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Abstract—Early and accurate diagnosis of Coronavirus
disease (COVID-19) is essential for patient isolation and
contact tracing so that the spread of infection can be
limited. Computed tomography (CT) can provide important
information in COVID-19, especially for patients with
moderate to severe disease as well as those with worsening
cardiopulmonary status. As an automatic tool, deep
learning methods can be utilized to perform semantic
segmentation of affected lung regions, which is important

Manuscript received June 13, 2020; revised August 19, 2020; ac-
cepted September 26, 2020. Date of publication October 12, 2020; date
of current version December 4, 2020. This work was supported by NIH
under Grant RF1 AG052653. (Dufan Wu and Kuang Gong contributed
equally to this work.) (Corresponding authors: Mannudeep K. Kalra;
Quanzheng Li.)

Dufan Wu, Kuang Gong, Chiara Daniela Arru, Fatemeh Homayounieh,
Hui Ren, Kyungsang Kim, Pengcheng Xu, Zhiyuan Liu, Wei Fang,
Nuobei Xie, Shadi Ebrahimian, Mannudeep K. Kalra, and Quanzheng Li
are with the Department of Radiology, Massachusetts General Hospital,
Boston, MA 02114 USA (e-mail: dwu6@mgh.harvard.edu; kgong@
mgh.harvard.edu; carru@mgh.harvard.edu; fhomayounieh@mgh.
harvard.edu; hren2@mgh.harvard.edu; kkim24@mgh.harvard.edu;
pxu3@mgh.harvard.edu; zliu40@mgh.harvard.edu; wfang3@mgh.
harvard.edu; nxie@mgh.harvard.edu; sebrahimian@mgh.harvard.edu;
mkalra@mgh.harvard.edu; quanzheng@mgh.harvard.edu).

Bernardo Bizzo, Varun Buch, Nir Neumark, and Ittai Dayan are
with the MGH & BWH Center for Clinical Data Science, Boston,
MA 02114 USA (e-mail: bbizzo@mgh.harvard.edu; varun.buch@mgh.
harvard.edu; nir.neumark@mgh.harvard.edu; idayan@partners.org).

Won Young Tak, Soo Young Park, and Yu Rim Lee are with the
Department of Internal Medicine, School of Medicine, Kyungpook Na-
tional University, Daegu 41944, South Korea (e-mail: wytak@knu.ac.kr;
psy@knu.ac.kr; deblue00@naver.com).

Min Kyu Kang and Jung Gil Park are with the Department of Internal
Medicine, Yeungnam University College of Medicine, Daegu 41944,
South Korea (e-mail: kmggood111@naver.com; jgpark@ynu.ac.kr).

Alessandro Carriero is with the Radiologia, Azienda Ospedaliera
Universitaria Maggiore della Carità, 28100 Novara, Italy (e-mail:
profcarriero@virgilio.it).

Luca Saba is with the Radiologia, Azienda Ospedaliera Uni-
versitaria Policlinico di Cagliari, 09124 Cagliari, Italy (e-mail:
lucasabamd@gmail.com).

Mahsa Masjedi and Hamidreza Talari are with the Department of
Radiology, Shahid Beheshti Hospital, Kashan 00000, Iran (e-mail:
mahsami141@gmail.com).

Rosa Babaei and Hadi Karimi Mobin are with the Department
of Radiology, Firoozgar Hospital, Iran University of Medical Sci-
ences, Tehran 48711-15937, Iran (e-mail: rosa.babaei@gmail.com;
hadi.karimimobin@gmail.com).

Digital Object Identifier 10.1109/JBHI.2020.3030224

to establish disease severity and prognosis prediction.
Both the extent and type of pulmonary opacities help
assess disease severity. However, manually pixel-level
multi-class labelling is time-consuming, subjective, and
non-quantitative. In this article, we proposed a hybrid
weak label-based deep learning method that utilize
both the manually annotated pulmonary opacities from
COVID-19 pneumonia and the patient-level disease-type
information available from the clinical report. A UNet
was firstly trained with semantic labels to segment the
total infected region. It was used to initialize another
UNet, which was trained to segment the consolidations
with patient-level information using the Expectation-
Maximization (EM) algorithm. To demonstrate the
performance of the proposed method, multi-institutional CT
datasets from Iran, Italy, South Korea, and the United States
were utilized. Results show that our proposed method can
predict the infected regions as well as the consolidation
regions with good correlation to human annotation.

Index Terms—Computed tomography, COVID-19,
segmentation, lung, deep learning, severity, consolidation,
weak label.

I. INTRODUCTION

S
INCE November 2019, coronavirus disease 2019 (COVID-

19) has in total 7.1 million confirmed cases and caused

363,000 deaths worldwide as of June 6th, 2020 [1]. Symptoms

of COVID-19 include fever, cough, fatigue, with 17% to 29%

of the patients showing acute respiratory distress syndromes

(ARDS) [2]. Due to its high contagiousness (reproductive num-

ber = 3.28 [3]), early diagnosis of COVID-19 is critical so that

mitigating steps such as patient isolation and contract tracing

can be enforced to limit spread, and supportive treatment can

be initiated. Reverse-transcription polymerase chain reaction

(RT-PCR) assay is the gold standard for COVID-19 diagnosis. In

early phase of infection (4-10 days), RT-PCR assays have low

sensitivity (60-70%), which increases substantially over time

[4]–[6]. Although initial studies suggested a sensitivity as high

as 98% for computed tomography (CT) [5], later studies reported

that about 18% of non-severe COVID-19 pneumonia have no

imaging findings [7]. Per the prestigious Fleischner Society

recommendations, chest CT is not indicted for mild COVID-19
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infection but provides useful information in patients with mod-

erate to severe disease as well as in those with worsening pul-

monary functions [8]. Compared to RT-PCR, CT provides more

information on the confirmed patients, e.g., the severity of their

lung infection, the progression of the disease, and any complica-

tions such as the myocardial injury [9]. Relevant information is

crucial for patient management and making treatment planning.

Early CT imaging characteristics of COVID-19 are usually

bilateral peripheral focal or multifocal ground-glass opacities

(GGO). Crazy-paving patterns (GGO with superimposed inter-

and intralobular septal thickening) and consolidation become

the dominant CT findings in advanced or more severe disease

forms [6], [10]–[12].

Prior studies have reported subjective grading of CT images

by radiologists to calculate the severity score of COVID-19

pneumonia based on the type of pulmonary opacities (such as

GGO, crazing paving pattern, or consolidation) and the extent

of involvement of each lung lobe (based on visual perception of

percentage of lung lobe involved) to assess disease severity and

disease progression. However, such scoring system is inefficient,

not part of standard diagnostic interpretation, and prone to inter-

and intra-observer variations. For example, up to 25% lobar in-

volvement is given a score of 2 and 26% lobar involvement gets a

score of 3 for extent of opacities – such arbitrary classification is

extremely challenging and inconsistent with visual or qualitative

interpretation. Thus, developing an automated tool to quantify

the severity of COVID-19 based on CT images is an urgent and

unmet need to enhance diagnostic information and augment its

prognostic value. [13].

With the initial success on computer vision tasks [14], deep

learning methods have been widely applied to various medical

imaging areas, e.g., denoising, reconstruction, detection, and

segmentation. As for COVID-19 diagnosis, several groups have

performed pioneering studies showing that deep learning can

accurately detect COVID-19 and differentiate it from other lung

disease [15]–[22]. Apart from COVID-19 diagnosis, semantic

segmentation of the infected lung regions is crucial as it is a tool

for further quantitative disease monitoring [23]. Deep learning

methods have also been applied to COVID-19 CT image seg-

mentation. Specifically, Huang et al. [23] have developed a seg-

mentation network to perform serial quantitative CT assessment

of Covid-19. Shan et al. [24] have devised a human-in-the-loop

strategy during network training to reduce the manual labelling

efforts. Chaganti et al. [25] has designed a deep learning pipeline

to perform semantic segmentation and various severity measures

together. Based on the semantic segmentation developed, assess-

ment of features extracted from the infection regions can be used

for further disease prediction [26], [27].

Most of the existing method focuses on segmenting the total

infected areas without discriminating between GGO and con-

solidation. Chaganti et al. [25] used a threshold of -200 HU

to separate consolidation from the predicted infected regions.

Fan et al. [28] proposed a semi-supervised learning method to

combine limited semantic annotations of consolidation with CT

images not labeled for consolidation. In [28], a network was

initially trained on a small set of images with consolidation

annotations. The network was progressively tested on unlabeled

CT images which was then included in the training dataset. Here

we explored a different training strategy compared to [28], where

only image-level labels for consolidation were used. Several

noticeable methods have been proposed for weakly labeled seg-

mentation, including multi-instance learning [29], localization

maps [30], and expectation maximization (EM) [31], [32]. We

employed the EM framework in this work because of its ability

to easily incorporate prior functions on the target area.

In this work, we proposed a deep learning approach to learn

the infection and consolidation information from CT images

based on hybrid weak labels: patient-level multi-class infor-

mation and manually labelled infection contours. A UNet was

first trained with supervised learning to predict the infected

regions based on strong semantic labels. Then it was fine-tuned

to predict the consolidation regions based on patient-level labels

only using EM algorithm. Since consolidation usually has higher

Hounsfield unit (HU), a prior function was proposed to model

the probability of a pixel being consolidation. The model was

trained on CT images from Iran and validated on images from

various datasets from Iran, Italy, South Korea, the United States

and MedSeg.

Compared to existing studies, the main contributions of this

work are as follows: (1) The EM algorithm was applied for

weakly supervised learning of the segmentation of consolida-

tion in COVID-19 CT datasets. Compared to the progressive

learning framework [28], the proposed method does not need

any starting semantic labels for the consolidation; (2) A novel

prior function was proposed to model the consolidation in

lung, which combined the data-driven network training with the

expert-knowledge modeling; (3) More detailed derivation of the

EM learning algorithm were derived compared to [31], which

will be given in the appendix.

This paper is organized as follows. Section II introduces the

proposed framework and implementation details. Experiment

set-up and dataset details are presented in section III. Experi-

mental results are shown in section IV, followed by discussions

in section V. Finally, conclusions are drawn in Section VI.

II. METHODOLOGY

A. Overview

The proposed deep learning method1 consisted of the follow-

ing two steps:

Step 1: training a semantic segmentation network for infected

lung regions based on strong label.

Step 2: training a semantic segmentation network for consol-

idation based on patient-level weak label.

In step 1, a 2D UNet [33] was employed to segment the

infection regions from the CT images (UNet-1). The training

labels were CT images with pixel-level annotation of being in-

fected or not. In step 2, UNet-1 was further finetuned to segment

consolidation from the infected regions (UNet-2). A subset of

the training images was annotated regarding the existence of

consolidation for each patient. The consolidation network was

trained in the framework of EM [31] to learn the segmentation

of consolidation from patient-level annotations. A flowchart of

the entire training process is given in Fig. 1.

1Code available at: https://github.com/wudufan/lung_seg_em
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Fig. 1. Flowchart of the proposed hybrid label learning. Step 1 trains
the infected region segmentation network UNet-1 using fully supervised
learning. UNet-1 also provides initialization for the consolidation seg-
mentation network UNet-2. Step 2 trains UNet-2 combining the image-
level label zi and prior probability φ2 built from images xi. The solid
brown lines are the procedures that are involved in both training and
testing, whereas the dashed blue lines are training procedures only.

UNet-1 and UNet-2 had identical structures with 1-channel

output activated by Sigmoid function. Both took 7 adjacent

CT slices as input and output a two-class segmentation of the

central slice. They used the standard UNet structure [33] and

detailed parameters will be introduced in section III-B. To make

the network concentrate on features inside the lung only, the

lung masks were generated by a pretrained lung segmentation

network [34] and applied to the CT images before being fed into

the UNets.

B. Segmentation of the Infected Region
With Strong Labels

We used 2D UNet with smooth Dice loss2 to learn the

segmentation of infected regions. Denote the semantic label of

the training image i as li ∈ {0, 1}J , where J is the number of

pixels in the labels. For pixel j, we have:

lij =

{

1, Infected

0, Not infected
. (1)

Denote UNet-1 as f(xi; Θ) where xi is the ith training image

and Θ is the network parameters to be learned. The Dice loss

was employed for the training as:

Θ1 = argmin
Θ

−
1

N

∑

i

2li · f (xi; Θ) + σ

‖li‖1 + ‖f (xi; Θ) ‖1 + σ
, (2)

whereN is the number of training images andσ is the smoothing

parameter which was set to 1 based on experience. After Θ was

learned, a binary segmentation of the infected regions was given

for each image x where pixel j was infected if f(x; Θ1)j > 0.5.

C. EM Framework for Weak Label Segmentation

We employed the EM framework [31] to solve the weakly la-

beled segmentation problem. Denote UNet-2 as f(xi; Θ), which

2https://github.com/jocicmarko/ultrasound-nerve-segmentation

outputs the probability of each pixel belonging to consolidation.

Denoting the image-level annotation as zi for image i, where:

zi =

{

1 Has consolidation

0 Otherwise
, (3)

The object function was to minimize the following log-

likelihood function:

Θ2 = argmin
Θ

−
∑

i

logP (zixi, f (xi; Θ)) (4)

where P (zixi, f(xi; Θ)) is the probability that image i belongs

to class zi given the imagexi network output f(xi; Θ). The exact

formula of the probability function is not required.

The EM algorithm introduced a latent discrete variable y ∈
{0, 1}J , which has meaning of pixelwise segmentation. Specif-

ically, for pixel j:

yj =

{

1 Consolidation

0 Otherwise
. (6)

For easier computation, the prior distribution of the image

label zi given image xi and the latent variable y is considered

to be pixelwise separable:

P (zi|y,xi) = c (zi,xi)
∏

j

ψ (zi, yj , xij) , (7)

wherexij is the jth pixel in imagexi; c(zi,xi) is a normalization

factor so that P (zi|y,xi) is a probability function, i.e.,

P ( zi = 0|y,xi) + P ( zi = 1|y,xi) = 1 (8)

The basis function ψ(zi, yj , xij) is defined as:

ψ (zi, yj , xij) =

{

φ (zi, xij) , yj = 1
1− φ (zi, xij) , yj = 0

. (9)

For the conciseness of the paper, we will directly give the final

equations for the EM algorithm here. Detailed derivation can be

found in the appendix as well as in [31]. The EM algorithm

iteratively alternates between the following Expectation (E) and

Maximization (M) steps:

E-Step: given network parameter Θ′ from the previous itera-

tion, the latent variable y is solved pixelwise under the hard-EM

approximation (using max instead of mean):

yij =

{

1 fj (xi; Θ
′) + φ (zi, xij) > 1

0 Otherwise
, (10)

where yij is the jth pixel of yi, which is the optimized latent

variable for sample i. fj(xi; Θ
′) is the output of the current

network at the jth pixel.

M-step: The network parameter Θ is optimized using the

smooth Dice loss (2) by replacing the labels li with yi:

Θ∗ = argmin
Θ

−
1

N

∑

i

2yi · f (xi; Θ) + σ

‖yi‖1 + ‖f (xi; Θ) ‖1 + σ
. (11)

D. Prior Modeling for Consolidation

The key to the success of EM algorithm is the choice of prior

probability model φ(zi, xij) in (9). One choice of φ is to use a

constant bias [31] for all the pixels according to the image-level

https:&sol;&sol;github.com&sol;jocicmarko&sol;ultrasound-nerve-segmentation
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TABLE I
EM TRAINING ALGORITHM

label zi:

φ1 (zi, xij) =

{

b1, zi = 1
0, zi = 0

, (12)

where b1 ∈ [0, 1] is the posterior probability of all pixels in

image i being consolidation if consolidation presents.

However, (12) does not model any prior knowledge of con-

solidation into the model and the performance may be limited.

It is known that consolidation usually has higher HU compared

to GGO. Hence, we proposed the HU-based probability model

as:

φ2 (zi, xij) =

{

min
(

1, 1
1+exp{−k2(xij−b2)}

+ 1
2

)

, zi = 1

0, zi = 0
,

(13)

where k2 and b2 are hyperparameters to control the probability

model. The probability of pixel j being consolidation increases

with its HU value. When xij ≥ b2, φ2 (1, xij) = 1, which

means that the pixel must be consolidation. k2 controls how

steep the function increases. Larger k2 will make the function

closer to a step function. There is also an offset of 0.5 to the

Sigmoid function, which means that for images with label 1,

all the pixels were considered to have at least half chance of

being consolidation. Another reason to add this 0.5 bias was

that according to [31], the posterior probability function should

bias towards foreground (consolidation), otherwise it may suffer

from underestimation.

The overall training algorithm is given in Table I. We con-

strained the consolidation region within the infected region

mi ∈ {0, 1}J predicted by UNet-1. The algorithm can be easily

implemented based on the supervised learning framework. The

only difference compared to a supervised training framework

is the estimation of training label yi at each iteration. The

estimation was done in the E-step (steps 3-7). The training

images first went through the network to generate predictions

fi; then it was combined with the posterior probability φ to

generate the training label yi for the M-step. The M-step can be

TABLE II
DATASET INFORMATION

implemented using standard network training algorithms such

as the Adam optimizer [35].

E. Severity and Consolidation Quantification

The severity and consolidation quantifications are given as:

severity score =
area of infected region

area of lung
, (14)

and

consolidation score =
area of consolidation

area of lung
. (15)

III. EXPERIMENTAL SETUPS

A. Dataset

This study was approved by the respective Institutional Re-

view Boards (IRBs) at Massachusetts General Brigham under

protocol number 2020P000819 and 2016P000767. Informed

consent forms were waived due to the retrospective nature of

this study. The dataset consists of 225 unenhanced CT ex-

aminations of RT-PCR assay positive COVID-19 patients per-

formed between January 1, 2020 and March 30, 2020, from

various hospitals in Iran, Italy, South Korea, and the United

States. The chest CT examinations were acquired on 6-256 slice

multidetector-row scanners from three CT vendors (GE Health-

care, Waukesha, Wisconsin, US; Philips Healthcare, Eindhoven,

The Netherlands; Siemens Healthineers, Forchheim, Germany).

To validate the segmentation of consolidation regions, we also

incorporated a public dataset from MedSeg,3 where 9 CT images

from Radiopeadia were annotated for regions of GGO and

consolidation. A summary of the datasets is given in Table II.

All the images were resampled to 256× 256 resolution in the

axial plane. If an image has a slice thickness thinner than 4 mm,

it was resampled to 5 mm.

3http://medicalsegmentation.com/covid19/

http:&sol;&sol;medicalsegmentation.com&sol;covid19&sol;
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Among the 225 CT images from our dataset, 149 were anno-

tated for infected regions by two post-doctoral research fellows

(with 1-2 years of experience in chest CT research), under the

supervision of a subspecialty chest radiologist (13 years of

clinical experience in thoracic imaging). The MedSeg dataset

consists of 9 CT images from Radiopaedia with 829 slices in

total. A radiologist segmented GGO and consolidation for each

slice.

There were 22 out of 97 patients with semantic infection labels

for the South Korean dataset. These 22 patients were randomly

chosen before the development of the network. Annotating only

part of the 97 patients saved valuable manual efforts due to

the extensive works needed for the semantic annotation. The

current testing dataset provided more than 7000 2D slices in

total which is comparable to some of the existing studies [28]. A

valid verification of UNet-1 was also reached with small p-value

for the Pearson correlation between predicted and annotated

infection areas. It also led to a more balanced testing dataset

across different sites, so that the evaluation of UNet-1 will not

be dominated by one single site.

The infection segmentation network (UNet-1) was trained on

the images from Firoozgar Hospital (80 training and 7 valida-

tion) and tested on the 62 images with annotated infection areas

from the other hospitals in our dataset.

To train the consolidation segmentation network (UNet-2), 19

patients from Firoozgar Hospital were confirmed by radiologists

if the patient has only GGO or has both GGO and consolidation

(15 had only GGO and 4 had both GGO and consolidation).

UNet-2 was further validated on the MedSeg dataset to evaluate

the accuracy of consolidation segmentation compared to the

radiologist’s annotation. It was also validated on the 138 testing

CT images, where the prediction from UNet-2 was compared

to the radiology reports. The patients were grouped to consoli-

dation and non-consolidation groups using keywords including

“consolidation” and “consolidated”. The consolidation scores

(15) were calculated for each patient and statistical testing was

done between the two groups.

B. Parameters

Both UNet-1 and UNet-2 have 5 down-sampling blocks and

4 up-sampling blocks. Each block consists of two convolution

layers with batch normalization and leaky ReLU activation. The

number of channels after the first convolutional layer is 32.

The number of channels was doubled after each down-sampling

block and halved before each up-sampling block. Stride-two

and transposed convolutions were employed for down-sampling

and up-sampling, respectively. Concatenation between encoder

and decoder paths were replaced by adding operation to reduce

training parameters. The output layer is a1× 1 convolution layer

with 1-channel output and Sigmoid activation.

Both networks take 7 consecutive axial slices as the input and

output the segmentation map of the central slice. The value in the

images was normalized to (HU + 1024)/110 before being fed

into the network. Various random transforms including rotation,

translation, zooming, and flipping were incorporated during the

training.

Fig. 2. Severity based on manual segmentation (label severity) versus
the predicted severity. The orange line plotted the ideal prediction curve
where the predicted severity score equals to the labelled severity score.
Label severity between [0, 0.1] is shown in the zoom-in plot.

UNet-1 was trained on batches of 16 by the Adam algorithm

for 200 epochs in total. The learning rate is 10−2, 10−3 and 10−4

for epoch 1-50, 50-100, and 100-200.

UNet-2 was initialized from UNet-1 and trained with batch

size of 16. Adam algorithm was used in the M-step. 50 epochs

were trained with learning rate of 0.0005. We implemented

both φ1 and φ2 as in (12) and (13) as the prior function and

tried various hyperparameters b1, b2 and k2. For φ1, b1 = 1
achieved the best Dice coefficient on the MedSeg dataset, which

is equivalent to setting all the pixels in images with consolidation

to consolidation. For φ2, b2 = 9, k2 = 0.5 achieved the best

Dice. b2 = 9 is equivalent to -34 HU before the gray value

normalization.

We also implemented thresholding as the baseline method

[25], where pixels larger than -200 HU inside the predicted

infected region were considered as consolidation.

C. Metrics

Performance of UNet-1 was evaluated on the 62 testing im-

ages by both the Dice coefficient and severity score defined in

(14) compared to the radiologists’ annotation.

For UNet-2, the segmentation performance was evaluated on

the 9 CT images from MedSeg dataset with the Dice coefficients.

The pixelwise true positive and false positive rate were also

calculated inside the predicted infected regions. It was also

evaluated on the 138 testing CT images to distinguish consolida-

tion and non-consolidation groups using the consolidation score

defined in (15).

IV. RESULTS

A. Severity Segmentation

The severity quantification results are given in Fig. 2. A

Pearson correlation coefficient of r = 0.825 (p < 0.001) was

achieved between the predicted and the labelled severity score.

A mean Dice coefficient of 0.632 was achieved with the segmen-

tation network, which was comparable to the value reported in

[28]. A reasonable performance of UNet-1 is necessary since it
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Fig. 3. The Dice coefficient on the MedSeg dataset with different b2
and k2. The solid lines with hollow points show the results with prior
function φ2. The purple dash-dotted line is the result from φ1 with b1 = 1.
The brown dashed line is the result from the thresholding with -200 HU.
The b2 values 9.5, 9.0, 8.5, 8.0 correspond to 21, -34, -89, and -144 HUs
respectively.

provided the essential basis for the following weakly supervised

learning of the consolidation segmentation.

B. Consolidation Segmentation

Fig. 3 shows the Dice coefficient of UNet-2 with φ1 and φ2

and the thresholding method on the MedSeg testing images.

Thresholding by -200 HU could achieve a mean Dice coefficient

of 0.530 of the consolidation regions. UNet-2 with φ1 alone

achieved a poor Dice coefficient of 0.400, which indicates that

φ1 cannot efficiently extract features of consolidation from the

weak labels. The proposed prior function φ2 increased the Dice

coefficient to 0.628 with b2 = 9.0 and k2 = 0.5. The Dice

coefficient generally increases with larger b2 and keeps stable

regarding k2. However, the performance with b2 = 9.5 becomes

not very stable.

The trade-off between the true positive rate (TPR) and false

positive rate (FPR) with different parameters are given in Fig. 4.

The thresholding method will underestimate the consolidation

regions, with a good specificity but relatively low sensitivity

(TPR = 0.421, FPR = 0.006). EM algorithm with φ1 will

overestimate the consolidation, with a higher sensitivity but low

specificity (TPR = 0.624, FPR = 0.067). EM algorithm with φ2

at b2 = 9.0 and k2 = 0.5 had TPR= 0.555 and FPR= 0.008. A

receiver operator curve (ROC) was fitted by exponential function

for all the data points from φ2 and is plotted as the black dashed

line in Fig. 3. It can be observed that EM algorithm with the

proposed φ2 has better TPR-FPR trade-off compared to both

thresholding and φ1. Increasing b2 will reduce the FPR but also

reduce the TPR. This is because that larger b2 raises the threshold

of consolidation in φ2 and the latent labels yi will bias towards

GGO.

Fig. 5 shows two slices of testing images from the MedSeg

dataset with the GGO and consolidation segmentation overlay.

The MedSeg dataset had very detailed annotation where the

vessels were excluded from the GGO. However, in the training

Fig. 4. The TPR and FPR trade-offs on the MedSeg dataset. Black
dashed line is a ROC fitted from results of UNet-2 with φ2 using different
b2 and k2. Exponential function TPR = FPRγ was used for the ROC
fitting.

dataset our annotation did not particularly excluded the vessels.

Hence, the predicted infected regions (green lines) did not

exclude the vessels as the annotation.

It can be observed from Fig. 5 that thresholding significantly

underestimated the consolidations compared to the annotations.

The predicted consolidation regions are also very scattered.

Meanwhile,φ2 can generate continuous regions of consolidation

that looks similar to the radiologists’ annotation, whereas φ1

generally failed to stably predict the consolidation regions.

Fig. 5 also demonstrates that thresholding and φ2 have differ-

ent source of false positive (FP). The FP of thresholding mostly

comes from the vessels which have higher HU compared to lung

tissue. The FP of φ2 mostly comes from errors on the consolida-

tion boundaries. To further verify this, we dilated the annotations

with different dilation rates (0 to 9 pixels) and calculated the

FPR at each dilation rate. The results are shown in Fig. 6. The

FPR of both thresholding and φ2 decreased with the increasing

dilation rate. However, FPR of φ2 decreased much more than

thresholding, and it was less than the FPR of thresholding for all

the dilation rates larger than 0. This indicates that the FP pixels

of φ2 are closer to the labels compared to thresholding. These

pixels are usually because of the slight errors on the boundaries

of the same region, rather than segmentation of an incorrect

region.

It is also worth noticing that thresholding method with -200

HU as the threshold has already generated many FPs on the

vessels. Further reducing the threshold may improve the TPR by

including more pixels near the consolidation, but it will further

deteriorate the FPR by including more vessels as consolidation.

C. Statistical Testing of Consolidation Score

The 138 testing patients were divided into consolidation and

non-consolidation groups according to their radiology reports.

Fig. 7 shows the box plot of the consolidation score predicted

by UNet-2 with φ2. The two groups were significantly different,

with median value of 0.0403 versus 0.0043, and p-value of 2×
10−9 under Mann -Whitney U test.
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Fig. 5. Infection and consolidation segmentation results on the MegSeg dataset for two different slices. Green lines show the boundary of GGO
and read lines show the boundary of consolidation.

Fig. 6. The FPR of thresholding and EM with φ2 (b2 = 9.0, k2 = 0.5)
changing with different dilation rates of the labels.

Fig. 7. Box plot of the consolidation scores in the consolidation and
non-consolidation groups. Blue dots show individual data points’ con-
solidation scores.

Most non-consolidation patients received lower consolida-

tion scores when compared to patients with consolidation

(p< 0.0001). There were two outliers which shows dramatically

higher consolidation scores compared to the rest images in the

non-consolidation group. Further investigation shows that these

two images were overestimated because of the interlobular septal

thickening, which had relatively higher HU compared to GGO.

UNet-2 misclassified them into consolidation due to lack of

training samples with interlobular septal thickening. As com-

pared to groundglass opacities, both crazy-paving (groundglass

opacities + septal thickening) and consolidation represent more

advanced and severe disease, and therefore, this misclassifica-

tion does not necessarily represent limitation of our algorithm.

V. DISCUSSION

In this work, we proposed a deep learning method to predict

the infection and consolidation regions of the COVID-19 pneu-

monia based on chest CT. It demonstrated improved segmenta-

tion of consolidation compared to the thresholding method [25]

and EM training without the prior model [31].

The main contribution of this work is the combination of

pixel-level labels with patient-level type information through

the proposed hybrid weak label-based training. A novel prior

function φ2 was proposed for the segmentation of consolidation

in the EM framework. By incorporating the prior knowledge

that consolidation usually has higher HU value into φ2, the

proposed network achieved improved performance compared to

thresholding method and EM without such a prior. The proposed

method also showed robustness for data coming from different

sources, international sites, and protocols.

Although UNet-1 performs a standard segmentation task and

is trained in a conventional supervised manner, a good per-

formance is still crucial because UNet-1 is the basis for the

following consolidation segmentation. UNet-1 also provides the
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total infected region to calculate the severity score (14), which

is clinically important for the estimation of the lung function.

According to Fig. 2, the predicted scores were underestimated

compared to the label. One of the main causes is that the model

tends to miss regions with very mild GGO infections, which are

not very different from normal lung tissue. Furthermore, the an-

notations also tend to dilate from the visible boundaries of GGO.

Meanwhile, the model predictions are closer to the boundaries,

leading to smaller regions compared to the annotation.

We used the EM algorithm as the framework for the weakly

labeled training. From the derivation of section C-2, the pro-

posed prior function φ2 has clear physical meaning that it is the

probability of a pixel belonging to consolidation given its pixel

value and the image label, which was modeled by a Sigmoid

function. We used b2 = 9.0 as the parameter of choice for φ2,

which means that pixels larger than -34 HU inside the infected

regions were considered as consolidation, and the pixels whose

value were closer to -34 HU were considered to have higher

probability of being consolidation.

It was found that further increasing the threshold b2 to 9.5 led

to instable performance regarding k2. Further inspection showed

that at b2 = 9.5, k2 = 1.25 the model had low sensitivity

and only included the densest consolidations. The most possible

reason is that b2 = 9.5 corresponds to 21 HU, which is higher

than most consolidation pixels. When k2 is small, the difference

on φ2 between less dense and denser consolidations is not too

large, and less dense consolidations could be included into the

latent label y. When k2 is large, φ2 becomes very steep and

since most consolidation pixels are below the changing point

b2, the difference between their weights is small, which leads to

similar weights between less dense and denser consolidations.

However, when k2 is at a certain value, the denser consolidations

have considerably larger weights than the less dense ones. In

consequence, only very dense consolidations are considered

which leads to the low sensitivity and Dice.

Currently the thresholding method is considered as a re-

liable method to separate GGO and consolidation [25]. We

also observed a good Dice coefficient using thresholding only

compared to the proposed weakly labeled learning. However,

further investigation found that thresholding tends to misclassify

vessels inside the infected regions to consolidation, as they have

higher HU compared to GGO and other lung tissues. Most of

the FPs in thresholding results came from these vessels, which

are far from real consolidation regions. Although the proposed

approach had similar FPR compared to thresholding, these FPs

are mostly from difference between the boundaries of the labeled

and predicted consolidation.

We believe that deep learning-based quantification can help

address the need in patients with worsening respiratory sta-

tus and moderate or severe infection where chest CT scan is

recommended, and often performed [8]. The developed deep

learning-based CT segmentation can serve as an important tool

to help assess disease severity and progression as well as to

predict prognosis. The predicted severity score of COVID-19

pneumonia along with other clinical and laboratory markers such

as patient age, comorbidities, and oxygen saturation can help

caretaking physicians determine patients in need of intubation

or ICU admission. Although there are no known and approved

treatment for COVID-19 pneumonia, multiple, ongoing clinical

trials involving antiviral agents and antibodies can benefit from

the proposed method which helps quantify the disease burden

and thus, assess disease response or progression in an objective

manner. Consistent scoring facilitated by the developed auto-

matic tool can empower both cross-sectional and longitudinal

comparisons, enable us better to understand the populational

characteristics and the temporal evolution of the COVID-19

disease.

The proposed method has the benefit of segmenting con-

solidation regions without additional efforts to semantically

annotate them on the CT images. Despite the limited num-

ber of weakly-labeled patients used to train the consolidation

network, the network demonstrated promising performance on

the MedSeg testing dataset which came from different sources

with the training data. It can be used alone or combined with

semantic labels for semi-supervised learning [28]. Inclusion of

weakly labeled data can significantly increase the number of

training data and generalizability to different protocols. The

proposed method may also be applied to segmentation tasks

beyond pulmonary consolidations, as long as the target has

pixelwise features that can be modeled, e.g., higher/lower pixel

values compared to the background.

VI. CONCLUSION

In this work we have proposed a deep learning method for

infection and consolidation segmentation from CT images based

on hybrid week labels. The network was initially trained with

single-class contours and fine-tuned through weak patient-level

labels. Evaluations based on datasets from multiple hospitals

across the world demonstrate the effectiveness of the proposed

framework. Future work will focus on more evaluations and

score calculation for other infection types.

APPENDIX

Here we give the detailed derivation of the EM algorithm

(10) and (11). Compared to the original EM framework [30],

our derivation supplemented some details such as the existence

of the pixelwise separable basis φ is (7).

Given UNet-2 f(x; Θ) and the image labels zi, we aim to

minimize the following log-likelihood function

Θ2 = argmin
Θ

−
∑

i

logP (zixi, f (xi; Θ)) (16)

The following equation always holds regardless of the choice

of the latent variable y:

P (zixi, f (xi; Θ))

=

∑

y

P (zi|y,xi, f (xi; Θ))P (y|xi, f (xi; Θ)) (17)

Here we selected y ∈ {0, 1}J as in (6) with the following two

assumptions:

First, y connects zi and f(xi; Θ):

P (zi|y,xi, f (xi; Θ)) = P (zi|y,xi) ; (18)
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Second, f(xi; Θ) connects xi and y:

P (y|xi, f (xi; Θ)) = P (y|f (xi; Θ)) . (19)

Substitute (18) and (19) into (17) and we have:

P (zixi, f (xi; Θ)) =
∑

y

P (zi|y,xi)P (y|f (xi; Θ)) . (20)

EM algorithm is essentially following the optimization trans-

fer principle [36]. In the E-step, which builds a surrogate

function of the original problem (16). The surrogate is then

optimized during the M-step. E-step builds the surrogate func-

tion Q1(ΘΘ′) by taking the expectation of the log likelihood

logP (y, zi|xi, f(xi; Θ)) [37] as:

Q1 (Θ|Θ′) = −
∑

i

∑

y

P (y|zi,xi, f (xi; Θ
′))

× logP (y, zi|xi, f (xi; Θ)) , (21)

where Θ′ is the network parameters from the previous iteration.

According to (18) and (19), the joint distribution can be written

as:

logP (y, zi|xi, f (xi; Θ))

= logP (y|xi, f (xi; Θ)) + logP (zi|y,xi, f (xi; Θ))

= logP (y|f (xi; Θ)) + logP (zi|y,xi) . (22)

Substitute (22) into (21) and remove all the terms irrelevant

to Θ, the surrogate function becomes:

Q2 (ΘΘ′) = −
∑

i

∑

y

P (y|zi,xi, f (xi; Θ
′))

× logP (y|f (xi; Θ)) . (23)

Because summation over all possible y is not practical, the

hard-EM approximation was taken, where the single point y

which maximizesP (y|zi,xi, f(xi; Θ
′))was taken instead of the

expectation. Denote yi as the y that maximize the probability

for image i. It can be calculated as:

yi = argmax
y

logP (y|zi,xi, f (xi; Θ
′))

= argmax
y

log
P (zi|y,xi, f (xi; Θ

′))P (y|xi, f (xi; Θ
′))

P (zi|xi, f (xi; Θ′))

= argmax
y

logP (zi|y,xi) + logP (y|f (xi; Θ
′)), (24)

where in the last equality, the term without y was dropped, and

equations (18) and (19) were used to remove f(xi; Θ
′) in the

first term and xi in the second term, respectively.

According to the definition of y in (6), P (y|f(xi; Θ
′)) should

be pixelwise separable, leading to:

logP (y|f (xi; Θ
′)) =

∑

j

logP (yj |fj (xi; Θ
′)) . (25)

For the prior distribution P (zi|y,xi), according to Bayes’

theorem, we have:

P (zi|y,xi) =
P (y,xi|zi)P (zi)

P (y,xi)
. (26)

By modeling the joint (conditional) distributions as indepen-

dent pixelwise, we have:

P (zi|y,xi) =
P (zi)

∏

j P (yj , xij |zi)
∏

j P (yj , xij)

= P (zi)
∏

j

P (yj , xij |zi)

P (yj , xij)

= P (zi)
∏

j

ψ0 (zi, yj , xij). (27)

ψ in (9) can be derived from ψ0 by multiplying proper normal-

ization factors. Let

ψ (zi, yj , xij) =
ψ0 (zi, yj , xij)

ψ0 (zi, 1, xij) + ψ0 (zi, 0, xij)
, (28)

and ψ will satisfy the sum-to-one requirement in (9). Substitute

(28) into (27) and we will reach

P (zi|y,xi) = P (zi)
∏

j

[ψ0 (zi, 1, xij) + ψ0 (zi, 0, xij)]

×
∏

j

ψ (zi, yj , xij)

= c (zi,xi)
∏

j

ψ (zi, yj , xij) (29)

which gives equation (7).

Substitute (25) and (29) into (24) and remove the terms

not relevant to y, we can get the separable distribution to be

maximized as:

yi = argmax
y

∑

j

logP (yjfj (xi; Θ
′))ψ (zi, yj , xij) ,

(30)

which can be solved pixelwise as

yij = argmax
yj

P (yjfj (xi; Θ
′))ψ (zi, yj , xij) . (31)

After yi is solved, the hard-EM approximation of (23) be-

comes:

Q (ΘΘ′) = −
∑

i

logP (yi|f (xi; Θ)) , (32)

which is the final surrogate function from the E-step of the EM

algorithm. Minimization of Q(Θ|Θ′) leads to the M-step given

in (11).

To solve (31), denote fij = fj (xi; Θ
′) and φij = φ(zi, xij),

we have

P (yjfj (xi; Θ
′)) =

{

fij , yj = 1
1− fij , yj = 0

, (33)

and

ψ (zi, yj , xij) =

{

φij , yj = 1
1− φij , yj = 0

. (34)

Note that (34) is the same with (9). The joint probability

function becomes:

P (yjfj (xi; Θ
′))ψ (zi, yj , xij)

=

{

fijφij , yj = 1
(1− fij) (1− φij) , yj = 0

(35)
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Hence, the solution to (31) is:

yij =

{

1 fijφij > (1− fij) (1− φij)
0 Otherwise

. (36)

Because (1− fij) (1− φij) = 1− fij − φij + fijφij , (36)

can be further reduced to:

yij =

{

1 fij + φij > 1
0 Otherwise

, (37)

which is the same with the E-step given in (10).
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