
Severely imbalanced Big Data challenges:
investigating data sampling approaches

Tawfiq Hasanin, Taghi M. Khoshgoftaar, Joffrey L. Leevy* and Richard A. Bauder

Introduction

The exponential increase of raw data in recent years has been associated with techno-

logical advances in the fields of Data Mining (DM) and Machine Learning (ML) [1, 2].

These advances have significantly improved the efficiency and effectiveness of Big Data

applications in a diverse range of areas, such as knowledge discovery and information

processing. Big Data is identified by various data-related properties, and for this reason,

an exact definition of Big Data remains elusive. One definition, presented by Senthilku-

mar et al. [3], relates Big Data to six V’s: Volume, Variety, Velocity, Veracity, Variability,

and Value. Volume is associated with the reams of data produced by an organization.

Abstract

Severe class imbalance between majority and minority classes in Big Data can bias the

predictive performance of Machine Learning algorithms toward the majority (negative)

class. Where the minority (positive) class holds greater value than the majority (nega-

tive) class and the occurrence of false negatives incurs a greater penalty than false

positives, the bias may lead to adverse consequences. Our paper incorporates two

case studies, each utilizing three learners, six sampling approaches, two performance

metrics, and five sampled distribution ratios, to uniquely investigate the effect of severe

class imbalance on Big Data analytics. The learners (Gradient-Boosted Trees, Logistic

Regression, Random Forest) were implemented within the Apache Spark framework. The

first case study is based on a Medicare fraud detection dataset. The second case study,

unlike the first, includes training data from one source (SlowlorisBig Dataset) and test

data from a separate source (POST dataset). Results from the Medicare case study are

not conclusive regarding the best sampling approach using Area Under the Receiver

Operating Characteristic Curve and Geometric Mean performance metrics. However, it

should be noted that the Random Undersampling approach performs adequately in the

first case study. For the SlowlorisBig case study, Random Undersampling convincingly

outperforms the other five sampling approaches (Random Oversampling, Synthetic

Minority Over-sampling TEchnique, SMOTE-borderline1 , SMOTE-borderline2 , ADAptive

SYNthetic) when measuring performance with Area Under the Receiver Operating Char-

acteristic Curve and Geometric Mean metrics. Based on its classification performance in

both case studies, Random Undersampling is the best choice as it results in models with

a significantly smaller number of samples, thus reducing computational burden and

training time.

Keywords: Big Data, Class imbalance, Machine Learning, Medicare fraud,

Oversampling, SlowlorisBig, Undersampling

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Hasanin et al. J Big Data (2019) 6:107

https://doi.org/10.1186/s40537-019-0274-4

*Correspondence:

jleevy2017@fau.edu

Florida Atlantic University,

777 Glades Road, Boca Raton,

FL 33431, USA

http://orcid.org/0000-0002-7079-7540
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0274-4&domain=pdf

Page 2 of 25Hasanin et al. J Big Data (2019) 6:107

Variety is concerned with the different formats of data, e.g., organized, partially organ-

ized, or unorganized. Velocity covers how rapidly data is manufactured, provided, and

handled. Veracity reflects the correctness of the data. Variability pertains to data fluctua-

tions. Value, also known as Big Data analytics, is the method of data extraction for effec-

tive decision-making.

Class imbalance is the term used for a dataset containing a majority and minority

class. The spectrum of class imbalance ranges from “slightly imbalanced” to “rarity.”

Dataset rarity is associated with insignificant numbers of positive instances [4], e.g., the

occurrence of 25 fraudulent transactions among 1,000,000 normal transactions within a

financial security dataset of a reputable bank. Since many multi-class problems can be

simplified by binary classification, data scientists frequently take the binary approach for

analytics [5]. The minority (positive) class, which accounts for a smaller percentage of

the dataset, is often the class of interest in real-world problems [5]. The majority (nega-

tive) class constitutes the larger percentage.

Machine learning algorithms generally outperform traditional statistical techniques at

classification [6–8], but these algorithms cannot effectively distinguish between majority

and minority classes if the dataset suffers from severe class imbalance or rarity. Severely

imbalanced data, also known as high-class imbalance, is often defined by majority-to-

minority class ratios between 100:1 and 10,000:1 [5]. The failure to sufficiently distin-

guish between majority and minority classes is akin to searching for a proverbial polar

bear in a snowstorm and could cause the classifier to label almost all instances as the

majority (negative) class, thereby producing an accuracy performance metric value that

is deceptively high. When the occurrence of a false negative incurs a higher penalty than

a false positive, a classifier’s prediction bias in favor of the majority class may lead to

adverse consequences [9]. For example, if defective flight-control software for a jetliner

is classified as defect-free (false negative), the end result of greenlighting the production

of this software could be catastrophic. Conversely, if the software is defect-free but was

flagged as defective, the outcome would most certainly not pose an imminent threat to

human life.

One strategy for addressing class imbalance involves the generation of one or more

datasets, each with a different class distribution than the original. To achieve this, the

two main categories of data sampling are utilized: undersampling and oversampling.

Undersampling discards instances from the majority class, and if the process is ran-

dom, the approach is known as Random Undersampling (RUS) [10]. Oversampling adds

instances to the minority class, and if the process is random, the approach is known

as Random Oversampling (ROS) [10]. Synthetic Minority Over-sampling TEchnique

(SMOTE) [11] is a type of oversampling that generates new artificial instances between

minority instances in close proximity to each other. Among ROS, RUS, SMOTE, and

SMOTE variants, it has been shown that RUS imposes the lowest computational burden

and registers the shortest training time [12].

Our work evaluates six data sampling approaches for addressing the effect that severe

class imbalance has on Big Data analytics. To accomplish this, we compare results from

two case studies involving imbalanced Big Data from different application domains.

For the processing of Big Data, we use the Apache Spark [13] and Apache Hadoop

frameworks [14–16].

Page 3 of 25Hasanin et al. J Big Data (2019) 6:107

The first case study is based on a Medicare fraud detection dataset (Combined data-

set) [17], which is a combination of three Medicare datasets, with fraud labels derived

from the Office of Inspector General (OIG) List of Excluded Individuals/Entities

(LEIE) dataset [18]. The Combined dataset contains 759,740 instances (759,267 nega-

tives and 473 positives) and 102 features. About 0.06% of instances are in the minority

class. Results from the Medicare case study are not conclusive as to the best sampling

approach, where Area Under the Receiver Operating Characteristic Curve (AUC) and

Geometric Mean (GM) are concerned. For the AUC metric, the best sampled distribu-

tion ratios were obtained by RUS at 90:10, SMOTE at 65:35, and RUS at 90:10 for Gradi-

ent-Boosted Trees (GBT), Logistic Regression (LR), and Random Forest (RF), respectively.

With regards to the GM metric, the best sampled distribution ratios were obtained by

RUS at 50:50, SMOTE at 50:50, and RUS at 50:50 for GBT, LR, and RF, respectively. It

is worth pointing out that RUS performed satisfactorily in this case study. For the AUC

metric with LR, SMOTE (best value in sub-table) was labeled as group ‘a’ and RUS as

group ‘b’ by Tukey’s Honestly Significant Difference (HSD) test [19]. For the GM metric

with LR, both SMOTE (best value in sub-table) and RUS were labeled as group ‘a’ by

Tukey’s HSD test.

The second case study, unlike the first, includes training data from one source (Slow-

lorisBig Dataset) [20] and test data from a separate source (POST dataset) [21]. Slowloris

and POST are two types of Denial of Service (DOS) attacks. The SlowlorisBig Dataset

contains 1,579,489 instances (1,575,234 negatives and 4,255 positives) and 11 features.

About 0.27% of instances are in the minority class. The POST dataset contains 1,697,377

instances (1,694,986 negatives and 2,391 positives) and 13 features. About 0.14% of

instances are in the minority class. In this study, RUS decisively outperforms the other

five sampling approaches for the SlowlorisBig case study when measuring the perfor-

mance with AUC and GM. For the AUC metric, the best sampled distribution ratios

achieved with RUS were 90:10, 65:35, and 50:50 for GBT, LR, and RF, respectively. With

regards to the GM metric, the best sampled distribution ratios achieved with RUS were

50:50, 65:35, and 50:50 for GBT, LR, and RF, respectively.

RUS is the best choice for both case studies based on its classification performance and

the fact that it generates models with a significantly smaller number of samples, lead-

ing to a reduction in computational burden and training time. Our contribution involves

the investigation of severe class imbalance with six data sampling approaches, and to

the best of our knowledge, demonstrates a unique approach. Furthermore, the compari-

son of Big Data from different application domains enables us to better understand the

extent to which our contribution is generalizable.

The remainder of this paper is organized as follows: “Related work” section provides

an overview of literature related to data sampling methods that address severe class

imbalance in Big Data; “Case studies datasets” section presents the details of the Medi-

care, SlowlorisBig, and POST datasets; “Methodologies” section describes the different

aspects of the methodologies used to develop and implement our approach, including

the Big Data processing framework, one-hot encoding, sampling ratios, sampling tech-

niques, learners, performance metrics, and framework design. “Approach for case stud-

ies experiments” section provides additional information on the case studies; “Results

and discussion” section presents and discusses our empirical results; and “Conclusion”

Page 4 of 25Hasanin et al. J Big Data (2019) 6:107

section concludes our paper with a summary of the work presented and suggestions for

related future work.

Related work

Two main categories for tackling class imbalance are data-level techniques and algo-

rithm-level techniques [22]. Data-level techniques cover both data sampling and fea-

ture selection approaches. Data sampling approaches commonly include ROS, RUS, and

SMOTE. In this section, we focus on related works associated with data sampling tech-

niques that address severe class imbalance in Big Data.

In [23], Fernández et al. provide an insight into imbalanced Big Data classification out-

comes and challenges. They compared RUS, ROS, and SMOTE using MapReduce with

two subsets of the Evolutionary Computation for Big Data and Big Learning (ECBDL’14)

dataset [24], while maintaining the original class ratio. The two subsets, one with 12 mil-

lion instances and the other with 0.6 million, were both defined by a 98:2 class ratio. The

original 631 features of the ECBDL’14 dataset were reduced to 90 features by the appli-

cation of a feature selection algorithm [24, 25]. The authors examined the performance

of RF and Decision Tree (DT) learners, using both Apache Spark in-memory comput-

ing (used with the MLlib library [26]) and Apache Hadoop MapReduce (used with the

Mahout library [27]) frameworks. Some interesting conclusions emerged from the anal-

ysis: (1) Models using Apache Spark generally produced better classification results than

models using Hadoop; (2) RUS performed better with less MapReduce partitions, while

ROS performed better with more, indicating that the number of partitions in Hadoop

impacts performance; (3) Apache Spark-based RF and DT produced better results with

RUS compared to ROS. The best overall values of GM for ROS, RUS, and SMOTE were

0.706, 0.699, and 0.632, respectively. We note that the focus of [23] leaned toward dem-

onstrating limitations of MapReduce rather than developing an effective solution for the

high-class imbalance problem in Big Data. Secondly, different Big Data frameworks were

used for some data sampling methods, making comparative conclusions unreliable. For

example, the SMOTE implementation was done in Apache Hadoop, whereas RUS and

ROS implementations were done in Apache Spark. Finally, the study does not indicate

the sampling ratios (90:10, 75:25, etc.) used with RUS, ROS, and SMOTE, which means

there is no means of assessing the impact of using various sampling ratio values on clas-

sification performance.

The experimentation by Del Río et al. in [28] analyzed the effect of increasing the

oversampling ratio for extremely imbalanced Big Data. Their work relied on the

Apache Hadoop framework for evaluating the MapReduce versions of RUS, ROS, and

RF. The ECBDL’14 dataset served as the case study, and the MapReduce approach for

Differential Evolutionary Feature Weighting (DEFW-BigData) algorithm was used to

select the most influential features [25]. The full ECBDL’14 dataset was used, which

contained approximately 32 million instances, a class ratio of 98:2, and 631 features.

The authors showed that ROS slightly outperformed RUS with regards to the product

of True Positive Rate (TPrate) and True negative Rate (TNrate). The best values for ROS

and RUS were 0.489 and 0.483, respectively. The authors also observed that ROS had

a very low TPrate compared to TNrate , which motivated further experimentation with

a range of higher oversampling ratios for ROS combined with the DEFW-BigData

Page 5 of 25Hasanin et al. J Big Data (2019) 6:107

algorithm to select the top 90 features based on the weight-based ranking obtained.

An increase in the oversampling rate was found to increase the TPrate and lower the

TNrate , and the best overall results for [28] were obtained with an oversampling rate

of 170%. This related work has limitations that are similar to those of [23]. However,

there are additional issues such as the use of MapReduce, which is sensitive to severe

class imbalance [29], as the only framework, and also the lack of inclusion of the pop-

ular SMOTE technique for comparison.

An analytical approach for predicting highway traffic accidents was proposed by

Park et al. in [30], which involved classification modeling using the Apache Hadoop

MapReduce framework. The authors implemented a modification of SMOTE for

addressing a dataset of severely imbalanced traffic accidents, i.e., a class ratio of

approximately 370:1, and a total of 524,131 instances defined by 14 features. After

oversampling was performed, the minority class (accident) instances in the train-

ing dataset increased from 0.27% to 23.5%. A classification accuracy of 76.35% and a

TPrate of 40.83% were obtained by a LR classifier. In a similar experiment, the authors

also experimented with SMOTE in a MapReduce framework (Apache Hadoop) [31]

and obtained the best overall classification accuracy of 80.6% when the minority class

reached about 30% of the training dataset, from the initial 0.14% of minority class

instances. The original training dataset contained 1,024,541 instances, a class ratio of

710:1, and 13 features. For the studies presented in [30, 31], we point out that MapRe-

duce is particularly sensitive to high-class imbalance in datasets, thus likely yield-

ing sub-optimal classification performance. Second, we believe that the use of the

Apache Spark framework may outperform the Apache Hadoop (MapReduce) frame-

work. Finally, we remind the user of the main limitation of the accuracy classification

metric. It is not a dependable metric because a severely imbalanced dataset with a

99.9% accuracy could have TPrate and TNrate values of approximately 0% and 100%,

respectively.

In [32], Chai et al. examined severe class imbalance within the context of using sta-

tistical text classification to identify information technology health incidents. RUS

was used to balance the majority and minority classes, i.e., 50:50, with the aim of

comparing classification performances between the original, imbalanced dataset and

the balanced dataset. The training dataset contained approximately 516,000 instances

and 85,650 features, with about 0.3% of instances constituting the minority class. Reg-

ularized LR was selected as the classifier mainly due to its ability to avoid overfitting

while using a very large set of features that is typical in text classification. Experi-

mental results show that the F-measure scores were relatively similar with or without

under-sampling, i.e., the balanced dataset did not affect classification performance.

However, undersampling increased recall and decreased precision of the classifier.

The best value of the F-measure was 0.99. One limitation of [32] relates to the ques-

tion of why the authors only used a balanced ratio in their study, with no other ratios

considered. Furthermore, no clear explanation was provided for the use of undersam-

pling as the only data sampling technique in the study.

It should be noted that research on Big Data sampling techniques for addressing

severe class imbalance is still in an embryonic state. As a result, literature searches on

this narrow topic are not expected to yield prolific results.

Page 6 of 25Hasanin et al. J Big Data (2019) 6:107

Case studies datasets

Our work includes two case studies. The dataset used in the first case study came from a

different application domain than the datasets used in the second case study. In the first

case study, Cross Validation (CV) was performed on the Medicare dataset. In the second

case study, the SlowlorisBig Dataset was used for training and the POST dataset for test-

ing. The Medicare dataset is considered high dimensional (102 features), whereas the

SlowlorisBig and POST datasets are not (11 and 13 features, respectively).

Medicare

To construct ML models for detecting Medicare fraud, we first combined three data-

sets: Medicare Physician and Other Supplier (Part B), years 2012 to 2015; Prescriber

(Part D), years 2013 to 2015; and Durable Medical Equipment, Prosthetics, Orthotics

and Supplies (DMEPOS) datasets from the Centers for Medicare and Medicaid Services

(CMS) [33], years 2013 to 2015. The Part B dataset includes claims information for each

procedure a physician/provider performs in a specified year. The Part D dataset pro-

vides claims information on prescription drugs provided through the Medicare Part D

Prescription Drug Program in a specified year. The DMEPOS dataset includes claims

for medical equipment, prosthetics, orthotics, and supplies that physicians/providers

referred patients to for purchase or rent from a supplier in a specified year. The three

Medicare datasets were joined into a Combined dataset, with fraud labels derived from

the OIG’s LEIE dataset. The Combined dataset contains 759,740 instances (759,267 neg-

atives and 473 positives) and 102 features. About 0.06% of instances are in the minority

class.

SlowlorisBig and POST

DOS attacks are carried out through various methods designed to deny network avail-

ability to legitimate users [34]. Hypertext Transfer Protocol (HTTP) contains several

exploitable vulnerabilities and is often targeted for DOS attacks [35, 36]. During a Slow-

loris attack, numerous HTTP connections are kept engaged for as long as possible. Only

partial requests are sent to a web server, and since these requests are never completed

the available connections for legitimate users becomes zero. During a Slow HTTP POST

attack, legitimate HTTP headers are sent to a target server. The message body of the

exploit must be the correct size for communication between the attacker and the server

to continue. Communication between the two hosts becomes a drawn-out process as

the attacker sends messages that are relatively very small, tying up server resources. This

effect is worsened if several POST transmissions are done in parallel.

Data collection for the Slowloris and POST attacks was performed within a real-world

network setting. An ad hoc Apache web server, which was set up within a campus net-

work environment, served as a viable target. A Slowloris.py attack script [37] and the

Switchblade 4 tool from Open Web Application Security Project (OWASP) were used

to generate attack packets for Slowloris and POST, respectively. Attacks were launched

from a single host computer in hourly intervals. Attack configuration settings, such as

connection intervals and number of parallel connections, were varied, but the same

PHP form element on the web server was targeted during the attack. The resulting

Page 7 of 25Hasanin et al. J Big Data (2019) 6:107

SlowlorisBig Dataset contains 1,579,489 instances (1,575,234 negatives and 4255 posi-

tives) and 11 features. About 0.27% of instances are in the minority class. The resulting

POST dataset contains 1,697,377 instances (1,694,986 negatives and 2391 positives) and

13 features. About 0.14% of instances are in the minority class.

Methodologies

This section provides insight into the methodologies for this experiment. It covers the

Big Data framework, one-hot encoding, sampling ratios, sampling techniques, learners,

performance metrics, and framework design.

Big Data framework

The processing and analysis of Big Data frequently requires specialized computational

frameworks that benefit from the use of clusters and parallel algorithms. Two such

frameworks are Apache Spark and MapReduce [27]. Apache Spark, referred to as Spark

herein, is a framework for Big Data and ML that uses in-memory operations instead of

the divide-and-conquer approach of MapReduce. Compared to MapReduce, the data

processing speed of Spark is exponentially faster because MapReduce writes to and

reads from hard drives. For this reason, we decided to use the in-memory implementa-

tion of Spark in our study.

In addition to Spark, we use the Apache Hadoop framework, which consists of several

tools and technologies for Big Data, two of which are used in our work. Hadoop Distrib-

uted File System (HDFS) [38] can store large files across a large cluster of nodes, while Yet

Another Resource Negotiator (YARN) [39] is used for job management and scheduling.

One‑hot encoding

Through one-hot encoding, all categorical features in this work were converted into

dummy variables for several reasons. One primary reason relates to the fact that some

ML algorithms do not deal with categorical features in their raw form. Another rea-

son is due to the high quantity of instances with missing values in the original datasets.

Imputing these values, discarding instances with such values, and converting categori-

cal features are three traditional solutions for addressing this issue. Because the number

of instances with missing values is very high, imputing could change the nature of the

data. Furthermore, discarding instances could result in the loss of valuable information.

Hence, we decided against imputing values and discarding instances.

As an example of categorical feature conversion, a gender feature that is missing male

and female categorical values will generate two new features, where the record with

missing gender is filled with zeroes for both features. A drawback is that a feature with C

distinct categories will generate C-1 new features, and this may increase the dimension-

ality of the feature space where the categorical values are too many. Another challenge

may arise if the test set contains categorical values that do not exist in the training set

and vice versa.

Sampling ratios

Unequal proportions of majority and minority instances are responsible for class imbal-

ance issues, which may cause the ML algorithm to be biased toward the majority class

Page 8 of 25Hasanin et al. J Big Data (2019) 6:107

during model training. In some cases, the positive class (class of interest) is completely

ignored. For our work, we use six data sampling methods, generating five class ratios

(distributions) for each method (i.e. 99:1, 90:10, 75:25, 65:35, and 50:50) in a majority

to minority format of representation. The selected ratios were chosen to provide a good

range of class distribution from perfectly balanced with a 50:50 ratio, through moder-

ately balanced, to highly imbalanced with a 99:1 ratio. The inclusion of the highly imbal-

anced ratio facilitates the construction of a generalized curve and provides empirical

information that aids in the selection of optimal ratios for this study.

Sampling techniques

This section is an overview of the six data sampling techniques used in our study. We

selected one undersampling technique and five oversampling techniques, three of which

are variants that focus on the boundary between the majority and the minority class.

1. RUS: This approach randomly discards instances from the majority class, result-

ing in a reduction of dataset size. Reducing the size of the majority class decreases

computational burden, making analysis on very large datasets more manageable. The

obvious disadvantage with RUS is the loss of potentially useful information, because

instances of the majority class are randomly discarded [10]

2. ROS: This approach adds to the instances of the minority class by randomly duplicat-

ing observations belonging to that class with replacement. Oversampling increases

the size of the dataset, potentially increasing computational costs. Since this tech-

nique duplicates minority class instances, it is susceptible to data overfitting [40].

3. SMOTE: This oversampling approach generates artificial instances [11], increasing

the size of the minority class instances via k-nearest neighbors and sampling with

replacement. SMOTE interpolates from original minority instances instead of just

duplicating them. This method initially finds the k-nearest neighbors of the minor-

ity class for each minority instance. New instances are then generated in the direc-

tion of some or all of the nearest neighbors, depending on the oversampling percent-

age goal, by calculating the difference between the original minority example and its

nearest neighbors and multiplying this difference by a random number (between 0

and 1).

4. borderline-SMOTE (SMOTEb): This approach [41] modifies the SMOTE algo-

rithm by selecting the minority instances on the border of the minority decision

region in the feature-space, only performing SMOTE on these instances. The num-

ber of majority neighbors of each minority instance is used to divide the minority

class instances into three categories: SAFE, DANGER, or NOISE. Only the minority

instances in the DANGER category are used to generate artificial instances. There are

two types of SMOTEb, type 1 and type 2. Type 1 or SMOTE-borderline1 (SMOTEb1)

generates new, synthetic instances that belong to a class different from the original

minority examples. Type 2 or SMOTE-borderline2 (SMOTEb2) generates instances

that can belong to any class.

5. ADAptive SYNthetic (ADASYN): This approach [42] is similar to SMOTE except that

it focuses on generating instances adjacent to original minority examples that were

Page 9 of 25Hasanin et al. J Big Data (2019) 6:107

misclassified by a k-nearest neighbors classifier. As a result, more artificial instances

will be generated in regions where the nearest neighbor rule is ignored.

RUS and ROS were implemented within the scalable libraries of Spark. SMOTE and its

variants were implemented within imbalanced-learn [43], a toolbox with many prede-

fined imbalanced solutions, including sampling.

Learners

We use three learners built for Apache Spark from MLlib (machine learning library).

For our study, we use LR [44], RF [45], and GBT [46]. The default configurations are

assumed, unless otherwise stated.

LR uses a sigmoidal, or logistic, function to generate values from [0,1] that can be

interpreted as class probabilities. LR is similar to linear regression but uses a different

hypothesis class to predict class membership. The bound matrix parameter was set to

match the shape of the data so the algorithm knows the number of classes and features

the dataset contains. The bound vector size was set to 1 for binomial regression, with no

thresholds applied for binary classification.

RF is an ensemble approach building multiple decision trees. The classification results

are calculated by combining the results of the individual trees, typically using majority

voting. RF generates random datasets via sampling with replacement to build each tree,

and selects features at each node automatically based on entropy and information gain.

In this study, we set the number of trees to 100 and the max depth to 16. Additionally,

the parameter that caches node IDs for each instance, was set to true and the maximum

memory parameter was set to 1,024 megabytes in order to minimize training time. The

setting that manipulates the number of features to consider for splits at each tree node

was set to one-third, since this setting provided better results upon initial investigation.

The maximum bins parameter, which is for discretizing continuous features, was set to 2

since we use one-hot encoding on categorical variables to avoid converting any numeri-

cal values as categorical.

GBT is an ensemble approach that trains each Decision Tree iteratively in order to

minimize loss determined by the algorithm’s loss function. During each iteration, the

ensemble is used to predict the class for each instance in the training data. The predicted

values are evaluated with the actual values allowing for the identification and correc-

tion of previously mislabeled instances. The parameter that caches node IDs for each

instance was set to TRUE, and the maximum memory parameter was set to 1,024 MB to

minimize training time.

Performance metrics

Our work records the confusion matrix for a binary classification problem, where the

class of interest is usually the minority class and the opposite class is the majority class,

i.e. positives and negatives, respectively. A related list of simple performance metrics [9]

is explained as follows:

• True positive (TP) is the number of positive samples correctly identified as positive.

Page 10 of 25Hasanin et al. J Big Data (2019) 6:107

• True negative (TN) is the number of negative samples correctly identified as nega-

tive.

• False positive (FP), also known as Type I error, is the number of negative instances

incorrectly identified as positive.

• False negative (FN), also known as Type II error, is the number of positive instances

incorrectly identified as negative.

• TPrate , also known as Recall or Sensitivity, is equal to TP / (TP + FN).

• TNrate , also known as Specificity, is equal to TN / (TN + FP).

We used more than one performance metric to better understand the challenge of evalu-

ating ML with severely imbalanced data. The first metric is AUC [47, 48], where an ROC

curve depicts a learner’s performance across all classifier decision thresholds. From this

curve, the AUC obtained is a single value that ranges from 0 to 1, with a perfect classifier

having a value of 1. AUC indicates the predictive potential of a binary classifier and seeks

to maximize the joint performance of the classes via true positive rate (sensitivity/recall)

and true negative rate (specificity). Additionally, due to the class imbalance in the data-

sets included in our work, we consider AUC a good metric for assessing classification

performance. The second performance metric included in our study is GM, which indi-

cates how well the model performs at the threshold where TPrate and TNrate are equal.

GM is equal to
√
TPrate × TNrate.

Framework design

The evaluation of the learners is performed using two approaches based on our case

studies. The approach for the Medicare dataset uses k-fold CV. With this method, the

model is trained and tested k times, where it is trained on k-1 folds each time and tested

on the remaining fold. This is to ensure that all data are used in the classification. More

specifically, we use stratified CV which tries to ensure that each class is approximately

equally represented across each fold. In our study, we assigned a value of 5 to k: four

folds for training and one fold for testing. Note that Spark does not support k-fold CV

and thus we implemented our own version of CV for use with Spark scalable processing.

The approach for the SlowlorisBig and POST datasets used the Training/Test method,

with the former dataset utilized to train the model and the latter used to test.

We repeated the process of building and evaluating the models 10 times for each

learner and dataset. The use of repeats helps to reduce bias due to bad random draws

when generating the samples. The final performance result is the average over all 10

repeats.

Approach for case studies experiments

Case 1: Medicare

In this case study, statistics obtained after the application of sampling techniques on the

Medicare dataset, i.e. undersampling and oversampling, are presented in Table 1. The

number of positives and negatives when sampling has not been performed (“None”

method) are also included in the table. The count of 379 positives in the table represents

the quantity of minority instances within the four folds of training data, out of a total of

473 (positives within both test and training folds) in the dataset. Likewise, the count of

Page 11 of 25Hasanin et al. J Big Data (2019) 6:107

607,414 negatives represents the quantity of majority instances within the four folds of

training data, out of a total of 759,267 (negatives within both test and training folds). We

can also see from Table 1 that oversampling with the 50:50 class ratio increases the origi-

nal count of positives by over 160,000% due to the severe class imbalance in this dataset.

Case 2: SlowlorisBig and POST

In this case study, we built models using the SlowlorisBig Dataset and tested them on the

POST dataset. These two datasets are in the same application domain but come from

different sources. As in the first case study, we provided statistics (shown in Table 2)

based on the datasets generated after the application of various sampling techniques.

Results and discussion

In this section, we present the results of the Medicare and SlowlorisBig case stud-

ies. As explained in the previous section, we generated five class ratios (50:50, 65:35,

75:25, 90:10, and 99:1) using six sampling techniques: RUS, ROS, SMOTE, SMOTEb1,

SMOTEb2, and ADASYN. We included the full datasets (“all:all”), without any data sam-

pling performed (“None” method), to serve as a baseline comparison. As mentioned in

"Methodologies" section, our results were obtained by implementing three ML classifi-

ers, i.e. GBT, LR, RF and evaluated with the AUC and GM performance metrics.

The results of our experiment for the full datasets, prior to sampling, are included in

Table 3. The table shows the two metrics: AUC and GM.

The overall results for both Medicare and SlowlorisBig Datasets are presented by

averaging the AUC in part (a) of Tables 4 and 5, respectively. Similarly, part (b) of both

tables reports the average results for the GM metric. For parts (a) and (b) of both tables,

Table 1 Medicare sampling

Ratio No sampling Undersampling Oversampling

Negatives Positives Negatives Positives Negatives % Negatives Positives Positives%

(All:all) 607,414 379 – – – – – –

(99:1) – – 37,521 379 6.18 607,414 6,135 1,618.86

(90:10) – – 3,411 379 0.56 607,414 67,490 17,807.51

(75:25) – – 1,137 379 0.19 607,414 202,471 53,422.52

(65:35) – – 704 379 0.12 607,414 327,069 86,297.91

(50:50) – – 379 379 0.06 607,414 607,414 160,267.55

Table 2 SlowlorisBig sampling

Ratio No sampling Undersampling Oversampling

Negatives Positives Negatives Positives Negatives % Negatives Positives Positives%

(All:all) 1,575,234 4255 – – – – – –

(99:1) – – 421,245 4255 26.74 1,575,234 15,911 373.95

(90:10) – – 38,295 4255 2.43 1,575,234 175,026 4113.42

(75:25) – – 12,765 4255 0.81 1,575,234 525,078 12,340.26

(65:35) – – 7902 4255 0.50 1,575,234 848,203 19,934.26

(50:50) – – 4255 4255 0.27 1,575,234 1,575,234 37,020.78

Page 12 of 25Hasanin et al. J Big Data (2019) 6:107

the highest value within each column (class distribution ratio) of each sub-table is in

italic type, and the highest value within each row (sampling method) of each sub-table

is underlined. As discussed in "Methodologies" section, we performed 5-fold CV for the

Medicare case study while we used a Training/Test method for the SlowlorisBig case

study. The average values shown are derived from 50 models (5-fold CV with 10 repeats)

in the Medicare case study and 10 models in the SlowlorisBig case study.

AUC values for the Medicare dataset are shown in Table 4. The best performance,

on average, for the GBT model was 0.81675 with RUS and a 90:10 ratio, followed by

0.80703, which was obtained by ROS with a 50:50 ratio. The lowest score of 0.62805 was

obtained with ROS and a 90:10 ratio, which was a lower value than the score recorded

for the GBT model with unsampled data. For the LR model associated with the Medicare

dataset, the best performance was obtained by SMOTE, with values between 0.82211

and 0.82781 for distribution ratios of 90:10, 75:25, 65:35, and 50:50. However, the LR

model yielded a value of 0.82011 using RUS and a 99:1 ratio, which was better than the

score of 0.81554 for the LR model with unsampled data. The lowest score of 0.6621 for

the LR model was obtained with ROS and a 99:1 ratio. Finally, for the RF learner, RUS

outperformed the other sampling methods with a score of 0.82793 for the 90:10 ratio.

GM values for the Medicare dataset are also shown in Table 4. The reader should note

that GM records the model performance outcome of the confusion matrix, unlike AUC,

which provides an overall performance. Thus, we observed that the balanced ratio of

50:50 performed the best while the performances decrease when the ratios become

progressively more imbalanced. RUS yielded the best results for GBT and RF. However,

with the LR model, SMOTE performed the best with a GM score of 0.75345, followed by

ROS, ADASYN, and then RUS.

For the AUC metric of the SlowlorisBig Dataset, shown in Table 5, the score for the

GBT model with RUS was 0.97226, corresponding to a 90:10 ratio. However, the RUS

ratios of 75:25, 65:35, and 50:50 also performed well when compared to the other sam-

pling methods. The lowest score of 0.46056 was obtained for the ADASYN method and

a ratio of 50:50, which is considered a worse score than a random guess (AUC value of

0.5). With regards to the LR model, RUS with a ratio of 65:35 produced the highest value

of 0.97113. ADASYN with a 65:35 ratio recorded the lowest value of 0.43311. However,

the second best method after RUS was also ADASYN with a 90:10 ratio and a score of

0.77948. Lastly, with regards to the RF model, the best AUC value was obtained using

RUS with a 50:50 ratio; however, two oversampling methods, ROS and SMOTE, also

produced decent results.

Table 3 No-sampling (all:all) results

Dataset Learner AUC GM

Medicare GBT 0.7905 0.0091

LR 0.8155 0.0000

RF 0.7938 0.0082

SlowlorisBig GBT 0.6868 0.2517

LR 0.5920 0.6449

RF 0.867 0.0000

Page 13 of 25Hasanin et al. J Big Data (2019) 6:107

In relation to the SlowlorisBig performance for the GM metric, shown in part (b) of

Table 5, RUS outperformed all the other oversampling methods for all three learners.

Note that when the model fails to correctly classify any positive instances during all 10

Table 4 Case 1: Medicare results

The highest value within each column (class distribution ratio) of each sub-table is in italic type, and the highest value

within each row (sampling method) of each sub-table is underlined

Learner Method (All:all) (99:1) (90:10) (75:25) (65:35) (50:50)

(a) AUC

 GBT None 0.79047 – – – – –

RUS – 0.80373 0.81675 0.80405 0.79127 0.77587

ROS – 0.74328 0.62805 0.72565 0.76417 0.80703

ADASYN – 0.71368 0.69611 0.69586 0.69675 0.69351

SMOTE – 0.73903 0.72194 0.72634 0.72986 0.73439

SMOTEb1 – 0.68831 0.67235 0.65831 0.65448 0.66498

SMOTEb2 – 0.68917 0.67780 0.66209 0.66312 0.66730

 LR None 0.81554 – – – – –

RUS – 0.82011 0.81868 0.81553 0.80998 0.79415

ROS – 0.66210 0.68306 0.75298 0.79036 0.81547

ADASYN – 0.81205 0.81622 0.81758 0.81384 0.81578

SMOTE – 0.81306 0.82211 0.82685 0.82781 0.82413

SMOTEb1 – 0.74471 0.73845 0.73526 0.74014 0.73484

SMOTEb2 – 0.72167 0.71599 0.72523 0.72752 0.72426

 RF None 0.79383 – – – – –

RUS – 0.81515 0.82793 0.81503 0.80619 0.79546

ROS – 0.77538 0.75640 0.75728 0.76989 0.79315

ADASYN – 0.74537 0.73496 0.72920 0.73266 0.73577

SMOTE – 0.77417 0.76921 0.77629 0.77443 0.76790

SMOTEb1 – 0.76460 0.74777 0.75695 0.75844 0.75883

SMOTEb2 – 0.76440 0.75071 0.75155 0.75282 0.74967

(b) GM

 GBT None 0.00907 – – – – –

RUS – 0.08674 0.37061 0.60384 0.67830 0.70412

ROS – 0.01234 0.14263 0.34824 0.50723 0.69501

ADASYN – 0.00205 0.00413 0.05390 0.12527 0.30430

SMOTE – 0.01027 0.06270 0.22959 0.33785 0.47255

SMOTEb1 – 0.03254 0.20534 0.28603 0.33670 0.40159

SMOTEb2 – 0.04371 0.18432 0.26794 0.32180 0.38951

 LR None 0 – – – – –

RUS – 0.13376 0.45411 0.66222 0.72088 0.73044

ROS – 0.05917 0.36425 0.58388 0.67673 0.75224

ADASYN – 0.06607 0.35955 0.59097 0.69207 0.74657

SMOTE – 0.12602 0.45052 0.64526 0.71975 0.75345

SMOTEb1 – 0.13877 0.37785 0.50841 0.55796 0.59091

SMOTEb2 – 0.10953 0.35552 0.50170 0.54910 0.58911

 RF None 0.00823 – – – – –

RUS – 0.09315 0.26700 0.56838 0.67842 0.72590

ROS – 0.00909 0.01027 0.03608 0.08623 0.29951

ADASYN – 0.03665 0.10203 0.16093 0.20660 0.24092

SMOTE – 0.04778 0.16448 0.23132 0.26808 0.31371

SMOTEb1 – 0.04571 0.08312 0.12967 0.14453 0.18056

SMOTEb2 – 0.03546 0.07203 0.10473 0.10693 0.14532

Page 14 of 25Hasanin et al. J Big Data (2019) 6:107

runs, the GM scores will be zero as shown with the RF case. We clearly can see that

changing the performance metric may lead to different conclusions. Measuring the per-

formance using AUC may give a general estimate of overall model performance when

Table 5 Case 2: SlowlorisBig results

The highest value within each column (class distribution ratio) of each sub-table is in italic type, and the highest value

within each row (sampling method) of each sub-table is underlined

Learner Method (All:all) (99:1) (90:10) (75:25) (65:35) (50:50)

(a) AUC

 GBT None 0.68678 – – – – –

RUS – 0.84644 0.97226 0.96541 0.96724 0.96685

ROS – 0.65312 0.50947 0.69950 0.66151 0.65531

ADASYN – 0.47154 0.74951 0.68449 0.82351 0.46056

SMOTE – 0.57069 0.58314 0.69230 0.63663 0.70906

SMOTEb1 – 0.70283 0.65169 0.62276 0.62191 0.67668

SMOTEb2 – 0.69876 0.62302 0.63359 0.66083 0.71559

 LR None 0.59203 – – – – –

RUS – 0.62018 0.84740 0.90919 0.97113 0.95052

ROS – 0.59869 0.63752 0.60610 0.60996 0.62989

ADASYN – 0.77948 0.49306 0.43431 0.43311 0.46447

SMOTE – 0.60657 0.64287 0.61986 0.62587 0.61301

SMOTEb1 – 0.59232 0.59301 0.59212 0.59242 0.59190

SMOTEb2 – 0.59257 0.59164 0.59254 0.59189 0.59143

 RF None 0.86773 – – – – –

RUS – 0.88343 0.88444 0.91207 0.95425 0.96045

ROS – 0.88391 0.90186 0.91679 0.93715 0.95694

ADASYN – 0.75805 0.68151 0.48584 0.46859 0.40685

SMOTE – 0.88436 0.89994 0.91701 0.94070 0.95690

SMOTEb1 – 0.87027 0.85896 0.88157 0.87659 0.86275

SMOTEb2 – 0.87138 0.88829 0.86941 0.87098 0.86720

(b) GM

 GBT None 0.25168 – – – – –

RUS – 0.67700 0.83073 0.90015 0.94949 0.96174

ROS – 0.48453 0.34405 0.53269 0.52886 0.49330

ADASYN – 0.24369 0.31263 0.16892 0.31140 0.10138

SMOTE – 0.47393 0.34644 0.59461 0.44976 0.57714

SMOTEb1 – 0.29552 0.30041 0.30273 0.32697 0.26873

SMOTEb2 – 0.28809 0.26814 0.27291 0.27253 0.28508

 LR None 0.64486 – – – – –

RUS – 0.62135 0.82268 0.90304 0.96983 0.94733

ROS – 0.66742 0.72338 0.69552 0.70111 0.72352

ADASYN – 0.76272 0.41830 0.37992 0.38049 0.41591

SMOTE – 0.64121 0.72341 0.71979 0.72363 0.68929

SMOTEb1 – 0.64057 0.64489 0.64421 0.64489 0.64038

SMOTEb2 – 0.63685 0.63808 0.64065 0.64097 0.63461

 RF None 0 – – – – –

RUS – 0 0.15255 0.56097 0.65159 0.90195

ROS – 0 0.38138 0.42997 0.64770 0.65151

ADASYN – 0 0 0 0 0

SMOTE – 0 0.34325 0.53447 0.64772 0.65155

SMOTEb1 – 0 0 0 0 0

SMOTEb2 – 0 0 0 0 0

Page 15 of 25Hasanin et al. J Big Data (2019) 6:107

the threshold between TPrate and False Positive Rate (FPrate) is varied. On the other

hand, measuring the performance using GM really means taking the square root of the

product of TPrate and TNrate at a threshold where both rates are equal.

Figure 1 illustrates the results from Tables 4 and 5. It is noticeable that, on average,

RUS as the only undersampling method used in our study outperformed the other six

oversampling techniques plus the full, unsampled data. However, the average can be

very misleading in statistics. For instance, Fig. 1 shows that ADASYN, with a ratio of

99:1, performed better on average than the other six sampling methods when building

the LR models. It is also noticeable that the conclusion differs when comparing the AUC

results with those obtained using the GM performance metric, especially when building

the RF model.

The use of average values for variations of repetitive model building statistically

enhances the score results assigned to the models. In addition, to demonstrate statistical

significance of the observed experimental results, a hypothesis test is performed with

ANalysis Of VAriance (ANOVA) [49], followed by post hoc analysis with Tukey’s HSD

test. ANOVA is a statistical test determining whether the means of one or several inde-

pendent factors are significant. Tukey’s HSD assigns group letters indicating the signifi-

cance factors between each level.

We investigated the intersection of both factors (sampling techniques and class distri-

bution ratios) to determine their effect on the three learners (GBT, RF, LR). If the p-value

Fig. 1 Results for averages of sampling methods ratios

Page 16 of 25Hasanin et al. J Big Data (2019) 6:107

in the ANOVA table is less than or equal to a certain level (0.05), the associated factor

is significant. A 95% (α = 0.05) significance level for ANOVA and other statistical tests

is the most commonly used value. In this work we obtained a total of 12 two-factor and

72 one-way ANOVA tables. We saw no need to show the ANOVA results as significance

factors are implied in the Tukey’s HSD tests, which are derived from the ANOVA tables.

Tables 6 and 7 relate to the Medicare and SlowlorisBig Datasets, respectively, and

show the results of the Tukey’s HSD test. The tables show the significance between the

performance metric and sampling approach for each learner. The factors are ordered by

the average of the performance metrics used and show the number of repetitions “r”.

We also show the standard deviation “std” for the repetitive models for each factor. The

tables are also associated with the maximum, minimum, first quartile (Q25), second

quartile (Q50), and third quartile (Q75). Q25 is the middle point between the minimum

number and the median of the results. Q50 is the median of the repetitive results. Q75

is the middle point value between the median and the maximum performance of the

model. From Tables 6 and 7, we see that the medians of the sampling method can be

higher and, in some cases, lower than the averages.

SMOTE and its variants (SMOTEb1, SMOTEb2, and ADASYN) performed satisfac-

torily with the Medicare dataset and the LR learner, but there does not appear to be

any value in using the more specific borderline cases to generate artificial examples.

Using traditional SMOTE, which randomly selected instances from all generated exam-

ples, shows better average AUC scores (among the 10 runs for each sampling method

and ratio) in more cases than its variants of SMOTEb1, SMOTEb2, and ADASYN. This

could indicate a lack of distinct borders around the class labels from the k-nearest neigh-

bors approach. The reason that the SMOTE variants perform similarly using RF, and not

LR or GBT, is most likely due to the majority voting results across all trees. GBT, while

using trees in an ensemble fashion, iteratively adjusts weights based on prior classifica-

tion performance indicators, and thus is not able to take advantage of different sampled

data subsets to generate the final classification as with RF.

Tables 8 and 9 present the results of Tukey’s HSD test for the Medicare and Slowloris-

Big Datasets, respectively. The results indicate the significance between class ratio and

sampling approach for each learner.

Based on ANOVA, an empty column (missing group letters) indicates there is no sig-

nificance between the factor levels. Thus, all of these levels were assigned to group ‘a’ by

the Tukey’s HSD test. Furthermore, an “NA” assignment instead of a group letter means

that RF failed to classify any true positives, as is the case for SMOTEb1, SMOTEb2, and

ADASYN.

The first row shows the group letters for all the ratios combined with the full, unsam-

pled dataset. Group values (e.g. ‘a’ to ‘e’) indicate significant differences between the

factor levels, or ratios, with the best group assigned the letter ‘a’. Note that the full,

unsampled dataset (“all:all” ratio) is included for comparative purposes. The ranked

groups assigned by Tukey’s HSD test corroborate the previously presented results shown

in Tables 4 and 5 regarding the performance with and without data sampling.

To visualize the group ‘a’ results of Tables 8 and 9, Fig. 2 has been included.

From the box plot distributions shown in this figure, we see that RUS outperforms

all other sampling approaches for the SlowlorisBig case study when measuring the

Page 17 of 25Hasanin et al. J Big Data (2019) 6:107

Table 6 Case 1: Medicare-Tukey’s HSD test

Learner Sampling AUC std r g Min Max Q25 Q50 Q75

(a) AUC

 GBT RUS 0.79833 0.02599 250 a 0.72815 0.87018 0.78092 0.80045 0.81537

None 0.79047 0.02386 50 a 0.72580 0.83013 0.78059 0.79586 0.80595

ROS 0.73363 0.06754 250 b 0.51519 0.84819 0.70903 0.74192 0.77947

SMOTE 0.73031 0.02584 250 b 0.64410 0.81724 0.71385 0.72880 0.74982

ADASYN 0.69918 0.02609 250 c 0.61985 0.76370 0.68276 0.69946 0.71667

SMOTEb2 0.67189 0.03213 250 d 0.57265 0.74786 0.65170 0.67248 0.69508

SMOTEb1 0.66769 0.03720 250 d 0.48250 0.76948 0.64574 0.66988 0.69252

 LR SMOTE 0.82279 0.02125 250 a 0.75783 0.87290 0.81044 0.82237 0.83636

None 0.81554 0.02227 50 ab 0.75532 0.84700 0.80752 0.81924 0.82659

ADASYN 0.81509 0.02287 250 ab 0.74781 0.88334 0.80130 0.81666 0.83065

RUS 0.81169 0.02040 250 b 0.73199 0.86455 0.80016 0.81220 0.82536

ROS 0.74079 0.06836 250 c 0.55630 0.85671 0.69202 0.75347 0.79658

SMOTEb1 0.73868 0.02748 250 c 0.66533 0.81191 0.71970 0.73888 0.75844

SMOTEb2 0.72293 0.03287 250 d 0.61406 0.80044 0.70363 0.72765 0.74389

 RF RUS 0.81195 0.02373 250 a 0.74285 0.86547 0.79696 0.81221 0.82930

None 0.79383 0.02306 50 b 0.74416 0.83161 0.77569 0.79317 0.81477

SMOTE 0.77240 0.02304 250 c 0.70450 0.84333 0.75649 0.77252 0.78692

ROS 0.77042 0.02790 250 c 0.70014 0.85378 0.75188 0.77028 0.78984

SMOTEb1 0.75732 0.02536 250 d 0.66211 0.81080 0.74231 0.76021 0.77356

SMOTEb2 0.75383 0.02794 250 d 0.68869 0.82191 0.73425 0.75200 0.77434

ADASYN 0.73559 0.02654 250 e 0.66474 0.80357 0.71806 0.73933 0.75122

Learner Sampling GM std r g Min Max Q25 Q50 Q75

(b) GM

 GBT RUS 0.48872 0.23777 250 a 0 0.78014 0.33953 0.60566 0.68945

ROS 0.34109 0.25087 250 b 0 0.77439 0.10295 0.35164 0.52541

SMOTEb1 0.25244 0.13924 250 c 0 0.50945 0.17726 0.27133 0.36454

SMOTEb2 0.24145 0.13200 250 cd 0 0.49887 0.14570 0.25059 0.33908

SMOTE 0.22259 0.17815 250 d 0 0.56455 0 0.22840 0.37532

ADASYN 0.09793 0.12322 250 e 0 0.39311 0 0 0.17759

None 0.00907 0.03150 50 f 0 0.14509 0 0 0

 LR RUS 0.54028 0.23037 250 a 0 0.77315 0.41864 0.66278 0.71993

SMOTE 0.53900 0.23596 250 a 0 0.80154 0.42166 0.64136 0.72653

ADASYN 0.49105 0.25417 250 b 0 0.80124 0.32327 0.59041 0.70910

ROS 0.48725 0.25459 250 b 0 0.79442 0.33676 0.57923 0.69986

SMOTEb1 0.43478 0.17227 250 c 0 0.67841 0.35173 0.49188 0.56532

SMOTEb2 0.42099 0.18294 250 c 0 0.70354 0.32119 0.48474 0.56333

None 0 0 50 d 0 0 0 0 0

 RF RUS 0.46657 0.24978 250 a 0 0.77101 0.25077 0.57335 0.69443

SMOTE 0.20508 0.10625 250 b 0 0.43130 0.14498 0.22834 0.28849

ADASYN 0.14943 0.09303 250 c 0 0.35404 0.10257 0.14575 0.22886

SMOTEb1 0.11672 0.07686 250 d 0 0.30758 0.10241 0.14469 0.17743

SMOTEb2 0.09289 0.07056 250 de 0 0.23024 0 0.10260 0.14509

ROS 0.08824 0.12095 250 e 0 0.39744 0 0 0.14505

None 0.00823 0.02819 50 f 0 0.10314 0 0 0

Page 18 of 25Hasanin et al. J Big Data (2019) 6:107

performance with GM and AUC. It is also clear that RUS performs the best in some

situations, or adequately in others, for all methods and/or ratios. Overall, we can

safely state that RUS is the best choice for both case studies as it results in models

with a significantly smaller number of samples, thus reducing computational burden

Table 7 Case 2: SlowlorisBig-Tukey’s HSD test

Learner Sampling AUC std r g Min Max Q25 Q50 Q75

(a) AUC

 GBT RUS 0.94364 0.08565 50 a 0.56736 0.97822 0.96356 0.96704 0.97073

None 0.68678 0.11066 10 b 0.48887 0.85775 0.64388 0.67656 0.74637

SMOTEb2 0.66636 0.15255 50 b 0.35152 0.97593 0.58214 0.67336 0.75517

SMOTEb1 0.65517 0.15317 50 b 0.35417 0.96539 0.52471 0.67769 0.75147

SMOTE 0.63836 0.17643 50 b 0.43299 0.98249 0.45329 0.65340 0.68739

ADASYN 0.63792 0.27363 50 b 0.18138 0.98483 0.45072 0.47832 0.96347

ROS 0.63578 0.16737 50 b 0.43522 0.98169 0.45196 0.65518 0.68476

 LR RUS 0.85968 0.15064 50 a 0.46331 0.98434 0.74674 0.92661 0.96904

SMOTE 0.62164 0.04412 50 b 0.47496 0.67054 0.59907 0.63122 0.65456

ROS 0.61643 0.04297 50 b 0.49468 0.67039 0.59864 0.60161 0.65380

SMOTEb1 0.59235 0.00155 50 b 0.58955 0.59388 0.59043 0.59325 0.59336

None 0.59203 0.00181 10 bc 0.58977 0.59365 0.59001 0.59324 0.59347

SMOTEb2 0.59201 0.00166 50 bc 0.58950 0.59382 0.58991 0.59314 0.59329

ADASYN 0.52089 0.13781 50 c 0.42229 0.89815 0.43665 0.45708 0.49882

 RF SMOTE 0.91978 0.02812 50 a 0.85957 0.96023 0.90119 0.91684 0.94535

ROS 0.91933 0.02724 50 a 0.86641 0.96169 0.90193 0.91198 0.94159

RUS 0.91893 0.03494 50 a 0.85684 0.96880 0.89140 0.91016 0.95740

SMOTEb2 0.87345 0.01368 50 b 0.85486 0.90771 0.86248 0.87021 0.88223

SMOTEb1 0.87003 0.02088 50 b 0.79088 0.91191 0.85906 0.86786 0.88263

None 0.86773 0.00890 10 b 0.85090 0.88340 0.86338 0.86753 0.87333

ADASYN 0.56017 0.15056 50 c 0.33384 0.87529 0.45101 0.51294 0.67599

Learner Sampling GM std r g Min Max Q25 Q50 Q75

(b) GM

 GBT RUS 0.86382 0.18048 50 a 0.24356 0.97083 0.79393 0.94445 0.97021

SMOTE 0.48838 0.16479 50 b 0.08179 0.64737 0.33031 0.60297 0.60528

ROS 0.47668 0.13952 50 b 0.23670 0.64740 0.33031 0.50990 0.60513

SMOTEb1 0.29887 0.11561 50 c 0.23672 0.56217 0.24196 0.24197 0.24369

SMOTEb2 0.27735 0.08665 50 c 0.23672 0.56291 0.24196 0.24197 0.24369

None 0.25168 0.10408 10 c 0.08180 0.51158 0.23672 0.24196 0.24326

ADASYN 0.22760 0.11021 50 c 0.05009 0.33034 0.07652 0.24369 0.33026

 LR RUS 0.85284 0.15640 50 a 0.38133 0.97066 0.72452 0.91562 0.97001

ROS 0.70219 0.07309 50 b 0.44269 0.72367 0.72336 0.72338 0.72338

SMOTE 0.69947 0.08142 50 b 0.38133 0.72455 0.72336 0.72338 0.72365

None 0.64486 0.00017 10 bc 0.64473 0.64506 0.64473 0.64473 0.64506

SMOTEb1 0.64299 0.00804 50 bc 0.60116 0.64570 0.64473 0.64473 0.64506

SMOTEb2 0.63823 0.01460 50 c 0.58532 0.64506 0.64473 0.64473 0.64473

ADASYN 0.47147 0.15695 50 d 0.37992 0.91572 0.38026 0.38128 0.46906

 RF RUS 0.45341 0.34982 50 a 0 0.96438 0 0.63766 0.64780

SMOTE 0.43540 0.25934 50 a 0 0.71944 0.37773 0.63642 0.64454

ROS 0.42211 0.24530 50 a 0 0.72048 0.37757 0.38138 0.64454

Page 19 of 25Hasanin et al. J Big Data (2019) 6:107

T
a

b
le

 8

C
a

se
 1

: M
e

d
ic

a
re

-T
u

k
e

y
’s

 H
S

D
 f

o
r

R
a

ti
o

s
g

ro
u

p
 t

e
st

L
e

a
rn

e
r

G
ra

d
ie

n
t‑

B
o

o
st

e
d

 T
re

e
s

L
o

g
is

ti
c

R
e

g
re

ss
io

n
R

a
n

d
o

m
 F

o
re

st

R
U

S
R

O
S

S
M

O
T

E
S

M
O

T
E

b
1

S
M

O
T

E
b

2
A

D
A

S
Y

N
R

U
S

R
O

S
S

M
O

T
E

S
M

O
T

E
b

1
S

M
O

T
E

b
2

A
D

A
S

Y
N

R
U

S
R

O
S

S
M

O
T

E
S

M
O

T
E

b
1

S
M

O
T

E
b

2
A

D
A

S
Y

N

A
U

C

R
at

io
a

b
b

d
d

c
a

b
a

b
c

a
a

b
b

c
c

d

(5
0

:5
0

)
d

a
b

c
c

c
c

b
a

ab
c

b
b

–
c

a
b

b
c

b
b

c

(6
5

:3
5

)
b

c
b

b
c

c
c

c
a

b
a

b
b

–
b

c
b

c
b

b
c

b
b

c

(7
5

:2
5

)
ab

c
b

c
c

c
c

a
c

ab
b

b
–

b
c

b
b

c
b

c

(9
0

:1
0

)
a

d
c

b
c

b
c

c
a

d
ab

c
b

b
–

a
c

b
c

b
b

c

(9
9

:1
)

b
c

b
b

b
b

a
e

c
b

b
–

b
b

b
b

b
b

(A
ll:

al
l)

c
a

a
a

a
a

a
a

b
c

a
a

–
c

a
a

a
a

a

G
M

R
at

io
a

b
c

c
c

d
a

ab
a

b
b

ab
a

d
b

cd
d

c

(5
0

:5
0

)
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a
a

a

(6
5

:3
5

)
b

b
b

b
b

b
a

b
b

b
b

b
b

b
b

b
b

b

(7
5

:2
5

)
c

c
c

c
c

c
b

c
c

c
c

c
c

c
c

b
b

c

(9
0

:1
0

)
d

d
d

d
d

d
c

d
d

d
d

d
d

c
d

c
c

d

(9
9

:1
)

e
e

e
e

e
d

d
e

e
e

e
e

e
c

e
d

d
e

(A
ll:

al
l)

f
e

e
e

f
d

e
f

f
f

f
f

f
c

f
e

d
e

Page 20 of 25Hasanin et al. J Big Data (2019) 6:107

T
a

b
le

 9

C
a

se
2

: S
lo

w
lo

ri
sB

ig
—

T
u

k
e

y
’s

 H
S

D
 f

o
r

ra
ti

o
s

g
ro

u
p

 t
e

st

L
e

a
rn

e
r

G
ra

d
ie

n
t‑

B
o

o
st

e
d

 T
re

e
s

L
o

g
is

ti
c

R
e

g
re

ss
io

n
R

a
n

d
o

m
 F

o
re

st

R
U

S
R

O
S

S
M

O
T

E
S

M
O

T
E

b
1

S
M

O
T

E
b

2
A

D
A

S
Y

N
R

U
S

R
O

S
S

M
O

T
E

S
M

O
T

E
b

1
S

M
O

T
E

b
2

A
D

A
S

Y
N

R
U

S
R

O
S

S
M

O
T

E
S

M
O

T
E

b
1

S
M

O
T

E
b

2
A

D
A

S
Y

N

A
U

C

R
at

io
a

b
b

b
b

b
a

b
b

b
b

c
a

a
a

b
ab

c

(5
0

:5
0

)
a

–
–

–
–

b
a

–
–

–
–

cd
a

a
a

–
b

c

(6
5

:3
5

)
a

–
–

–
–

a
a

–
–

–
–

d
a

b
b

–
b

c

(7
5

:2
5

)
a

–
–

–
–

ab
ab

–
–

–
–

d
b

c
c

–
b

c

(9
0

:1
0

)
a

–
–

–
–

ab
b

–
–

–
–

c
c

d
d

–
a

b

(9
9

:1
)

b
–

–
–

–
b

c
–

–
–

–
a

c
e

e
–

b
b

(A
ll:

al
l)

c
–

–
–

–
ab

c
–

–
–

–
b

d
f

f
–

b
a

G
M

R
at

io
a

b
b

c
c

c
a

b
b

c
b

c
c

d
a

a
a

b
b

b

(5
0

:5
0

)
a

a
a

–
–

a
a

–
–

–
–

a
a

a
a

N
A

N
A

N
A

(6
5

:3
5

)
a

a
a

–
–

a
a

–
–

–
–

b
b

a
a

N
A

N
A

N
A

(7
5

:2
5

)
a

ab
ab

–
–

ab
ab

–
–

–
–

c
b

b
b

N
A

N
A

N
A

(9
0

:1
0

)
ab

ab
ab

–
–

ab
b

–
–

–
–

c
c

b
c

N
A

N
A

N
A

(9
9

:1
)

b
b

c
b

c
–

–
b

c
c

–
–

–
–

c
d

c
d

N
A

N
A

N
A

(A
ll:

al
l)

c
c

c
–

–
c

c
–

–
–

–
c

d
c

d
N

A
N

A
N

A

Page 21 of 25Hasanin et al. J Big Data (2019) 6:107

and training time. For more visualization detail, readers may refer to Fig. 3 in Appen-

dix A, which displays box plots for all the models built in this study.

Conclusion

Our work uniquely evaluates six data sampling approaches for addressing the effect

that severe class imbalance has on Big Data analytics. To accomplish this, we compare

results from two case studies involving imbalanced Big Data from different application

domains. The outcome of this comparison enables us to better understand the extent to

which our contribution is generalizable.

Results from the Medicare case study are not firmly conclusive for determining the

best sampling approach where AUC and GM are concerned. For the AUC metric, the

best sampled distribution ratios were obtained by RUS at 90:10, SMOTE at 65:35, and

RUS at 90:10 for GBT, LR, and RF, respectively. With regards to the GM metric, the best

sampled distribution ratios were obtained by RUS at 50:50, SMOTE at 50:50, and RUS

at 50:50 for GBT, LR, and RF, respectively. It should be noted that RUS performed ade-

quately in this first case study. For the AUC metric with LR, SMOTE (best value in sub-

table) was labeled as group ‘a’ and RUS as group ‘b’. For the GM metric with LR, both

SMOTE (best value in sub-table) and RUS were labeled as group ‘a’.

Fig. 2 Tukey’s HSD test-Group a

Page 22 of 25Hasanin et al. J Big Data (2019) 6:107

We show that RUS convincingly outperforms the other five sampling approaches for

the SlowlorisBig case study when measuring the performance with AUC and GM. For

the AUC metric, the best sampled distribution ratios achieved with RUS were 90:10,

65:35, and 50:50 for GBT, LR, and RF, respectively. With regards to the GM metric,

the best sampled distribution ratios achieved with RUS were 50:50, 65:35, and 50:50

for GBT, LR, and RF, respectively.

Based on its classification performance in both case studies, RUS is the best choice

as it generates models with a significantly smaller number of samples, which leads to

a reduction in computational burden and training time. Future work using our evalu-

ation methodology will involve additional performance metrics, such as Area Under

the Precision-Recall Curve (AUPRC), and the investigation of Big Data from other

application domains.

Abbreviations

AA: amino acid; ADASYN: ADAptive SYNthetic; AI: Artificial Intelligence; ANOVA: ANalysis Of VAriance; AUC : Area Under

the Receiver Operating Characteristic Curve; AUPRC: Area Under the Precision Recall Curve; AUPRC: Area Under the

Precision-Recall Curve; CASP9: 9th Community Wide Experiment on the Critical Assessment of Techniques for Protein

Structure Prediction; CM: Contact Map; CMS: Centers for Medicare and Medicaid Services; CV: Cross Validation; DM: Data

Mining; DOS: Denial of Service; DRF: Distributed Random Forest; DT: Decision Tree; ECBDL’14: Evolutionary Computation

for Big Data and Big Learning; EUS: Evolutionary Undersampling; FAU: Florida Atlantic University; FI: Feature Importance;

FN: False Negative; FP: False Positive; FPrate: False Positive Rate; FS: Feature Selection; GBT: Gradient-Boosted Trees; GM:

Geometric Mean; HDFS: Hadoop Distributed File System; HPC: High Performance Computing; HSD: Honestly Significant

Difference; HTTP: Hypertext Transfer Protocol; IG: Information Gain; IRSC: Indian River State College; k-NN: k-nearest

neighbor; LEIE: List of Excluded Individuals/Entities; LR: Logistic Regression; MB: megabytes; ML: Machine Learning; NSF:

National Science Foundation; OIG: Office of Inspector General; OWASP: Open Web Application Security Project; PCA:

Principal Component Analysis; PCARDE: Principal Components Analysis Random Discretization Ensemble; PDB: Protein

Data Bank; PSP: Protein Structure Prediction; RF: Random Forest; ROS: Random Oversampling; ROSEFW-RF: Random

OverSampling and Evolutionary Feature Weighting for Random Forest; RPII: Rare-PEARs II; RPII: Rare-PEARs; RUS: Random

Undersampling; SMOTE: Synthetic Minority Over-sampling TEchnique; SMOTEb: borderline-SMOTE; SMOTEb1: SMOTE-

borderline1; SMOTEb2: SMOTE-borderline2; SVMs: Support Vector Machines; TN: True Negative; TNrate: True Negative

Rate; TP: True Positive; TPrate: True Positive Rate; YARN: Yet Another Resource Negotiator.

Acknowledgements

We would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic University.

Additionally, we acknowledge partial support by the National Science Foundation (NSF) (CNS-1427536). Opinions, find-

ings, conclusions, or recommendations in this paper are the authors’ and do not reflect the views of the NSF.

Authors’ contributions

TH carried out the conception and design of the research, performed the implementation and experimentation,

performed the evaluation and validation, and drafted the manuscript. TH, and JJL, RAB performed the primary literature

review for this work. RAB prepared the Medicare dataset. All authors provided feedback to TH and helped shape the

research. TH and JJL manuscript the work. TMK introduced this topic to TH, and helped to complete and finalize this

work. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Appendix A: Box Plots for all results

See Fig. 3

Page 23 of 25Hasanin et al. J Big Data (2019) 6:107

Received: 7 September 2019 Accepted: 18 November 2019

References

 1. Kaisler S, Armour F, Espinosa JA, Money W. Big Data: issues and challenges moving forward. In: 2013 46th Hawaii

international conference on system sciences. IEEE; 2013. p. 995–1004.

 2. Datamation: Big Data Trends. https ://www.datam ation .com/big-data/big-data-trend s.html

 3. Senthilkumar S, Rai BK, Meshram AA, Gunasekaran A, Chandrakumarmangalam S. Big Data in healthcare manage-

ment: a review of literature. Am J Theory Appl Bus. 2018;4:57–69.

 4. Bauder RA, Khoshgoftaar TM, Hasanin T. An empirical study on class rarity in Big Data. In: 2018 17th IEEE interna-

tional conference on machine learning and applications (ICMLA). IEEE; 2018. p. 785–90.

 5. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in Big Data. J Big Data.

2018;5(1):42.

Fig. 3 Box Plot data distribution for all models

https://www.datamation.com/big-data/big-data-trends.html

Page 24 of 25Hasanin et al. J Big Data (2019) 6:107

 6. Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. Burlington: Mor-

gan Kaufmann; 2016.

 7. Olden JD, Lawler JJ, Poff NL. Machine learning methods without tears: a primer for ecologists. Q Rev Biol.

2008;83(2):171–93.

 8. Galindo J, Tamayo P. Credit risk assessment using statistical and machine learning: basic methodology and risk

modeling applications. Comput Econ. 2000;15(1):107–43.

 9. Seliya N, Khoshgoftaar TM, Van Hulse J. A study on the relationships of classifier performance metrics. In: 21st inter-

national conference on tools with artificial intelligence, 2009. ICTAI’09. IEEE; 2009. p. 59–66.

 10. Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training

data. ACM SIGKDD Explor Newslett. 2004;6(1):20–9.

 11. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: synthetic minority over-sampling technique. J Artif Intell

Res. 2002;16:321–57.

 12. Dittman DJ, Khoshgoftaar TM, Wald R, Napolitano A. Comparison of data sampling approaches for imbalanced

bioinformatics data. In: The Twenty-Seventh International FLAIRS Conference; 2014

 13. Triguero I, Galar M, Merino D, Maillo J, Bustince H, Herrera F. Evolutionary undersampling for extremely imbalanced

Big Data classification under apache spark. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2016. p.

640–7.

 14. The Apache Software Foundation: Apache Hadoop. http://hadoo p.apach e.org/

 15. Venner J. Pro Hadoop. New York: Apress; 2009.

 16. White T. Hadoop: the definitive guide. Newton: O’Reilly Media Inc; 2012.

 17. Bauder RA, Khoshgoftaar TM, Hasanin T. Data sampling approaches with severely imbalanced Big Data for medicare

fraud detection. In: 2018 IEEE 30th international conference on tools with artificial intelligence (ICTAI). IEEE; 2018. p.

137–42.

 18. LEIE: Medicare provider utilization and payment data: Physician and other supplier. https ://oig.hhs.gov/exclu sions /

index .asp

 19. Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;5:99–114.

 20. Calvert C, Khoshgoftaar TM, Kemp C, Najafabadi MM. Detection of slowloris attacks using netflow traffic. In: 24th

ISSAT international conference on reliability and quality in design; 2018. p. 191–6

 21. Calvert C, Khoshgoftaar TM, Kemp C, Najafabadi MM. Detecting slow http post dos attacks using netflow features.

In: The thirty-second international FLAIRS conference; 2019.

 22. Ali A, Shamsuddin SM, Ralescu AL. Classification with class imbalance problem: a review. Int J Adv Soft Comput

Appl. 2015;7(3):176–204.

 23. Fernández A, del Río S, Chawla NV, Herrera F. An insight into imbalanced Big Data classification: outcomes and chal-

lenges. Complex Intell Syst. 2017;3(2):105–20.

 24. Evolutionary computation for Big Data and big learning workshop, data mining competition 2014: self-deployment

track. http://crunc her.ico2s .org/bdcom p/ (2014)

 25. Triguero I, del Río S, López V, Bacardit J, Benítez JM, Herrera F. Rosefw-rf: the winner algorithm for the ecbdl’14 Big

Data competition: an extremely imbalanced Big Data bioinformatics problem. Knowl Based Syst. 2015;87:69–79.

 26. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai D, Amde M, Owen S, et al. Mllib: Machine

learning in apache spark. J Mach Learn Res. 2016;17(1):1235–41.

 27. Del Río S, López V, Benítez JM, Herrera F. On the use of mapreduce for imbalanced Big Data using random forest. Inf

Sci. 2014;285:112–37.

 28. Del Río S, Benítez JM, Herrera F. Analysis of data preprocessing increasing the oversampling ratio for extremely

imbalanced Big Data classification. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 2, IEEE; 2015. pp. 180–5.

 29. Tsai C-F, Lin W-C, Ke S-W. Big Data mining with parallel computing: a comparison of distributed and mapreduce

methodologies. J Syst Softw. 2016;122:83–92.

 30. Park SH, Kim SM, Ha YG. Highway traffic accident prediction using vds Big Data analysis. J Supercomput.

2016;72(7):2815–31.

 31. Park SH, Ha YG. Large imbalance data classification based on mapreduce for traffic accident prediction. In: 2014

Eighth international conference on innovative mobile and internet services in Ubiquitous computing; 2014. p. 45–9.

 32. Chai KE, Anthony S, Coiera E, Magrabi F. Using statistical text classification to identify health information technology

incidents. J Am Med Inform Assoc. 2013;20(5):980–5.

 33. CMS: Medicare provider utilization and payment data: Physician and other supplier. https ://www.cms.gov/Resea

rch-Stati stics -Data-and-Syste ms/Stati stics -Trend s-and-Repor ts/Medic are-Provi der-Charg e-Data/Physi cian-and-Other

-Suppl ier.html

 34. Liu Y-h, Zhang H-q, Yang Y-j. A dos attack situation assessment method based on qos. In: Proceedings of 2011 inter-

national conference on computer science and network technology. IEEE; 2011. p. 1041–5.

 35. Yevsieieva O, Helalat SM. Analysis of the impact of the slow http dos and ddos attacks on the cloud environment.

In: 2017 4th international scientific-practical conference problems of infocommunications. Science and Technology

(PIC S&T). IEEE; 2017. p. 519–23.

 36. Hirakaw T, Ogura K, Bista BB, Takata T. A defense method against distributed slow http dos attack. In: 2016 19th

international conference on network-based information systems (NBiS)). IEEE; 2016. p. 519–23.

 37. Slowloris.py. https ://githu b.com/gkbrk /slowl oris

 38. Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: 2010 IEEE 26th symposium on

mass storage systems and technologies (MSST). IEEE; 2010. p. 1–10.

 39. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe J, Shah H, Seth S, et al. Apache

hadoop yarn: Yet another resource negotiator. In: Proceedings of the 4th annual symposium on cloud computing.

ACM; 2013. p. 5.

 40. Chawla NV. Data mining for imbalanced datasets: an overview. Data mining and knowledge discovery handbook,

ISBN 978-0-387-09822-7. New York: Springer Science+ Business Media, LLC; 2010. p. 875.

http://hadoop.apache.org/
https://oig.hhs.gov/exclusions/index.asp
https://oig.hhs.gov/exclusions/index.asp
http://cruncher.ico2s.org/bdcomp/
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Physician-and-Other-Supplier.html
https://github.com/gkbrk/slowloris

Page 25 of 25Hasanin et al. J Big Data (2019) 6:107

 41. Han H, Wang W-Y, Mao B-H. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In:

International conference on intelligent computing. Springer; 2005. p. 878–87.

 42. He H, Bai Y, Garcia EA, Li S. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE

international joint conference on neural networks (IEEE world congress on computational intelligence). IEEE; 2008.

p. 1322–1.

 43. Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in

machine learning. J Mach Learn Res. 2017;18(17):1–5.

 44. Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. J R Stat Soc. 1992;41(1):191–201.

 45. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

 46. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7:21.

 47. Huang J, Ling CX. Using auc and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng.

2005;17(3):299–310.

 48. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiol-

ogy. 1982;143(1):29–36.

 49. Iversen GR, Wildt AR, Norpoth H, Norpoth HP. Analysis of variance. New York: Sage; 1987.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Severely imbalanced Big Data challenges: investigating data sampling approaches
	Abstract
	Introduction
	Related work
	Case studies datasets
	Medicare
	SlowlorisBig and POST

	Methodologies
	Big Data framework
	One-hot encoding
	Sampling ratios
	Sampling techniques
	Learners
	Performance metrics
	Framework design

	Approach for case studies experiments
	Case 1: Medicare
	Case 2: SlowlorisBig and POST

	Results and discussion
	Conclusion
	Acknowledgements
	References

