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Institut de mathématiques de Jussieu, UMR 7586

April 25, 2007

Introduction

0.1 Notations. We deal in this paper with complex projective K3 surfaces, i.e. smooth
K-trivial complex projective surfaces without irregularity. Let ϕ : S 99K S be a dominant
self rational map. Suppose Pic(S) = Z. Then there exists a positive integer l such that
ϕ∗OS(1) ∼= OS(l). It is the algebraic degree of ϕ, that is the degree of the polynomials defining
ϕ. There always exists an elimination of indeterminacies

S̃

τ

��

eϕ

��>
>>

>>
>>

>

S ϕ
//___ S

i.e. a commutative diagram, where ϕ̃ is a morphism and τ is a finite sequence of blow-ups. One
defines the topological degree of ϕ as degϕ := deg ϕ̃. It is the number of points in the inverse
image of a generic point x ∈ S under the action of ϕ. We write R for the ramification divisor
of ϕ̃ (it is the zero divisor of the Jacobian

∧2
dϕ̃).

0.2 Self-rational maps. The main goal of this article is to study the geometric and numerical
properties of self-rational maps S 99K S, where S is a K3 surface with Picard group Z, in order
to attack the following conjecture.

Conjecture 1 For a generic projective K3 surface S, there does not exist any dominant rational
map

ϕ : S 99K S

satisfying ϕ∗OS(1) ∼= OS(l), l > 1.

It is another problem to find complex projective manifolds X equipped with a self morphism
f : X → X . It has already been studied by Beauville ([Bea01]), Fujimoto and Nakayama
([Fuj02], [Nak02], [FN05]), or Amerik, Rovinsky and Van de Ven ([ARV99]). Toric and abelian
varieties are obvious examples of such manifolds, and one does not know any other example than
those deduced from these two obvious ones. This leads us to conjecture that there does not
exist any other example at all, or in other words that in case Pic(X) = Z and κ(X) > 0, there
does not exist any f with deg f > 1. Beauville ([Bea01]) proves in this direction that a complete
intersection of p hypersurfaces of respective degrees d1, . . . , dp in Pn+p (n > 2) does not admit
any endomorphism of degree strictly greater than 1, as soon as at least one of the di’s is greater
than 3. One easily sees that a K3 surface cannot possess any dominant endomorphism of degree
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strictly larger than 1. Indeed, if S is a K3 surface and f : S → S a dominant morphism, then
the relation

KS = f∗KS +R

(where R is the ramification divisor of f), combined with the fact that KS = 0, proves that f
is necessarily smooth. It is thus an étale cover of S by itself, and therefore an automorphism of
S, because all K3 surfaces are simply connected.

Amerik and Campana ([AmCa05]), or Cantat ([Can05]) are more generally interested in the
search of manifolds equipped with dominant self rational maps. Again, we have easy examples
deduced from the toric and abelian ones. If S is a K3 surface equipped with an elliptic pencil |F |
and a relatively ample line bundle L of relative degree d, then we can construct µd+1 : S 99K S
of degree (d + 1)2, via multiplication in the fibers of the pencil : the image of a point x on a
generic fiber F is defined as the unique point y ∈ F satisfying

OF ((d+ 1)x− y) = L|F .

Kummer surfaces are smooth models of quotients of complex tori under the action of an involu-
tion. One can therefore construct self rational maps of degree strictly greater than 1 on them,
by descending the homotheties on the tori. Note that these two examples only concern special
K3 surfaces.

In greater dimensions, one has examples that cannot be deduced from the two obvious ones.
Voisin constructs in [Voi04] a self rational map of degree 16 of the variety X of lines in a cubic
hypersurface V ⊂ P5. X is 4-dimensional and hyperkähler, has Pic(X) ∼= Z, and is deformation
equivalent to the punctual Hilbert scheme S[2] of a K3 surface S of degree 14 ([BD85]). One
gets this self rational map by mapping the generic line l ⊂ V to the residual line l′ to l in
P ∩ V , where P is the unique 2-plane tangent to V along l. This map does not respect any
fibration in virtue of the following theorem of Amerik and Campana ([AmCa05]) : if X is a
projective manifold satisfying KX = 0 and NS(X) = Z, then any rational fibration g : X 99K B
(0 < dimB < dimX) has fibers of general type. Voisin’s example shows in particular that
conjecture 1 is specific to the case of surfaces.

The holomorphic dynamical point of view gives a new insight into this problem. Given a
complex manifold X equipped with a transformation f : X → X , one gets a discrete dynamical
system by iterating f (see [Can05]). Amerik and Campana associate a meromorphic fibration
g : X 99K T to any dominant self rational map f : X 99K X . Its general fiber Xt is the Zariski
closure of the orbit of a general point in Xt. This allows them to prove that if X is a complex
projective manifold satisfying both KX = 0 and NS(X) ∼= Z, and if f : X 99K X is a dominant
self rational map of degree greater than 2, then the orbit of a general point of X under the
action of f is Zariski-dense.

Such dynamical facts induce results concerning potential density in the K-trivial case (a
variety X over some field k is said to be potentially dense if there exists some finite extension
k → k′, such that the set of k′-rational points is Zariski-dense in X , see e.g. [HT06]). As a
simple corollary of their results exposed above, Amerik and Campana get : if X is a smooth
projective variety defined over k̄ (k a non countable field), such that KX = 0 and Pic(X) = Z,
and if there exists f : X 99K X with deg f > 1, then X has potential density. Cantat gets on
his side, and using dynamical methods, a large part of the proof of the following theorem, due
to Bogomolov and Tschinkel ([BT00]) : a projective K3 surface defined over some number field
k is potentially dense, as soon as it can be realized as an elliptic fibration.

Eventually, this dynamical study allows Cantat to show that if X is a projective Calabi-Yau
manifold of dimension n, and if there exists f : X 99K X satisfying some dilating property,
then there exists a dominant rational map Cn 99K X (in particular, X satisfies the Kobayashi
conjecture, see e.g. [Voi03]). This leads him to ask the following questions concerning a generic
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algebraic K3 surfaces S (in addition to the question of the existence of a dominant self-rational
map ϕ : S 99K S with degϕ > 1, to which this article gives a conjectural answer) : does S have
potential density ? does S admit a dominant rational map C2 99K S ?

0.3 Severi varieties. We present in this article a result relating conjecture 1 and the irre-
ducibility of Severi varieties for K3 surfaces.

Nodal plane curves (i.e. plane curves with only non-degenerate singularities) are a classical
topic. A historical reason for this is the fact that every smooth curve is birationally equivalent
to a nodal plane curve, via a series of projections. Let Vd,g be the variety parametrizing plane
irreducible curves of degree d and geometric genus g. It is called a Severi variety. It is the closure
in the projective space parametrizing all plane curves of degree d of the locus of irreducible
nodal curves of genus g. Severi gave an uncomplete proof of the fact that all varieties Vd,g are
irreducible, and it is only in 1986 that Harris actually proved this (see [Har86]).

A natural generalization of this is the study of nodal curves on a projective surface S equipped
with a fixed ample effective line bundle L. Vk,h then denotes the closure in |kL| of the locus of
irreducible nodal curves of geometric genus h, and is again called a Severi variety. The following
questions arise naturally : when are the Vk,h non empty ? What are their dimensions ? Are they
irreducible ? smooth ? They are studied by Chiantini and Ciliberto in [CC99]. Also Greuel,
Lossen and Shustin ([GLS00]), Keilen ([Kei03]) give some numerical criteria for generalized
Severi varieties to be irreducible.

We focus here on universal Severi varieties for K3 surfaces. Fix an integer g > 2, and write
MK3,g for the moduli space of K3 surfaces equipped with an indivisible, ample line bundle L
of self-intersection 2g− 2 (we call these K3 surfaces of genus g). There exists a universal family
Sg → M◦

K3,g over an open subset of MK3,g. To a generic point m ∈ M◦
K3,g corresponds a K3

surface Sm with Picard group
Pic(Sm) = Z · Lm,

where Lm is an ample and indivisible divisor class, satisfying L2
m = 2g − 2 (see e.g. [Pal85]). A

generic member of the complete linear system |Lm| is a smooth curve of geometric genus g. For
integers k, h > 1, we define the universal Severi variety

Vk,h −→ M◦
K3,g

to be the variety whose fiber over a generic m ∈ M◦
K3,g is the closure in |kLm| of the locus

{C ∈ |kLm| s.t. C is irreducible, nodal, and of geometric genus h} .

By the genus formula, all curves in the complete linear system |kLm| have arithmetic genus
pa(k) = 1 + (kLm)2/2 = 1 + k2(g − 1).

The deformation theory of nodal curves on K3 surfaces works very well. In particular, we
know that for a K3 surface S, the Severi variety Vk,h is smooth and of the expected dimension ;
if S is generic, then Vk,h is non empty (see section 1). The only question that remains open is
whether the Vk,h are irreducible or not. For h = 0, it is clear that the answer is no : there are
finitely many rational curves in the linear system |kL|. The corresponding Severi variety is then
a disjoint union of points, which of course is not irreducible.

It is perfectly possible that the universal Severi variety Vk,h is irreducible even if the fibers
Vk,h are reducible. The question of the irreducibility of the Vk,h is the closest to the initial
problem of Severi, where the projective plane plays the role of a universal space for complete
non singular curves, since they all are birationally equivalent to plane curves with at most nodes
as singularities. We conjecture that all Vk,h are irreducible. The following less optimistic version
is however sufficient for our purpose.
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Conjecture 2 Let ε > 0 be given. If k is great enough with regard to ε, then for all integer h
satisfying

εpa(k) 6 h 6 pa(k),

the universal Severi variety Vk,h is irreducible.

0.4 Results. In section 2, we prove the following.

Theorem 3 Let g, l > 2 be given. If for m ∈ M◦
K3,g generic there exists a dominant rational

map ϕm : Sm 99K Sm satisfying ϕ∗
mOS(1) ∼= OS(l), then for k great enough the universal Severi

variety Vkl,pa(k) possesses at least two irreducible components.

To prove this, we look at the images under the action of ϕ of the curves in |kL|. We show that
they are elements of |klL|, and are generically nodal and of geometric genus pa(k). This gives
a way to construct two distinct irreducible components of Vkl,pa(k), the first one parametrizing
curves whose respective singularity 0-cycles are all rationally equivalent to a constant, and
the second one parametrizing curves with non constant singularity 0-cycle modulo rational
equivalence. By singularity 0-cycle of a curve C ⊂ S, we mean the sum of all singular points of
C, seen as a 0-cycle on S.

Now asymptotically, we have pa(k)/pa(lk) ∼k→∞ 1/l2. We thus get the following result,
which gives a way to tackle conjecture 1.

Corollary 4 Conjecture 2 on the Severi varieties implies conjecture 1 on self-rational maps.

In section 3, we gather numerical constraints between the topological and numerical degrees
(i.e. degϕ and l with the notations of 0.1) of a dominant self-rational map S 99K S, where S is
a given generic K3 surface. This restricts the possibilities for the existence of such self-rational
maps, and may lead to special cases of conjecture 1. The most significant results we get in this
direction are the following.

Theorem 5 Let S be a K3 surface of genus g, with Pic(S) = Z. We assume there exists a
dominant self rational map ϕ : S 99K S with degϕ > 1. Then we have the following.
(i) There exists an integer λ, such that degϕ = λ2. In addition, 2g− 2 necessarily divides l− λ
(note that we do not know the sign of λ).
(ii) There exist positive integers β1, . . . , βp, such that

l2 = degϕ+ (2g − 2)
∑

iβ
2
i .

∑
i βi is always divisible by 2. If we can eliminate the indeterminacies without any chain of

successive blow-ups of length strictly larger than 2, then

degϕ 6 1 +
1

24
[p+ 4(g − 1)

∑
iβi] .

We prove this by studying the geometry of an elimination of indeterminacies of ϕ. To do this,
we use the intersection tree of the irreducible exceptional curves that appear in the elimination
of indeterminacies. We get on our way the following result, which allows us to control the
complexity of such an elimination of indeterminacies.

Proposition 6 (i) The depth of the tree is less than degϕ−2. If this maximal depth is achieved,
then all exceptional curves project on the same point of S.
(ii) If the tree has two connected components of depths l1 and l2, then l1 + l2 6 degϕ− 2.
(iii) If all irreducible exceptional curves are disjoint, or equivalently, if the indeterminacy can be
solved with one blow-up, then there are at most 8(degϕ− 1) such irreducible exceptional curves.
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1 Families of nodal curves on K3 surfaces

We recall here classical results on families of nodal curves in general, and on families of nodal
curves on K3 surfaces in particular. We use a description with infinitesimal deformations, and
refer to [Voi02] (chapter 14) for more details (see [Tan82] for a slightly different point of view).

Let X be a smooth, n-dimensional variety, equipped with an ample line bundle L. We write
X(δ) for the open subset of the symmetric product SymδX corresponding to sums x1 + · · ·+ xδ

of δ pairwise distinct points. We look at hypersurfaces in the complete linear system |L| with
at least δ singular points, and therefore introduce the incidence variety

I = {(D,x1 + · · · + xδ) ∈ |L| ×X(δ) s.t. D is singular at x1, . . . , xδ}.

Let π : I → |L| be the natural projection. In the neighbourhood of a point (f, x) ∈ |L| ×X(δ)

(where f is an equation for a hypersurface D and x = x1 + · · ·+xδ), I is defined by the δ(n+1)
equations

f(xi) =
∂f

∂z1
(xi) = · · · =

∂f

∂zn

(xi) = 0

(1 6 i 6 δ), where z1, . . . , zn denote with a little abuse of notations local holomorphic coordi-
nates at the neighbourhood of every xi. We thus have

dim(I) > dim |L| − δ.

dim |L| − δ is called the expected dimension of I.
After differentiation, we get the equations of the tangent space TI,(f,x) in T|L|,f × TX(δ),x :

(g, h1 + · · · + hδ) ∈ T|L|,f × TX(δ),x lies in TI,(f,x) if and only if one has for every xi

{
dfxi

(hi) + g(xi) = 0

d
(

∂f
∂zj

)

xi

(hi) + ∂g
∂zj

(xi) = 0 (1 6 j 6 n),

that is {
g(xi) = 0

Hessxi
(f)(hi) = −

(
∂g
∂z1

(xi), . . . ,
∂g
∂zn

(xi)
)
,

since all differentials dfxi
vanish. The kernel of the differential π∗ at the point (f, x) is given by

g = 0, so π is an imbedding at the point (x1 + · · ·+xδ, D) if and only if Hessx1(f), . . . ,Hessxδ
(f)

are non degenerate, i.e. if and only if the δ points x1, . . . , xδ are non degenerate singular points
of D. In this case, the image of π∗ at the point (f, x) is simply

{g ∈ T|L|,f s.t. g(x1) = . . . = g(xδ) = 0},

and the tangent space to the projection of I on |L| at D identifies with

H0(X,OX(D) ⊗ Ix)/H0(X,OX),

where Ix ⊂ OX is the ideal sheaf defining x. I is of the expected dimension dim |L| − δ if and
only if the δ non degenerate singular points impose independent conditions on the linear system
|L|. In this case, the non degenerate singular points of D can be independently smoothed by
deformation.
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Theorem 1.1 Let S be a generic K3 surface, and L an ample and indivisible line bundle on
it. For any positive integer k, and any h 6 pa(k), the quasi-projective variety

V ◦
k,h = {C ∈ |kL| s.t. C is irreducible, nodal, and of geometric genus h}

is non empty, smooth, and of the expected dimension h.

Proof. Riemann-Roch formula for surfaces gives dim |kL| = pa(k), so h is the expected dimen-
sion of Vk,h. Suppose we have some irreducible nodal curve C ∈ |kL| with precisely δ = pa(k)−h
nodes. Let Z denote the singularity 0-cycle of C. The former infinitesimal calculations give the
Zariski-tangent space

TVk,h,C
∼= H0(S,OS(C) ⊗ IZ)/H0(S,OS) ∼= H0(C,OC(C) ⊗ IZ).

The canonical bundle KS being trivial, we get by adjunction formula

OC(C) ∼= OC(KS + C) ∼= ωC .

Since C is nodal, we have K eC
= ν∗KC(−2Z), where ν : C̃ → C is a normalization of C.

Therefore
H0(C,OC(C) ⊗ IZ) ∼= H0(C, ν∗K eC

),

which gives dimTVk,h,C = g(C) = h. Since dimVk,h > dim |kL| − δ = h, this proves that V ◦
k,h is

smooth and of the expected dimension.
It therefore only remains to show that there actually exists an irreducible nodal curve C ∈

|kL| with precisely δ = pa(k)− h nodes. It is enough to find an irreducible rational nodal curve
in |kL|, since it gives a genus h curve by smoothing exactly h of its nodes. This is given by
Chen’s theorem below.

�

Theorem 1.2 (Chen, [Che99]) Consider n > 3 and k > 0. For S a generic K3 surface in
Pn, the complete linear system |OS(k)| contains an irreducible rational curve with only nodes
as singularities.

2 Link between conjectures 1 and 2

In this section, we prove that conjecture 2 implies conjecture 1. We start with the following
result, which for a generic K3 surface S, describes the geometric action of a dominant self-
rational map ϕ : S 99K S on a generic curve C ∈ |OS(k)|.

Proposition 2.1 Let S be a K3 surface of genus g > 2, with Pic(S) = Z, and assume there
exists a dominant rational map ϕ : S 99K S satisfying ϕ∗OS(1) ∼= OS(l). We consider C ∈
|OS(k)| generic.
(i) Its image ϕ(C) lies in |OS(kl)|.
(ii) For k big enough, ϕ(C) is irreducible and nodal, and C and ϕ(C) have the same geometric
genus pa(k).

Proof. (i) Consider

S̃

τ

��

eϕ

��>
>>

>>
>>

>

S ϕ
//___ S
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an elimination of indeterminacies of ϕ, and write R for the ramification divisor of ϕ̃. Since
KeS

= ϕ̃∗KS +R and KS is trivial, R is entirely exceptional. In other words, ϕ is smooth away
from the indeterminacy locus.

Since C ∈ |OS(k)| is generic, we can assume that it avoids the indeterminacy locus. Then
ϕ|C is locally an imbedding, and in particular we have the equality of homology classes

[ϕ(C)] = ϕ∗[C]

(ϕ∗ and ϕ∗ are defined as ϕ̃∗τ
∗ and τ∗ϕ̃

∗ respectively). We then compute the intersection
product

〈[ϕ(C)] , L〉 = 〈ϕ∗[C], L〉 = 〈[C], ϕ∗L〉 ,

where L is the divisor class corresponding to OS(1). Finally, we have 〈[ϕ(C)] , L〉 = kl(2g − 2),
and therefore ϕ(C) ∈ |klL|.

(ii) We define a scheme S ×S S, which is pointwise the set of pairs of points in S having
the same image under ϕ, by considering a morphism ϕU : U → S (U Zariski-open subset of
S) representing the rational map ϕ, and taking S ×S S to be the Zariski-closure of U ×S U in
S ×SpecC S.

We claim that for k big enough, ϕ|C is everywhere injective but at a finite number of points
of C, or equivalently that

C ×S C ⊂ S ×S S

only possesses a finite number of points outside from the diagonal. To prove this, we define the
incidence variety

J = {(C, x1 + x2) ∈ |OS(k)| × S(2) s.t. (x1, x2) ∈ C ×S C},

which parametrizes the pairs of distinct points of S having the same image by ϕ. It is given by
the equations 




x1, x2 ∈ C
x1 6= x2

ϕ(x1) = ϕ(x2).

Now the projection of J on S(2) is S ×S S, which is pointwise the set of sums x1 + x2 with
x1 6= x2 and ϕ(x1) = ϕ(x2), and is of dimension 2. When k is large enough, the fibers of J over
its projection on S(2) are of dimension dim |OS(k)| − 2 (see 2.2), so

dimJ = dim |OS(k)|.

The fiber of J over generic C ∈ |OS(k)| is thus necessarily zero-dimensional, and our claim is
proved. It follows that for generic C ∈ |kL|, ϕ|C is of degree 1 onto its image ϕ(C). We can
assume C to be smooth. Then it is the normalization of ϕ(C), and these two curves have the
same geometric genus.

A similar argument shows that for C ∈ |OS(k)| generic, there cannot exist three pairwise
distinct points on C having the same image under the action of ϕ. So, since C is smooth and
ϕ|C is a local imbedding, all singular points of ϕ(C) occur as the identification of two distinct
points in C by ϕ. We shall now prove that for generic C ∈ |OS(k)|, these singular points are
all nodes. Write p : P(TS) → S for the canonical projection of the projectivized holomorphic
tangent bundle, and consider the incidence variety

J ′ ⊂ |OS(k)| × P(TS) × P(TS),

7



defined by the equations

(C, u1, u2) ∈ J ′ ⇐⇒






u1, u2 ∈ P(TC)
p(u1) 6= p(u2)
ϕ ◦ p(u1) = ϕ ◦ p(u2)
ϕ∗u1 = ϕ∗u2.

It parametrizes the couples of tangent directions of S at two different points, that are sent by the
differential ϕ∗ on a couple of colinear tangent directions at the same point of S (i.e. exactly the
situations that yield degenerated singularities on ϕ(C)). The image of the projection of J ′ on
P(TS)×P(TS) is given by the conditions p(u1) 6= p(u2), ϕ◦p(u1) = ϕ◦p(u2) and ϕ∗u1 = ϕ∗u2,
which yield three independent equations, so it is of dimension 3. When k is large enough, the
generic fiber of J ′ over its projection on P(TS)×P(TS) is of codimension 4 in |OS(k)| (see 2.2).
Then

dimJ ′ = dim |OS(k)| − 1,

and the fiber of J ′ over generic C ∈ |OS(k)| is necessarily empty, which concludes the proof.
�

Remark 2.2 Proposition 2.1 works as soon as k > 4 when g > 3, and as soon as k > 6 when
g = 2.

Indeed, if g > 3 (resp. g = 2), then the line bundle OS(k) is very ample for k > 2 (resp.
k > 3). This is sufficient to ensure that two distinct points of S impose independent conditions
on |OS(k)| and thus that the argument concerning J is correct.

Now let x1 and x2 be two distinct points in some projective space PN , and u1 ∈ P(TPN ,x1
),

u2 ∈ P(TPN ,x2
) be two tangent directions. As soon as the line defined by (x1, u1) (resp. (x2, u2))

does not pass through x2 (resp. x1), we are sure that (x1, u1) and (x2, u2) impose independent
conditions on the linear system of quadrics in PN . So when g > 3 and k > 4 (resp. g = 2 and
k > 6), the claim about the dimension of the generic fiber of J ′ is true.

Theorem 2.3 Let g, l > 2 be given. If for m ∈ M◦
K3,g generic there exists a dominant rational

map ϕm : Sm 99K Sm satisfying ϕ∗
mOS(1) ∼= OS(l), then for k great enough the universal Severi

variety Vkl,pa(k) possesses at least two irreducible components.

Theorem 2.3 is one of the main results of this article. The key of the proof is the construction
of two irreducible components of Vkl,pa(k) for S generic, such that the rational equivalence
class (in CH0(S)) of the singularity 0-cycle is constant for the curves parametrized by the first
component, and non constant for those parametrized by the second component. We give these
two constructions in lemmas 2.4 and 2.6.

Lemma 2.4 Under the hypotheses of proposition 2.1, and for k large enough, there exists an
irreducible component of Vkl,pa(k) on which the application

C ∈ Vkl,pa(k) 7→ cl (ZC) ∈ CH0(S)

is constant.

Here Vkl,pa(k) is a Severi variety related to the single surface S, and for C ∈ Vkl,pa(k), cl (ZC) is
the rational equivalence class of the singularity 0-cycle ZC of the curve C.
Proof. By proposition 2.1, for C ∈ |kL| generic and k large enough, ϕ(C) is an irreducible
nodal curve in |klL|, with geometric genus pa(k), and therefore ϕ(C) ∈ Vkl,pa(k). Vkl,pa(k) is
of the expected dimension pa(k) by theorem 1.1, while |kL| is a projective space of dimension

8



pa(k). So the subset of Vkl,pa(k) parametrizing the images of curves in |kL| under the action of
ϕ is an irreducible component V ′ of Vkl,pa(k).

Let C be a generic curve in |kL|, and write Zϕ(C) for the 0-cycle of the singular points
of its image ϕ(C), seen as a 0-cycle in S. From the proof of proposition 2.1, we know that
ϕ|C : C → ϕ(C) is a normalization of ϕ(C). The latter being an irreducible nodal curve, we
have

2Zϕ(C) = Kϕ(C) − (ϕ|C)∗KC ,

as 0-cycles in ϕ∗C. This proves that for another generic curve C′ ∈ |kL|, the singularity 0-cycle
Zϕ(C′) of the image ϕ(C′) is rationally equivalent to Zϕ(C), as 0-cycles in S. Indeed, since
C and C′ are rationally equivalent, the adjunction formula tells us that KC = (KS + C)|C
and KC′ = (KS + C′)|C′ are rationally equivalent, as 0-cycles on S. ϕ(C) and ϕ(C′) are
rationally equivalent as well, since they both are in |klL|, and the adjunction formula tells us
that Kϕ(C) = (KS + ϕ(C))|ϕ(C) and Kϕ(C′) = (KS + ϕ(C′))|ϕ(C′) are rationally equivalent, as
0-cycles on S.

�

Remark 2.5 In fact, one gets

cl
(
Zϕ(C)

)
=

1

2
k2(l2 − 1)L2 =

pa(kl) − pa(k)

2g − 2
L2 ∈ CH0(S).

δ = pa(kl) − pa(k) is the number of nodes of ϕ(C) for C generic. Using [BV04], we get

cl
(
Zϕ(C)

)
= δcX ∈ CH0(S),

where cX is the rational equivalence class of any point of S that lie on a rational curve.

We now construct an irreducible component of Vkl,pa(k), which parametrizes curves with non
constant rational equivalence class for their singularity 0-cycles.

Lemma 2.6 Under the hypotheses of proposition 2.1, and for k large enough, there exists an
irreducible component of Vkl,pa(k) on which the application

C ∈ Vkl,pa(k) 7→ cl (ZC) ∈ CH0(S)

is non constant.

Proof. By theorem 1.1, there exists an irreducible family of dimension pa(k)− 1 of irreducible
curves C ∈ |kL|, with only one node as singularity. We write ZC for the 0-cycle on S defined
by the singular point of C. ϕ(C) is generically an irreducible curve in |klL|, with exactly δ + 1
nodes as singularities, δ = pa(kl) − pa(k) (this is proposition 2.1). In fact, one has

Zϕ(C) = ϕ∗ZC + Z ′
ϕ(C)

as 0-cycles on S, where Z ′
ϕ(C) is the sum of the singular points that appear when applying ϕ.

As C moves, Z ′
ϕ(C) has constant rational equivalence class in CH0(S), exactly as in the proof of

lemma 2.4.
We thus have an irreducible (pa(k) − 1)-dimensional family of curves ϕ(C) ∈ |klL|. For

each ϕ(C), we smooth one of the nodes that are in Z ′
ϕ(C). This eventually gives an irreducible,

pa(k)-dimensional family of irreducible, nodal curves in |klL|, with exactly δ nodes. Such a
family is an irreducible component V ′′ of Vkl,pa(k).

9



We claim that the rational equivalence class of the singularity 0-cycles ZC′ of curves C′

parametrized by V ′′ is non constant. This can be seen by the following simple consideration.
For any points x, y ∈ S, and if k is large enough, we can find a curve C ∈ |kL| with a node at x
as its only singular point, and such that ϕ(C) is nodal, with nodes at ϕ(x) and y. Smoothing
y, we get curves C′ in V ′′, with singularity 0-cycle

ZC′ = ϕ(x) + Z ′
ϕ(C) − y.

Since Z ′
ϕ(C) has constant rational equivalence class, fixing x and letting y move, we see that

that the rational equivalence class cl (ZC′) ∈ CH0(S) cannot be constant.
�

Proof of theorem 2.3 We write the Stein factorization

Vk,p

��zzvv
vv

vv
vv

v

M̃◦
K3,g

// M◦
K3,g

of the projective morphism Vk,p → M◦
K3,g. Vk,p → M̃◦

K3,g is a projective morphism with

connected fibers, while M̃◦
K3,g → M◦

K3,g is finite. A point of M̃◦
K3,g overm ∈ M◦

K3,g represents
a connected component of (Vk,l)m. The monodromy of this morphism thus acts as a subgroup
of the permutation group of the connected components of fibers of Vk,p → M◦

K3,g. Irreducibility
of Vk,p is equivalent to the fact that the monodromy acts transitively on the components of the
fibers Vk,l (see e.g. [Har86]).

If there exists a dominant rational map ϕm : Sm 99K Sm, satisfying ϕ∗
mOSm

(1) ∼= OSm
(l)

for generic m ∈ M◦
K3,g, then we have by lemmas 2.4 and 2.6 two irreducible components V ′

m

and V ′′
m of each generic fiber (Vkl,pa(k))m that are algebraically distinguished, since for curves

parametrized by the first one, all singularity 0-cycles are rationally equivalent, and for curves
parametrized by the other one, they are not. It follows that there exists an open subset

M̃◦
K3,g

��
U ⊂ M◦

K3,g,

such that all fibers over U contain at least two points that are algebraically distinguished. The
monodromy cannot exchange these two points. In particular it does not act transitively, and
Vkl,pa(k) is not irreducible.

�

3 Properties of a self-rational map on a K3 surface

This section is devoted to the study of a dominant self-rational map on a given K3 surface.
The observation of the geometry of an elimination of indeterminacies gives properties that this
map must satisfy, and which of course restrain the possibilities for such a self-rational map to
exist. We first get numerical relations between the algebraic and topological degree that are
always valid. We then make further remarks depending on the complexity of the elimination of
indeterminacies, and give a way to control this complexity.

10



The notations are as follows. S is a generic algebraic K3 surface. We assume in particular
that Pic(S) = Z · L, where L is effective and satisfies L2 = 2g − 2 (g ∈ N∗). ϕ : S 99K S is
a dominant rational map, and l the positive integer such that ϕ∗OS(1) ∼= OS(l). We assume
l > 1. We consider an elimination of indeterminacies of ϕ, i.e. a commutative diagram

S̃

τ

��

eϕ

��>
>>

>>
>>

>

S ϕ
//___ S,

where τ is a finite sequence of blow-ups

S̃ = Sp

εp

−→ Sp−1
εp−1
−→ · · ·

ε2−→ S1
ε1−→ S0 = S.

We write Fi for the exceptional divisor which appears with εi, and Ei for ε∗p ◦ · · · ◦ ε∗i+1Fi

(1 6 i 6 p). (τ∗L,E1, . . . , Ep) is an orthogonal basis of Pic(S̃), and E2
i = −1 (1 6 i 6 p).

3.1 Numerical properties

We start with a numerical observation coming from Hodge theory.

Proposition 3.1 There exists an integer λ, such that

degϕ = λ2.

Proof. Let ω be a global, nowhere vanishing, holomorphic 2-form on S. Since KS is trivial, and
KeS

= τ∗KS + E1 + · · · + Ep, where the Ei’s are exceptional divisors, any global holomorphic

2-form on S̃ is a multiple of τ∗ω. In particular there exists λ ∈ C such that ϕ̃∗ω = λτ∗ω.
We write H2(S,Q)tr. for the transcendental rational cohomology of S, that is the orthogonal

in H2(S,Q) of the Neron-Severi group NS(S), with respect to the intersection form 〈 , 〉. We
shall show that ϕ̃∗η = λτ∗η for all η ∈ H2(S,Q)tr.

We clearly have H2(S,Q)tr. ∼= H2(S̃,Q)tr. via τ∗, and since ϕ̃∗ sends the transcendental co-

homology classes of S to transcendental cohomology classes in S̃, there exists a Hodge structure
morphism

ψ : H2(S,Q)tr −→ H2(S,Q)tr,

such that for all η ∈ H2(S,Q)tr., one has ϕ̃∗η = τ∗(ψ(η)). Now ω ∈ H2(S,Q)tr., and ϕ̃∗ω = λτ∗ω,
so the eigenspace Eλ relative to λ for ψ is non nempty.

Suppose Eλ ⊂ H2(S,C)tr is a proper subspace for S generic. Since λ ∈ C is algebraic over
Q, the equations defining Eλ are contained in the countable set of equations with coefficients
in Q. This says that, when S moves, ω ∈ Eλ is contained in a countable union of proper linear
subspaces of H2(S,C). This contradicts the surjectivity of the period map for K3 surfaces : its
image is an open set of a projective quadric in P

(
H2(S,C)

)
(see e.g. [Pal85]). We thus have

Eλ = H2(S,C)tr for S generic.
ψ acts on H2(S,Q)tr. as multiplication by λ, so λ is necessarily a rational number. From the

two equalities ∫

eS

ϕ̃∗ω ∧ ϕ̃∗ω = deg(ϕ)

∫

S

ω ∧ ω,

and ∫

eS

ϕ̃∗ω ∧ ϕ̃∗ω = λ2

∫

eS

τ∗ω ∧ τ∗ω = λ2

∫

S

ω ∧ ω,
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we get deg(ϕ) = λ2. Since degϕ is an integer, and λ is a rational number, λ is necessarily an
integer.

�

We shall now prove a divisibility property involving λ. To do so, we need some further
notations. Let us write

ϕ̃∗L = lτ∗L−
∑

16i6p

αiEi

for some integers α1, . . . , αp. Since Pic(S) = Z · L, and the Ei’s are effective, there also exist
non negative integers β1, . . . , βp, such that for all i

ϕ̃∗Ei = βiL.

Note that by projection formula,

αi = ϕ̃∗(ϕ̃
∗L ·Ei) = L · ϕ̃∗Ei = βiL

2 = (2g − 2)βi.

Lemma 3.2 2g − 2 necessarily divides l − λ.

Proof. Let λ be as in the proof of proposition 3.1. We have ϕ̃∗η′ = λτ∗η′ for all class
η′ ∈ H2(S,Q)tr.. We have on the other hand ϕ̃∗c1(L) = lτ∗c1(L) − (2g − 2)

∑
i βi[Ei].

Any η ∈ H2(S,Q) decomposes over Q into η = η′ + η′′, where η′ ∈ H2(S,Q)tr., and η′′ =
(〈η, c1(L)〉 /(2g − 2))c1(L). Then

ϕ̃∗η = λτ∗η′ + lτ∗η′′ − 〈η, c1(L)〉
∑

i

βi[Ei]

= λτ∗η + (l − λ)τ∗η′′ − 〈η, c1(L)〉
∑

i

βi[Ei].

The intersection product is unimodular, and c1(L) is indivisible. So there exists a class
η1 ∈ H2(S,Z), such that

〈η1, c1(L)〉 = 1.

It decomposes over Q into η1 = η′1 + η′′1 , and the equality

(l − λ)τ∗η′′1 = ϕ̃∗η1 − λτ∗η1 + 〈η1, c1(L)〉
∑

i

βi[Ei]

shows that

(l − λ)τ∗η′′1 =
l − λ

2g − 2
τ∗c1(L)

is an integral cohomology class. Since c1(L) is indivisible, this shows that 2g − 2 necessarily
divides l − λ.

�

We now look more specifically at the geometry of the elimination of indeterminacies. To
have a more accurate description of the situation, we consider the proper transforms F̂i ⊂ S̃ of
the Fi’s, and introduce their intersection tree. Later on, we will call it the exceptional tree, or
the ramification tree (recall that since KS is trivial, the ramification divisor of ϕ̃ and the total

exceptional divisor of τ are equal, cf. proof of proposition 2.1). Its vertices are the F̂i’s, and two

vertices are connected if and only if the two corresponding divisors meet in S̃. The descendants
of a vertex F̂i are the vertices situated below F̂i in the tree, i.e. those corresponding to divisors
whose projection by εi+1 ◦ · · · ◦ εp is contained in Fi. The depth mi of a vertex F̂i is the number

of ancestors of F̂i in the tree, i.e. the number of points situated above F̂i. The depth of the
tree is the maximal depth of its vertices.

12



Example 3.3 The following exceptional tree

F̂1 F̂2

F̂3

33
3

��
�

F̂4

F̂5 F̂6

is obtained by first blowing up S along two points ; F̂1 and F̂2 are the exceptional divisors above
these two points. One then blows up the resulting surface along one point on F̂1, and one point
on F̂2. Write F̂3 (resp. F̂4) for the exceptional divisor appearing above the blown up point on

F̂1 (resp. F̂2). One finally blows up along two points of F̂3. The descendants of F̂3 are F̂3, F̂5

and F̂6. Its ancestors are F̂1 and F̂3. Its depth is 2. The depth of the tree is 3.

This being set, Ei = ε∗p ◦ · · · ◦ ε∗i+1Fi is clearly the sum of all descendants of F̂i in the

tree. In the above example we have E3 = F̂3 + F̂5 + F̂6. The canonical divisor of S̃ is KeS
=

ε∗p ◦ · · · ◦ ε∗1KS + E1 + · · · + Ep. Since KS is trivial we have

KeS
=

∑

16i6p

Ei =
∑

16i6p

miF̂i.

It is also the ramification divisor of the map ϕ̃.
Let F be an exceptional divisor, such that τ does not contain any blow up along a point of F

(i.e. an exceptional divisor which appears at the bottom of the exceptional tree). For a suitable
choice of notations, this divisor can be supposed to be Fp. If F collapses under the action of ϕ̃,
then there necessarily exists a morphism ϕ̃p−1 : Sp−1 → S, and a commutative diagram

Sp

εp

��

eϕ

��4
44

44
44

44
44

44
44

44
44

44
44

44
44

Sp−1

εp−1

��

eϕp−1

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>

...

ε1

��
S ϕ

//_______ S,

that is another elimination of indeterminacies of ϕ involving one less exceptional divisor. We may
thus assume τ to be minimal, in the sense that ϕ̃ does not contract to a point any exceptional
divisor which appears at the end of the exceptional tree.

The following equality is obtained simply by computing the self-intersection (ϕ̃L)2. It is the
most important relation between degϕ and l. We use the minimality of τ to show the positivity
of the βi’s.

Proposition 3.4 The βi’s are all positive. In addition, the algebraic degree l and the topological
degree of ϕ satisfy

l2 = degϕ+ (2g − 2)
∑

16i6p

β2
i .
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Proof. We have Ei = F̂i + F̂i1 + · · · + F̂iq
, where F̂i, F̂i1 , . . . , F̂iq

are all the descendants of F̂i

in the exceptional tree. Therefore

βi = γi + γi1 + · · · γiq
,

where ϕ̃∗F̂is
= γis

L, 1 6 s 6 q. The γis
’s are a priori non negative integers. F̂i has at least one

descendant F̂ij
at the end of the exceptional tree. By minimality of τ , ϕ̃ cannot contract F̂ij

to
a point, and we have γij

> 1. Finally

βi > γij
> 0.

We get the relation between l and degϕ simply by computing in two different ways the self-
intersection (ϕ̃∗L)2. We have on the one hand

(ϕ̃∗L)2 = (deg ϕ̃)L2 = (degϕ)(2g − 2),

and on the other hand

(ϕ̃∗L)2 = l2(τ∗L)2 +
∑

16i6p

α2
iE

2
i = (2g − 2)l2 − (2g − 2)2

∑

16i6p

β2
i ,

which yields the announced formula.
�

We now get the following arithmetic property on the βi’s by some Riemann-Roch computa-
tions.

Lemma 3.5
∑

16i6p βi is even.

Proof. We first show that ϕ̃∗OeS
is a locally free sheaf of rank r := degϕ. Since it is clearly

torsion free, it is enough to show that any section defined on a punctured open set U \ {x0}
extends in a unique way to a section defined over U (see [Bar77], lemma 1). So let U ⊂ S be

an open set, x0 ∈ U , and f ∈ ϕ̃∗OeS
(U \ {x0}). f can be seen as a holomorphic function on S̃,

defined over ϕ̃−1(U \ {x0}). If the fiber of ϕ̃ above x0 is a finite set of points, then the result
is clear. Otherwise the fiber contains an irreducible exceptional curve F . f cannot be singular
along F , since this would give by restriction a global section of OeS

(mF )|F for some positive m,
which is impossible, since F 2 < 0. So f has only isolated singularities along F , and therefore
extends to a function over ϕ̃−1(U).

Now it is an easy consequence of Grauert’s theorem that Riϕ̃∗OeS
= 0 for i > 0. This gives

ϕ̃!OeS
= ϕ̃∗OeS

, and we thus have

ch(ϕ̃!OeS
).td(TS) =

(
r[S] + c1(ϕ̃∗OeS

) +
c1(ϕ̃∗OeS

)2 − 2c2(ϕ̃∗OeS
)

2

)
.([S] + 2)

= r[S] + c1(ϕ̃∗OeS
) +

(
c1(ϕ̃∗OeS

)2 − 2c2(ϕ̃∗OeS
)

2
+ 2r

)
.

On the other hand, we have

ϕ̃∗

(
ch(OeS

).td(TeS
)
)

= ϕ̃∗

(
[S̃] −

1

2
(E1 + · · · + Ep) + 2

)
= r[S] −

1

2
(
∑

iβi)L+ 2,

so the Grothendieck-Riemann-Roch formula gives

c1(ϕ̃∗OeS
) = −

1

2
(
∑

iβi)L.

Since L is indivisible, the lemma follows.
�
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3.2 Complexity of an elimination of indeterminacies

To motivate the study of the complexity of the elimination of indeterminacies, we first show that
we have further numerical constraints on ϕ when the elimination of indeterminacies is not too
complicated. The following numerical property is true under the hypothesis that the exceptional
tree has depth smaller than 2.

Proposition 3.6 If the differential dϕ̃ does not vanish identically along any curve of S̃, then
the topological degree of ϕ satisfies the inequality

degϕ 6 1 +
1

24
[p+ 4(g − 1)

∑
iβi] .

The condition on the differential is satisfied as soon as the total depth of the exceptional tree is
non greater than 2.

Proof. We follow an idea of Amerik, Rovinsky and Van de Ven ([ARV99], see [Bea01] as well).
The fiber bundle Ω1

S(2) is generated by its global sections, so by lemma 1.1 of [ARV99] a generic
section σ ∈ H0(S,Ω1

S(2)) has isolated zeroes. With the assumption made on dϕ̃ this is also true

for the pull-back section ϕ̃∗σ ∈ H0(S̃,Ω1
eS
(2ϕ̃∗L)). Counting these zeroes yields the inequality

on Chern classes
c2

(
Ω1

eS
(2ϕ̃∗L)

)
> (degϕ)c2

(
Ω1

S(2)
)
.

The left-hand side of this inequality is

c2(Ω
1
eS
) + 2ϕ̃∗c1(L) · c1(Ω

1
eS
) + 4ϕ̃∗c1(L)2,

and its right-hand side is

degϕ
[
c2(Ω

1
S) + 2c1(L) · c1(Ω

1
S) + 4c1(L)2

]
.

Now ϕ̃∗c1(L)2 = (degϕ)c1(L)2, so we get

c2(Ω
1
eS
) + 2ϕ̃∗c1(L) · c1(Ω

1
eS
) > degϕ

[
c2(Ω

1
S) + 2c1(L) · c1(Ω

1
S)

]
,

that is
χtop(S̃) + 2ϕ̃∗L ·KeS

> degϕ [χtop(S) + 2L ·KS] ,

where χtop denotes the topological Euler-Poincaré characteristic, that is the alternated sum of

the Betti numbers. It is 24 for all K3 surfaces. S̃ is obtained from S by successively blowing
up along p points so χtop(S̃) = 24 + p. We also have KS = 0, and

ϕ̃∗L ·KeS
= (lτ∗L−

∑
iαiEi) · (E1 + · · · + Ep) =

∑
iαi.

We eventually get
24 + p+ 2

∑
iαi > 24 degϕ,

which yields the desired inequality with the relations αi = (2g − 2)βi.

Now suppose dϕ̃ vanishes identically along a curve C in S̃. Then C necessarily collapses
under the action of ϕ̃, and it appears with multiplicity at least 2 in its ramification divisor.
Indeed, let f be some local equation for C. If dϕ̃ vanishes with order µ along C, then it writes

dϕ̃ =

(
fµg11 fµg12
fµg21 fµg22

)
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in some local holomorphic coordinate system, with the gij holomorphic, and
∧2 dϕ̃ vanishes with

order 2µ along C. If the total depth of the exceptional tree is less than 2, the only curves which
appear with multiplicity greater than 2 in the ramification divisor are at the end of the tree,
and cannot be contracted to a point by ϕ̃ by minimality of the elimination of indeterminacies.
So in this case, dϕ̃ does not vanish identically along any curve of S̃.

�

The first step towards a control of the complexity of the elimination of indeterminacies
is made with the following basic remark. It shows that the depth of the exceptional tree is
controlled by the topological degree.

Proposition 3.7 (i) The depth m of the exceptional tree always satisfy

m 6 degϕ− 2.

(ii) If the tree has two connected components of depths m′ and m′′, then

m′ +m′′ 6 degϕ− 2.

In particular, if one has equality in (i), then the tree only has one connected component.

Proof. (i) Since the ramification divisor of ϕ̃ is
∑

i miF̂i, it is clear that

m = maxmi 6 degϕ− 1.

Now suppose there exists an irreducible exceptional curve F that has depth degϕ − 1 in the
exceptional tree. Then it is at the end of the tree, and therefore is not contracted. F appears
in the ramification divisor with multiplicity degϕ− 1, and thus

ϕ̃−1 (ϕ̃(F )) = (degϕ)F + E,

where E is contracted by ϕ̃. In particular, E is exceptional for τ as F is. It follows that
ϕ̃−1 (ϕ̃(F )) is supported on the exceptional divisor of τ , which implies that it has negative
self-intersection. This contradicts the fact that

ϕ̃−1 (ϕ̃(F ))2 = (degϕ)ϕ̃(F )2 > 0.

(ii) If the tree has two connected components of depths m′ and m′′, then we have two
irreducible exceptional curves F ′ and F ′′ of depths m′ and m′′, that are not contracted, and
that do not meet in S̃. The image curves ϕ̃(F ′) and ϕ̃(F ′′) intersect in S, because their images
have their class proportional to c1(L). Let x be an intersection point. There are at least two
distinct points x′ ∈ F ′ and x′′ ∈ F ′′ in ϕ̃−1(x). Since F ′ and F ′′ appear with multiplicities m′

and m′′ in the ramification divisor of ϕ̃, x′ and x′′ appear with multiplicities m′ + 1 and m′′ +1
in ϕ̃−1(x). This implies

m′ +m′′ + 2 6 deg ϕ̃.

�

Remark 3.8 In fact, (ii) can be extended as follows : if there exist two distinct curves F ′ and
F ′′ at the end of the exceptional tree, which have depths m′ and m′′, then

m′ +m′′ + 2 6 deg ϕ̃.
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Now the following result gives control on another aspect of the elimination of indeterminacies,
namely the number of blown-up points on S. It says that in case all irreducible exceptional curves
are disjoint, then their number is bounded from above. The hypothesis is equivalent to the fact
that we can eliminate the indeterminacies of ϕ by the single blow up of finitely many distinct
points on S.

Proposition 3.9 If the exceptional tree has depth 1, then

p 6 8(degϕ− 1).

Proof. In this case, the ramification divisor of ϕ̃ is E1 + · · · + Ep, where the Ei’s are disjoint
P1’s, and by minimality of the elimination of indeterminacies, ϕ̃ does not contract any of them.
So the differential dϕ̃ is surjective, and we have an exact sequence

0 → ϕ̃∗ΩS → ΩeS
→

⊕
iLi → 0,

where each Li is a line bundle on the exceptional curve Ei. This gives

c2
(
ΩeS

)
= c2 (ϕ̃∗ΩS) + c1 (ϕ̃∗ΩS) · c1 (

⊕
iLi) + c2 (

⊕
iLi)

= (degϕ)c2 (ΩS) +
∑

ic2(Li).

By restriction, we get on each Ei an exact sequence

0 → Ki → ΩeS |Ei
→ Li → 0,

where Ki is a line bundle on Ei. We have a map Ki → ΩEi
, given by the composition

ΩeS |Ei

��
Ki

//

(deϕ)t <<yyyyy
ΩEi

.

Since ϕ̃ is ramified along Ei, the map Ki → Ii/I
2
i induced by (dϕ̃)t is zero (here Ii ⊂ OeS

is the
ideal sheaf of Ei). This shows that the above map Ki → ΩEi

is an injection, and thus that

degKi 6 deg ΩEi
= −2

(as line bundles on Ei
∼= P1). On the other hand, deg(ΩeS |Ei

) = −1 by the conormal exact

sequence, so one has
deg(Li) = deg(ΩeS |Ei

) − deg(Ki) > 1.

We write di for deg(Li) (i.e. Li = OEi
(di)). The restriction exact sequence

0 → OeS
(−(di + 1)Ei) → OeS

(−diEi) → OEi
(di) → 0

gives the two relations

{
c1(Li) − (di + 1)Ei = −diEi

c2(Li) − (di + 1)Ei · c1(Li) = 0,

and therefore
c2(Li) = −di − 1 6 −2.
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So eventually

c2
(
ΩeS

)
= (degϕ)c2 (ΩS) +

∑
ic2(Li)

6 24 degϕ− 2p,

and since one knows that c2
(
ΩeS

)
= 24 + p, one gets the announced inequality.

�

In case degϕ = 4, propositions 3.7 and 3.9 work very well. The following proposition sums
up what they learn us in this case.

Example 3.10 If degϕ = 4, then either the exceptional tree has depth 1 and there are less than
24 blown-up points, or it has depth 2 and there is only one blown up point.

Note that example 3.10 shows that if degϕ = 4, then the hypotheses of proposition 3.6 are
always satisfied. To conclude, we compute the first possible couples (degϕ, l) for which there
could actually be a self-rational map ϕ, according to all numerical properties gathered above.
Recall that K3 surfaces of genera 2, 3, 4 and 5 are respectively double covers of P2, quartics in
P3, complete intersections of a cubic and a quadric in P4, and complete intersections of three
quadrics in P5.

Example 3.11 For degϕ = 4, the first possible values of l possible are given by

g 2 3 4 5
l 6, 8, 10, . . . 6, 10, 14, . . . 8, 10, 14, . . . 6, 10, 14, . . .

.

For degϕ = 9, we get

g 2 3 4 5
l 5, 7, 9, . . . 5, 7, 9, . . . 9, 15, 21, . . . 5, 11, 13, 19, . . .

.

References

[AmCa05] Ekaterina Amerik and Frédéric Campana. Fibrations méromorphes sur certaines
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des recherches, 2005.

[Che99] Xi Chen. Rational curves on K3 surfaces. J. Alg. Geom., 8(2):245–278, 1999.

[CC99] Luca Chiantini and Ciro Ciliberto. On the Severi varieties of surfaces in P3. J. Alg.
Geom., 8(1):67–83, 1999.

[Fuj02] Yoshio Fujimoto. Endomorphisms of smooth projective 3-folds with non-negative
Kodaira dimension. Publ. Res. Inst. Math. Sci., 38(1):33–92, 2002.

[FN05] Yoshio Fujimoto and Noboru Nakayama. Compact complex surfaces admitting non-
trivial surjective endomorphisms. Tohoku Math. J. (2), 57(3):395–426, 2005.

[GLS00] G.-M. Greuel, C. Lossen, and E. Shustin. Castelnuovo function, zero-dimensional
schemes and singular plane curves. J. Alg. Geom., 9(4):663–710, 2000.

[Har86] Joe Harris. On the Severi problem. Invent. Math., 84(3):445–461, 1986.

[HT06] Brendan Hassett and Yuri Tschinkel. Potential density of rational points for K3
surfaces over function fields. Prepublication math.AG/0604222, to appear in Amer.
J. Math., 2006.

[Kei03] Thomas Keilen. Irreducibility of equisingular families of curves. Trans. Amer. Math.
Soc., 355(9):3485–3512, 2003.

[Kol96] Janos Kollár. Rational curves on algebraic varieties. Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer-Verlag, 1996.

[Nak02] Noboru Nakayama. Ruled surfaces with non-trivial surjective endomorphisms.
Kyushu J. Math., 56(2):433–446, 2002.

[Pal85] Séminaire Palaiseau. Géométrie des surfaces K3 : modules et périodes. Number 126
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