments in Australia
using a combination of observations and environmental mea-
sures based on reanalysis data. This includes two, independent

observed SCW event datasets and environmental measures
based on two atmospheric reanalyses (BARRA and ERA5).
The observed characteristics of SCWs indicate a similar sea-

sonal and diurnal distribution to previous events for the state of
NSW in eastern Australia (Geerts 2001), as well as to national
severe thunderstorm reports (Allen et al. 2011) and other proxies

for thunderstorms in Australia (Kuleshov et al. 2002). The
similar features include more frequent events in the convective
warm season and late-afternoon/evening, as well as relatively
few cool-season and nocturnal events. We found that the SCW

events were most often observed with a westerly measured gust
direction.

The parametrisedmodel wind gusts from the reanalyses were

found to not provide a good representation of observed SCW
events, also noting that the spatial scale on which these events
occur are generally smaller than the model grid-cells. The skill

metrics associated with the model wind gusts suggests that they
are not suitable for analysis of convective wind events. Skill is
greatly improved upon using model diagnostics which represent
aspects of the larger-scale environments in which these events

occur, and it is preferable to use these diagnostics to identify
SCWs rather than model wind gusts. We find that the most
skillful environmental diagnostics for indicating the observed

SCW occurrences are total totals, MLCS6 and the DCP. Total
totals has previously been used to indicate hail (Niall andWalsh
2005) and lightning activity in Australia (Dowdy 2015) and has

been identified as a useful parameter for SCW identification in
the United States including for applications using model data
during events with minimal synoptic forcing (Miller and Mote

2018). Although the performance of total totals may somewhat
reflect its relatively simple definition (which could have poten-
tial benefits for application to coarse-scale data including some
gridded reanalyses), the individual terms used in this diagnostic

are conceptually relevant for convective hazards (including
mid-tropospheric lapse rates and moisture measures). MLCS6

has been developed as a discriminate for warm season STA
reports in Australia (Allen et al. 2011), and this definition is
consistent with the high skill for convective wind reports

presented here. The DCP was developed for the identification
of environments supportive of quasi-linear MCS (Evans and
Doswell 2001), which are a leading mode of SCW generation

(Smith et al. 2012), such that the results presented here are
consistent with expectations that this could likely be a useful
environmental diagnostic for indicating the occurrence of SCW
events as examined in this study. Based on the results of variable

selection for use in logistic regression, it is likely that the
relationship between the DCP and SCW events is driven by
CAPE and Umean06, which are both used by the DCP, and are

selected as predictors based on the reported dataset using ERA5.
We found a range of thermodynamic variables to be useful

for indicating SCWevents, includingmeasures based on vertical

temperature gradients (LR13), convective instability (MLEL,
MLCAPE and Eff-LCL), low-level moisture (RHMin13 and
RHMIN03), as well as environmental wind speeds and shear
(Umean800–600, Umean03, Umean06, EBWD and SRHE).

Increased mid-level lapse rates appear to enhance the probabil-
ity of SCW occurrence, likely due to greater instability provid-
ing the potential for more intense convection. SCWs are also

associated with high values of environmental wind speed, which
is likely related to storm organization, downwards mixing of
horizontal momentum and/or strong synoptic forcing (Evans

and Doswell 2001). Meanwhile, increased low and mid-level
moisture (as measured by RHMin13 and RHMin03) is found to
enhance the probability of convective gusts relative to non-

convective gusts. CAPE is more often moderate for observed
events relative to other convective environments, with lower
equilibrium levels, which has been found by other studies
(Geerts 2001; Sherburn et al. 2016).

The variables mentioned above were combined using logistic
regression techniques, with the resultant statistical models shown
to provide some improvements (higher HSS values) as compared

to the use of individual diagnostics for indicating the observed
SCW events. The statistical models were able to replicate the
observed climatological characteristics of the SCW datasets,

including the general features of the seasonal and diurnal cycles
as well as the measured wind direction distribution. In addition,
the logistic regression models are able to provide some utility in
identifying hazardous low-CAPE environments, as evident in the

relative frequency of cool-season identification (Fig. 5) and
selected case studies (not shown). However, some differences
with observed characteristics were noted, including a lagged

annual cycle with a flatter and somewhat earlier peak indicated
during the day from the regression methods as compared to the
observed events, which may relate to the representation of the

diurnal cycle within reanalysis models in general. The timing of
the diurnal cycle could also potentially reflect the use of
environmental measures associated with the pre-cursor environ-

ments that deep and moist convection can potentially occur in
(e.g. CAPE).

Results suggest that dry air at lower levels appears somewhat
more conducive for SCW occurrence, relative to non-severe
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convective gust environments (Fig. 4), although it is not clear to
what extent this result is a general feature of SCW environments

in Australia, or if it may simply reflect the dominant convective
modes of the measured event dataset. The relationship between
low-level dryness and measured SCWs is broadly consistent

with the understanding of dry microburst-producing storm
environments, inwhich sub-cloud dryness increases evaporative
cooling, resulting in the acceleration of downdrafts (Wakimoto

1985). However, it is also noted that supercell thunderstorms,
which can occur in environments with moist low-levels, are
capable of producing SCW events in Australia (Richter et al.
2014). This has been investigated by comparing the distribution

of environmental variables for measured SCW events with the
distributions for reported events. Results (shown in the
Appendix) suggest that the method of this study is fairly robust

with respect to the observed dataset, although differences
between the distributions of RHMin13 and RHMin03 confirm
that there is considerable variation surrounding the role of low-

level moisture, which might be related to the occurrence of
specific convective modes (e.g. dry microburst or supercell
modes). It follows that the logistic regression models fitted to
measured SCW events, which have relatively low relative

humidity values (as shown from their distribution Fig. 4 and
in the Appendix), could potentially be more suited for dry
microburst environments, whereas models fitted to reported

events may possibly be more related to supercell-type modes
withmoremoisture in the low levels. Futurework to improve the
methods of this paper could include examining this in more

detail, or consideration of individual convective modes with
respect to SCW in Australia, including with seasonal variation.

Our findings are intended to have potential uses in relation to

improved preparedness for severe winds and the damages that
they can cause in Australia, including for helping inform
infrastructure design and risk assessments. The results could
help provide general guidance for severe weather forecasting

applications, such as those used operationally within the Bureau
of Meteorology based on the types of convective diagnostics
examined here. Insight is provided on factors relating to the

mean climatology of severe convective wind events in
Australia, noting that improved understanding of the average
risk of occurrence of these events is important for planning and

design standards given the damages that they can cause to
buildings and other property (e.g. infrastructure used for
essential services such as electricity distribution towers). These
results could also help enable future studies, such as the

application of environmental measures to gridded data through-
out Australia (i.e. complementary to the method employed here
based on 35 individual locations) which could include the

analysis of the spatial distribution of SCW environments as
well as climate variations.

Data and code availability

AWS wind gust data, the STA and BARRA are available from

the BoM; ERA5 is available from the Copernicus Climate Data
Store. Lightning data can be made available upon request. All
analysis code is available in the followingGit repository: https://
github.com/andrewbrown31/SCW-analysis, which contains a

log file detailing how the code was used for the results shown
here.
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Appendix 1. Convective diagnostics

Table A1 presents a complete list of all diagnostics tested for
SCW identification (Section 3.1), as well as for logistic model

development (Section 3.2). This includes environmental vari-
ables (e.g. MLCAPE, Umean06), model variables (e.g.
ConvPrcp and WindGust10) and diagnostic indices (e.g. DCP

and SCP). Some of the diagnostics in Table A1 are not
mentioned directly in the main manuscript text, as only the
top-performing diagnostics are reported on. However, these are

still listed here for completeness. Diagnostics are used here as
they are commonly defined in the literature including by the
Storm Prediction Center (SPC), unless otherwise noted.

Appendix 2. Environmental diagnostics applied to
radiosonde data and reanalysis data

For comparison with the reanalysis datasets, environmental
diagnostics were also computed using radiosonde data from

the BoM at four locations around Australia: Darwin, Sydney,
Adelaide and Woomera (Table 1). Radiosonde data are avail-
able at a frequency of once, twice or three times a day depending
on the location and are compared to the hourly reanalysis time

steps which are closest to the launches and spatially nearest to
the stations (considering land points only). Observed diagnos-
tics are calculated in the same way as for the models, and we

impose the restriction that profiles must have at least 12 data
points (noting that the average number of points is between 45
and 65 for these locations), start below 850 hPa, and finish above

200 hPa. Comparisons are performed on the mixed-layer parcel
CAPE, CIN and equilibrium level (MLCAPE,MLCIN,MLEL),
downdraft convective available potential energy (DCAPE),

total totals, wind shear from 0–6 km above ground level (S06),
as well as the pressure-weighted mean wind speed from 800–
600 hPa and 0–1 km above ground level (Umean800–600 and
Umean01).

Fig. A1 shows there is good agreement between both models
and the observed diagnostics (r$ 0.80), except for CIN
(r¼ 0.68 for BARRA and r¼ 0.71 for ERA5) and DCAPE

(r¼ 0.71 for BARRA and r¼ 0.79 for ERA5). Poor model
representation of CIN has been found by previous studies and
is likely related to unresolved thin inversion layers (King and

Kennedy 2019). Relatively large errors in DCAPE are likely due
to similar issues, given that downdraft energy is calculated for
the parcel withminimum equivalent potential temperature, from
the surface to 400 hPa above ground level. Another notable

aspect of Fig. A1 is the better representation in the reanalysis
data of simple instability diagnostics (total totals) relative to
more complex ones (MLCAPE, DCAPE) based on comparisons

to the observed values (from radiosonde data). This could relate
back to the skill of these relatively simple variables when
applied to the reanalysis data for indicating the occurrence of

SCW events (Fig. 2). Also, it appears that incomplete model
representation of the boundary layer may lead to poorer skill for
diagnostics which use near-surface values, relative to diagnos-

tics that don’t (e.g. Umean01 versus Umean800–600).
The general performance of model-derived diagnostics

compared with observations gives confidence that each reanaly-
sis dataset could potentially be used to investigate

Table A1. Short descriptions of diagnostics derived from reanalysis

model fields

Name Notes Reference

ConvPrcp Convective precipitation from ERA5

ConvGust-Dry Estimate of maximum potential convective

wind gust from a dry microburst. Scaled

product of DCAPE and Umean06

–

ConvGust-Wet Estimate of maximum potential convective

wind gust from a wet microburst. Scaled

product DCAPE and Umean06

–

C-Totals Cross-totals. Equal to the 500 hPa air tem-

perature subtracted from the 850 hPa dew

point temperature

Miller (1972)

DCAPE Downdraft convective available potential

energy, of the parcel with minimum

equivalent potential temperature from the

surface to 400 hPa above ground level.

Also known as downdraft maximum

available potential energy (DMAPE)

SPC

DCP Derecho composite parameter Evans and

Doswell

(2001)

DDRAFTT The difference in temperature between the

descending air parcel used for DCAPE at

the surface, and the surface temperature

–

DMGWIND Scaled product of UWindinf and DCAPE Kuchera and

Parker (2006)

DMGWIND-

Fixed

Same as DMGWIND but using

Umean800–600 instead of UWindinf

–

DMI Dry microburst index Pryor (2007)

DPD700 Dewpoint depression at 700 hPa –

DPD850 Dewpoint depression at 850 hPa –

EBWD Effective bulk wind difference SPC

Eff-CAPE Effective layer parcel convective available

potential energy

Thompson

et al. (2007)

Eff-CIN Effective layer parcel convective

inhibition

–

Eff-CS6 Product of effective layer parcel CAPE and

S06 raised to the power of 5/3

Allen and

Karoly (2014)

Eff-EL Effective layer parcel equilibrium level –

Eff-LCL Effective layer parcel lifting condensation

level

–

GUSTEX Sum of WINDEX and U500 Geerts (2001)

K-Index Instability parameter –

LR03 Temperature lapse rate from the surface to

3 km

–

LR13 Temperature lapse rate from 1 km to 3 km –

LR24 Temperature lapse rate from 2 km to 4 km –

LR36 Temperature lapse rate from 3 km to 6 km –

LR-Freezing Temperature lapse rate from the surface to

MHGT

–

LR-Subcloud Temperature lapse rare from the surface to

MLLCL

–

MBURST Microburst composite parameter. Lifted

index term is ignored due to computa-

tional restraints. CAPE threshold has

been lowered by 1000 J kg�1

SPC

MHGT Melting(/freezing) height. Height of the

08C level

–

MLCAPE Mixed-layer parcel convective available

potential energy

SPC

MLCIN Mixed-layer parcel convective inhibition.

Undefined for MLCAPE¼ 0

–

(Continued)

46 Journal of Southern Hemisphere Earth Systems Science A. Brown and A. Dowdy



Table A1. (Continued)

Name Notes Reference

MLCS6 Product of mixed-layer parcel CAPE and

S06 raised to the power of 5/3

Allen and

Karoly (2014)

MLEL Mixed-layer parcel equilibrium level –

MLLCL Mixed-layer parcel lifting condensation

level

–

MMP Mesoscale convective systemmaintenance

parameter

Coniglio et al.

(2006)

MOSH Modified-SHERB Sherburn et al.

(2016)

MOSHE Modified-SHERBE Sherburn et al.

(2016)

MUCAPE Maximum (most-unstable) CAPE –

MUCIN Maximum CAPE (most-unstable) parcel

convective inhibition. Undefined for

MUCAPE¼ 0

–

MUCS6 Product of maximum CAPE (most-

unstable) and S06 raised to the power of

5/3

Allen and

Karoly (2014)

MUEL Maximum CAPE (most-unstable) parcel

equilibrium level

–

MULCL Maximum CAPE (most-unstable) parcel

lifting condensation level

–

MWPI Microburst wind-speed potential index Pryor (2007)

PWAT Precipitable water –

Q1 Mixing ratio at 1 km –

Q3 Mixing ratio at 3 km –

Q6 Mixing ratio at 6 km –

Qmean01 Mass-weightedmeanmixing ratio from the

surface to 1 km

–

Qmean03 Mass-weightedmeanmixing ratio from the

surface to 3 km

–

Qmean06 Mass-weightedmeanmixing ratio from the

surface to 6 km

–

Qmean-

Subcloud

Mass-weightedmeanmixing ratio from the

surface to MLLCL

–

Q-Melting Mass-weightedmeanmixing ratio from the

surface to MHGT

–

RHMin01 Minimum relative humidity from the sur-

face to 1 km

–

RHMin03 Minimum relative humidity from the sur-

face to 3 km

–

RHMin13 Minimum relative humidity from the 1 km

to 3 km

–

RHMin-

Subcloud

Minimum relative humidity from the sur-

face to MLLCL

–

S01 Bulk wind shear between the surface (10m

winds) and 1 km. That is, the magnitude

of the vector difference between those

two layers

–

S010 Bulk wind shear between the surface (10m

winds) and 10 km

–

S03 Bulk wind shear between the surface (10m

winds) and 3 km

–

S06 Bulk wind shear between the surface (10m

winds) and 6 km

–

S13 Bulk wind shear between the 1 km and

3 km

–

S36 Bulk wind shear between the 3 km and

6 km

–

(Continued)

Table A1. (Continued)

Name Notes Reference

SBCAPE Surface-based parcel convective available

potential energy

–

SBCIN Surface-based parcel convective inhibi-

tion. Undefined for SBCAPE¼ 0

–

SBCS6 Product between the surface-based parcel

CAPE and S06 raised to the power of 5/3

Allen and

Karoly (2014)

SBEL Surface-based parcel equilibrium level –

SBLCL Surface-based parcel lifting condensation

level

–

SCLD Cloud layer shear: Bulk wind shear

between the MLLCL and half the MUEL

–

SCP-Eff Supercell composite parameter, including

using effective storm relative helicity

Thompson

et al. (2004)

SCP As in SCP-Eff but with using SRH01 and

S06

Thompson

et al. (2004)

SFC-Thetae Equivalent potential temperature at the

surface

–

SHERB Severe hazards in reduced buoyancy-

environments

Sherburn et al.

(2016)

SHERBE Effective layer definition of SHERB Sherburn et al.

(2016)

SHIP Significant hail parameter SPC

SRH01 Storm relative helicity (Bunkers definition

of left-moving storm) from the surface to

1 km

–

SRH03 Storm relative helicity (Bunkers definition

of left-moving storm) from the surface to

3 km

–

SRH06 Storm relative helicity (Bunkers definition

of left-moving storm) from the surface to

6 km

–

SRHE Storm relative helicity (Bunkers definition

of left-moving storm) over the effective

layer

–

STP Significant tornado parameter Thompson

et al. (2004)

STP-Fixed As in STP but using SRH01, SBCAPE,

SBLCL and S06

Thompson

et al. (2004)

SWEAT Severe weather threat index Miller (1972)

TED Difference between the maximum and

minimum equivalent potential tempera-

ture below 3000m AGL

SPC

TEI Difference between the surface equivalent

potential temperature andminimum in the

surface to 400 hPa above ground level

layer

SPC

T-Totals Total totals. Equal to V-TotalsþC-Totals Miller (1972)

U1 Wind speed at 1 km –

U10 Wind speed at 10m –

U3 Wind speed at 3 km –

U500 Wind speed at 500 hPa –

U6 Wind speed at 6 km –

Umean01 Mass-weighted mean wind speed from the

surface (10m) to 1 km

–

Umean03 Mass-weighted mean wind speed from the

surface (10m) to 3 km

–

Umean06 Mass-weighted mean wind speed from the

surface (10m) to 6 km

–

Umean800–

600

Mass-weighted mean wind speed from

800 hPa to 600 hPa

–

(Continued)
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climatological SCW identification. It is noted that observed
profiles from these radiosondes could have already been

assimilated into the reanalyses, and correlations may degrade
with distance from these sites. In addition, it appears that the
diagnostic values based on ERA5 are somewhat better corre-

lated with the observations data (e.g. larger values of r in
Fig. A1) than is the case based on BARRA, noting that the
differences are relatively small in general.

Appendix 3. Other proximity definitions for model
diagnostics

As described in Section 2.2, the method used for associating
reanalysis diagnostics with SCW events is to use the closest

spatial point from each model, and the most recent hourly time
step before the observed events, representing instantaneous pre-
event conditions. Here, it is tested to what extent the HSS shown

in Fig. 2 is sensitive to this definition. This is done by comparing
the HSS using the most recent hourly time step and closest
spatial point with four other definitions. These are; the most

recent hour using a spatial average (with a 50 km radius), the

Table A1. (Continued)

Name Notes Reference

UmeanWindinf Mass-weighted mean wind speed over the

effective (inflow) layer

Kuchera and

Parker (2006)

UST Stormmotion speed (assuming left moving

storm with Bunkers definition)

Bunkers et al.

(2000)

UWindinf Wind speed at the top of the effective

(inflow) layer

Kuchera and

Parker (2006)

V-Totals Vertical totals. Equal to the 850 hPa to

500 hPa temperature lapse rate.

Miller (1972)

WBZ Height where wet-bulb temperature is zero Miller (1972)

WindGust10 Parametrised 3-second average model

wind gust (maximum since previous

hour)

–

WINDEX Wind index McCann

(1994)

WMPI Wet microburst potential index Proctor (1989)

WMSI Wet microburst severity index Pryor (2007)

WNDG Wind damage parameter SPC
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Fig. A1. Two-dimensional histograms, showing the relationship between modelled and observed diagnostics. Observed diagnostics are calculated

using radiosonde profiles at four sites around Australia: Adelaide, Sydney, Darwin and Woomera. The red line represents a one-to-one relationship.

The spearman ranked correlation coefficient is shown in the top-left of each panel, where 1 represents a perfect,monotonically increasing relationship.

Note that for diagnosticswhich are frequently zero (CAPE,CIN) amixed-logarithmic scale is used,which is linear in the interval [0,1] and logarithmic

in the interval (1, 10 000].
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same but with a spatial maximum, the second most recent hour

using the closest spatial point (representing instantaneous pre-
event conditions) and the following hourly time step using the
closest spatial point (representing post-event instantaneous

conditions). Results, shown in Fig. A2 for ERA5 and Fig. A3
for BARRA, suggest that the relative skill between diagnostics
is generally insensitive to the choice of proximity definition,

except for some outlying scores associated with using the spatial
maximum for effective-layer wind diagnostics associated with
measured SCW events.

Appendix 4. Sensitivity of the HSS to event frequency

The magnitude of HSS in the results (for example, the identifi-

cation of reported and measured SCW in Fig. 2) is largely a

result of the frequency of observed events in each dataset.

However, the change in HSS between diagnostics is indicative

of the relative skill. This can be demonstrated by examining the

optimal HSS for two diagnostics from ERA5 (DCP and total

totals) in their ability to identify measured SCW events, and

subsetting the observed dataset for a varying number of
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Fig. A2. As in Fig. 2 showing HSS for a range of diagnostics using ERA5,

but with five different proximity definitions for event association.
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Fig. A4. The relationship between the proportion of non-events used for
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two diagnostics from ERA5. Here, ‘events’ refers to measured SCW, and

‘null-events’ refers to days when SCW is not measured. A range of HSS is

generated for each proportion (20 bins are used from0 to 1), which is attained

by random resampling of null-events with replacement (1000 times), and the

2.5–97.5 percentiles are shown with shading.
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randomly selected non-events. The relationship between the

proportion of non-events chosen (relative to the full set of non-

events) and the HSS is shown in Fig. A4. Fig. A4 reveals that

there is an exponential decrease in HSS for increasing non-event

proportion in the dataset, although for all proportions, total totals

performs better than the DCP (i.e. the relative skill between

diagnostics is constant and consistent with results in Fig. 2). In

addition, the skill is always significantly greater than zero.

Appendix 5. The relative operating characteristic curve
and area under curve for SCW events

Other skill scores, which are not sensitive to event frequency and
do not require a fixed threshold, can be used to gain a sense of the
overall usefulness of diagnostics in predicting SCW events.
The relative operating characteristic (ROC) curve, along with

the area under the curve (AUC) can be used to assess diagnostic
performance by considering a range of thresholds. Fig. A5
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Fig. A5. The relative operating curve (ROC) and area under curve (shown at the bottom of each panel) for each

reanalysis/observed dataset pairing (i.e. measured and reported datasets with BARRA and ERA5), using the best-

performing index (orange) and logistic regression (blue). A set of thresholds for event identification are shown on each

curve. The two-thirds true positive rate is shown with a dashed horizontal line, which corresponds with the constraint used

in the choice of threshold for all diagnostics (i.e. the threshold chosen must be above this line on the ROC curve; see

Section 2.3). The no-skill line is shown as a dashed diagonal line.

Table A2. Variance inflation factors (VIF) for each predictor for each logistic regression model

BARRA measured VIF ERA5 measured VIF BARRA reported VIF ERA5 reported VIF

EBWD 2.04 EBWD 2.79 EBWD 2.06 EBWD 1.57

Umean03 3.12 Umean800–600 2.72 Umean800–600 2.69 LR13 2.82

LR13 4.34 LR13 4.60 LR13 4.69 Umean06 2.40

RHMin13 3.60 RHMin13 4.84 RHMin13 3.86 MLCAPE 1.30

ML-EL 3.71 SRHE 1.44 ML-EL 3.67

Q-Melting 4.50
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shows ROC curves and AUC scores for each event dataset and
reanalyses, which compare the performance of the top diagnos-

tic indices (i.e. total totals, the DCP and MLCS6) with the
logistic regression models developed in Section 3.2.

ROC curves and the AUC suggest that the top-performing
diagnostics for each observed dataset and reanalysis model, as

well as each logistic regressionmodel, are skillful in distinguish-
ing SCW events from non-events (i.e. the ROC curve is far

from the ‘no-skill’ line along the diagonal, and accordingly, the
AUC is c0.5). In addition, the logistic regression models
perform better than each environmental diagnostic in terms of
AUC.
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Fig. A6. Probability density functions (PDFs) of variables selected for regression of SCW events for BARRA (red) and ERA5 (blue) for

measured (solid) and reported (dashed) SCW events. As in Fig. 4, PDFs have been constructed using a Gaussian kernel estimate.). As in Fig. 4,

PDFs have been constructed using a Gaussian kernel estimate.
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Appendix 6. Notes on co-linearity in the logistic regres-
sion models

Co-linearity in logistic regression (i.e. correlation between
variables) leads to large standard errors in fitted coefficients,

due to confounding the effects of predictands on the predicted
variable. Here, it is investigated whether or not the four logistic
regression models presented in Table 3 contain significant co-
linearity, using the variance inflation factor (VIF) following the

method of Mohr et al. (2015). The VIF is a measure of the
variance explained for each predictor using all other predictors
in the model, where a value greater than 5 is often considered to

represent significant co-linearity. It is found that for each of the
four models, the VIF for each predictor indicates insignificant
co-linearity (Table A2).

Appendix 7. Environmental diagnostic distributions for
reported SCW events

Fig. A6 shows probability density functions (PDFs) for the
same set of variables as in Fig. 4, constructed separately for

measured and reported SCW events. Results suggest that the
measured event environments have a relatively dry low-level
compared with reported event environments, as shown by
RHMin13 and RHMin03. Distributions for other variables

are broadly similar between the two event datasets. These
findings may have relevance for inferring the dominant
convective modes within each dataset, as discussed in the

‘Discussion and conclusion’ (Section 4).
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