
����������
�������

Citation: Schimke, L.F.; Marques,

A.H.C.; Baiocchi, G.C.; de Souza

Prado, C.A.; Fonseca, D.L.M.; Freire,

P.P.; Rodrigues Plaça, D.; Salerno

Filgueiras, I.; Coelho Salgado, R.;

Jansen-Marques, G.; et al. Severe

COVID-19 Shares a Common

Neutrophil Activation Signature with

Other Acute Inflammatory States.

Cells 2022, 11, 847. https://doi.org/

10.3390/cells11050847

Academic Editor: Isabella Quinti

Received: 10 February 2022

Accepted: 25 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Severe COVID-19 Shares a Common Neutrophil Activation
Signature with Other Acute Inflammatory States
Lena F. Schimke 1,* , Alexandre H. C. Marques 1, Gabriela Crispim Baiocchi 1 ,
Caroline Aliane de Souza Prado 2 , Dennyson Leandro M. Fonseca 2, Paula Paccielli Freire 1 ,
Desirée Rodrigues Plaça 2, Igor Salerno Filgueiras 1 , Ranieri Coelho Salgado 1 , Gabriel Jansen-Marques 3,
Antonio Edson Rocha Oliveira 2, Jean Pierre Schatzmann Peron 1 , Gustavo Cabral-Miranda 1,
José Alexandre Marzagão Barbuto 1,4 , Niels Olsen Saraiva Camara 1 , Vera Lúcia Garcia Calich 1 ,
Hans D. Ochs 5, Antonio Condino-Neto 1 , Katherine A. Overmyer 6,7, Joshua J. Coon 6,7,8,9, Joseph Balnis 10,11,
Ariel Jaitovich 10,11, Jonas Schulte-Schrepping 12,13, Thomas Ulas 13,14, Joachim L. Schultze 12,13,14,
Helder I. Nakaya 2,15,16, Igor Jurisica 17,18,19 and Otávio Cabral-Marques 1,2,20,*

1 Department of Imunology, Institute of Biomedical Sciences, University of São Paulo,
São Paulo 05508-000, Brazil; marquesufcg@gmail.com (A.H.C.M.); gabrielacbaiocchi@gmail.com (G.C.B.);
freirepp2@gmail.com (P.P.F.); igor.filgueiras@usp.br (I.S.F.); ranieri_twd@hotmail.com (R.C.S.);
jeanpierre@usp.br (J.P.S.P.); gcabral.miranda@usp.br (G.C.-M.); jbarbuto@icb.usp.br (J.A.M.B.);
niels@icb.usp.br (N.O.S.C.); vlcalich@icb.usp.br (V.L.G.C.); antoniocondino@gmail.com (A.C.-N.)

2 Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São
Paulo, São Paulo 05508-000, Brazil; carolinealianeprado@gmail.com (C.A.d.S.P.);
dennyleandro@gmail.com (D.L.M.F.); desiree.placa@gmail.com (D.R.P.); antedsrocoli@gmail.com (A.E.R.O.);
hnakaya@usp.br (H.I.N.)

3 Information Systems, School of Arts, Sciences and Humanities, University of Sao Paulo,
São Paulo 03828-000, Brazil; gabrieljansenm2000@gmail.com

4 Laboratory of Medical Investigation in Pathogenesis, Targeted Therapy in
Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil

5 Department of Pediatrics, Seattle Children’s Research Institute, University of Washington School of Medicine,
Seattle, WA 98101, USA; hans.ochs@seattlechildrens.org

6 National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA;
kovermyer@morgridge.org (K.A.O.); jcoon@chem.wisc.edu (J.J.C.)

7 Morgridge Institute for Research, Madison, WI 53562, USA
8 Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
9 Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
10 Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA;

balnisj@amc.edu (J.B.); jaitova@amc.edu (A.J.)
11 Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
12 Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany;

jschrepping@uni-bonn.de (J.S.-S.); j.schultze@uni-bonn.de (J.L.S.)
13 Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn,

53127 Bonn, Germany; thomas.ulas@dzne.de
14 German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics

at DZNE, University of Bonn, 53127 Bonn, Germany
15 Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
16 Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-020, Brazil
17 Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data

Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network,
Toronto, ON M5T 0S8, Canada; juris@ai.utoronto.ca

18 Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto,
Toronto, ON M5G 1L7, Canada

19 Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
20 Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and

Research Network (USERN), São Paulo 05508-000, Brazil
* Correspondence: lenaschimke@hotmail.com (L.F.S.); otavio.cmarques@gmail.com (O.C.-M.);

Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)

Cells 2022, 11, 847. https://doi.org/10.3390/cells11050847 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11050847
https://doi.org/10.3390/cells11050847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-5616-3410
https://orcid.org/0000-0003-0246-5883
https://orcid.org/0000-0002-3889-6303
https://orcid.org/0000-0003-0649-8279
https://orcid.org/0000-0002-3493-4464
https://orcid.org/0000-0002-9660-9747
https://orcid.org/0000-0003-1638-8866
https://orcid.org/0000-0001-9526-6781
https://orcid.org/0000-0001-5436-1248
https://orcid.org/0000-0002-2170-5099
https://orcid.org/0000-0002-1069-3117
https://orcid.org/0000-0002-2507-946X
https://doi.org/10.3390/cells11050847
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11050847?type=check_update&version=2


Cells 2022, 11, 847 2 of 24

Abstract: Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflam-
matory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying
mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of
1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute in-
flammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease
[KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We
observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling
and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19
patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among
the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes
that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD
and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19
studies and form an interconnected network with differentially expressed plasma proteins that point
to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq
analysis indicated that these genes are specifically upregulated across different leukocyte populations,
including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed
the strong association of these genes with COVID-19 severity. Thus, our work indicates putative
therapeutic pathways for intervention.

Keywords: COVID-19; neutrophil activation; acute inflammatory states; transcriptome profile;
integrative analysis of omics data; systems biology

1. Introduction

During almost two years of the COVID-19 pandemic, caused by the severe acute
respiratory syndrome Coronavirus (SARS-CoV)-2, over 396 million cases and 5.7 million
deaths have been reported worldwide (8 February 2022, WHO COVID-19 dashboard). The
clinical presentation ranges from asymptomatic to severe disease manifesting as pneumonia,
acute respiratory distress syndrome (ARDS), and a life-threatening hyperinflammatory
syndrome associated with excessive cytokine release (hypercytokinemia) [1–3]. Risk factors
for severe manifestation and higher mortality include old age as well as hypertension,
obesity, and diabetes [4]. Currently, COVID-19 continues to spread, new variants of SARS-
CoV-2 have been reported and the number of infections resulting in the death of young
individuals with no comorbidities has increased the mortality rates among the young
population [5,6]. In addition, some novel SARS-CoV-2 variants of concern appear to
escape neutralization by vaccine-induced humoral immunity [7]. Thus, there is a need
for a better understanding of the immunopathologic mechanisms associated with severe
SARS-CoV-2 infection.

Patients with severe COVID-19 have systemic dysregulation of both innate and adap-
tive immune responses. In addition to highly activated CD4+ T cells [8] and high levels
of autoantibodies linked to classic autoimmune diseases [9,10], they present with higher
plasma levels of numerous cytokines and chemokines such as granulocyte macrophage
colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF), interleukin (IL)-6, solu-
ble IL-6R, IL-8 (CXC chemokine ligand 8 (CXCL8), IL-18, and monocyte chemoattractant
protein-1 (MCP-1/CC chemokine ligand 2 [CCL2]) [11–13] than patients with moderate
or mild COVID-19 disease [14], suggesting a more generalized hyperinflammatory condi-
tion. Notably, the hyperinflammation in COVID-19 shares similarities with cytokine storm
syndromes such as those triggered by sepsis, autoinflammatory disorders, and metabolic
conditions [15–17]. For instance, some COVID-19 patients may develop hyperinflammatory
conditions such as the multisystem inflammatory syndrome in children (MIS-C), Kawasaki
disease, and a severe hyperinflammatory state resembling a hematopathologic condition
called hemophagocytic lymphohistiocytosis (HLH) [18]. All of them are life-threatening pro-
gressive systemic hyperinflammatory disorders characterized by multi-organ involvement.
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For instance, HLH patients may develop fever flares, hepatosplenomegaly and cytopenias
due to hemophagocytic activity in the bone marrow [18–20] or within peripheral lymphoid
organs such as the pulmonary lymph nodes and spleen. HLH is marked by the aberrant ac-
tivation of B and T lymphocytes and monocytes/macrophages, coagulopathy, hypotension,
and ARDS.

Therefore, we sought to characterize key signaling pathways and gene signatures
associated with this more generalized hyperinflammatory state that is characteristic for
some patients with severe COVID-19. The present study represents a follow-up of a recent
report from our group [21] in which we performed an integrative analysis of transcriptional
alterations in respiratory airways and peripheral blood leukocytes. This approach success-
fully developed by our and other groups [22–24] demonstrated multi-tissue systemic effects
of SARS-CoV-2 infection, providing insightful mechanisms of SARS-CoV-2 pathology and
cellular targets for therapy [23].

We first compared the molecular overlap between patients with COVID-19 and those
with HLH, defined the transcriptomic and proteomic signatures stratifying COVID-19
patients admitted to the intensive care unit (COVID-19_ICU), and then investigated the
behavior of the resulting molecular signature in other inflammatory syndromes and in-
fectious diseases, enrolling a total of 1596 individuals whose high throughput data was
publicly available (Table 1).

Table 1. Dataset Information and sample size used for transcriptome analysis.

Data-
Base

Dataset
ID Seq. Method Sample Type Disease Type of

Patients (Sample Size)
Type of Controls

(Sample Size) Original Study

GEO GSE152418 bulk-RNA seq PBMC COVID-19 (n = 17) healthy controls
(n = 17)

Arunachalam et al.,
2020 [25]

GEO GSE157103 bulk-RNA seq PBL

COVID-19_ICU
(n = 50)

COVID-19_nonICU
(n = 50)

SARS-CoV-2 negative
ICU (n = 16),

SARS-CoV-2 negative
nonICU (n = 10)

Overmyer et al.,
2020 [26]

GEO GSE152075 bulk-RNA seq nph swab COVID-19 (n = 430) SARS-CoV-2 negative
(n = 54)

Liebermann et al.,
2020 [27]

GEO GSE156063 bulk-RNA seq nph swab COVID-19 (n = 93) NIRD (n = 100)
OIRD (n = 41)

Mick et al.,
2020 [28]

EGA EGAS
00001004571 scRNA seq PBL/

PBMC

Cohort1:
COVID-19 mild (n = 8),

COVID-19 severe
(n = 10)
Cohort2:

COVID-19 (n = 17)

healthy controls
(n = 21)

healthy controls
(n = 13)

Schulte-
Schrepping et al.,

2020 [29]

GEO GSE26050 microarray PBMC HLH (n = 11) healthy controls
(n = 33)

Sumegi et al.,
2011 [30]

GEO GSE163151 bulk-RNA seq nph swab
PBL

COVID-19 (n = 138)
COVID-19 (n = 7)

healthy controls
(n = 11)

healthy controls
(n = 20)

Ng et al.,
2021 [31]

GEO GSE152641 bulk-RNA seq PBL COVID-19 (n = 62) healthy controls
(n = 24)

Thair et al.,
2021 [32]

GEO GSE161731 bulk-RNA seq PBL

COVID-19 (n = 77)
influenza (n = 17)

bact. pneum. (n = 24)
seasonal CoV (n = 61)

healthy controls
(n = 19)

McClain et al.,
2021 [33]
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Table 1. Cont.

Data-
Base

Dataset
ID Seq. Method Sample Type Disease Type of

Patients (Sample Size)
Type of Controls

(Sample Size) Original Study

GEO GSE178388 bulk-RNA seq PBL MIS-C (n = 8) healthy controls
(n = 4)

Beckmann et al.,
2021 [34]

GEO GSE73461 microarray PBL KD (n = 78) healthy controls
(n = 55)

Wright et al.,
2018 [35]

nph, nasopharyngeal; PBMC, peripheral blood mononuclear cells; PBL, peripheral blood leucocytes; HLH,
hemophagocytic lymphohistiocytosis; bact. pneum., bacterial pneumonia; CoV, coronavirus other than SARS-CoV-2;
MIS-C, multisystem inflammatory syndrome in children; KD, Kawasaki disease.

2. Materials and Methods
2.1. Data Curation

We searched public functional genomics data repositories (Gene Expression Om-
nibus [36] and Array Express [37]) for human transcriptome data from patients with HLH
and COVID-19 published until February 2021 for our first analyses of common transcrip-
tome signatures between COVID-19 and HLH. During our analyses we included two
more recently published COVID-19 datasets, two transcriptome studies from inflammatory
diseases and one dataset with cohorts of other respiratory infectious diseases to compare
with specific transcriptome signatures resulting from our first analysis. After evaluating
the study design, number of samples, and other relevant information (e.g., COVID-19
severity), we obtained raw count files (non-normalized) after trimming and alignment
to the reference genome and followed guidelines to perform a meta-analysis report [38],
which recommended that we include at least three or four studies to reach a minimum of
1000 participants [39] in order to increase the statistical power of our analysis by increas-
ing the signal-to-noise ratio. This resulted in a cohort of 1596 individuals derived from
11 datasets with transcriptome data generated from different platforms (Table 1).

2.2. Differential Expression Analysis and Visualization of Transcriptional Overlap

Read counts were transformed (log2 count per million or CPM) and differentially ex-
pressed genes (DEG) between groups were identified through the webtool NetworkAnalyst
3.0 [40] using the limma-voom pipeline [41]. To determine the DEGs of each dataset we ap-
plied the statistical cut-offs of log2 fold-change > 1 (up-regulated), log2 fold-change < −1
(down-regulated), and adjusted p-value < 0.05. Shared DEGs among all datasets were
displayed using a Venn diagram [42] and Circos Plot [43] online tools.

2.3. Single Cell RNAseq Analysis

The Seurat Object containing the scRNAseq published by Schulte-Schrepping et al. [29]
and deposited at the EGA (EGAS00001004571) was used for single cell analysis. We
followed the Seurat pipeline [44] as previously described by Stuart et al. [45] to perform
differential expression analysis and data visualization, i.e., UMAP, dotplot, and heatmap
construction. Regression for the number of UMIs and scaling were performed as previously
described [29].

2.4. Interactome Analysis

For a more comprehensive Protein–Protein Interaction (PPI) analysis, we used NAV-
iGaTOR 3.0.14 [46] to visualize genes commonly dysregulated in COVID-19 and HLH
datasets, highlighting the biological processes enriched by each gene. Prior to visualization,
DEGs were used as inputs into the Integrated Interactions Database (IID version 2021-05;
http://ophid.utoronto.ca/iid, accessed on 9 February 2022) [47] to identify direct physical
protein interactions. The resultant network was then annotated, analyzed, and visualized
using NAViGaTOR 3.0.14 [46]. The final figure was combined with legends using Adobe
Illustrator ver. 26.0.3.

http://ophid.utoronto.ca/iid
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2.5. Enrichment Analysis and Data Visualization

We used the ClusterProfiler [48] R package to obtain dot plots of enriched signaling
pathways. Elsevier pathway collection analysis for selected gene lists (seven genes under-
lying HLH due to inborn errors of immunity (IEI) and 11 genes associated with severe
COVID-19) was carried out using the Enrichr webtool [49–51]. Sets of genes associated
with cytokine/chemotaxis and neutrophil-mediated immunity from each dataset were
visualized in bubble-based heat maps applying one minus cosine similarity using Mor-
pheus [52]. Circular heatmaps were generated using R version 4.0.5 (The R Project for
Statistical Computing. https://www.r-project.org/ accessed on 4 January 2021) and R
studio Version 1.4.1106 (RStudio. https://www.rstudio.com/ accessed on 4 January 2021)
using the circlize R package. Box plots were generated using the R packages ggpubr, lemon,
and ggplot2.

2.6. Correlation Analysis

Principal Component Analysis (PCA) of genes associated with COVID-19 severity
(25 transcripts) was performed using the R functions prcomp and princomp through the
factoextra package [53]. Canonical Correlation Analysis (CCA) [54] of genes associated
with cytokines/chemokines and neutrophil-mediated immune responses was performed
using the packages CCA and whitening [54]. In addition, we used the corrgram, psych,
and inlmisc R packages to build correlograms. Multilinear regression analysis for combina-
tions of different variables (genes) was performed using the R package ggpubr, ggplot2
and ggExtra.

2.7. Proteome Data Analysis

We also evaluated the proteomics data obtained from plasma samples of COVID-
19 patients previously reported by Overmyer et al. [26]. Briefly, raw LFQ abundance
values were quantified, normalized and log2 transformed, as previously described [26].
Differences in protein expression between COVID-19_ICU and COVID-19_nonICU were
calculated using the nonparametric MANOVA (multivariate analysis of variance) test [55],
followed by the analysis of nonparametric Inference for Multivariate Data [56] using the R
packages npmv, nparcomp, and ggplot. Enrichment of differentially expressed proteins
(DEP) significant for COVID-19_ICU was performed using the Enrichr webtool [49–51]
and most significant enriched pathways were displayed by dot plot created with R using
tidyverse, viridis and ggplot2 packages, while the Circos Plot of gene-pathway association
was built using the Circos online tool [43].

2.8. Decision-Tree Classification and Machine Learning Model Predictors

We employed a random forest model to construct a classifier able to discriminate
between COVID-19_nonICU and COVID-19_ICU, highlighting the most significant pre-
dictors for ICU admission. We trained a random forest model using the functionalities
of the R package randomForest (version 4.6.14) [57]. Five thousand trees were used, and
the number of variables resampled were equal to three. Follow-up analysis used the gini
decrease, number of nodes, and mean minimum depth as criteria to determine variable
importance. The interaction between pairs of variables was assessed by using minimum
depth as the criterion. The adequacy of the random forest model as a classifier was assessed
through out of bags (OOB) error rate and the receiver operating characteristic (ROC) curve.
For cross-validation, we split the dataset in training and testing samples, using 75% of the
observations for training and 25% for testing.

3. Results
3.1. The Transcriptional Overlap between COVID-19 and HLH

We first performed a cross-tissue analysis of transcriptomic datasets obtained from
peripheral blood lymphocytes (PBLs), peripheral blood mononuclear cells (PBMCs), and
nasopharyngeal swabs. An association between the transcriptome information across the

https://www.r-project.org/
https://www.rstudio.com/
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blood and respiratory airways of COVID-19 patients has been reported by our and other
groups [21,23,24]. In this first approach, we obtained a total of 21,583 DEGs from seven
COVID-19 cohorts from five datasets (both datasets GSE156063 and EGAS00001004571
have two different cohorts) and one HLH cohort (Figure 1A and Supplementary Table S1).
Three other COVID-19 studies (GSE163151, GSE152641, and GSE 161731) were only in-
cluded during our analysis because they were publicly available only after the beginning
of our study. To identify the common DEGs we divided the datasets into three subgroups
based on the type of samples and RNA seq platforms: Overlap 1 (HLH and COVID-19
blood transcriptomes), Overlap 2 (HLH and COVID-19 nasopharyngeal swab transcrip-
tomes), and Overlap 3 (HLH and COVID-19 scRNA seq transcriptomes) (Supplementary
Figure S1A,B and Supplementary Tables S2 and S3). Even though the total number of DEGs
of each dataset has large variability, the number of shared DEGs between the HLH and
each COVID-19 dataset was similar across all studies and resulted in a total of 239 unique
common DEGs between HLH and all COVID-19 datasets, most of them (237 DEGs) being
up-regulated (Figure 1B). Hereafter, we focused on the implications of the up-regulated
genes, since the two common down-regulated genes (granulysin or GNLY; myomesin 2 or
MYOM2) alone did not enrich any significant pathway. However, this might also indicate
a defect in cytotoxic activity, typical of HLH [58], that will require future investigation.
The 237 common up-regulated DEGs encode proteins mainly involved in the immune
system, metabolic and signaling processes, forming a highly connected biological network
based on physical protein-protein interactions (PPI, Figure 1C). Among them are important
molecules involved in the activation of inflammatory immune responses (e.g., PGLYRP1,
OLR1, FFAR2), cytokine and chemokine mediated immune pathways (e.g., IL1R2, CXCR2,
CXCR8, CCL4, CCL2), and neutrophil activation (e.g., CD177, MPO, ELANE). Of note,
the transcriptional overlap between HLH and COVID-19 contains several molecules in-
teracting with 7 HLH/IEI-associated genes, which themselves were not among our DEGs
(Figure 1C).

3.2. Cytokine/Chemotaxis and Neutrophil Signatures Predominate in COVID-19 and HLH

We next dissected the biological functions enriched by the 237 common up-regulated
DEGs between COVID-19 and HLH patients by performing an enrichment analysis of
biological processes (BPs) and cellular components (CCs) by these 237 DEGs. The top 20
most enriched BPs are demonstrated in Figure 2A and encompass cytokine/chemotaxis
and neutrophil-mediated innate immune responses ranging from neutrophil activation, de-
granulation, and migration to responses to IL-1 as well as anti-microbial humoral response,
(for all BPs see Supplementary Table S4). The CCs enriched (Figure 2B) include several
compartments such as the secretory granule lumen and membrane, azurophil tertiary
and specific granules, as well as the collagen-containing extracellular matrix, phagocytic
vesicles, and primary lysosomes (Supplementary Table S5).
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Figure 1. Transcriptional overlap between COVID-19 and HLH. (A) Number of differentially ex-
pressed genes (DEGs, up- and down-regulated) by dataset. (B) Circos plot showing 237 common 
up-regulated DEGs between HLH and the different COVID-19 datasets (red lines: number at the 
end of each line indicates exact number of shared DEGs), divided into three overlapping subgroups 
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Figure 1. Transcriptional overlap between COVID-19 and HLH. (A) Number of differentially ex-
pressed genes (DEGs, up- and down-regulated) by dataset. (B) Circos plot showing 237 common
up-regulated DEGs between HLH and the different COVID-19 datasets (red lines: number at the
end of each line indicates exact number of shared DEGs), divided into three overlapping subgroups
(detailed in Supplementary Tables S2 and S3). The thickness of each line represents the number
of genes shared between the different datasets. (C) Protein-protein interaction network among the
237 transcripts and seven genes causing HLH due to inborn errors of immunity (IEI). Node colours
denote Gene Ontology Biological Processes. The label (gene name) colours represent transcripts from
Overlap 1 (green), Overlap 2 (red), and Overlap 3 (blue). The center circle and side circles represent com-
mon molecules across all three or two overlapping datasets, respectively. The upper left subnetwork
represents the interactions between the seven genes associated with HLH and those from overlaps
are in bold. The circle on upper left (gene names not shown) contains 1329 proteins connected by
217 interactions with the seven HLH/IEI-associated genes. The full network comprises 1538 proteins
and 2522 direct physical interactions obtained from the IID database ver. 2021-05 [47].
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portional to adjusted p-value (green > significant than blue). (B) Network highlighting genes and 
cellular component (CC) associations. Only enriched terms with adjusted p-value < 0.05 are shown 

Figure 2. Cytokine/chemotaxis and neutrophil-associated transcriptional signatures predominate
in the COVID-19 and HLH overlap. (A) Dot plot showing the most significant biological processes
(BP) enriched by the 237 common up-regulated transcripts of COVID-19 and HLH datasets. The
dot size is proportional to the number of genes enriching the gene ontology (GO) term and color
proportional to adjusted p-value (green > significant than blue). (B) Network highlighting genes
and cellular component (CC) associations. Only enriched terms with adjusted p-value < 0.05 are
shown by small grey circles. The degree of associations is displayed by edge color and thickness
(e.g., lighter colors and thinner edges signify fewer connections). Node color represents different
GO CCs. Both enriched CCs and BPs were analyzed using ClusterProfiler with R programming.
(C–E) Bubble heatmaps showing the hierarchical clustering based on Euclidian distance of expression
patterns of genes associated to (C) cytokine signaling, (D) chemotaxis, and (E) neutrophil-mediated
immunity in COVID-19 and HLH datasets. The color of circles corresponds to log2 fold change
(log2FC). Pleiotropic genes belonging to more than one category are bold (Supplementary Table S8).
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Of note, cytokine/chemotaxis and neutrophil signatures predominate in the COVID-
19 and HLH multilayered transcriptional overlap. A total of 25, 34, and 58 DEGs are
assigned to cytokine, chemotaxis, and neutrophil signatures, respectively (Figure 2C–E:
complete categorization can be seen in Supplementary Tables S6 and S7). Several genes
play pleiotropic roles in these gene ontology (GO) categories such as CEACAM8, IL-1β,
IL-6, EDN1, NFKB1 and PDE4B (Supplementary Table S8). For clarity in data visualization,
we assigned these genes to a unique category (based on their predominant immunological
function according to literature and GeneCards [59] or the human gene database). Among
these are genes that code for chemokines and chemokine receptors that attract both lympho-
cytes and myelocytes to inflammation sites (CCL20, CCL2, CXCR1, CXCR3, CXCL8) [60,61],
pro-inflammatory cytokines and cytokine receptors (IL-1B, IL-1R1, NFKB1, IFNG, IL-6,
TNF) [62,63] that promote the activation of immune cells, and several proteins/granules
with antimicrobial activity (MPO [64], AZU1 [65], ELANE [66,67], DEFA4 [68]). Moreover,
there are metalloproteinases (MMP8 and MMP9) involved in the degradation of the ex-
tracellular matrix (ECM) to facilitate neutrophil migration [69,70] into the airways and in
the regulation of cytokine activity. Of note, hierarchical clustering analysis of these genes
indicated a cross-study grouping of closely functional-related molecules. For instance,
IFNG, IL6, and TNF; IL1A and IL1B; as well as genes for signaling molecules involved
in the nuclear factor-κB (NF-κB) signaling such as NFKB1, SPHK1, and RIPK2 clustered
together in the cytokine group. Likewise, GYPA and GYPB (genes encoding blood cell antigens),
CEACAM6 and CEACAM8 (cell adhesion molecules), as well as CCL and CXCL, which encode
chemokines in the chemotaxis group, and genes encoding antimicrobial-related peptides
such as AZU1, MPO, CAMP, DEFA4, LCN2, ELANE, OLFM4, and CD177 in neutrophil-
mediated immunity clustered together. However, we cannot exclude that this clustering
pattern just represents a random tendency due to upstream GO categorization.

Relevant literature has emphasized that the seven genes (AP31B, LYST, PRF1, RAB27A,
STX11, STXBP2, UNC13D) known to cause fHLH (classically defined as familial HLH
syndromes and hypopigmentation syndromes) [17,71] contribute to the dominant role
played by T and NK cells in the development of HLH [72–74]. However, although these
7 genes are not commonly dysregulated across the datasets of COVID-19 and HLH pa-
tients, they also enrich several CCs (secretory vesicles, azurophilic granules or specific
granules) and BPs (neutrophil degranulation) involved in the neutrophil immune response
(Supplementary Figure S2). This result is in agreement with the role of these genes in a vari-
ety of neutrophil functions such as degranulation and formation of neutrophil extracellular
traps (NET) [75–79].

3.3. The Relationship between Cytokine/Chemotaxis and Neutrophil-Mediated Immunity
Gene Signatures

Considering the potential association between cytokine/chemotaxis and neutrophil-
mediated immunity representing regulatory and effector functions involved in the COVID-
19 pathogenesis, we next analysed the relationship pattern and degree between these
transcriptional signatures. We chose the COVID-19_PBL dataset (GSE157103) provided by
Overmyer et al. [26], which contains transcripts from 100 individuals with COVID-19 and
26 individuals with respiratory symptoms that were negative for SARS-CoV-2, serving as
control group (further explored in the next session). We performed canonical-correlation
analysis (CCA), which is a multivariate statistical method to determine the linear relation-
ship between two groups of variables [80]. In accordance with the cross-study hierarchical
clustering, CCA revealed a strong association between several cytokine/chemotaxis-related
genes (e.g., CXCL8, CEACAMs [1/6/8], IL1RAP, IL1R1, IL1B, NFKB1) with those involved
in neutrophil-mediated immune responses (e.g., CTSG, ELANE, MMP8, TCN1) in both
COVID-19 patients and controls (Figure 3A,B). Bivariate correlation analysis showed a
similar phenomenon (Supplementary Figure S3). However, these correlation patterns
partially changed when comparing COVID-19 with the control group. For instance, while
reducing the correlation between DEGs including IL10, CXCL8, NFKB1, ARG1, and SOD2,
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new strong associations appeared between ELANE, DEFA4, AZU1, CTSG, and LCN2, with
an overall tendency to higher relationships amid neutrophil-mediated immunity genes
in COVID-19 patients. Figure 3C illustrates this observation by scatter plots for some of
these variables.Cells 2021, 10, x FOR PEER REVIEW 10 of 24  
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Figure 3. Infection with SARS-CoV-2 impacts the correlation between cytokine/chemotaxis- and
neutrophil-mediated immunity genes. (A,B) Estimated correlations of cytokine signaling/chemotaxis
and neutrophil-mediated immunity molecules ranging from −1 to 1 versus their corresponding
first two canonical variates (x-CV1 and x-CV2 for cytokine/chemotaxis-related genes; y-CV1 and
y-CV2 for neutrophil-mediated immunity genes) in (A) controls and (B) COVID-19 patients. Cy-
tokine/chemotaxis and neutrophil-mediated immunity genes with a Spearman rank correlation of
≥0.7 are colored in green and blue, respectively, while those with a Spearman rank correlation of <0.7
are gray in both groups. (C) Scatter plots with marginal boxplots display the relationship between
variables (genes). Correlation coefficient (ρ) and significance level (p-value) for each correlation are
shown within each graph.
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3.4. Transcripts Stratifying Severe COVID-19 from Other Respiratory Diseases Are Highly
Dysregulated in HLH and Other Acute Inflammatory States

Next, we assessed which genes of cytokine/chemotaxis signaling and neutrophil-
mediated immune responses discriminate COVID-19 patients according to disease sever-
ity. We further investigated the COVID-19_PBL dataset (GSE157103) [26] comparing
COVID-19 patients admitted to the intensive care unit (COVID-19_ICU) with those ad-
mitted to non-ICU units (COVID-19_nonICU). The severity of COVID-19 patients at
ICU admission was defined based on APACHE II and SOFA scores [81] according to
Overmyer et al. [26] (Figure 4A). Among all genes, 25 (15 up-regulated and 10 down-
regulated genes) were differentially expressed between COVID-19_ICU and COVID-
19_nonICU patients (Supplementary Table S9). Of note, most of these 25 genes have also
been identified at the protein level as dysregulated in COVID-19 patients across different
studies (published during the development of our study; Supplementary Table S10). In ad-
dition, these 25 genes seem to belong to a systemic immune network of molecules induced
by SARS-CoV-2 since they are also highly interconnected with 158 proteins (Supplementary
Table S11) significantly dysregulated in the plasma of COVID-19_ICU when compared to
COVID-19_nonICU patients. Thus, they show several interactions and functional overlap
(Figure 4B) with plasma proteins involved in neutrophil degranulation and neutrophil-
mediated immunity (Supplementary Figure S4 and Supplementary Table S12 showing
results from protein enrichment analysis).Cells 2021, 10, x FOR PEER REVIEW 12 of 24  
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Figure 4. Transcripts stratifying severe COVID-19 from other respiratory diseases and HLH from
healthy controls. (A) Schematic overview of study design and patient classification of dataset
GSE157103 reported by Overmyer et al. [26]. Created with BioRender.com. (B) Protein-protein
interaction (PPI) network highlighting interactions among the 158 proteins and the 25 genes significant
for severe COVID-19_ICU, while keeping their other interacting partners (n = 9921) in the middle
circle. The node colour denotes Gene Ontology Biological Process terms. The left circle shows
123 proteins and 554 interactions, the upper right half circle shows 21 proteins and 29 interactions,
and the lower right side half circle shows 25 proteins and 65 interactions. Molecules involved in
neutrophil-mediated immunity are highlighted with a blue node outline. (C) Correlation matrices of
the 25 DEGs in controls and COVID-19 groups (Controls, left matrix; COVID-19_nonICU, middle
matrix; and COVID-19_ICU, right matrix). The color scale bar represents the Pearson’s correlation
coefficient, containing negative and positive correlations from −1 to 1, respectively. (D) Scatter plots
with marginal boxplots display the relationship between the eight genes stratifying severe COVID-19.
Correlation coefficient (ρ) and significance level (p-value) for each correlation is shown within each
graph. (E) Principal Component Analysis (PCA) with spectral decomposition shows the stratification
of COVID-19_ICU from COVID-19_nonICU and other respiratory diseases (Control_nonICU and
Control_ICU). Variables with positive correlation are pointing to the same side of the plot, contrasting
with negative correlated variables, which point to opposite sides. Confidence ellipses are shown for
each group/category. Bar plots associated with the PCA represent the sample distribution across the
PCA axes. (F) PCA displaying the stratification of HLH patients and healthy controls is based on the
same 25 DEGs as in (E).

Bivariate correlation analysis based on these 25 genes showed that while controls and
COVID-19_nonICU patients have a similar general cluster distribution, COVID-19_ICU pa-
tients tend to differ, revealing only eight genes with high positive correlations (Figure 4C,D).
To investigate the stratification power of these 25 DEGs, we performed principal compo-
nent analysis (PCA) using a spectral decomposition approach [82,83], which examines
the covariances/correlations between variables. This approach revealed that these DEGs
clearly divide COVID-19_ICU, COVID-19_nonICU, Control_ICU and Control_nonICU
(due to other respiratory illness but negative for SARS-CoV-2) groups (Figure 4E and
Supplementary Figure S5A,C). Likewise, these 25 genes stratified HLH patients from
healthy controls (Figure 4F and Supplementary Figure S5B,D). The PCA indicated that
some of these DEGs (e.g., AZU1, CEACAM8, CTSG, DEFA4, ELANE, LCN2, OLFM4, and
MMP8) are more associated with COVID-19_ICU than with COVID-19_nonICU.
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To address whether these 25 DEGs strongly associated with COVID-19_ICU reflect
only a specific similarity between COVID-19 and HLH, or if they are also linked to other
acute inflammatory states, we investigated the differential expression of these molecules
in other inflammatory syndromes and certain infectious diseases. We included additional
inflammatory cohorts (GSE178388 [MIS-C] [34] and GSE73461 [KD] [35]) and different
respiratory infections (GSE161731 [seasonal coronavirus other than SARS-CoV-2, influenza,
bacterial pneumonia] [33]) (Figure 5A). A hierarchical cluster analysis showed the existence
of a group of neutrophil-associated DEGs (e.g., DEFA4, AZU1, ELANE, CTSG, CEACAM8,
IL1R1, ARG1, LCN2, OLFM4, MMP8, CD177, and MCEMP1) more consistently up-regulated
across all cohorts included in this comparative analysis (Figure 5B and Supplementary
Table S13). While patients with MIS-C, influenza and seasonal coronavirus showed a similar
dysregulation pattern in just a few areas of this cluster of DEGs, patients with KD and with
bacterial pneumonia exhibited a similar up-regulation pattern compared to COVID-19_ICU
and HLH. Taken together, these data indicate that these DEGs reflect a more generalized
inflammatory state rather than being specific to COVID-19 or HLH.
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Figure 5. Severe COVID-19 shares a common neutrophil activation signature with other acute inflam-
matory states. (A) Schematic overview of the additional datasets included to evaluate the modulation
of the 25 DEGs strongly associated with COVID-19_ICU. Created with BioRender.com. (B) Bubble
heatmap showing the hierarchical clustering based on one minus spearman rank correlation of the
expression pattern of these 25 DEGs across different datasets. Cluster 1 comprises genes associated
with neutrophil degranulation and neutrophil-mediated immunity enriched terms, while cluster 2
includes genes enriched in inflammatory response and cytokine-mediated signaling pathway gene
ontology (GO) categories. The color of the circles corresponds to the up- and downregulation accord-
ing to the log2 fold change (log2FC) of each DEG, while the circle size denotes the significant level of
each DEG according to the adjusted p-value. HC, healthy controls; COV, seasonal coronavirus other
than SARS-CoV-2.
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3.5. Multi-Layered Transcriptomic Analysis Associates Neutrophil Activation Signature with
COVID-19 Severity

Since scRNA seq allows comparison of the transcriptomes of individual cells, we next
sought to investigate the distribution pattern of these 25 genes associated with COVID-19
severity. We analyzed the scRNA seq dataset (EGAS00001004571) reported by Schulte-
Schrepping et al. [29] (schematic overview of study group Figure 6A) and found that
21 of the 25 genes associated with COVID-19 severity and HLH development are DEGs
among the top 2000 variable genes in the COVID-19 cohort compared to controls (Figure 6B
and Supplementary Figure S6A,B). These 21 genes exhibited cell-type-specific expres-
sion patterns. For instance, CCL4 (a chemoattractant and stimulator of T-cell immune
responses [84,85]) was mainly produced by CD8+ T and NK cells, and CD83 (B, T and
dendritic cell activation marker [86,87]) by B cells and monocytes. CXCL8 was mostly
present in monocytes and low-density neutrophils/granulocytes (LDG; also frequently
reported as immature neutrophils [88–90]), which are neutrophils remaining in the PBMC
fraction after density gradient separation. Among these 21 genes, 11 genes (including the
eight genes described above), were differentially expressed when comparing patients with
mild and severe COVID-19 (Figure 6C).

Of note, these 11 genes encode proteins that are crucial for several pathways involved
in neutrophil-mediated immunity, and are associated with diseases that increase the risk of
severe COVID-19 [91,92], such as chronic obstructive pulmonary disease (COPD) [93,94] and
ulcerative colitis [95,96] (Supplementary Figure S6C and Supplementary Table S14). These
11 genes are also significantly different between COVID-19_ICU and COVID-19_nonICU
(Figure 6D) in the bulk-RNA seq dataset (GSE157103, Overmyer et al. 2020 [26]), indicating
that these genes are consistently associated with COVID-19 severity across different patient
cohorts. Moreover, these 11 genes were differentially expressed in HLH patients compared
to healthy controls (Figure 6E).

We used the random forest method [57] to rank the importance of these 11 genes based
on their ability to discriminate between COVID-19_ICU and COVID-19_nonICU in order
to evaluate the association of these genes with COVID-19 severity. This approach showed
an error rate (out of bag or OOB) of 27,03% and an area under the receiver operating
characteristic (ROC) curve of 82,4% for both groups (Figure 7A,B). Follow-up analysis
indicated that ARG1 was the most significant predictor for ICU admission followed by
CD177, MCEMP1, LCN2, AZU1, OLFM4, MMP8, ELANE, CTSG, DEFA4, CEACAM8 based
on the number of the nodes, Gini-decrease, and average depth criteria for measuring gene
importance (Figure 7C,D). ARG1 exhibited the most relevant interactions with the other
genes according to the mean minimal depth criterion, mostly interacting with CD177,
AZU1, MCEMP1, and LCN2 (Figure 7E).
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Figure 6. Multi-layered transcriptomic analysis associates neutrophil activation signature with
COVID-19 severity. (A) Schematic overview of sample cohort and classification of scRNA seq
dataset obtained by Schulte-Schrepping et al. [29] and used for the following analysis. Created with
BioRender.com. (B) Heatmap showing scRNA seq expression of differentially expressed genes (DEGs)
associated with disease severity. Cells and cohorts (controls, mild and severe COVID-19) are indicated
by different colors in the legends. (C) Box plots of scRNA seq expression demonstrating that 11 of
the 21 genes identified in (B) are up-regulated when comparing severe and mild COVID-19 patients.
(D) Box plots of the 11 genes stratifying COVID-19_ICU patients from COVID-19_nonICU patients
obtained from the bulk-RNA seq dataset from Overmyer et al. [26]. Significant differences between
groups are indicated by asterisks (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and **** p < 0.0001). (E) Box
plots of microarray data illustrating that the disease severity association of COVID-19 detected by
scRNA seq corresponds to the expression differences of these genes between HLH patients and
controls obtained from the dataset published by Sumegi et al. [30]. Significant differences between
groups are indicated by asterisks (* p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001).
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Figure 7. Random Forest prediction analysis suggests potential biomarkers for severe COVID-19.
(A) Receiver operating characteristics (ROC) curve of 11 genes from COVID-19_ICU compared
to COVID-19_nonICU patients with an area under the curve (AUC) of 82.4% for both groups.
1 = COVID-19_nonICU; 2 = COVID-19_ICU. (B) Stable curve showing number of trees and error
rate (out of bag or OOB) with medium of 27.03%. 1 = COVID-19_nonICU; 2 = COVID-19_ICU.
(C) Variable importance scores plot based on Gini decrease and number (no) of nodes for each
variable showing which variables are more likely to be essential in the random forest’s prediction.
(D) Ranking of the top 10 variables according to mean minimal depth (vertical bar with the mean
value in it) calculated using trees. The blue color gradient reveals the min and max minimal depth
for each variable. The range of the x-axis is from zero to the maximum number of trees for the feature.
(E) Mean minimal depth variable interaction plot showing the most frequent occurring interactions
between the variables on the left side with light blue color, and least frequent occurring interactions
on the right side of the graph with dark blue color. The red horizontal line indicates the smallest
mean minimum depth and the black lollipop represents the unconditional mean minimal depth of
a variable.

4. Discussion

Our meta-analysis integrates and unravels the consistency of several important in-
dividual studies and datasets that validate the transcriptome data at the protein level in
COVID-19 patients [26,29,97]. In agreement with the recent observation that neutrophil
hyperactivation plays a key role in the severity of COVID-19 [97–100], our study indicates
that severe COVID-19 disease shares a common neutrophil activation signature with other
different acute inflammatory conditions such as HLH [101,102], KD [103–105], and bac-
terial pneumonia [106]. Our data are in agreement with the dual role of neutrophils in
providing essential antimicrobial functions, as well as in initiating tissue injury caused
by immune dysregulation [107,108]. The genes associated with COVID-19 severity are
up-regulated across different leukocyte subpopulations such as lymphoid (NK, T and B
cells) and myeloid (monocytes, dendritic cells and LDGs) cells. They form a systemic and
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interconnected network of cell-type-specific expression patterns and signaling networks
that may contribute to the clinical similarities between COVID-19 and other inflammatory
conditions. Thus, our analysis identified new candidate biomarkers and novel putative
molecular pathways that could lead to novel therapeutic interventions for COVID-19.

Our work expands the efforts of others [23,109–112] and of our group [21] to identify
networks and pathways involved in the pathogenesis of severe COVID-19. In accordance
with our findings, it has recently been demonstrated that neutrophils accumulate in in-
flamed tissues of COVID-19 patients as a consequence of T-cell driven pro-inflammatory
cytokine and chemokine release, which do not return to a homeostatic level due to an
ineffective T cell cytotoxic response [101,102]. Moreover, our multi-layered transcriptomics
approach is in agreement with the computational model developed by Ding et al. [102],
which is based on a network-informed analysis of the interaction of SARS-CoV-2- and
HLH-associated genes. This model postulates that neutrophil degranulation/NETs cause
endothelial damage and, consequently, thrombotic complications of COVID-19. Ding’s
and our interpretation is supported by experimental evidence [97–99,113] for neutrophil
hyperactivation and its association with the severity of COVID-19, as recently reviewed
by Ackermann et al. [100]. As we were able to demonstrate by the multi-omics associ-
ation between leukocyte and plasma molecules, recently published flow cytometry and
proteomic data indicate a systemic and integrated network of molecules associated with
neutrophil growth, activation, and mobilization leading to neutrophil dysregulation in
severe COVID-19 [98,99]. These results support the concept that the pathophysiology
of HLH does not only involve T cell, NK cell and macrophage dysregulation, but also
the hyperactivation of neutrophils, as this is also seen in patients with KD [103–105] and
bacterial pneumonia [106].

Among the common neutrophil activation signatures that is shared by COVID-19
patients and those with other acute inflammatory states, 11 genes (ARG1, AZU1, CD177,
CEACAM8, CTSG, DEFA4, ELANE, LCN2, MCEMP1, MMP8, and OLFM4) commonly
dysregulated in COVID-19 and HLH specifically stratified COVID-19_ICU from COVID-
19_nonICU patients. They encode proteins involved in neutrophil degranulation and
contribute to the development of comorbidities that increase the risk of progressing to
severe COVID-19 [91,92]. Random forest model ranking indicated that these genes accu-
rately distinguish COVID-19_nonICU from COVID-19_ICU patients. For instance, this
machine learning approach ranked ARG1 and its interaction with other molecules (CD177,
AZU1, MCEMP1 and LCN2) as an important predictor for ICU admission, supporting the
role of these molecules as biomarkers for hyperinflammatory conditions, including those
associated with severe COVID-19 [114,115].

Nonetheless, our manuscript has some limitations that need to be considered. The
datasets included in our study did not investigate the impact of different SARS-CoV-2
variants on the transcriptome of COVID-19 patients. Hence, further studies are needed to
investigate how the different SARS-CoV-2 variants intersect with the other hyperinflam-
matory conditions that we investigated. We also did not consider the influence of age,
sex, and comorbidities on the common transcriptome signatures of COVID-19 and the
other hyperinflammatory conditions. In addition, our work requires future mechanistic
investigation to further explore and validate the role of molecules studied here as predictors
of COVID-19 severity. However, in support of our findings, several of the dysregulated
molecules shared by COVID-19 and other acute inflammatory states have been successfully
investigated for the treatment of SARS-CoV-2 infection. For instance, inhibition of the
CCR5-CCL4 axis by Leronlima (anti-CCR5 monoclonal antibody) [116], or the blockade of
cytokine signaling by Tocilizumab (anti-IL-6R) [117], Adalimumab (anti-TNF-α) [118], or
Anakinra (anti-IL1R) [119] have been shown to ameliorate, in some cases, severe COVID-19
manifestations. Furthermore, Ruxolitinib, a JAK1/JAK2 inhibitor acting downstream of
JAK-dependent chemokines/cytokines such as IFN-γ, IL-1β, IL-6, TNF, G-CSF, CXCL9,
and CXCL10 [101,120], has shown promising results in treating COVID-19 [121]. Of note,
several approaches targeting neutrophils to treat SARS-CoV-2 complications have entered
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clinical trials, including the disruption of signaling via CXCR2, IL-8, IL-17A, or the use
of phosphodiesterase (PDE) inhibitors [122]. Moreover, in agreement with our data, the
inhibition of neutrophil-derived anti-microbial proteins are being actively investigated
in clinical trials by exploring the mechanistic and clinical effects of Alvelestat, an oral
neutrophil elastase inhibitor (COVID-19 Study of Safety and Tolerability of Alvelestat,
ClinicalTrials.gov). In addition, targeting other neutrophil proteins like Azurocidin (AZU1)
and cathepsin G (CTSG) that are elevated in nasopharyngeal swaps of COVID-19 patients,
as well as the inhibition of NET formation, have been suggested to alleviate SARS-CoV-2
symptoms [97,101,123].

In conclusion, our comprehensive multi-layered transcriptomic and cross-tissue analy-
sis indicates systemic communalities among severe COVID-19 and other acute inflamma-
tory states. This work suggests an interconnected cytokine/chemokine profile that hyper
stimulates and systemically attracts adaptive and innate immune cells, culminating in
the hyperactivation of neutrophils. Altogether, these data indicate that both numeric and
dysfunctional changes of neutrophils [123,124] are involved in COVID-19 outcomes, i.e.,
high levels of circulating activated neutrophils [123,125]. Thus, our work suggests common
molecular pathways between severe COVID-19 and other acute inflammatory states that
can be exploited for therapeutic intervention.
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