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Abstract
Extreme weather disasters (EWDs) can jeopardize domestic food supply and disrupt commodity
markets. However, historical impacts on European crop production associated with droughts,
heatwaves, floods, and cold waves are not well understood—especially in view of potential adverse
trends in the severity of impacts due to climate change. Here, we combine observational
agricultural data (FAOSTAT) with an extreme weather disaster database (EM-DAT) between 1961
and 2018 to evaluate European crop production responses to EWD. Using a compositing approach
(superposed epoch analysis), we show that historical droughts and heatwaves reduced European
cereal yields on average by 9% and 7.3%, respectively, associated with a wide range of responses
(inter-quartile range +2% to −23%; +2% to −17%). Non-cereal yields declined by 3.8% and
3.1% during the same set of events. Cold waves led to cereal and non-cereal yield declines by 1.3%
and 2.6%, while flood impacts were marginal and not statistically significant. Production losses are
largely driven by yield declines, with no significant changes in harvested area. While all four event
frequencies significantly increased over time, the severity of heatwave and drought impacts on crop
production roughly tripled over the last 50 years, from −2.2% (1964–1990) to −7.3%
(1991–2015). Drought-related cereal production losses are shown to intensify by more than
3% yr−1. Both the trend in frequency and severity can possibly be explained by changes in the
vulnerability of the exposed system and underlying climate change impacts.

1. Introduction

The European Union with 28 Member States (EU) is
one of the world’s major food producers and export-
ers. EU cropland expands across four main biocli-
matic zones (Kottek et al 2006) (table S1 (available
online at stacks.iop.org/ERL/16/065012/mmedia)),
from the hot-summer Mediterranean climate (Csa)
to the Subarctic climate (Dfc). About 65% of the
173 million hectares of agricultural area (i.e. 39% of
the EU’s total land area) is allocated to cereals (mostly
wheat, rye, barley, maize, millet and sorghum, fol-
lowed by oil crops, olives, vegetables and grapes, roots

and tubers, sugar and orchards) (figure S1(a)) (FAO
2019a). Cereals and vegetables are food commodities
with the highest production by weight (FAO 2019b)
accounting for nearly 30% (26 billion EUR) of the
total EU food exports, while maintaining domestic
staple food supply.

The EU food system has been disrupted by a
number of extreme weather disasters (EWDs; figure
S1(b)), which caused significant crop production
losses (Russo et al 2015, EM-DAT 2018, Hanel et al
2018). Most recently, the 2018 heatwave and drought
led to overall cereal production 8% lower than the
previous five year average (Agr 2018), which caused
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fodder shortages for livestock and triggered sharp
commodity price increases. Soft wheat (Triticum aes-
tivum) and barley (Hordeum vulgare) prices jumped
by 34% and 48%, respectively (Agr 2018, EC 2018).

Climate change is expected to further increase the
frequency, intensity, spatial extent, and duration of
EWDs (IPCC2012, Russo et al 2015,Diffenbaugh et al
2017). Future agriculture adaptation challenges are
therefore not only linked to changes in the long-term
average climate, but particularly to changing weather
extremes and interannual fluctuations (Hov et al
2013, Christidis et al 2015, Glotter and Elliott 2016).
However, the magnitude of historical EWD impacts
on the agriculture sector remain insufficiently under-
stood.

Being the EU a major player in the global food
market, and a world leader in the fight against cli-
mate change (Tai et al 2014, Bas-Defossez et al
2018, Berkhout et al 2018, Ciscar 2018), the way it
addresses the challenges of agriculture has implica-
tions at the global level. Quantitative evidence of his-
torical extreme weather impacts and observed trends
are critically important for disaster risk reduction
and adaptation efforts. Yet defining extreme weather
events for impact analyses is challenging. A com-
mon approach is to link impacts to climatological
and/or hydrological threshold-based events (Lobell
et al 2013, Troy et al 2015, Powell and Reinhard
2016, Lüttger and Feike 2018, Ajaz et al 2019, Vogel
et al 2019). However, this approach can underestim-
ate impacts, as these not only depend on the severity
of the weather anomaly but also on the sensitivity of
the exposed human and natural systems (Lesk et al
2016, Jägermeyr and Frieler 2018).

Here we base event selection on impact criteria
by using the EM-DAT record of EWDs, which are
reported if an extreme weather event causes stand-
ardized human or capital losses. The UNDRR/CRED
(2020) report a sharp increase in the frequency of
EWDs in recent decades, but agriculture impacts of
these events are generally not associated. From the
best observational data records currently available,
we expand the work initiated by Lesk et al (2016) to
derive evidence on how historical EWD have affected
agricultural production systems in the EU. In particu-
lar, we address the following questions: (a)What is the
magnitude and trend of historical crop losses associ-
ated with different EWD types in Europe? (b) In what
climatic regions are the impacts most severe? (c) How
are different crop groups affected?

2. Methods

2.1. Crop and extreme weather disaster data
We use national crop data obtained from FAO
(2019a), the most consistent source of production,
yield and harvested area information that date back
to the 1960s. A total of 129 crops currently grown in
the EU according to the UN’s Food and Agricultural

Organization (FAO) are considered, we analyse them
mainly in groups of cereals (CER; wheat, barley,
maize and other cereals) and non-cereals (non-CER;
oil crops, olives, vegetables, grapes, roots and tubers,
sugar beet, sugar cane, orchards, treenuts, citrus, soft
fruits and others), but also in 12 subgroups (table
S2). FAO data contain sporadic zero values, which
we interpret as missing values, and in these cases all
corresponding variables (i.e. yield, harvested area, or
production for the same crop and year) are replaced
withmissing values aswell to ensure the samenumber
of records for each variable. Countries with reported
crop data of less than ten years, are excluded from the
analysis.

EWD occurrence is taken from the EM-DAT
International Disaster Database (EM-DAT 2018), the
most comprehensive standardized global database of
EWD records. EM-DAT events have caused a specific
level of pre-defined impacts onhuman lives and infra-
structures (see supplement for more details). We con-
sider all droughts (32), heatwaves (61), floods (399)
and cold waves (99) from 1961 to 2018 across 28 EU
countries (table S3). The number of events evalu-
ated for crop impacts is slightly smaller, because (a)
FAO data are not available in all countries and years
included in EM-DAT, (b) consecutive EWD years are
averaged to a single event year.

2.2. Superposed epoch analysis
Mean EWD impacts on crop production, yield and
harvested area are estimated with a superposed epoch
analysis (SEA), or compositing. SEA is a common
statistical method to isolate an average event response
signal, while reducing background noise due to
extraneous factors, such as agronomic management
(Lesk et al 2016, Jägermeyr and Frieler 2018, Brás et al
2019).

It has been used to evaluate climate responses to
volcanic eruptions (Mass and Portman 1989), to the
ElNiño SouthernOscillation (Sinclair et al 1985), and
to quantify impacts of EWD on nutrient supply (Park
et al 2019) and crop production (e.g. Lesk et al (2016),
Jägermeyr and Frieler (2018), Brás et al (2019)).

From national crop data time series, we extract
seven year windows centred on years in which an
EWD occurred, with three years preceding and fol-
lowing the event. If an EWD of the same type
occurred in a subsequent year, we average the data
across all years with successive EWD occurrence (e.g.
multi-year drought) to produce a single disaster year
datum, which is then surrounded by the six adjacent
years. This procedure results in a reduction in the
total number of events since the average of sequen-
tial EWD years of same type is considered as one
event. Each seven year window is normalised to the
average of those six adjacent years while excluding
any year coinciding with another EWD of the same
type. This means the SEA isolates the average event
impact compared to the mean of the surrounding
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six adjacent years without EWD occurrence. Thus,
the SEA quantifies crop yield response attributed to
an EWD type based on normalized yields without
a registered event. In order to have always a com-
plete seven year window, we disregard all events
between 1961–1963 and 2016–2018. For calculating
the composite signal for two distinct time periods, we
consider EWDs between 1964–1990 (crop data 1961–
1993) and 1991–2015 (crop data 1988–2018).

After normalisation, we calculate the composite
vector, which is the column-based mean of all seven
year windows for a specific EWD type, crop category
or climate zone. The composite vector thus always
consists of seven elements. We detrend the compos-
ite vector by subtracting the linear regression and
adding the composite vector mean (Jägermeyr and
Frieler 2018). The fourth element of the detrended
composite vector is the event signal: the average nor-
malised EWD impact, or the mean event impact (i.e.
the deviation of the detrended composite signal from
1 in year 0). To calculate the detrended composite
signal across different crops—and for droughts and
heatwaves together, as pointed out below—seven year
windows are grouped together to calculate the mean
composite signal.

The statistical significance of the EWD compos-
ite signal is assessed based on bootstrap replicates,
obtained by resampling with replacement of all seven
year windows (column-based) 1000 times. We there-
fore create 1000 composite signals, which represent an
empirical bootstrap distribution of the mean impact
during EWD years. This distribution is used to test
the normality hypothesis and to derive confidence
intervals (CIs). The Kolmogorov–Smirnov test with
a significance level of 0.05 (Öner and Deveci Kocakoç
2017) is used to test if the empirical bootstrap distri-
bution is statistically different from the normal dis-
tribution. If it approximates a normal distribution,
we assess the statistical significance of the mean event
impact. To test the null hypotheses (i.e. the detrended
composite signal equals 1), we first calculate the CI of
the empirical bootstrap distribution for different sig-
nificance levels. If both end points of the CI are smal-
ler (or larger) than 1 and if the composite signal lies
within the CI, it is considered statistically significant
at the respective significance level, i.e. 5%, 10% and
20%, and not significant if⩾20%. For further details,
see Wong and Easton (1980), Leng and Huang (2017)
and Brás et al (2019).

We first calculate the composite signal of EWD
impact for the entire time series from 1964 to
2015, separating the two main crop categories cer-
eals and non-cereals. In a second step, we calcu-
late the composite signal for two time periods (i.e.
1964–1990, 1991–2015). To improve statistical signi-
ficance, droughts and heatwaves are grouped to eval-
uate the composite signal (a) separately for the first
and second time periods, (b) for the 12 crop cat-
egories individually, and (c) in each Koeppen–Geiger

climate zone. The analysis by climate zone is done
by aggregating all countries according to its domin-
ant Koeppen–Geiger classification (Kottek et al 2006)
(table S1).

Since the FAO crop data contain many more
non-cereal crop categories than cereal categories, we
calculate the average cereal and non-cereal signal,
respectively, in each country for each EWD, before
aggregating both. This way, cereals and non-cereals
receive the same weight when combined in the over-
all composite signal.

2.3. Trends of extreme weather disaster’s severity
and frequency
In addition to the composite signal, we evalu-
ate the trend in EWD frequency, and the trend
across normalised crop production anomalies dur-
ing EWD years (1961–2018) for each event type.
The latter is done by first calculating the sum of
national annual cereal and non-cereal production,
respectively. Normalised anomalies are calculated by
detrending each country-level cereal/non-cereal pro-
duction time series through subtracting its second
order polynomial (Lu et al 2017, Jägermeyr and
Frieler 2018), and then dividing by its standard devi-
ation. Normalised production anomalies are calcu-
lated separately for cereal and non-cereal crops, and
also stratified by individual climate zone, and are ana-
lysed only during EWD years. The statistical signi-
ficance of time trends (for both event frequency and
production anomalies) is assessed by fitting a linear
regression and testing its slope parameter for signi-
ficance using the t-test with the following signific-
ance levels: ∗∗∗ if p-value < 0.05, ∗∗ if p-value < 0.1,
∗ if p-value < 0.20, and n.s. (not significant) if
p-value ⩾ 0.20.

3. Results

3.1. EU crop response to extreme weather disasters
Between 1964 and 2015, droughts and heatwaves
reduced EU cereal yields on average by 9% (inter-
quartile range: +2% to −23%, 28 events) and 7.3%
(+2% to −17%, 47 events), respectively (figure 1),
and non-cereal yields by 3.8% (+6% to −13%) and
3.1% (+4% to −12%), respectively. Cold waves led
to cereal and non-cereal yield declines by 1.3% (+7%
to −9%, 60 events) and 2.6% (+6% to −11%), while
flood impacts on yields were not statistically signific-
ant for cereals, and marginal (−0.4%) for non-cereal
crops. Yield observations are not indicating a lagged
response in the year following the reported EWD,
except for heatwaves, which are followed by a year
with increased cereal yield levels (figure 1).

Changes in crop production are largely driven
by yield declines, with comparatively small and
not statistically significant changes in harvested
area (figure 1). During flood and cold wave years,
non-cereal harvested area decreased by 1.8%, which
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Figure 1. Impacts of extreme weather disasters (EWDs) on European crops. Composite impacts in terms of crop production (first
column), yield (second column) and harvested area (third column) are shown for cereal (CER, first row) and non-cereal crops
(non-CER, second row), individually for: droughts (red); heatwaves (orange); floods (blue); and cold waves (grey). The composite
analysis includes all EWDs in the EM-DAT record between 1964 and 2015, based on seven year time windows of country-level
data centred on the respective event. The mean event impact (%) is the deviation of the composite signal from 1 in year 0,
highlighted in the legend box underneath each plot, along with its significance level (∗∗∗ if alpha < 0.05, ∗∗ if alpha < 0.10, ∗ if
alpha < 0.20, n.s. for not significant if alpha ⩾ 0.2) and the number of events included (n). Dashes along the y-axis indicate the
25th and 75th percentile of the observations. Statistical significance is based on 1000 bootstrap samples (see section 2).

generally indicates the abandoning of areas hardest
hit (Iizumi and Ramankutty 2015).

Overall, cereals—covering two thirds of European
cropland—show consistently larger losses associated
with droughts and heatwaves compared to non-
cereal crops. This can be explained by generally
widespread irrigation among non-cereal crops. Com-
bined drought and heatwave production responses
for cereals include wheat (−11.3%), barley (−12.1%)
and maize (−12.5%), and for non-cereals: oil crops
(−8.4%), olives (−6.2%), vegetables (−3.5%), roots
and tubers (−4.5%), sugar beet (−8.8%), among oth-
ers (table 1).

3.2. Crop impact and frequency of extreme weather
disasters over time
Total crop production losses related to droughts and
heatwaves in Europe roughly tripled between the first
(1964–1990) and second (1991–2015) observation
period: from −2.2% to −7.3% (figure 2). While cer-
eals show larger absolute losses in both time peri-
ods (increasing from −3.6% to −9.8%), impacts

in non-cereals increase more than fivefold from
−0.9% to −4.8%. For cereals, this trend is largely
driven by increasingly severe yield losses, doubling
from −4.4% to −8.9%. For non-cereal crops, yield
declines changed less substantially (from −3.2% to
−3.7%), but additional harvested area declines (1.8%
to −1.4%) cause steep losses in overall production
(figures 2(e) and (f)). While these numbers reflect
the average impact across all EWD events, figure 2
also illustrates that the most severe events become
disproportionally more severe. For example, the 25%
percentile of impacts in production decreased from
−8.1% to −13.5%, whereas the 75% percentile only
changed from 4.1% to 0.7% (figures 2(a) and (b)).
Crops are combined based on a production-weighted
average, and there is a robust pattern of more severe
impacts due to droughts andheatwaves in recent years
across crop groups (i.e. cereals and non-cereals) and
individual crops (table S6).

For floods (figure S2) and cold waves (figure S3),
the results draw a somewhat more complex picture.
While we find slightly less severe production declines
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Figure 2. Drought and heatwave crop responses in the first and second half of the observation record. The composite impact of
cereal (CER), non-cereal (non-CER) and both categories aggregated (combined) is shown for production (1st row), yield (2nd
row) and harvested area (3rd row), and is separated for the time slices 1964–1990 (1st column) and 1991–2015 (2nd column).
Droughts and heatwaves are aggregated to avoid limitations due to sample size. Significance levels are as in figure 1. Similar plots
for floods and cold waves are shown in figures S2 and S3.

for both event types among more recent observa-
tions, for cold waves this signal is driven by much less
affected harvested area despite increasing yield losses
(figures S3(d) and (f)). For floods, the production sig-
nal is driven by less severe yield impacts in the second
time period (figures S2(c) and (d)), which is in line
with an overall positive trend across flooding yield
declines presented next.

Observations show a consistent negative trend in
normalised anomalies of cereal production over time,
and across regions, for all event types except floods
(figure 3). Even though the drought category comes
with the lowest number of cases, the trend is statistic-
ally significant at the 0.05 level and indicates increas-
ing annual cereal production losses by more than 3%,
the steepest decline among the four EWD types. For
heatwaves and floods, the trend line is not statistic-
ally significant. Cold waves on the other hand show
a surprisingly steep and significant negative trend.
No significant trends are found for non-cereal crops
(figure S4).

Over the last five decades, we find a substan-
tial and statistically significant increase in event fre-
quency for droughts (annual increase 1%), heatwaves
(6%), floods (29%), and cold waves (10%) (figure 4).
The number of reported droughts and heatwaves
increased from 13 in the first observation period to
62 in the second (figure 2). Similarly, there were 38
floods and 4 cold waves on record in the first period,
and 103 and 56 in the second, respectively (figures S2
and S3).

3.3. Severity of extreme weather disasters across
different climate regions
The average cereal yield response to both droughts
and heatwaves combined, shows largest relative
losses (−12.8%) in warm-summer humid contin-
ental climates (Köppen–Geiger zone Dfb, see table
S1 for countries) covering eastern European coun-
tries (table 1; 1964–2015). The response in temperate
oceanic climates (Cfb) is −6.6% and in hot-summer
Mediterranean climates (Csa) cereal yield declines
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Figure 3. Cereal production anomalies during years of reported EWDs. Normalised anomalies are shown for all years with
droughts (a), heatwaves (b), floods (c), and cold waves (d) listed in the EMDAT record (EM-DAT 2018) until 2018 (currently the
last year with FAO yield statistics available). Cereal production is shown as the sum of all cereal production in a specific country.
Countries are coloured according to the Koeppen–Geiger climate zone: Cfb—temperate oceanic, Csa—hot-summer
Mediterranean, Dfb—warm-summer humid continental, and Dfc—subarctic (see table S1). The straight line indicates the
regression line; its slope parameter and significance level are shown in the top-left corner (∗∗ if p-value < 0.1; n.s. for not
significant if ⩾0.2). The number of events (n) is indicated in the title. A similar plot for non-cereal production is shown in figure
S4.

by −6.9%. Overall, production declines are predom-
inantly driven by yield changes (small and mostly
not significant changes in harvested area). While
countries in the Csa climate zone show smallest aver-
age production losses for wheat and not significant
impact for maize, they show largest losses for barley
(as well in yield and harvested area) (table 1).

Non-cereal crops also show largest yield and pro-
duction losses in the Cfb and Dfb climate zones,
namely staple crops such as vegetables, sugar, soft
fruits, roots and tubers (table 1). Olives, a relevant
cash crop in the EU, also show production losses in
the Cfb region (−13.2%), driven by declines in yield
(−11.3%) and harvested area (−2.8%). We did not
find significant signals among countries in the sub-
arctic climate zone (Dfc).

While floods do not show a significant effect
on cereal yield at overall European level (figure 1),
in Cfb countries, barley (largely grown in cent-
ral and northern EU countries) exhibit significant
yield declines by 3.4% which is offset by a posit-
ive response in maize (largely grown in Mediter-
ranean countries) by 5.3% (table S4). Years with flood
events are likely to have a generally wetter growing
season, which might benefit overall maize growth
especially in more semi-arid climates. Cold waves

have a negative effect on crop production, especially
across continental Dfb climates: wheat −11.1%; bar-
ley −15.4%; maize −7.8%; oil crops −15.9%; veget-
ables −4.6%; grapes −9%; treenuts −26.6%, largely
associated with yield declines (table S5). But the
response in Cfb countries is largely positive for cer-
eals, which could be explained by faster achieve-
ment of vernalization requirements of winter crops in
colder years (Jägermeyr et al 2020).

4. Discussion

Here we use observational data to systematically eval-
uate European crop responses to historical EWDs.
While the frequency of reported droughts, heatwaves,
floods, and cold waves substantially increased over
the last five decades, supporting findings of a recent
UNDRR report (UNDRR/CRED 2020), our results
suggest that impacts associated with droughts and
heatwaves on European crop production roughly
tripled. Even though there are limitations linked to
the use of disaster events as a metric for analysing
extreme weather responses, it provides an alternat-
ive, impact-based approach that helps reveal import-
ant new information regarding the trend of EWD
impacts in the agriculture sector. European crop

8



Environ. Res. Lett. 16 (2021) 065012 T A Brás et al

Fi
gu
re
4.

N
u
m

be
r
of

an
n
u
al

ly
re

po
rt
ed

E
W

D
s
in

E
u
ro

p
e.

T
h
e
n
u
m

be
r
(n

)
of

co
u
n
tr

y-
le
ve

ld
ro

u
gh

ts
(a

),
h
ea

tw
av

es
(b

),
fl
oo

ds
(c

)
an

d
co

ld
w
av

es
(d

)
in

th
e
E
M

-D
A
T

re
co

rd
(E

M
-D

A
T

20
18

)
ar

e
sh

ow
n

be
tw

ee
n

19
61

an
d

20
18

.
T
h
e
so

lid
lin

e
in

di
ca

te
s
th

e
re

gr
es

si
on

lin
e,

it
s
sl
op

e
pa

ra
m

et
er

an
d

si
gn

if
ic
an

ce
le
ve

la
re

sh
ow

n
in

th
e
to

p-
le
ft

co
rn

er
(∗

∗
∗

if
p-

va
lu

e
<

0.
05

;∗
∗

if
p-

va
lu

e
<

0.
1)

.T
h
e
da

sh
ed

lin
e
re

pr
es

en
ts

th
e
20

ye
ar

m
ov

in
g

av
er

ag
e.

9



Environ. Res. Lett. 16 (2021) 065012 T A Brás et al

yields increased by 146% over the past 50 years (107%
in cereal yields) (FAO 2019a), which does not affect
the calculation of EWD impacts as the SEA approach
removed such management trends. However, higher-
yielding systems are often associated with larger yield
variability (e.g. Müller et al (2018)), which can be
a contributing factor to increased EWD impacts in
recent decades. While the number of drought-related
disasters is lower than other EWD types resulting
in lower statistical significance levels for drought
impacts, consistent pattern in the observational data
suggest that drought-related cereal production losses
have seen sharp increases, with additional 3% losses
per year. While this finding will benefit from addi-
tional data points and refined follow-up studies, it
already provides important evidence for adaptation
planning and disaster risk reduction. Higher future
climate-related yield variability and global market
volatility is often a larger concern than potential long-
term gradual impacts (e.g. Tigchelaar et al (2018)).

The results suggest that climate change is among
the factors driving increased crop losses associ-
ated with extreme weather events, even though our
approach does not allow for robust climate change
attribution without modelling counterfactual scen-
arios. The findings are in line with evidence reported
by the Intergovernmental Panel on Climate Change
(IPCC), showing that Southern Europe is experien-
cing more intense and longer droughts (Bocchiola
et al 2013). Lesk et al (2016) also found increasing
EWD-related crop losses for cereals between 1964
and 2007 at the global level. IPCC (2012) and oth-
ers (e.g. Coumou and Rahmstorf (2012), Christidis
et al (2015), Stott (2016), Pfleiderer et al (2019))
found that heatwaves are becoming more severe in
most parts of Europe. Our results indicate only a mar-
ginal negative and not significant trend in the crop
response to heatwaves, which might be explained by
the expansion of irrigation, especially among central
and Mediterranean countries. Irrigation can largely
mitigate adverse heatwave impacts by cooling surface
temperatures and thus reducing direct heat damage,
but also resulting water stress impacts through main-
taining increased soil moisture requirements (Troy
et al 2015, Leng 2017, Jägermeyr and Frieler 2018,
Leng and Hall 2019, Vogel et al 2019). According to
AQUASTAT (FAO 2016), nearly 28% of European
cereal area is under irrigation, predominantly in Cfb
and Csa regions. Moreover, EM-DAT time series is
substantially shorter for heatwaves (starting in 1985)
than for the other events (droughts start in 1976,
floods in 1965, cold waves in 1971), which may
explain the non-significant heatwave trend line.

We evaluate the impact of each event indi-
vidually, meaning an increase in event frequency
does not affect the composite severity signal in
this analysis (multi-year events are averaged into
one event signal). Observational evidence shows
an increase in the frequency of extreme weather

events in Europe, especially heatwaves, and most
strongly in Mediterranean regions (IPCC 2012).
The UNDRR/CRED (2020) supports our findings
showing a sharp increase in worldwide heatwaves
(+232%), droughts (+29%), and floods (+134%)
over the last 20 years. While the mortality rate of
these events decreased, they are associated with a sig-
nificant increase in economic damage and number
of people affected. The increase in event frequency
may partially be explained by the increased exposure
and vulnerability of the affected systems, and by bet-
ter recording and reporting, yet much of the increase
has been attributed to a significant rise in the num-
ber of climate change-related extreme weather events
(UNDRR/CRED 2020). The severity of individual
events, however, is expected to be largely independent
from reporting biases (yet a more frequent reporting
bias can result in reporting less severe climatological
events, which is not in line with our findings showing
consistently more severe impacts in recent decades).

An extreme weather event can become an EWD
if a specific human or economic damage occurs.
The EM-DAT data base is a unique record, provid-
ing the longest standardised timeseries of EWD. It is
therefore used as a central metric to select extreme
weather events for advancing the understanding of
their impact. However, linking the event definition
to human and economic losses weakens the correla-
tion to the climatological signal (e.g. not all drought
EWDs show similar drought index anomalies), but
it allows to study events based on responses of the
underlying human and natural system. Climatolo-
gical threshold-based approaches (e.g. Lobell et al
(2013), Lüttger and Feike (2018), Vogel et al (2019))
may underestimate impacts of EWDs in the agricul-
ture sector, because similar weather anomalies result
in differing effects depending on the vulnerability of
the exposed system (Lesk et al 2016). While mech-
anistic crop modelling can help improve the under-
standing of the complex drivers of crop responses to
extreme weather anomalies, using a disaster record
based on human impact provides a top-down, and
equally important approach to quantifying impacts
across larger spatial scales. Associating quantitat-
ive information to EWD impacts can help inform
efforts in effective international disaster risk manage-
ment and adaptive interventionsmore generally (EEA
2019). Initial large-scale data are critical for raising
awareness, mobilize resources and, importantly, to
incentivize follow up assessments. In particular, this
study identifies crop categories that are more resili-
ent to EWD at the EU level and across its bioclimatic
regions. Such information may add to the discussion
about the allocation of governmental agricultural
subsidies. Since the EU food system is deeply con-
nected with other world regions, continuous assess-
ments of the main crop production impacts and food
system vulnerabilities can contribute to revisions of
the EU food trade flows. This study contributes to the
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debate highlighted by the European Environmental
Agency regarding quantifications of EWD impacts for
disaster risk reduction and adaptation efforts, and to
understanding how trade policies can support climate
adaptation strategies (EEA 2019).

Climate change is leading to fewer extremely
cold days and nights on average (EASAC 2013).
On the other hand, climate change is also expected
to increase general weather variability, for example
through more stationary atmospheric wave pattern
that can cause intensified heatwaves, but also cold
snaps (Mann et al 2018, Kornhuber et al 2019). We
expect that the increasing trend in cold wave events
found in the EM-DAT record (figure 4(d)) is likely a
combination of increased event reporting and under-
lying climate change. The increasing frequency of
flooding events is in line with other studies (e.g.
Kundzewicz et al (2017)).

Additional limitations associated with the use of
national EWD record for agricultural impact ana-
lysis include the following: (a) affected areas in a
specific country accounting for the EWD damage
might not coincide with the crop production areas
and, therefore, is not always representative for the
agriculture sector, which is especially important in
large countries such the U.S. or Russia; (b) not
all extreme weather events causing crop production
losses are reported in EM-DAT, therefore, the num-
ber of extreme weather events will be higher than
the associated EWD reported; (c) reported EWDs are
not necessarily occurring during the crop growing
period, but anytime within the calendar year, which
likely contributes to an underestimation of the overall
impact signal; (d) no weights are attributed to indi-
vidual EWD accounting for the magnitude or dura-
tion of events. These points are reflected in the wide
range of impacts shown in the 25th and 75th percent-
iles (figures 1 and 2) and discussed in Brás et al (2019).

The aggregation of data to the European level can
mask more severe regional impacts as losses in one
region can be offset by gains in others, as seen for cold
waves in table S5. Nevertheless, the limited number
of events and countries currently on record hamper
finer-grained analyses in many cases as the compos-
ite impact signal is statistically insignificant without a
sufficient number of cases (tables S4 and S5).

Subnational EWD analyses are constrained by
finer resolution crop yield data. Observational subn-
ational datasets in Europe (e.g. EUROSTAT NUTS2,
and Ray et al (2012) and Iizumi and Sakai (2020))
have limitations due to consistency, and are mostly
available for the four staple crops only. In follow-up
studies complementary information could be derived
by using spatially explicit and index-based event met-
rics focused in combination with process-based crop
modelling.

Different agricultural systems are associated with
distinct EWD impacts. Smaller EWD-related crop
losses in Southern Europe (i.e. Csa and Cfb regions)

can be explained by the share of cropping area under
irrigation, 87% and 9% of the area for maize and
wheat production, respectively in Csa countries, and
19% for maize in Cfb region and 2% in Dfb to 2%,
while wheat is generally not irrigated (FAO 2016).
Olives are irrigated to 20% in Csa regions, and only
to 4% in Cfb regions (FAO 2016). In theory, the
area under irrigation could be expanded in Europe
to alleviate exposure to extreme weather events, but
financial investment and sustainability burdens are
substantial (Daccache et al 2014, Elliott et al 2014,
Jägermeyr et al 2017), with potential consequences
for food prices. Traditional and sustainable water
management practices, including conservation till-
age, organic mulching, and water harvesting offer
synergistic opportunities to buffer impacts of extreme
weather events (Rosa et al 2018, Jägermeyr 2020).

This study highlights that droughts and heatwaves
are particularly harmful for cereal production, with
losses twice as high as for non-cereal crops, especially
in Mediterranean and eastern European countries,
but also in central Europe with similar relative losses
in both crop categories. Production losses of wheat
in central and eastern Europe, as well as of barley
in the Mediterranean region, are largely associated to
yield declines but also to a reduction in harvested area,
which is an indicator for partial crop failure (Iizumi
and Ramankutty 2015). Barley production in Cfb is
associate to yield declines but also to an increase in
the harvested area, suggesting that farmers may have
offset production losses by expanding the harvested
area. This is an observed behaviour incentivised by
crop insurances and governmental subsidies (Iizumi
and Ramankutty 2015).

Cereals are especially relevant in terms of caloric
food consumption (providing >60% of the energy
intake (FAO 1997)), but also for providing feed to
maintain the livestock sector. In 2014, the EU rep-
resented 13% of global cereal production (Knox et al
2016), contributing 24% of global cereal exports
(FAO 2019a) (mainly originated from Dfb and Cfb
climate zones, while countries in the Csa zone only
produce 81% of their cereal demand, resulting in a
net import of cereals (FAO 2019a)). The EU con-
tributes almost 50% of the global sugar production
(Knox et al 2016), 70% of the world olive oil exports
(International Olive Council 2018), but also to nearly
50% of the world’s wine (Wine Institute 2017). The
size and trend of extreme event impacts on both cer-
eal and non-cereal production is of concern as it can
cause ripple effects in the global food trade system
and affect food prices and availability worldwide (e.g.
Puma et al (2015), Jägermeyr et al (2020)). Such cas-
cading effects are particularly relevant in already food
insecure regions.

Future projections suggest an increase in sum-
mer dryness in most parts of Europe, with longer and
more intense heatwaves and droughts (IPCC 2012,
EASAC 2013, Christidis et al 2015). Especially the
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Mediterranean region is likely to experience severe
multi-year droughts (Guerreiro et al 2017). The
historical agricultural losses associated to EWD illus-
trated in this study, especially for droughts, are there-
fore expected to further increase in the future.

5. Conclusion

Agricultural impacts associated with droughts, heat-
waves, floods, and cold waves are not well understood
across larger spatial scales, especially in view of poten-
tial adverse trends due to climate change. Here, we
use an SEA to estimate average observed crop losses
at national level associated with the four EWD types
reported between 1964 and 2015.While the frequency
of all four event types significantly increases over
time, our results suggest that the average crop pro-
duction impact of droughts and heatwaves has tripled
over the last fifty years. In particular, drought-related
cereal production losses are increasing by more than
3% yr−1. Even though using a weather disaster record
for crop impact analyses has limitations, it offers a
unique and standardized metric suggesting that cli-
mate change is already driving increasing crop losses
in observational records. Our study contributes to
the discussion of strategies and priorities in view of
improving food system resilience.
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