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Introduction

The exponential increase of raw data in recent years has been associated with techno-

logical advances in the fields of Data Mining (DM) and Machine Learning (ML) [1, 2]. 

These advances have significantly improved the efficiency and effectiveness of Big Data 

applications in a diverse range of areas, such as knowledge discovery and information 

processing. Big Data is identified by various data-related properties, and for this reason, 

an exact definition of Big Data remains elusive. One definition, presented by Senthilku-

mar et al. [3], relates Big Data to six V’s: Volume, Variety, Velocity, Veracity, Variability, 

and Value. Volume is associated with the reams of data produced by an organization. 
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Variety is concerned with the different formats of data, e.g., organized, partially organ-

ized, or unorganized. Velocity covers how rapidly data is manufactured, provided, and 

handled. Veracity reflects the correctness of the data. Variability pertains to data fluctua-

tions. Value, also known as Big Data analytics, is the method of data extraction for effec-

tive decision-making.

Class imbalance is the term used for a dataset containing a majority and minority 

class. The spectrum of class imbalance ranges from “slightly imbalanced” to “rarity.” 

Dataset rarity is associated with insignificant numbers of positive instances [4], e.g., the 

occurrence of 25 fraudulent transactions among 1,000,000 normal transactions within a 

financial security dataset of a reputable bank. Since many multi-class problems can be 

simplified by binary classification, data scientists frequently take the binary approach for 

analytics  [5]. The minority (positive) class, which accounts for a smaller percentage of 

the dataset, is often the class of interest in real-world problems [5]. The majority (nega-

tive) class constitutes the larger percentage.

Machine learning algorithms generally outperform traditional statistical techniques at 

classification [6–8], but these algorithms cannot effectively distinguish between majority 

and minority classes if the dataset suffers from severe class imbalance or rarity. Severely 

imbalanced data, also known as high-class imbalance, is often defined by majority-to-

minority class ratios between 100:1 and 10,000:1  [5]. The failure to sufficiently distin-

guish between majority and minority classes is akin to searching for a proverbial polar 

bear in a snowstorm and could cause the classifier to label almost all instances as the 

majority (negative) class, thereby producing an accuracy performance metric value that 

is deceptively high. When the occurrence of a false negative incurs a higher penalty than 

a false positive, a classifier’s prediction bias in favor of the majority class may lead to 

adverse consequences [9]. For example, if defective flight-control software for a jetliner 

is classified as defect-free (false negative), the end result of greenlighting the production 

of this software could be catastrophic. Conversely, if the software is defect-free but was 

flagged as defective, the outcome would most certainly not pose an imminent threat to 

human life.

One strategy for addressing class imbalance involves the generation of one or more 

datasets, each with a different class distribution than the original. To achieve this, the 

two main categories of data sampling are utilized: undersampling and oversampling. 

Undersampling discards instances from the majority class, and if the process is ran-

dom, the approach is known as Random Undersampling (RUS) [10]. Oversampling adds 

instances to the minority class, and if the process is random, the approach is known 

as Random Oversampling (ROS)  [10]. Synthetic Minority Over-sampling TEchnique 

(SMOTE) [11] is a type of oversampling that generates new artificial instances between 

minority instances in close proximity to each other. Among ROS, RUS, SMOTE, and 

SMOTE variants, it has been shown that RUS imposes the lowest computational burden 

and registers the shortest training time [12].

Our work evaluates six data sampling approaches for addressing the effect that severe 

class imbalance has on Big Data analytics. To accomplish this, we compare results from 

two case studies involving imbalanced Big Data from different application domains. 

For the processing of Big Data, we use the Apache Spark  [13] and Apache Hadoop 

frameworks [14–16].
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The first case study is based on a Medicare fraud detection dataset (Combined data-

set)  [17], which is a combination of three Medicare datasets, with fraud labels derived 

from the Office of Inspector General (OIG) List of Excluded Individuals/Entities 

(LEIE) dataset  [18]. The Combined dataset contains 759,740 instances (759,267 nega-

tives and 473 positives) and 102 features. About 0.06% of instances are in the minority 

class. Results from the Medicare case study are not conclusive as to the best sampling 

approach, where Area Under the Receiver Operating Characteristic Curve (AUC) and 

Geometric Mean (GM) are concerned. For the AUC metric, the best sampled distribu-

tion ratios were obtained by RUS at 90:10, SMOTE at 65:35, and RUS at 90:10 for Gradi-

ent-Boosted Trees (GBT), Logistic Regression (LR), and Random Forest (RF), respectively. 

With regards to the GM metric, the best sampled distribution ratios were obtained by 

RUS at 50:50, SMOTE at 50:50, and RUS at 50:50 for GBT, LR, and RF, respectively. It 

is worth pointing out that RUS performed satisfactorily in this case study. For the AUC 

metric with LR, SMOTE (best value in sub-table) was labeled as group ‘a’ and RUS as 

group ‘b’ by Tukey’s Honestly Significant Difference (HSD) test [19]. For the GM metric 

with LR, both SMOTE (best value in sub-table) and RUS were labeled as group ‘a’ by 

Tukey’s HSD test.

The second case study, unlike the first, includes training data from one source (Slow-

lorisBig Dataset) [20] and test data from a separate source (POST dataset) [21]. Slowloris 

and POST are two types of Denial of Service (DOS) attacks. The SlowlorisBig Dataset 

contains 1,579,489 instances (1,575,234 negatives and 4,255 positives) and 11 features. 

About 0.27% of instances are in the minority class. The POST dataset contains 1,697,377 

instances (1,694,986 negatives and 2,391 positives) and 13 features. About 0.14% of 

instances are in the minority class. In this study, RUS decisively outperforms the other 

five sampling approaches for the SlowlorisBig case study when measuring the perfor-

mance with AUC and GM. For the AUC metric, the best sampled distribution ratios 

achieved with RUS were 90:10, 65:35, and 50:50 for GBT, LR, and RF, respectively. With 

regards to the GM metric, the best sampled distribution ratios achieved with RUS were 

50:50, 65:35, and 50:50 for GBT, LR, and RF, respectively.

RUS is the best choice for both case studies based on its classification performance and 

the fact that it generates models with a significantly smaller number of samples, lead-

ing to a reduction in computational burden and training time. Our contribution involves 

the investigation of severe class imbalance with six data sampling approaches, and to 

the best of our knowledge, demonstrates a unique approach. Furthermore, the compari-

son of Big Data from different application domains enables us to better understand the 

extent to which our contribution is generalizable.

The remainder of this paper is organized as follows: “Related work” section provides 

an overview of literature related to data sampling methods that address severe class 

imbalance in Big Data; “Case studies datasets” section presents the details of the Medi-

care, SlowlorisBig, and POST datasets; “Methodologies” section describes the different 

aspects of the methodologies used to develop and implement our approach, including 

the Big Data processing framework, one-hot encoding, sampling ratios, sampling tech-

niques, learners, performance metrics, and framework design. “Approach for case stud-

ies experiments” section provides additional information on the case studies; “Results 

and discussion” section presents and discusses our empirical results; and “Conclusion” 
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section concludes our paper with a summary of the work presented and suggestions for 

related future work.

Related work

Two main categories for tackling class imbalance are data-level techniques and algo-

rithm-level techniques  [22]. Data-level techniques cover both data sampling and fea-

ture selection approaches. Data sampling approaches commonly include ROS, RUS, and 

SMOTE. In this section, we focus on related works associated with data sampling tech-

niques that address severe class imbalance in Big Data.

In [23], Fernández et al. provide an insight into imbalanced Big Data classification out-

comes and challenges. They compared RUS, ROS, and SMOTE using MapReduce with 

two subsets of the Evolutionary Computation for Big Data and Big Learning (ECBDL’14) 

dataset [24], while maintaining the original class ratio. The two subsets, one with 12 mil-

lion instances and the other with 0.6 million, were both defined by a 98:2 class ratio. The 

original 631 features of the ECBDL’14 dataset were reduced to 90 features by the appli-

cation of a feature selection algorithm [24, 25]. The authors examined the performance 

of RF and Decision Tree (DT) learners, using both Apache Spark in-memory comput-

ing (used with the MLlib library [26]) and Apache Hadoop MapReduce (used with the 

Mahout library [27]) frameworks. Some interesting conclusions emerged from the anal-

ysis: (1) Models using Apache Spark generally produced better classification results than 

models using Hadoop; (2) RUS performed better with less MapReduce partitions, while 

ROS performed better with more, indicating that the number of partitions in Hadoop 

impacts performance; (3) Apache Spark-based RF and DT produced better results with 

RUS compared to ROS. The best overall values of GM for ROS, RUS, and SMOTE were 

0.706, 0.699, and 0.632, respectively. We note that the focus of [23] leaned toward dem-

onstrating limitations of MapReduce rather than developing an effective solution for the 

high-class imbalance problem in Big Data. Secondly, different Big Data frameworks were 

used for some data sampling methods, making comparative conclusions unreliable. For 

example, the SMOTE implementation was done in Apache Hadoop, whereas RUS and 

ROS implementations were done in Apache Spark. Finally, the study does not indicate 

the sampling ratios (90:10, 75:25, etc.) used with RUS, ROS, and SMOTE, which means 

there is no means of assessing the impact of using various sampling ratio values on clas-

sification performance.

The experimentation by Del Río et al. in  [28] analyzed the effect of increasing the 

oversampling ratio for extremely imbalanced Big Data. Their work relied on the 

Apache Hadoop framework for evaluating the MapReduce versions of RUS, ROS, and 

RF. The ECBDL’14 dataset served as the case study, and the MapReduce approach for 

Differential Evolutionary Feature Weighting (DEFW-BigData) algorithm was used to 

select the most influential features  [25]. The full ECBDL’14 dataset was used, which 

contained approximately 32 million instances, a class ratio of 98:2, and 631 features. 

The authors showed that ROS slightly outperformed RUS with regards to the product 

of True Positive Rate ( TPrate ) and True negative Rate ( TNrate ). The best values for ROS 

and RUS were 0.489 and 0.483, respectively. The authors also observed that ROS had 

a very low TPrate compared to TNrate , which motivated further experimentation with 

a range of higher oversampling ratios for ROS combined with the DEFW-BigData 
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algorithm to select the top 90 features based on the weight-based ranking obtained. 

An increase in the oversampling rate was found to increase the TPrate and lower the 

TNrate , and the best overall results for [28] were obtained with an oversampling rate 

of 170%. This related work has limitations that are similar to those of [23]. However, 

there are additional issues such as the use of MapReduce, which is sensitive to severe 

class imbalance [29], as the only framework, and also the lack of inclusion of the pop-

ular SMOTE technique for comparison.

An analytical approach for predicting highway traffic accidents was proposed by 

Park et al. in  [30], which involved classification modeling using the Apache Hadoop 

MapReduce framework. The authors implemented a modification of SMOTE for 

addressing a dataset of severely imbalanced traffic accidents, i.e., a class ratio of 

approximately 370:1, and a total of 524,131 instances defined by 14 features. After 

oversampling was performed, the minority class (accident) instances in the train-

ing dataset increased from 0.27% to 23.5%. A classification accuracy of 76.35% and a 

TPrate of 40.83% were obtained by a LR classifier. In a similar experiment, the authors 

also experimented with SMOTE in a MapReduce framework (Apache Hadoop)  [31] 

and obtained the best overall classification accuracy of 80.6% when the minority class 

reached about 30% of the training dataset, from the initial 0.14% of minority class 

instances. The original training dataset contained 1,024,541 instances, a class ratio of 

710:1, and 13 features. For the studies presented in [30, 31], we point out that MapRe-

duce is particularly sensitive to high-class imbalance in datasets, thus likely yield-

ing sub-optimal classification performance. Second, we believe that the use of the 

Apache Spark framework may outperform the Apache Hadoop (MapReduce) frame-

work. Finally, we remind the user of the main limitation of the accuracy classification 

metric. It is not a dependable metric because a severely imbalanced dataset with a 

99.9% accuracy could have TPrate and TNrate values of approximately 0% and 100%, 

respectively.

In [32], Chai et al. examined severe class imbalance within the context of using sta-

tistical text classification to identify information technology health incidents. RUS 

was used to balance the majority and minority classes, i.e., 50:50, with the aim of 

comparing classification performances between the original, imbalanced dataset and 

the balanced dataset. The training dataset contained approximately 516,000 instances 

and 85,650 features, with about 0.3% of instances constituting the minority class. Reg-

ularized LR was selected as the classifier mainly due to its ability to avoid overfitting 

while using a very large set of features that is typical in text classification. Experi-

mental results show that the F-measure scores were relatively similar with or without 

under-sampling, i.e., the balanced dataset did not affect classification performance. 

However, undersampling increased recall and decreased precision of the classifier. 

The best value of the F-measure was 0.99. One limitation of [32] relates to the ques-

tion of why the authors only used a balanced ratio in their study, with no other ratios 

considered. Furthermore, no clear explanation was provided for the use of undersam-

pling as the only data sampling technique in the study.

It should be noted that research on Big Data sampling techniques for addressing 

severe class imbalance is still in an embryonic state. As a result, literature searches on 

this narrow topic are not expected to yield prolific results.
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Case studies datasets

Our work includes two case studies. The dataset used in the first case study came from a 

different application domain than the datasets used in the second case study. In the first 

case study, Cross Validation (CV) was performed on the Medicare dataset. In the second 

case study, the SlowlorisBig Dataset was used for training and the POST dataset for test-

ing. The Medicare dataset is considered high dimensional (102 features), whereas the 

SlowlorisBig and POST datasets are not (11 and 13 features, respectively).

Medicare

To construct ML models for detecting Medicare fraud, we first combined three data-

sets: Medicare Physician and Other Supplier (Part B), years 2012 to 2015; Prescriber 

(Part D), years 2013 to 2015; and Durable Medical Equipment, Prosthetics, Orthotics 

and Supplies (DMEPOS) datasets from the Centers for Medicare and Medicaid Services 

(CMS) [33], years 2013 to 2015. The Part B dataset includes claims information for each 

procedure a physician/provider performs in a specified year. The Part D dataset pro-

vides claims information on prescription drugs provided through the Medicare Part D 

Prescription Drug Program in a specified year. The DMEPOS dataset includes claims 

for medical equipment, prosthetics, orthotics, and supplies that physicians/providers 

referred patients to for purchase or rent from a supplier in a specified year. The three 

Medicare datasets were joined into a Combined dataset, with fraud labels derived from 

the OIG’s LEIE dataset. The Combined dataset contains 759,740 instances (759,267 neg-

atives and 473 positives) and 102 features. About 0.06% of instances are in the minority 

class.

SlowlorisBig and POST

DOS attacks are carried out through various methods designed to deny network avail-

ability to legitimate users  [34]. Hypertext Transfer Protocol (HTTP) contains several 

exploitable vulnerabilities and is often targeted for DOS attacks [35, 36]. During a Slow-

loris attack, numerous HTTP connections are kept engaged for as long as possible. Only 

partial requests are sent to a web server, and since these requests are never completed 

the available connections for legitimate users becomes zero. During a Slow HTTP POST 

attack, legitimate HTTP headers are sent to a target server. The message body of the 

exploit must be the correct size for communication between the attacker and the server 

to continue. Communication between the two hosts becomes a drawn-out process as 

the attacker sends messages that are relatively very small, tying up server resources. This 

effect is worsened if several POST transmissions are done in parallel.

Data collection for the Slowloris and POST attacks was performed within a real-world 

network setting. An ad hoc Apache web server, which was set up within a campus net-

work environment, served as a viable target. A Slowloris.py attack script  [37] and the 

Switchblade 4 tool from Open Web Application Security Project (OWASP) were used 

to generate attack packets for Slowloris and POST, respectively. Attacks were launched 

from a single host computer in hourly intervals. Attack configuration settings, such as 

connection intervals and number of parallel connections, were varied, but the same 

PHP form element on the web server was targeted during the attack. The resulting 
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SlowlorisBig Dataset contains 1,579,489 instances (1,575,234 negatives and 4255 posi-

tives) and 11 features. About 0.27% of instances are in the minority class. The resulting 

POST dataset contains 1,697,377 instances (1,694,986 negatives and 2391 positives) and 

13 features. About 0.14% of instances are in the minority class.

Methodologies

This section provides insight into the methodologies for this experiment. It covers the 

Big Data framework, one-hot encoding, sampling ratios, sampling techniques, learners, 

performance metrics, and framework design.

Big Data framework

The processing and analysis of Big Data frequently requires specialized computational 

frameworks that benefit from the use of clusters and parallel algorithms. Two such 

frameworks are Apache Spark and MapReduce [27]. Apache Spark, referred to as Spark 

herein, is a framework for Big Data and ML that uses in-memory operations instead of 

the divide-and-conquer approach of MapReduce. Compared to MapReduce, the data 

processing speed of Spark is exponentially faster because MapReduce writes to and 

reads from hard drives. For this reason, we decided to use the in-memory implementa-

tion of Spark in our study.

In addition to Spark, we use the Apache Hadoop framework, which consists of several 

tools and technologies for Big Data, two of which are used in our work. Hadoop Distrib-

uted File System (HDFS) [38] can store large files across a large cluster of nodes, while Yet 

Another Resource Negotiator (YARN) [39] is used for job management and scheduling.

One‑hot encoding

Through one-hot encoding, all categorical features in this work were converted into 

dummy variables for several reasons. One primary reason relates to the fact that some 

ML algorithms do not deal with categorical features in their raw form. Another rea-

son is due to the high quantity of instances with missing values in the original datasets. 

Imputing these values, discarding instances with such values, and converting categori-

cal features are three traditional solutions for addressing this issue. Because the number 

of instances with missing values is very high, imputing could change the nature of the 

data. Furthermore, discarding instances could result in the loss of valuable information. 

Hence, we decided against imputing values and discarding instances.

As an example of categorical feature conversion, a gender feature that is missing male 

and female categorical values will generate two new features, where the record with 

missing gender is filled with zeroes for both features. A drawback is that a feature with C 

distinct categories will generate C-1 new features, and this may increase the dimension-

ality of the feature space where the categorical values are too many. Another challenge 

may arise if the test set contains categorical values that do not exist in the training set 

and vice versa.

Sampling ratios

Unequal proportions of majority and minority instances are responsible for class imbal-

ance issues, which may cause the ML algorithm to be biased toward the majority class 
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during model training. In some cases, the positive class (class of interest) is completely 

ignored. For our work, we use six data sampling methods, generating five class ratios 

(distributions) for each method (i.e. 99:1, 90:10, 75:25, 65:35, and 50:50) in a majority 

to minority format of representation. The selected ratios were chosen to provide a good 

range of class distribution from perfectly balanced with a 50:50 ratio, through moder-

ately balanced, to highly imbalanced with a 99:1 ratio. The inclusion of the highly imbal-

anced ratio facilitates the construction of a generalized curve and provides empirical 

information that aids in the selection of optimal ratios for this study.

Sampling techniques

This section is an overview of the six data sampling techniques used in our study. We 

selected one undersampling technique and five oversampling techniques, three of which 

are variants that focus on the boundary between the majority and the minority class.

1. RUS: This approach randomly discards instances from the majority class, result-

ing in a reduction of dataset size. Reducing the size of the majority class decreases 

computational burden, making analysis on very large datasets more manageable. The 

obvious disadvantage with RUS is the loss of potentially useful information, because 

instances of the majority class are randomly discarded [10]

2. ROS: This approach adds to the instances of the minority class by randomly duplicat-

ing observations belonging to that class with replacement. Oversampling increases 

the size of the dataset, potentially increasing computational costs. Since this tech-

nique duplicates minority class instances, it is susceptible to data overfitting [40].

3. SMOTE: This oversampling approach generates artificial instances  [11], increasing 

the size of the minority class instances via k-nearest neighbors and sampling with 

replacement. SMOTE interpolates from original minority instances instead of just 

duplicating them. This method initially finds the k-nearest neighbors of the minor-

ity class for each minority instance. New instances are then generated in the direc-

tion of some or all of the nearest neighbors, depending on the oversampling percent-

age goal, by calculating the difference between the original minority example and its 

nearest neighbors and multiplying this difference by a random number (between 0 

and 1).

4. borderline-SMOTE (SMOTEb): This approach [41] modifies the SMOTE algo-

rithm by selecting the minority instances on the border of the minority decision 

region in the feature-space, only performing SMOTE on these instances. The num-

ber of majority neighbors of each minority instance is used to divide the minority 

class instances into three categories: SAFE, DANGER, or NOISE. Only the minority 

instances in the DANGER category are used to generate artificial instances. There are 

two types of SMOTEb, type 1 and type 2. Type 1 or SMOTE-borderline1 (SMOTEb1) 

generates new, synthetic instances that belong to a class different from the original 

minority examples. Type 2 or SMOTE-borderline2 (SMOTEb2) generates instances 

that can belong to any class.

5. ADAptive SYNthetic (ADASYN): This approach [42] is similar to SMOTE except that 

it focuses on generating instances adjacent to original minority examples that were 
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misclassified by a k-nearest neighbors classifier. As a result, more artificial instances 

will be generated in regions where the nearest neighbor rule is ignored.

RUS and ROS were implemented within the scalable libraries of Spark. SMOTE and its 

variants were implemented within imbalanced-learn [43], a toolbox with many prede-

fined imbalanced solutions, including sampling.

Learners

We use three learners built for Apache Spark from MLlib (machine learning library). 

For our study, we use LR [44], RF [45], and GBT [46]. The default configurations are 

assumed, unless otherwise stated.

LR uses a sigmoidal, or logistic, function to generate values from [0,1] that can be 

interpreted as class probabilities. LR is similar to linear regression but uses a different 

hypothesis class to predict class membership. The bound matrix parameter was set to 

match the shape of the data so the algorithm knows the number of classes and features 

the dataset contains. The bound vector size was set to 1 for binomial regression, with no 

thresholds applied for binary classification.

RF is an ensemble approach building multiple decision trees. The classification results 

are calculated by combining the results of the individual trees, typically using majority 

voting. RF generates random datasets via sampling with replacement to build each tree, 

and selects features at each node automatically based on entropy and information gain. 

In this study, we set the number of trees to 100 and the max depth to 16. Additionally, 

the parameter that caches node IDs for each instance, was set to true and the maximum 

memory parameter was set to 1,024 megabytes in order to minimize training time. The 

setting that manipulates the number of features to consider for splits at each tree node 

was set to one-third, since this setting provided better results upon initial investigation. 

The maximum bins parameter, which is for discretizing continuous features, was set to 2 

since we use one-hot encoding on categorical variables to avoid converting any numeri-

cal values as categorical.

GBT is an ensemble approach that trains each Decision Tree iteratively in order to 

minimize loss determined by the algorithm’s loss function. During each iteration, the 

ensemble is used to predict the class for each instance in the training data. The predicted 

values are evaluated with the actual values allowing for the identification and correc-

tion of previously mislabeled instances. The parameter that caches node IDs for each 

instance was set to TRUE, and the maximum memory parameter was set to 1,024 MB to 

minimize training time.

Performance metrics

Our work records the confusion matrix for a binary classification problem, where the 

class of interest is usually the minority class and the opposite class is the majority class, 

i.e. positives and negatives, respectively. A related list of simple performance metrics [9] 

is explained as follows:

• True positive (TP) is the number of positive samples correctly identified as positive.
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• True negative (TN) is the number of negative samples correctly identified as nega-

tive.

• False positive (FP), also known as Type I error, is the number of negative instances 

incorrectly identified as positive.

• False negative (FN), also known as Type II error, is the number of positive instances 

incorrectly identified as negative.

• TPrate , also known as Recall or Sensitivity, is equal to TP / (TP + FN).

• TNrate , also known as Specificity, is equal to TN / ( TN + FP).

We used more than one performance metric to better understand the challenge of evalu-

ating ML with severely imbalanced data. The first metric is AUC [47, 48], where an ROC 

curve depicts a learner’s performance across all classifier decision thresholds. From this 

curve, the AUC obtained is a single value that ranges from 0 to 1, with a perfect classifier 

having a value of 1. AUC indicates the predictive potential of a binary classifier and seeks 

to maximize the joint performance of the classes via true positive rate (sensitivity/recall) 

and true negative rate (specificity). Additionally, due to the class imbalance in the data-

sets included in our work, we consider AUC a good metric for assessing classification 

performance. The second performance metric included in our study is GM, which indi-

cates how well the model performs at the threshold where TPrate and TNrate are equal. 

GM is equal to 
√
TPrate × TNrate.

Framework design

The evaluation of the learners is performed using two approaches based on our case 

studies. The approach for the Medicare dataset uses k-fold CV. With this method, the 

model is trained and tested k times, where it is trained on k-1 folds each time and tested 

on the remaining fold. This is to ensure that all data are used in the classification. More 

specifically, we use stratified CV which tries to ensure that each class is approximately 

equally represented across each fold. In our study, we assigned a value of 5 to k: four 

folds for training and one fold for testing. Note that Spark does not support k-fold CV 

and thus we implemented our own version of CV for use with Spark scalable processing. 

The approach for the SlowlorisBig and POST datasets used the Training/Test method, 

with the former dataset utilized to train the model and the latter used to test.

We repeated the process of building and evaluating the models 10 times for each 

learner and dataset. The use of repeats helps to reduce bias due to bad random draws 

when generating the samples. The final performance result is the average over all 10 

repeats.

Approach for case studies experiments

Case 1: Medicare

In this case study, statistics obtained after the application of sampling techniques on the 

Medicare dataset, i.e. undersampling and oversampling, are presented in Table  1. The 

number of positives and negatives when sampling has not been performed (“None” 

method) are also included in the table. The count of 379 positives in the table represents 

the quantity of minority instances within the four folds of training data, out of a total of 

473 (positives within both test and training folds) in the dataset. Likewise, the count of 
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607,414 negatives represents the quantity of majority instances within the four folds of 

training data, out of a total of 759,267 (negatives within both test and training folds). We 

can also see from Table 1 that oversampling with the 50:50 class ratio increases the origi-

nal count of positives by over 160,000% due to the severe class imbalance in this dataset.

Case 2: SlowlorisBig and POST

In this case study, we built models using the SlowlorisBig Dataset and tested them on the 

POST dataset. These two datasets are in the same application domain but come from 

different sources. As in the first case study, we provided statistics (shown in Table  2) 

based on the datasets generated after the application of various sampling techniques.

Results and discussion

In this section, we present the results of the Medicare and SlowlorisBig case stud-

ies. As explained in the previous section, we generated five class ratios (50:50, 65:35, 

75:25, 90:10, and 99:1) using six sampling techniques: RUS, ROS, SMOTE, SMOTEb1, 

SMOTEb2, and ADASYN. We included the full datasets (“all:all”), without any data sam-

pling performed (“None” method), to serve as a baseline comparison. As mentioned in 

"Methodologies" section, our results were obtained by implementing three ML classifi-

ers, i.e. GBT, LR, RF and evaluated with the AUC and GM performance metrics.

The results of our experiment for the full datasets, prior to sampling, are included in 

Table 3. The table shows the two metrics: AUC and GM.

The overall results for both Medicare and SlowlorisBig Datasets are presented by 

averaging the AUC in part (a) of Tables 4 and 5, respectively. Similarly, part (b) of both 

tables reports the average results for the GM metric. For parts (a) and (b) of both tables, 

Table 1 Medicare sampling

Ratio No sampling Undersampling Oversampling

Negatives Positives Negatives Positives Negatives % Negatives Positives Positives%

(All:all) 607,414 379 – – – – – –

(99:1) – – 37,521 379 6.18 607,414 6,135 1,618.86

(90:10) – – 3,411 379 0.56 607,414 67,490 17,807.51

(75:25) – – 1,137 379 0.19 607,414 202,471 53,422.52

(65:35) – – 704 379 0.12 607,414 327,069 86,297.91

(50:50) – – 379 379 0.06 607,414 607,414 160,267.55

Table 2 SlowlorisBig sampling

Ratio No sampling Undersampling Oversampling

Negatives Positives Negatives Positives Negatives % Negatives Positives Positives%

(All:all) 1,575,234 4255 – – – – – –

(99:1) – – 421,245 4255 26.74 1,575,234 15,911 373.95

(90:10) – – 38,295 4255 2.43 1,575,234 175,026 4113.42

(75:25) – – 12,765 4255 0.81 1,575,234 525,078 12,340.26

(65:35) – – 7902 4255 0.50 1,575,234 848,203 19,934.26

(50:50) – – 4255 4255 0.27 1,575,234 1,575,234 37,020.78
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the highest value within each column (class distribution ratio) of each sub-table is in 

italic type, and the highest value within each row (sampling method) of each sub-table 

is underlined. As discussed in "Methodologies" section, we performed 5-fold CV for the 

Medicare case study while we used a Training/Test method for the SlowlorisBig case 

study. The average values shown are derived from 50 models (5-fold CV with 10 repeats) 

in the Medicare case study and 10 models in the SlowlorisBig case study. 

AUC values for the Medicare dataset are shown in Table  4. The best performance, 

on average, for the GBT model was 0.81675 with RUS and a 90:10 ratio, followed by 

0.80703, which was obtained by ROS with a 50:50 ratio. The lowest score of 0.62805 was 

obtained with ROS and a 90:10 ratio, which was a lower value than the score recorded 

for the GBT model with unsampled data. For the LR model associated with the Medicare 

dataset, the best performance was obtained by SMOTE, with values between 0.82211 

and 0.82781 for distribution ratios of 90:10, 75:25, 65:35, and 50:50. However, the LR 

model yielded a value of 0.82011 using RUS and a 99:1 ratio, which was better than the 

score of 0.81554 for the LR model with unsampled data. The lowest score of 0.6621 for 

the LR model was obtained with ROS and a 99:1 ratio. Finally, for the RF learner, RUS 

outperformed the other sampling methods with a score of 0.82793 for the 90:10 ratio.

GM values for the Medicare dataset are also shown in Table 4. The reader should note 

that GM records the model performance outcome of the confusion matrix, unlike AUC, 

which provides an overall performance. Thus, we observed that the balanced ratio of 

50:50 performed the best while the performances decrease when the ratios become 

progressively more imbalanced. RUS yielded the best results for GBT and RF. However, 

with the LR model, SMOTE performed the best with a GM score of 0.75345, followed by 

ROS, ADASYN, and then RUS.

For the AUC metric of the SlowlorisBig Dataset, shown in Table 5, the score for the 

GBT model with RUS was 0.97226, corresponding to a 90:10 ratio. However, the RUS 

ratios of 75:25, 65:35, and 50:50 also performed well when compared to the other sam-

pling methods. The lowest score of 0.46056 was obtained for the ADASYN method and 

a ratio of 50:50, which is considered a worse score than a random guess (AUC value of 

0.5). With regards to the LR model, RUS with a ratio of 65:35 produced the highest value 

of 0.97113. ADASYN with a 65:35 ratio recorded the lowest value of 0.43311. However, 

the second best method after RUS was also ADASYN with a 90:10 ratio and a score of 

0.77948. Lastly, with regards to the RF model, the best AUC value was obtained using 

RUS with a 50:50 ratio; however, two oversampling methods, ROS and SMOTE, also 

produced decent results.

Table 3 No-sampling (all:all) results

Dataset Learner AUC GM

Medicare GBT 0.7905 0.0091

LR 0.8155 0.0000

RF 0.7938 0.0082

SlowlorisBig GBT 0.6868 0.2517

LR 0.5920 0.6449

RF 0.867 0.0000
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In relation to the SlowlorisBig performance for the GM metric, shown in part (b) of 

Table  5, RUS outperformed all the other oversampling methods for all three learners. 

Note that when the model fails to correctly classify any positive instances during all 10 

Table 4 Case 1: Medicare results

The highest value within each column (class distribution ratio) of each sub-table is in italic type, and the highest value 

within each row (sampling method) of each sub-table is underlined

Learner Method (All:all) (99:1) (90:10) (75:25) (65:35) (50:50)

(a) AUC 

 GBT None 0.79047 – – – – –

RUS – 0.80373 0.81675 0.80405 0.79127 0.77587

ROS – 0.74328 0.62805 0.72565 0.76417 0.80703

ADASYN – 0.71368 0.69611 0.69586 0.69675 0.69351

SMOTE – 0.73903 0.72194 0.72634 0.72986 0.73439

SMOTEb1 – 0.68831 0.67235 0.65831 0.65448 0.66498

SMOTEb2 – 0.68917 0.67780 0.66209 0.66312 0.66730

 LR None 0.81554 – – – – –

RUS – 0.82011 0.81868 0.81553 0.80998 0.79415

ROS – 0.66210 0.68306 0.75298 0.79036 0.81547

ADASYN – 0.81205 0.81622 0.81758 0.81384 0.81578

SMOTE – 0.81306 0.82211 0.82685 0.82781 0.82413

SMOTEb1 – 0.74471 0.73845 0.73526 0.74014 0.73484

SMOTEb2 – 0.72167 0.71599 0.72523 0.72752 0.72426

 RF None 0.79383 – – – – –

RUS – 0.81515 0.82793 0.81503 0.80619 0.79546

ROS – 0.77538 0.75640 0.75728 0.76989 0.79315

ADASYN – 0.74537 0.73496 0.72920 0.73266 0.73577

SMOTE – 0.77417 0.76921 0.77629 0.77443 0.76790

SMOTEb1 – 0.76460 0.74777 0.75695 0.75844 0.75883

SMOTEb2 – 0.76440 0.75071 0.75155 0.75282 0.74967

(b) GM

 GBT None 0.00907 – – – – –

RUS – 0.08674 0.37061 0.60384 0.67830 0.70412

ROS – 0.01234 0.14263 0.34824 0.50723 0.69501

ADASYN – 0.00205 0.00413 0.05390 0.12527 0.30430

SMOTE – 0.01027 0.06270 0.22959 0.33785 0.47255

SMOTEb1 – 0.03254 0.20534 0.28603 0.33670 0.40159

SMOTEb2 – 0.04371 0.18432 0.26794 0.32180 0.38951

 LR None 0 – – – – –

RUS – 0.13376 0.45411 0.66222 0.72088 0.73044

ROS – 0.05917 0.36425 0.58388 0.67673 0.75224

ADASYN – 0.06607 0.35955 0.59097 0.69207 0.74657

SMOTE – 0.12602 0.45052 0.64526 0.71975 0.75345

SMOTEb1 – 0.13877 0.37785 0.50841 0.55796 0.59091

SMOTEb2 – 0.10953 0.35552 0.50170 0.54910 0.58911

 RF None 0.00823 – – – – –

RUS – 0.09315 0.26700 0.56838 0.67842 0.72590

ROS – 0.00909 0.01027 0.03608 0.08623 0.29951

ADASYN – 0.03665 0.10203 0.16093 0.20660 0.24092

SMOTE – 0.04778 0.16448 0.23132 0.26808 0.31371

SMOTEb1 – 0.04571 0.08312 0.12967 0.14453 0.18056

SMOTEb2 – 0.03546 0.07203 0.10473 0.10693 0.14532
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runs, the GM scores will be zero as shown with the RF case. We clearly can see that 

changing the performance metric may lead to different conclusions. Measuring the per-

formance using AUC may give a general estimate of overall model performance when 

Table 5 Case 2: SlowlorisBig results

The highest value within each column (class distribution ratio) of each sub-table is in italic type, and the highest value 

within each row (sampling method) of each sub-table is underlined

Learner Method (All:all) (99:1) (90:10) (75:25) (65:35) (50:50)

(a) AUC 

 GBT None 0.68678 – – – – –

RUS – 0.84644 0.97226 0.96541 0.96724 0.96685

ROS – 0.65312 0.50947 0.69950 0.66151 0.65531

ADASYN – 0.47154 0.74951 0.68449 0.82351 0.46056

SMOTE – 0.57069 0.58314 0.69230 0.63663 0.70906

SMOTEb1 – 0.70283 0.65169 0.62276 0.62191 0.67668

SMOTEb2 – 0.69876 0.62302 0.63359 0.66083 0.71559

 LR None 0.59203 – – – – –

RUS – 0.62018 0.84740 0.90919 0.97113 0.95052

ROS – 0.59869 0.63752 0.60610 0.60996 0.62989

ADASYN – 0.77948 0.49306 0.43431 0.43311 0.46447

SMOTE – 0.60657 0.64287 0.61986 0.62587 0.61301

SMOTEb1 – 0.59232 0.59301 0.59212 0.59242 0.59190

SMOTEb2 – 0.59257 0.59164 0.59254 0.59189 0.59143

 RF None 0.86773 – – – – –

RUS – 0.88343 0.88444 0.91207 0.95425 0.96045

ROS – 0.88391 0.90186 0.91679 0.93715 0.95694

ADASYN – 0.75805 0.68151 0.48584 0.46859 0.40685

SMOTE – 0.88436 0.89994 0.91701 0.94070 0.95690

SMOTEb1 – 0.87027 0.85896 0.88157 0.87659 0.86275

SMOTEb2 – 0.87138 0.88829 0.86941 0.87098 0.86720

(b) GM

 GBT None 0.25168 – – – – –

RUS – 0.67700 0.83073 0.90015 0.94949 0.96174

ROS – 0.48453 0.34405 0.53269 0.52886 0.49330

ADASYN – 0.24369 0.31263 0.16892 0.31140 0.10138

SMOTE – 0.47393 0.34644 0.59461 0.44976 0.57714

SMOTEb1 – 0.29552 0.30041 0.30273 0.32697 0.26873

SMOTEb2 – 0.28809 0.26814 0.27291 0.27253 0.28508

 LR None 0.64486 – – – – –

RUS – 0.62135 0.82268 0.90304 0.96983 0.94733

ROS – 0.66742 0.72338 0.69552 0.70111 0.72352

ADASYN – 0.76272 0.41830 0.37992 0.38049 0.41591

SMOTE – 0.64121 0.72341 0.71979 0.72363 0.68929

SMOTEb1 – 0.64057 0.64489 0.64421 0.64489 0.64038

SMOTEb2 – 0.63685 0.63808 0.64065 0.64097 0.63461

 RF None 0 – – – – –

RUS – 0 0.15255 0.56097 0.65159 0.90195

ROS – 0 0.38138 0.42997 0.64770 0.65151

ADASYN – 0 0 0 0 0

SMOTE – 0 0.34325 0.53447 0.64772 0.65155

SMOTEb1 – 0 0 0 0 0

SMOTEb2 – 0 0 0 0 0
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the threshold between TPrate and False Positive Rate ( FPrate ) is varied. On the other 

hand, measuring the performance using GM really means taking the square root of the 

product of TPrate and TNrate at a threshold where both rates are equal.

Figure 1 illustrates the results from Tables 4 and 5. It is noticeable that, on average, 

RUS as the only undersampling method used in our study outperformed the other six 

oversampling techniques plus the full, unsampled data. However, the average can be 

very misleading in statistics. For instance, Fig.  1 shows that ADASYN, with a ratio of 

99:1, performed better on average than the other six sampling methods when building 

the LR models. It is also noticeable that the conclusion differs when comparing the AUC 

results with those obtained using the GM performance metric, especially when building 

the RF model.

The use of average values for variations of repetitive model building statistically 

enhances the score results assigned to the models. In addition, to demonstrate statistical 

significance of the observed experimental results, a hypothesis test is performed with 

ANalysis Of VAriance (ANOVA) [49], followed by post hoc analysis with Tukey’s HSD 

test. ANOVA is a statistical test determining whether the means of one or several inde-

pendent factors are significant. Tukey’s HSD assigns group letters indicating the signifi-

cance factors between each level.

We investigated the intersection of both factors (sampling techniques and class distri-

bution ratios) to determine their effect on the three learners (GBT, RF, LR). If the p-value 

Fig. 1 Results for averages of sampling methods ratios
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in the ANOVA table is less than or equal to a certain level (0.05), the associated factor 

is significant. A 95% ( α = 0.05) significance level for ANOVA and other statistical tests 

is the most commonly used value. In this work we obtained a total of 12 two-factor and 

72 one-way ANOVA tables. We saw no need to show the ANOVA results as significance 

factors are implied in the Tukey’s HSD tests, which are derived from the ANOVA tables.

Tables  6 and  7 relate to the Medicare and SlowlorisBig Datasets, respectively, and 

show the results of the Tukey’s HSD test. The tables show the significance between the 

performance metric and sampling approach for each learner. The factors are ordered by 

the average of the performance metrics used and show the number of repetitions “r”. 

We also show the standard deviation “std” for the repetitive models for each factor. The 

tables are also associated with the maximum, minimum, first quartile (Q25), second 

quartile (Q50), and third quartile (Q75). Q25 is the middle point between the minimum 

number and the median of the results. Q50 is the median of the repetitive results. Q75 

is the middle point value between the median and the maximum performance of the 

model. From Tables 6 and 7, we see that the medians of the sampling method can be 

higher and, in some cases, lower than the averages.

SMOTE and its variants (SMOTEb1, SMOTEb2, and ADASYN) performed satisfac-

torily with the Medicare dataset and the LR learner, but there does not appear to be 

any value in using the more specific borderline cases to generate artificial examples. 

Using traditional SMOTE, which randomly selected instances from all generated exam-

ples, shows better average AUC scores (among the 10 runs for each sampling method 

and ratio) in more cases than its variants of SMOTEb1, SMOTEb2, and ADASYN. This 

could indicate a lack of distinct borders around the class labels from the k-nearest neigh-

bors approach. The reason that the SMOTE variants perform similarly using RF, and not 

LR or GBT, is most likely due to the majority voting results across all trees. GBT, while 

using trees in an ensemble fashion, iteratively adjusts weights based on prior classifica-

tion performance indicators, and thus is not able to take advantage of different sampled 

data subsets to generate the final classification as with RF.

Tables 8 and 9 present the results of Tukey’s HSD test for the Medicare and Slowloris-

Big Datasets, respectively. The results indicate the significance between class ratio and 

sampling approach for each learner.

Based on ANOVA, an empty column (missing group letters) indicates there is no sig-

nificance between the factor levels. Thus, all of these levels were assigned to group ‘a’ by 

the Tukey’s HSD test. Furthermore, an “NA” assignment instead of a group letter means 

that RF failed to classify any true positives, as is the case for SMOTEb1, SMOTEb2, and 

ADASYN.

The first row shows the group letters for all the ratios combined with the full, unsam-

pled dataset. Group values (e.g. ‘a’ to ‘e’) indicate significant differences between the 

factor levels, or ratios, with the best group assigned the letter ‘a’. Note that the full, 

unsampled dataset (“all:all” ratio) is included for comparative purposes. The ranked 

groups assigned by Tukey’s HSD test corroborate the previously presented results shown 

in Tables 4 and 5 regarding the performance with and without data sampling.

To visualize the group ‘a’ results of Tables  8 and  9, Fig.  2 has been included. 

From the box plot distributions shown in this figure, we see that RUS outperforms 

all other sampling approaches for the SlowlorisBig case study when measuring the 
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Table 6 Case 1: Medicare-Tukey’s HSD test

Learner Sampling AUC std r g Min Max Q25 Q50 Q75

(a) AUC 

 GBT RUS 0.79833 0.02599 250 a 0.72815 0.87018 0.78092 0.80045 0.81537

None 0.79047 0.02386 50 a 0.72580 0.83013 0.78059 0.79586 0.80595

ROS 0.73363 0.06754 250 b 0.51519 0.84819 0.70903 0.74192 0.77947

SMOTE 0.73031 0.02584 250 b 0.64410 0.81724 0.71385 0.72880 0.74982

ADASYN 0.69918 0.02609 250 c 0.61985 0.76370 0.68276 0.69946 0.71667

SMOTEb2 0.67189 0.03213 250 d 0.57265 0.74786 0.65170 0.67248 0.69508

SMOTEb1 0.66769 0.03720 250 d 0.48250 0.76948 0.64574 0.66988 0.69252

 LR SMOTE 0.82279 0.02125 250 a 0.75783 0.87290 0.81044 0.82237 0.83636

None 0.81554 0.02227 50 ab 0.75532 0.84700 0.80752 0.81924 0.82659

ADASYN 0.81509 0.02287 250 ab 0.74781 0.88334 0.80130 0.81666 0.83065

RUS 0.81169 0.02040 250 b 0.73199 0.86455 0.80016 0.81220 0.82536

ROS 0.74079 0.06836 250 c 0.55630 0.85671 0.69202 0.75347 0.79658

SMOTEb1 0.73868 0.02748 250 c 0.66533 0.81191 0.71970 0.73888 0.75844

SMOTEb2 0.72293 0.03287 250 d 0.61406 0.80044 0.70363 0.72765 0.74389

 RF RUS 0.81195 0.02373 250 a 0.74285 0.86547 0.79696 0.81221 0.82930

None 0.79383 0.02306 50 b 0.74416 0.83161 0.77569 0.79317 0.81477

SMOTE 0.77240 0.02304 250 c 0.70450 0.84333 0.75649 0.77252 0.78692

ROS 0.77042 0.02790 250 c 0.70014 0.85378 0.75188 0.77028 0.78984

SMOTEb1 0.75732 0.02536 250 d 0.66211 0.81080 0.74231 0.76021 0.77356

SMOTEb2 0.75383 0.02794 250 d 0.68869 0.82191 0.73425 0.75200 0.77434

ADASYN 0.73559 0.02654 250 e 0.66474 0.80357 0.71806 0.73933 0.75122

Learner Sampling GM std r g Min Max Q25 Q50 Q75

(b) GM

 GBT RUS 0.48872 0.23777 250 a 0 0.78014 0.33953 0.60566 0.68945

ROS 0.34109 0.25087 250 b 0 0.77439 0.10295 0.35164 0.52541

SMOTEb1 0.25244 0.13924 250 c 0 0.50945 0.17726 0.27133 0.36454

SMOTEb2 0.24145 0.13200 250 cd 0 0.49887 0.14570 0.25059 0.33908

SMOTE 0.22259 0.17815 250 d 0 0.56455 0 0.22840 0.37532

ADASYN 0.09793 0.12322 250 e 0 0.39311 0 0 0.17759

None 0.00907 0.03150 50 f 0 0.14509 0 0 0

 LR RUS 0.54028 0.23037 250 a 0 0.77315 0.41864 0.66278 0.71993

SMOTE 0.53900 0.23596 250 a 0 0.80154 0.42166 0.64136 0.72653

ADASYN 0.49105 0.25417 250 b 0 0.80124 0.32327 0.59041 0.70910

ROS 0.48725 0.25459 250 b 0 0.79442 0.33676 0.57923 0.69986

SMOTEb1 0.43478 0.17227 250 c 0 0.67841 0.35173 0.49188 0.56532

SMOTEb2 0.42099 0.18294 250 c 0 0.70354 0.32119 0.48474 0.56333

None 0 0 50 d 0 0 0 0 0

 RF RUS 0.46657 0.24978 250 a 0 0.77101 0.25077 0.57335 0.69443

SMOTE 0.20508 0.10625 250 b 0 0.43130 0.14498 0.22834 0.28849

ADASYN 0.14943 0.09303 250 c 0 0.35404 0.10257 0.14575 0.22886

SMOTEb1 0.11672 0.07686 250 d 0 0.30758 0.10241 0.14469 0.17743

SMOTEb2 0.09289 0.07056 250 de 0 0.23024 0 0.10260 0.14509

ROS 0.08824 0.12095 250 e 0 0.39744 0 0 0.14505

None 0.00823 0.02819 50 f 0 0.10314 0 0 0
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performance with GM and AUC. It is also clear that RUS performs the best in some 

situations, or adequately in others, for all methods and/or ratios. Overall, we can 

safely state that RUS is the best choice for both case studies as it results in models 

with a significantly smaller number of samples, thus reducing computational burden 

Table 7 Case 2: SlowlorisBig-Tukey’s HSD test

Learner Sampling AUC std r g Min Max Q25 Q50 Q75

(a) AUC 

 GBT RUS 0.94364 0.08565 50 a 0.56736 0.97822 0.96356 0.96704 0.97073

None 0.68678 0.11066 10 b 0.48887 0.85775 0.64388 0.67656 0.74637

SMOTEb2 0.66636 0.15255 50 b 0.35152 0.97593 0.58214 0.67336 0.75517

SMOTEb1 0.65517 0.15317 50 b 0.35417 0.96539 0.52471 0.67769 0.75147

SMOTE 0.63836 0.17643 50 b 0.43299 0.98249 0.45329 0.65340 0.68739

ADASYN 0.63792 0.27363 50 b 0.18138 0.98483 0.45072 0.47832 0.96347

ROS 0.63578 0.16737 50 b 0.43522 0.98169 0.45196 0.65518 0.68476

 LR RUS 0.85968 0.15064 50 a 0.46331 0.98434 0.74674 0.92661 0.96904

SMOTE 0.62164 0.04412 50 b 0.47496 0.67054 0.59907 0.63122 0.65456

ROS 0.61643 0.04297 50 b 0.49468 0.67039 0.59864 0.60161 0.65380

SMOTEb1 0.59235 0.00155 50 b 0.58955 0.59388 0.59043 0.59325 0.59336

None 0.59203 0.00181 10 bc 0.58977 0.59365 0.59001 0.59324 0.59347

SMOTEb2 0.59201 0.00166 50 bc 0.58950 0.59382 0.58991 0.59314 0.59329

ADASYN 0.52089 0.13781 50 c 0.42229 0.89815 0.43665 0.45708 0.49882

 RF SMOTE 0.91978 0.02812 50 a 0.85957 0.96023 0.90119 0.91684 0.94535

ROS 0.91933 0.02724 50 a 0.86641 0.96169 0.90193 0.91198 0.94159

RUS 0.91893 0.03494 50 a 0.85684 0.96880 0.89140 0.91016 0.95740

SMOTEb2 0.87345 0.01368 50 b 0.85486 0.90771 0.86248 0.87021 0.88223

SMOTEb1 0.87003 0.02088 50 b 0.79088 0.91191 0.85906 0.86786 0.88263

None 0.86773 0.00890 10 b 0.85090 0.88340 0.86338 0.86753 0.87333

ADASYN 0.56017 0.15056 50 c 0.33384 0.87529 0.45101 0.51294 0.67599

Learner Sampling GM std r g Min Max Q25 Q50 Q75

(b) GM

 GBT RUS 0.86382 0.18048 50 a 0.24356 0.97083 0.79393 0.94445 0.97021

SMOTE 0.48838 0.16479 50 b 0.08179 0.64737 0.33031 0.60297 0.60528

ROS 0.47668 0.13952 50 b 0.23670 0.64740 0.33031 0.50990 0.60513

SMOTEb1 0.29887 0.11561 50 c 0.23672 0.56217 0.24196 0.24197 0.24369

SMOTEb2 0.27735 0.08665 50 c 0.23672 0.56291 0.24196 0.24197 0.24369

None 0.25168 0.10408 10 c 0.08180 0.51158 0.23672 0.24196 0.24326

ADASYN 0.22760 0.11021 50 c 0.05009 0.33034 0.07652 0.24369 0.33026

 LR RUS 0.85284 0.15640 50 a 0.38133 0.97066 0.72452 0.91562 0.97001

ROS 0.70219 0.07309 50 b 0.44269 0.72367 0.72336 0.72338 0.72338

SMOTE 0.69947 0.08142 50 b 0.38133 0.72455 0.72336 0.72338 0.72365

None 0.64486 0.00017 10 bc 0.64473 0.64506 0.64473 0.64473 0.64506

SMOTEb1 0.64299 0.00804 50 bc 0.60116 0.64570 0.64473 0.64473 0.64506

SMOTEb2 0.63823 0.01460 50 c 0.58532 0.64506 0.64473 0.64473 0.64473

ADASYN 0.47147 0.15695 50 d 0.37992 0.91572 0.38026 0.38128 0.46906

 RF RUS 0.45341 0.34982 50 a 0 0.96438 0 0.63766 0.64780

SMOTE 0.43540 0.25934 50 a 0 0.71944 0.37773 0.63642 0.64454

ROS 0.42211 0.24530 50 a 0 0.72048 0.37757 0.38138 0.64454
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and training time. For more visualization detail, readers may refer to Fig. 3 in Appen-

dix A, which displays box plots for all the models built in this study.

Conclusion

Our work uniquely evaluates six data sampling approaches for addressing the effect 

that severe class imbalance has on Big Data analytics. To accomplish this, we compare 

results from two case studies involving imbalanced Big Data from different application 

domains. The outcome of this comparison enables us to better understand the extent to 

which our contribution is generalizable.

Results from the Medicare case study are not firmly conclusive for determining the 

best sampling approach where AUC and GM are concerned. For the AUC metric, the 

best sampled distribution ratios were obtained by RUS at 90:10, SMOTE at 65:35, and 

RUS at 90:10 for GBT, LR, and RF, respectively. With regards to the GM metric, the best 

sampled distribution ratios were obtained by RUS at 50:50, SMOTE at 50:50, and RUS 

at 50:50 for GBT, LR, and RF, respectively. It should be noted that RUS performed ade-

quately in this first case study. For the AUC metric with LR, SMOTE (best value in sub-

table) was labeled as group ‘a’ and RUS as group ‘b’. For the GM metric with LR, both 

SMOTE (best value in sub-table) and RUS were labeled as group ‘a’.

Fig. 2 Tukey’s HSD test-Group a
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We show that RUS convincingly outperforms the other five sampling approaches for 

the SlowlorisBig case study when measuring the performance with AUC and GM. For 

the AUC metric, the best sampled distribution ratios achieved with RUS were 90:10, 

65:35, and 50:50 for GBT, LR, and RF, respectively. With regards to the GM metric, 

the best sampled distribution ratios achieved with RUS were 50:50, 65:35, and 50:50 

for GBT, LR, and RF, respectively.

Based on its classification performance in both case studies, RUS is the best choice 

as it generates models with a significantly smaller number of samples, which leads to 

a reduction in computational burden and training time. Future work using our evalu-

ation methodology will involve additional performance metrics, such as Area Under 

the Precision-Recall Curve (AUPRC), and the investigation of Big Data from other 

application domains.
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