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Abstract  

 

Automatic severity assessment and progression prediction can facilitate admission, triage, and 

referral of COVID-19 patients. This study aims to explore the potential use of lung lesion 

features in the management of COVID-19, based on the assumption that lesion features may 

carry important diagnostic and prognostic information for quantifying infection severity and 

forecasting disease progression.  

 

A novel LesionEncoder framework is proposed to detect lesions in chest CT scans and to 

encode lesion features for automatic severity assessment and progression prediction. The 

LesionEncoder framework consists of a U-Net module for detecting lesions and extracting 

features from individual CT slices, and a recurrent neural network (RNN) module for learning 

the relationship between feature vectors and collectively classifying the sequence of feature 

vectors.  

 

Chest CT scans of two cohorts of COVID-19 patients from two hospitals in China were used 

for training and testing the proposed framework. When applied to assessing severity, this 

framework outperformed baseline methods achieving a sensitivity of 0.818, specificity of 

0.952, accuracy of 0.940, and AUC of 0.903. It also outperformed the other tested methods in 

disease progression prediction with a sensitivity of 0.667, specificity of 0.838, accuracy of 

0.829, and AUC of 0.736. The LesionEncoder framework demonstrates a strong potential for 

clinical application in current COVID-19 management, particularly in automatic severity 

assessment of COVID-19 patients. This framework also has a potential for other lesion-focused 

medical image analyses. 

 

 

Keywords: chest CT, COVID-19, severity assessment, progression prediction, U-Net, RNN   
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1. Introduction 

 

The rapid escalation in the number of COVID-19 infections exceeded the capacity of 

healthcare systems to respond in many nations, and consequently reduced patient outcomes [1]. 

In such circumstances, it is of paramount importance to develop efficient diagnostic and 

prognostic models for COVID-19, so that the patients’ care can be optimised. 

 

Chest CT scans have been found to provide important diagnostic and prognostic information 

for COVID-19 [2-7]. Although there is still debate on the use of chest CT in screening and 

diagnosing COVID-19 cases [8], a surge of computational methods for chest CT have been 

developed to support medical decision making during the current pandemic [9-15]. Study 

population, model performance, and reporting quality vary substantially between studies. An 

in-depth comparison of these studies can be found in a recent systematic review [16].  

 

In addition to diagnostic and screening models, several prediction models have been proposed 

based on an assessment of lung lesions. There are three typical classes of lesions that can be 

detected in COVID-19 chest CT scans: ground glass opacity (GGO), consolidation, and pleural 

effusion [3,4]. Imaging features of the lesions including shape, location, extent and distribution 

of involvement of each abnormality, have been found to have good predictive power for 

mortality [17] or hospital stay [18]. These features, however, are mostly derived from the 

delineated lesions, and so depend heavily on lesion segmentation. Manual delineation of lesions 

often takes 1 to 5 hours, which substantially undermines clinical applicability of these methods.  

 

Automatic lung lesion segmentation for COVID-19 has been actively investigated in recent 

studies [19,20]. A VB-Net model based on a neural network was proposed to segment the 

infection regions in CT scans [19]. This model, when trained using CT scans of 249 COVID-19 

patients, achieved a Dice score of 0.92 between automatic and manual segmentations, and 

successfully reduced the delineation time to less than 4 minutes. In another recent study [20], a 

lesion segmentation model based on the 3D-Dense U-Net architecture was proposed and 

trained on CT scans of a combination of 160 COVID-19, 172 viral pneumonia, and 296 

interstitial lung disease patients. Although the lesion masks were not compared voxel-to-voxel, 

the volumetric measures of lesions, such as percentage of opacity and consolidation, showed a 

high correlation (0.97-0.98) between automatic and manual segmentations.  

 

Previous studies [19,20] have suggested that lesion features might be a useful biomarker for 

COVID-19 patient severity assessment, but the effectiveness of lesion features is yet to be 

verified. Lesion features may have additional applications in the management of COVID-19, 

which need to be investigated further. In this study, we aim to test the effectiveness of using 

lesion features in COVID-19 patients for disease severity assessment, and to explore the 

potential use of lesion features in predicting disease progression.  

 

Automatic severity assessment and progression prediction will substantially facilitate 

admission, triage, and referral of patients. The first goal of this study is to develop a method for 

assessing severity of COVID-19 patients based on their baseline chest CT scans. Four severity 

types: mild, ordinary, severe, and critical, can be defined based on a core outcome set (COS) 

encapsulating clinical symptoms, physical and chemical detection, viral nuclei aid detection, 

disease process, etc. [21]. Supportive treatments, such as supplementary oxygen and 

mechanical ventilation, are usually required for severe and critical cases [22]. We represent the 

assessment severity task as a binary classification problem, i.e., to classify a patient as a mild / 

ordinary case (mild class) or a severe / critical case (severe class).  
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The second goal of this study is to predict disease progression for the mild / ordinary cases 

based on their baseline CT scans. In other words, we aim to predict which of the mild/ordinary 

severity patients are likely to progress to the severe / critical category (converter class) in the 

short term (within 7 days), and which patients would remain stable or recover (non-converter 

class), based on the assumption that lesion features may carry important prognostic information 

for forecasting disease progression. We again consider the task as a binary classification 

problem, i.e., to classify the non-converter cases and converter cases. Figure 1(a) presents an 

example of a COVID-19 case with mild symptoms. In less than 7 days, the patient’s symptoms 

rapidly worsened and progressed to severe. Figure 1(b) is an example of a non-converter case 

whose symptoms progressed slowly and remained mild 7 days after the baseline CT scan.  

 

 
Figure 1 Examples of converter and non-converter cases. (1) a mild case progressed to severe 

within 7 days; (2) a mild case did not progress to severe within 7 days.  

 

To achieve the above two goals, a novel LesionEncoder framework is proposed to detect 

lesions in CT scans and encode lesion features for automatic severity assessment and 

progression prediction. The LesionEncoder framework consists of two modules: (1) a U-Net 

module which detects lesions and extracts features from CT slices, and (2) a recurrent neural 

network (RNN) module for learning the relationship between feature vectors and classifying 

the sequence of feature vectors as a whole.  

 

We applied the LesionEncoder framework for both severity assessment and progression 

prediction. With access to data of two COVID-19 confirmed patient cohorts from two 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.03.20167007doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.03.20167007
http://creativecommons.org/licenses/by-nc-nd/4.0/


hospitals, we trained our proposed model with CT scans of a cohort of patients from one 

hospital and tested it on an independent cohort from the other hospital. The models built on the 

LesionEncoder framework outperformed the baseline models that used lesion volumetric 

features and general imaging features, demonstrating a high potential for clinical applications 

in the current COVID-19 management, particularly in automatic severity assessment of 

COVID-19 patients. This framework may also have a strong potential in similar lesion-focused 

analyses, such as neuroimaging based brain tumor grading and retinal imaging based diabetic 

retinopathy grading.  

 

2. Datasets  

 

A total of 346 COVID patients confirmed by reverse transcription polymerase chain reaction 

(RT-PCR) were retrospectively selected from two local hospitals in the Hubei Province, China, 

namely Huang Shi Central Hospital (HSCH) and Xiang Yang Central Hospital (XYCH). 

Severity types of all patients at baseline and follow-up (in 7 days) were assessed and confirmed 

by clinicians according to the COS for COVID-19 [21]. This analysis was approved by the 

Institutional Review Board of both hospitals, and written informed consent was obtained from 

all the participants.  

 

Tables 1 and 2 illustrate respectively the demographics of patients for the development of a 

severity assessment model (Task 1 – mild vs severe) and a progression prediction model 

(Task 2 – converter vs non-converter). For both tasks, CT scans of the HSCH cohort were 

used for training the models, and CT scans of the XYCH cohort were used as an independent 

dataset to test the trained models. Patients may have either a lung-window scan, a mediastinal-

window scan, or both in their baseline CT examination. All scans were included in the analysis. 

The total number of CT scans for Task 1 was 639, and that for Task 2 was 601. An internal 

validation set (20% of the training samples) was split from the training set and used to evaluate 

the model’s performance during training.  

 

Table 1 Demographics of the patients in Task 1 dataset.  
Category HSCH - Training Set XYCH - Test Set Total 
Mild 7 1 8 

Ordinary 212 104 316 

Severe 7 6 13 

Critical 4 5 9 

Total patients 230 116 346 

Total CT scans 433 206 639 

Age (mean±SD) 49.00±14.4 47.5±17.2 48.5±15.4 

Gender (female/male) 120/110 57/59 177/169 

 

Table 2 Demographics of the patients in Task 2 dataset.   
Category HSCH- Training Set XYCH- Test Set Total 

Non-Converter  201 99 300 

Converter 18 6 24 

Total patients 219 105 324 

Total CT scans  412 189 601 

Age (mean±SD) 48.4±14.0 46.1±16.6 47.7±14.9 

Gender (female/male) 113/106 55/50 168/156 

 

Note that there is a highly imbalanced distribution of samples in the datasets, i.e., 324 (93.6%) 

patients in mild class for Task 1, and 300 (92.6%) patients in non-converter class for Task 2. A 
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weighting strategy was used to address the imbalanced distribution in datasets, and the details 

are presented in Section 3.3.  

 

3. Methods 

 

Figure 2 gives an overview of the LesionEncoder framework, which consists of two modules: 

(1) a lesion encoder module for lesion detection and feature encoding, and (2) a RNN module 

for sequence classification. The lesion encoder module extracts features from individual CT 

slices; therefore, a CT scan with multiple CT slices can be represented as a sequence of feature 

vectors. The sequence classification module takes the sequence of feature vectors as input and 

then classifies the entire sequence collectively.  

 

     
Figure 2 An overview of the proposed LesionEncoder framework.  

 

3.1 Image Pre-processing 

 

All CT scans were pre-processed with intensity normalization, contrast limited adaptive 

histogram equalization, and gamma adjustment, using the same pre-processing pipeline as in 

our previous study [23]. We further performed lung segmentation on the CT slices using an 

established model - R231CovidWeb [24]. This model1 was trained on a large and diverse 

dataset of non-COVID-19 CT scans and further fine-tuned with an additional COVID-19 

 
1 The binary executable software for the lung segmentation model is available online 

(https://github.com/JoHof/lungmask). 
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dataset [25]. The CT slices with less than 3mm2 lung tissue were removed from our datasets, 

since they bear little or no information of the lung.  

 

3.2 Lesion Encoder 

 

The U-Net architecture [26] is adopted for the lesion encoder module. It consists of an encoder 

and a decoder, where the encoder captures the lesion features and the decoder maps lesion 

features back to the original image space. In other words, the encoder is responsible for 

extracting features from the input images, i.e., CT slices, whereas the decoder generates the 

segmentation maps, i.e., lesion masks. Figure 3 illustrates the encoder-decoder architecture of 

the lesion encoder module.  

 

 
Figure 3 the U-Net architecture for lesion detection and feature encoding. 

 

We used the EfficientNetB7 model [27] as the backbone to build the lesion encoder module, as 

it represents the state-of-the-art in object detection while being 8.4 times smaller and 6.1 times 

faster on inference than the best existing models in the ImageNet Challenge [28]. The 

ImageNet pre-trained weights were used to initialize the EfficientNetB7 model. There are 7 

blocks in the EfficientNetB7 model, as shown in Figure 3. The skip connections were built 

between the expand activation layers in Block 2, 3, 4 and 6 and their corresponding up-

sampling layers in our model. The output of the bottom layer is the final output feature vector 

representing the lesion features of the input slice.  

 

A publicly available dataset was used to train the EfficientNetB7 U-Net, which consisted of 

100 axial CT slices from 60 COVID-19 patients [25]. All the CT slices have been annotated by 

an experienced radiologist with 3 different lesion classes, including GGO, consolidation, and 
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pleural effusion. Since this dataset is very small, we applied different augmentations, including 

horizontal flip, affine transforms, perspective transforms, contrast manipulation, image blurring 

and sharpening, Gaussian noise, and random crops, to the dataset using the Albumentations 

library [29]. The model2 was trained using Adam optimizer [30] with a learning rate of 0.0001 

and 300 epochs.  

 

The lesion encoder module was applied to process individual slices in a CT scan. For each CT 

slice, a high-dimensional feature vector (d=2,560) was derived. Independent component 

analysis (ICA) was performed on the training samples to reduce dimensionality (d=64). The 

ICA model was then applied to the test samples, so that they have the same feature dimension 

as the training samples. The output of the lesion encoder is a sequence of feature vectors, which 

are then classified using a sequence classifier, as explained in the next section.     

 

3.3. Sequence Classification  

 

A RNN model was built for sequence classification. Its input is a sequence of feature vectors 

generated by the lesion encoder. The structure of the RNN model is illustrated in Table 3 – two 

bidirectional Long Short-Term Memory (LSTM) layers, followed by a dense layer with a 

dropout rate of 0.5, and an output dense layer. For comparison purposes, another Pooling model 

was created (Table 3) – using max pooling and average pooling to combine the slice-based 

feature vectors, as inspired by a previous study [9]. The difference between these two models is 

that the RNN model captures the relationship between feature vectors in a sequence, whereas 

the Pooling model ignores such relationships.  

 

Table 3 The architectures of the RNN model and the Pooling model.  

RNN Model Pooling Model 

BiLSTM (64, return-sequences) Global_Max_Pooling Global_Average_Pooling 

BiLSTM (32) Concatenation 

Dense (64, ReLu, dropout = 0.5) Dense (64, ReLu, dropout = 0.5) 

Dense (1, Sigmoid) Dense (1, Sigmoid) 

 

Adam optimizer [30] with a learning rate of 0.001 was used for training the models in 100 

epochs. A validation set (20%) was split from the training set for monitoring the training 

process. Every 20 epochs, the validation set was reselected from the training set, so that the 

model will be internally validated by all training samples during training. To address the 

imbalanced distribution in the datasets, we assigned different weights to the two classes (mild / 

non-converter class: 0.2, severe / converter class: 1.8) when training the models. In addition, if 

a patient has multiple CT scans, the scan with a higher probability of a positive prediction 

overrules the others when applying the models for inference. 

 

3.4 Performance Evaluation 

 

We tested the LesionEncoder framework with two configurations: (1) using the Pooling model 

as the classifier (LE_Pooling) and (2) using the RNN model as the classifier (LE_RNN). 

 
2 The Tensorflow implementation of the EfficientNetB7 U-Net is available online 

(https://github.com/qubvel/segmentation_models). 
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These methods were compared to 3 baseline methods. The first baseline method 

(BS_Volumetric) was inspired by a previous study [20], which was based on a Logistic 

Regression model using 4 lesion volumetric features as input: GGO percentage, consolidation 

percentage, pleural effusion percentage, and total lesion percentage. The second (BS_Pooling) 

and third (BS_RNN) baseline methods were based on the same classification models as in 

LE_Pooling and LE_RNN; however, the features were extracted from an EfficientNetB7 model 

without a lesion encoder module. The purpose of the second and third baseline models was to 

estimate the contribution of the lesion encoder. Sensitivity, specificity, accuracy, and area 

under curve (AUC) were used to evaluate the methods’ performance. Receiver operating 

characteristic (ROC) curves were also compared between methods. 

 

3.5 Development Environment  

 

All the neural network models, including the EfficientNetB7 U-Net, the Pooling model and the 

RNN model, were implemented in Python (v3.6.9) and Tensorflow (v2.0.0). The models were 

trained using a Fujitsu server with Intel Xeon Gold 5218 GPU, 128G memory, and NVidia 

V100 32G GPU. The same server was used for image pre-processing, feature extraction, and 

classification. 

 

4. Results 

 

4.1 Lung and Lesion Segmentation 

 

The lung masks generated using the R231CovidWeb model [24] and the lesion masks 

generated by the lesion encoder module were visually inspected by an experienced image 

analyst (S.L.). Overall, the lung segmentation results were visually reliable with few severe and 

critical cases having infection areas missed out in their lung masks. The lesion encoder 

achieved a Dice of 0.92 on the COVID-19 CT segmentation dataset [25]. Figure 4 presents 4 

examples of the lung and lesion segmentation results of the COVID-19 patients, one for each 

severity class. The upper row presents the axial CT slices with the lung (red) and lesion (green: 

GGO; yellow: consolidation; brown: pleural effusion) boundaries overlaid on the CT slices. 

The lower row of Figure 4 illustrates the 3D models of the lung and lesions, reconstructed 

using 3D Slicer (v4.6.2) [31]. Figure 4 shows that higher severity of COVID-19 is reflected in 

CT scans as increasing number and volume of lesions.  

 

 
Figure 4 Examples of the patients in different severity groups. 
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4.2 Severity Assessment 

 

Five different methods were compared in the automatic severity assessment of COVID-19 

patients, including 3 baseline methods and 2 proposed methods, as described in Section 3.4. 

Table 4 illustrates the performance metrics of different methods on the severity assessment 

task, and Figure 5(a) shows the ROC curves of these methods. The three methods using lesion 

features (BS_Volumetric, LE_Pooling, and LE_RNN) consistently outperformed the models 

that did not use lesion features by a marked difference in sensitivity (>9.1%), specificity 

(>15.3%), accuracy (>14.7%), and AUC (>15.1%). In particular, BS_Volumetric achieved the 

highest AUC of 0.931, indicating that the lesion volumetric features were highly effective in 

distinguishing between severe and mild cases.  

 

The proposed LE_RNN method achieved higher specificity (0.952) than the BS_Volumetric 

method (0.933), showing that the features captured by the lesion encoder might be useful in 

reducing the false positive rate compared with the volumetric features. When comparing the 

Pooling models and RNN models, we found that the RNN models performed slightly better 

than the Pooling models; and the impact of the sequence classifier on the classification 

performance was much lower than that of the lesion features.  

 

Table 4 Performance of different methods in baseline severity assessment. 

Method Sensitivity Specificity Accuracy AUC 

BS_Volumetric 0.818 0.933 0.922 0.931 

BS_Pooling 0.727 0.752 0.750 0.732 

BS_RNN 0.727 0.771 0.767 0.749 

LE_Pooling 0.818 0.924 0.914 0.900 

LE_RNN 0.818 0.952 0.940 0.903 

 

4.3 Progression Prediction 

 

The results of different methods in the prediction of disease progression task are presented in 

Table 5 and Figure 5(b) presents the ROC curves of these methods. The BS_Volumetric 

method performed poorly (sensitivity: 0.5, specificity: 0.465, accuracy: 0.467, AUC: 0.51), 

indicating that lesion volumetric features were not predictive of COVID-19 disease 

progression. This finding was not surprising, since the converter and non-converter cases both 

showed mild symptoms at baseline and presented a small quantity of lesions in the lungs. The 

BS_Pooling and BS_RNN methods achieved slightly better performance than BS_Volumetric, 

although they did not use any lesion features.  

 

The LE_Pooling and LE_RNN methods outperformed the baseline methods with a substantial 

increase of 20-30% in specificity. LE_RNN was the best method in all the evaluation metrics 

(sensitivity: 0.667, specificity: 0.838, accuracy: 0.829, AUC: 0.736). The results indicate that 

the lesion features extracted by the lesion encoder may bear useful diagnostic information for 

predicting disease progression. However, it is still challenging to predict disease progression 

using the lesion features, and the low sensitivity (0.667) may restrict clinical applicability of the 

proposed methods. 
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Table 5 Performance of different methods in prediction of disease progression. 

Method Sensitivity Specificity Accuracy AUC 

BS_Volumetric 0.500 0.465 0.467 0.510 

BS_Pooling 0.667 0.535 0.543 0.569 

BS_RNN 0.667 0.535 0.543 0.662 

LE_Pooling 0.667 0.737 0.733 0.724 

LE_RNN 0.667 0.838 0.829 0.736 

 

 
Figure 5 ROC curves of different models in severity assessment and progression prediction.  

 

5. Discussion 

 

Clinical value in the management of COVID-19. The rapid spread of COVID-19 has put a 

strain on healthcare systems, necessitating efficient and automatic diagnosis and prognosis to 

facilitate the admission, triage, and referral of COVID-19 patients. Chest CT plays a key role in 

COVID-19 management by providing important diagnostic and prognostic information of 

patients. Several computational models have been developed to support automatic screening 

and diagnosis of COVID-19 [9-15]. There are also a few studies [19,20] using CT to quantify 

infection severity with a focus on development of lesion segmentation models. A few measures 

based on the lesion volumes have been proposed to quantify infection severity [19], however, 

the intricate patterns of the lesion shape, texture, location, extent and distribution, were less 

investigated.  

 

To capture the complex features in the lesions, we proposed a novel LesionEncoder 

framework. Two specific applications of this framework, i.e., assessment of severity and 

prediction of disease progression for COVID-19 patients, were explored in this study. To the 

best of our knowledge, this work represents the first attempt to predict COVID-19 patient 

disease progression using chest CT scans. Models built on this framework are able to take CT 

scans as input, detect and extract features from the lesions, and quantify the severity or predict 

progression in a fully automated manner. The analysis of a high-resolution CT scan of 
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512x512x430 voxels takes less than 1 minute, which is substantially faster than radiologists’ 

reading time. This can also save the burden of manual delineation of the lesions. The 

quantitative measures based on the features are of high clinical relevance, and can be used to 

support medical decision making or to track changes in patients.  

 

We should note that this framework is not designed to analyse the COVID-19 suspects who are 

not confirmed by RT-PCR, or the covert / asymptomatic cases that are not documented [32-34]. 

The community-acquired pneumonia cases, such as viral pneumonia and interstitial lung 

disease patients, were also not considered in this study. As pointed out in a systematic review 

[35], normal controls and diseased controls will be needed for the development of screening or 

diagnostic models, thus the selection bias in cohort may lead to a risk of overestimated 

performance. Since our model focuses on the confirmed and hospitalized COVID-19 cases, 

therefore will not be exposed to such risk.  

 

Models based on lesion features outperformed the baseline models without lesion features in 

both severity assessment and progression prediction. An interesting finding in severity 

assessment is that the lesion volumetric features are highly effective in distinguishing the 

severe cases from the mild cases. The features extracted by the lesion encoder did not improve 

the sensitivity of detecting the severe cases, but only reduced false positive predictions. This 

finding indicates that lesion volumetric features, such as GGO percentage and consolidation 

percentage, are prominent biomarkers in identifying the severe cases. The lesion encoder makes 

marginal contribution to severity assessment. In contrast, in progression prediction the models 

with the lesion encoder performed much better than those with volumetric features, indicating 

that the intricate pattern captured by the lesion encoder provide useful prognostic information 

for identifying the COVID-19 patients at higher risk of converting to the severe type. The 

LesionEncoder framework demonstrates a clinical applicability in COVID-19 management, 

particularly in the automatic severity assessment of COVID-19 patients (sensitivity: 0.818, 

specificity: 0.952, AUC: 0.931). However, it is still challenging to predict disease progression 

using lesion features, and the low sensitivity (0.667) may restrict clinical applicability of the 

proposed methods. 

 

Technical contributions of the LesionEncoder framework. The technical contributions of 

this work are two-fold. Most importantly, this framework extends the use of lesion features 

beyond conventional lesion segmentation and volumetric analysis. There is a wealth of 

information in the lesions including shape, texture, location, extent and distribution of 

involvement of the abnormality, that can be extracted by the lesion encoder. We demonstrated 

two novel applications of the lesion features in severity assessment and progression prediction. 

However, they also have a strong potential in a wide range of other clinical and research 

applications, such as supporting clinical decision making and providing insights of the 

pathological mechanism.  

 

In addition, the proposed LesionEncoder framework attempts to address a common challenge 

in medical image analysis: how to reconcile local information and global information to 

improve medical image perception [36]. In this study, the slices from a CT scan were used as 

input for classification, but not every slice in the scan carries the same diagnostic / prognostic 

information. That is, the ground truth label of the entire scan cannot be propagated to label 

individual slices. For example, a CT slice with no lesion from a severe case might appear more 

‘normal’ compared to a slice with some lesions from a mild case. Our proposed framework is a 

feasible approach to infer the holistic prediction with a focus on the analysis of region of 

interest. The RNN module in the framework is also a more sophisticated approach than the 
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conventional feature fusion methods that use average pooling or max pooling to combine the 

local features. There are many analyses of the same nature, e.g., neuroradiologists may use 

features such as tumoral infiltration of surrounding tissues in MRI for tumor grading [37]; 

ophthalmologists may focus on lesions, such as haemorrhages and microaneyrysms, hard 

exudates and cotton-wool spots, when grading diabetic retinopathy [38]; and pathologists are 

more likely fixate on regions of highest diagnostic relevance when interpreting the biopsy 

whole slide images (WSI) [39]. The LesionEncoder framework may be generalizable to these 

lesion-focused medical image analyses. 

 

Limitations. Although we have access to 639 CT scans of 346 patients, it is still a relatively 

small dataset compared to other datasets for development of deep learning models. It also 

refuted the idea of developing 3D deep learning models for scan-based classification, since 3D 

models are usually more complicated than 2D models and have substantially more parameters, 

the small sample size will lead to undertrained models. In addition, there is a highly imbalanced 

distribution in the datasets. Among the 346 samples for the development of the severity 

assessment model, 324 (93.6%) patients were in the mild class. For the disease progression 

model, there are 300 (92.6%) patients in the non-converter class. Although this reflects the real 

distribution, it will be ideal to have more severe / converter class samples for training. To 

address this imbalance distribution problem, we used a class weighting strategy to give the 

positive class higher weight during training, and used a prediction weighting strategy during 

inference to enhance the prediction of the positive class if that patient has multiple scans. A 

larger sample size with more severe and converter cases in the datasets would help train more 

accurate and robust models as well as produce reliable performance estimates. 

 

The lung masks generated using the R231CovidWeb model [24] and the lesion masks 

generated by the lesion encoder module were visually inspected by an experienced image 

analyst. The segmentation results were visually reliable, but the missed-out lung or lesion 

regions in the segmentation masks were noted in a few severe and critical cases. Since there 

were no lesion masks for our datasets, no quantitative analyses were performed to evaluate the 

automatic segmentation results. Further improvements can be made if the ground truth 

annotation of the lung and lesion can be provided to optimize the performance of the current 

lung segmentation model and lesion encoder module on our datasets.  

 

6. Conclusions 

 

In this study, a novel LesionEncoder framework was proposed to encode the enriched lesion 

features in chest CT scans for automatic severity assessment and progression prediction of 

COVID-19 patients. Models built on this framework outperformed the evaluated baseline 

models with a marked improvement. The lesion volumetric features were prominent 

biomarkers in identifying severe / critical cases, but intricate features captured by the lesion 

encoder were found effective in identifying the COVID-19 patients who have higher risks of 

converting to the severe or critical type. Overall, the LesionEncoder framework demonstrates 

a high clinical applicability in the current COVID-19 management, particularly in automatic 

severity assessment of COVID-19 patients.  

 

An important future direction of this framework lies in the combination of clinical data and 

imaging data for better prediction performance, especially for the progression prediction, since 

clinical data may provide essential indicators of the clinical risks of the patients. Furthermore, 

the applications of the LesionEncoder framework to other types of lesion-focused analyses 

will be further investigated.  
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