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ABSTRACT

Introduction: An extensive clinical develop-
ment program showed that the meningococcal
serogroup B-factor H binding protein (MenB-
FHbp) vaccine affords protection against MenB
disease for adolescents and adults. Data were
pooled from multiple studies within the pro-
gram to examine whether MenB-FHbp
immunogenicity was influenced by sex, age, or
race.
Methods: Immunogenicity was assessed in
subjects from seven studies who received 120 lg
MenB-FHbp (at 0, 2, 6 months) and had evalu-
ated immune responses against four represen-
tative test strains via serum bactericidal assays

using human complement (hSBAs). Immune
responses were presented by sex (male, female),
age group (10–14, 15–18, 19–25, 10–25 years),
and race (white, black, Asian, other).
Results: Among 8026 subjects aged 10–25 years
included in this analysis, MenB-FHbp elicited
robust immune responses in a high percentage
of subjects regardless of demographic charac-
teristics. Across all test strains and demographic
subsets, a C 4-fold rise in titer from baseline was
achieved in 76.7–95.0% of subjects, with no
major differences by sex, age groups assessed, or
races evaluated. Corresponding percentages
achieving titers C the lower limit of quantifi-
cation (LLOQ) against all four strains combined
were 79.7–87.3% (sex), 81.6–85.5% (age), and
80.0–88.1% (race). Minor differences were
observed for geometric mean titers and per-
centages of subjects achieving titers C LLOQ
against each strain based on demographics.
Conclusion: These data suggested no clinically
meaningful differences in MenB-FHbp
immunogenicity when administered as a three-
dose schedule based on sex, ages assessed, or
races evaluated. This analysis supports the
continued recommended use of MenB-FHbp to
prevent MenB disease in adolescents and young
adults.
Trial Registration: ClinicalTrials.gov identi-
fiers, NCT00808028, NCT01830855,
NCT01323270, NCT01461993, NCT01461980,
NCT01352845, and NCT01299480.
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Key Summary Points

Why carry out this study?

MenB-FHbp is a vaccine for the prevention
of meningococcal disease caused by
meningococcal serogroup B (MenB),
which predominates in many global
regions.

Although an extensive clinical program
supported MenB-FHbp immunogenicity,
influences of demographic characteristics
on immune responses have not been
evaluated.

Effects of sex, age, and race on immune
responses induced by MenB-FHbp were
evaluated using pooled data from seven
randomized clinical studies in which
adolescents or young adults received
120 lg MenB-FHbp on a 0-, 2-, and
6-month schedule.

What was learned from the study?

MenB-FHbp was associated with robust
immune responses against four diverse,
vaccine-heterologous MenB test strains,
with no clinically meaningful differences
observed across demographic subgroups.

These findings confirm a three-dose MenB-
FHbp schedule can be used in adolescents
and young adults regardless of sex, ages
assessed, or races evaluated.

INTRODUCTION

Invasive meningococcal disease (IMD) is a rare
but life-threatening condition caused by Neis-
seria meningitidis and is most commonly diag-
nosed in children aged\1 year, adolescents,
and young adults [1]. Disease typically

manifests as meningitis or bacteremia, with case
fatality rates from 10% to 20% and debilitating
long-term sequelae in up to 20% of survivors
[1]. In several regions worldwide, meningococ-
cal serogroup B (MenB) accounts for more cases
of IMD than any other serogroup, causing 38%
of cases in the USA and 51% of cases in the
European Union in 2017 [2, 3]. Vaccination is
the most effective method for large-scale pre-
vention of IMD [4].

MenB-FHbp (Trumenba�, bivalent rLP2086;
Pfizer Inc, Philadelphia, PA, USA), which con-
sists of two recombinant factor H binding pro-
tein (FHbp) variants from each subfamily
[subfamily A (variant A05) and subfamily B
(variant B01)], is one of two vaccines licensed to
prevent MenB disease [5, 6]. Because individual
MenB strains generally express a single sub-
family variant [7, 8], the MenB-FHbp formula-
tion is predicted to broadly protect against
diverse MenB disease-causing strains [7]. An
extensive clinical development program has
been completed for MenB-FHbp [9], but the
impact of sex, age, and race on MenB-FHbp
immunogenicity has not been systematically
assessed.

Variability in vaccine responses based on age
[10–14], sex [15–19], and race [20–23] has been
observed for other vaccines. Therefore, it is
important for public health authorities and
medical practitioners to understand whether
differences in vaccine efficacy occur in various
populations in order to maximize vaccine ben-
efit [15, 16, 18, 24]. Moreover, understanding
the challenges to effective vaccination in
specific populations can inform vaccine clinical
trial design and vaccine uptake after licensure
[18, 20].

MenB-FHbp was shown to elicit robust
immune responses and to have an accept-
able safety profile during an extensive clinical
development program, including studies enrol-
ling 20,803 adolescents and adults [9].
Although data analyzed by demographic subsets
have not been published, differences in point
estimates of immunogenicity end points based
on sex and race were observed in some of the
individual studies [8]. However, there were too
few participants within each study to provide a
comprehensive assessment of the impact of
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demographics on immunogenicity. Therefore,
the current analysis pooled data from studies
across the MenB-FHbp clinical development
program to generate a larger sample size for
evaluating whether sex, age, or race affected
MenB-FHbp immunogenicity.

METHODS

Data Sources

The MenB-FHbp clinical development program
consisted of 11 clinical studies enrolling adults
and adolescents [9]. Seven of these 11 clinical
studies (Table 1) [8, 25–29] in which subjects
who received 120 lg of MenB-FHbp on a 0-, 2-,
and 6-month schedule and had available
immunogenicity results for some or all of the
four primary test strains (described below) were
included in this subgroup analysis. All seven
studies had randomized designs, and six of the
seven studies included comparator groups
receiving either saline or another vaccine.

The data in this article were derived from
previously conducted studies; as such, this
article does not describe any new studies with
human participants or animals and no new
ethical approvals were needed.

Immunogenicity Evaluation

Immune responses were evaluated by serum
bactericidal assays using human complement
(hSBA) against the four primary test strains used
in each study [9]. These included two strains
expressing FHbp subfamily A variants (PMB80
expressing variant A22, PMB2001 expressing
variant A56) and two strains expressing FHbp
subfamily B variants (PMB2948 expressing
variant B24, PMB2707 expressing variant B44)
[9], hereafter referred to as test strains A22, A56,
B24, and B44. The five coprimary end points
assessing responses 1 month after dose 3 were:

• Percentage of subjects achieving a C 4-fold
rise in titer from baseline against each of the
four test strains (criteria for a C 4-fold rise in
titer have been previously described [8, 30]).

• Percentage of subjects achieving titers C the
lower limit of quantification (LLOQ) against
all four primary test strains combined (i.e.,
composite response; C 1:8 for the test strains
expressing variants A56, B24, and B44 and
C 1:16 for the test strain expressing variant
A22)

Additional end points evaluated included:

• Percentage of subjects achieving titers C LLOQ
against each test strain

• Geometric mean titers (GMTs) against each
test strain

• Percentage of subjects achieving titers C 1:4
(the established correlate of protection
[31, 32]) against each test strain

Statistical Analyses

Descriptive statistics are provided for all end
points; no hypothesis testing was performed.
Percentages are expressed with 95% CIs calcu-
lated using the Clopper-Pearson method, and
GMTs are expressed as back transformations of
the mean logarithm of hSBA titers along with
95% CIs based on Student’s t-test distributions.
Results were presented by sex (male or female),
age group [10–25 (total), 10–14, 15–18, 10–18,
or 19–25 years], and race (white, black, Asian, or
other) for all end points. Analysis by ethnicity
(non-Hispanic/non-Latino, Hispanic/Latino, or
unknown) was not conducted because data by
ethnicity were not collected in all studies.

RESULTS

Demographics

The evaluable immunogenicity population
included 8026 subjects aged 10–25 years who
were randomly assigned to receive 120 lg
MenB-FHbp on a 0-, 2-, and 6-month schedule;
demographic characteristics are summarized in
Table 2. Percentages of males and females
included in the evaluable immunogenicity
population were similar. Most subjects (80.7%)
were adolescents aged 10–18 years at the time of
study entry, and 53.5% of subjects were aged
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10–14 years. Most subjects (87.0%) were white,
with the remainder identifying as black (9.3%),
Asian (0.8%), or other (3.0%).

Immunogenicity

The percentage of subjects achieving a C 4-fold
rise from baseline for each of the four test
strains and percentages of subjects achieving a
composite response 1 month after dose 3 are
shown in Table 3. Regardless of demographics,
high percentages of subjects achieved either a
C 4-fold rise in titer from baseline for each test
strain or a composite response.

For sex, the observed differences between
percentages of males and females achieving a
C 4-fold rise in titer from baseline were\ 5%
for test strains A22, A56, and B24, with males
showing a greater response. For test strain B44,

the percentage of males achieving a C 4-fold
rise in titer was 8.3% higher compared with
females (85.1% vs. 76.8%, respectively). For the
composite response, a higher percentage of
males achieved titers C LLOQ for all four test
strains combined (7.6% higher than in females).

Comparisons across age subgroups indicated
no major differences between groups for a C 4-
fold rise in titers from baseline. A higher per-
centage of subjects aged 10–14 years achieved
a C 4-fold rise in titer compared with subjects
aged 15–18 and 19–25 years for strains A22,
A56, and B24 (Table 3), and the 95% CIs suggest
that younger adolescents may have slightly
increased hSBA responses compared with young
adults. Specifically, 1.7–5.9% more subjects
aged 10–14 years showed a C 4-fold rise in titer
from baseline than those aged 15–18 and 19–-
25 years, which was not considered clinically
significant. In addition, subjects aged 10–-
18 years showed slightly greater responses
against test strains A22 and A56 than those aged
19–25 years, with 4.1% and 3.0% more subjects
responding, respectively. For test strain B44,
observed differences in the percentage of sub-
jects responding were\2.4% across age sub-
groups, with overlapping 95% CIs. For
composite responses, the greatest difference
between subgroups was observed between sub-
jects aged 15–18 and 19–25 years (3.9%); how-
ever, it should be noted that CIs overlapped
across all subgroups.

With regard to race, percentages of subjects
achieving a C 4-fold rise in titers from baseline
were generally consistent among white, black,
Asian, and other subgroups (Table 3). The
greatest percentage difference was observed
between whites and Asians for test strain B24,
for which 12.4% more Asian subjects achieved
a C 4-fold rise in titer from baseline compared
with white subjects. However, it should be
noted that these analyses are limited by the very
low number of Asian subjects included
(n = 42–58 per strain).

The percentage of subjects achieving titers
C LLOQ for each of the four test strains at
1 month after dose 3 is shown in Table 4.
Notably, percentages of subjects achieving
titers C LLOQ were high across all demographic
groups, with only minor differences observed

Table 2 Subject demographics in the pooled evaluable
immunogenicity population

Total, N 8026

Sex, n (%)

Male 4153 (51.7)

Female 3873 (48.3)

Age group at first dose, years (%)

10–18 6474 (80.7)

10–14 4290 (53. 5)

15–18 2184 (27.2)

19–25 1552 (19.3)

Age at first dose, years

Mean ± SD 15.0 ± 4.2

Median (range) 14 (10–25)

Race, n (%)

White 6982 (87.0)

Black 745 (9.3)

Asian 61 (0.8)

Other 238 (3.0)
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between subgroups. For sex, observed differ-
ences in the percentage of males and females
achieving titers C LLOQ were\5% between
subgroups for all test strains except B44, for
which the percent difference in response was
6.7% higher among males than females. Minor
or no differences in the percentage of subjects
with hSBA titers C LLOQ were observed across
age groups for test strains A22, A56, and B44.
However, for test strain B24, a higher percent-
age of subjects aged 19–25 years achieved
titers C LLOQ compared with those aged 10–14,
10–18, and 15–18 years (4.8%, 5.3%, and 6.4%
more respondent subjects, respectively). For
race subgroups, minor between-group differ-
ences were observed for percentages with
titers C LLOQ against each test strain.

Geometric mean titers 1 month after dose 3
are shown in Table 5. Comparisons across sex,
age, and race generally indicated only minor
differences between subgroups. For sex,
observed GMTs for all four test strains were
slightly higher in males compared with females,
with the greatest difference observed for test
strain A56 (171.8 vs. 157.3, respectively). With
regard to age, the 19- to 25-year-old age group
showed higher observed GMTs against all four
test strains than seen in the other age sub-
groups, with the greatest differences observed
for test strains A56 and B24. Across races, minor
differences in GMTs were observed for all four
test strains.

The percentage of subjects achieving titers
C 1:4 across each of the four test strains after
dose 3 is shown in Table 6. Overall, only minor

Table 4 Percentage of subjects in the evaluable immunogenicity population achieving hSBA titers C LLOQ 1 month after
dose 3 according to subgroup

Subjects with hSBA titers ‡ LLOQa

A22 A56 B24 B44

Nb % (95% CI) Nb % (95% CI) Nb % (95% CI) Nb % (95% CI)

Total 7577 94.5 (94.0, 95.0) 5084 99.3 (99.1, 99.5) 7478 91.2 (90.5, 91.8) 5046 86.6 (85.7, 87.6)

Sex

Male 3915 95.1 (94.4, 95.8) 2620 99.4 (99.0, 99.7) 3880 93.2 (92.4, 94.0) 2609 89.9 (88.7, 91.0)

Female 3662 93.8 (93.0, 94.6) 2464 99.3 (98.8, 99.6) 3598 88.9 (87.9, 89.9) 2437 83.2 (81.6, 84.6)

Age group, years

10–18 6033 94.7 (94.1, 95.2) 3547 99.3 (98.9, 99.5) 5944 90.1 (89.3, 90.8) 3513 86.1 (84.9, 87.2)

10–14 4031 94.6 (93.9, 95.3) 2038 99.5 (99.1, 99.8) 3971 90.6 (89.7, 91.5) 2024 86.5 (84.9, 88.0)

15–18 2002 94.8 (93.7, 95.7) 1509 98.9 (98.3, 99.4) 1973 89.0 (87.5, 90.3) 1489 85.4 (83.5, 87.2)

19–25 1544 93.8 (92.5, 95.0) 1537 99.5 (99.0, 99.8) 1534 95.4 (94.2, 96.4) 1533 88.0 (86.3, 89.6)

Race

White 6547 94.8 (94.3, 95.4) 4366 99.3 (99.0, 99.5) 6458 91.0 (90.2, 91.6) 4339 86.7 (85.7, 87.7)

Black 736 91.6 (89.3, 93.5) 534 99.6 (98.7, 100.0) 733 92.1 (89.9, 93.9) 527 85.6 (82.3, 88.5)

Asian 60 96.7 (88.5, 99.6) 43 100.0 (91.8, 100.0) 59 98.3 (90.9, 100.0) 43 81.4 (66.6, 91.6)

Other 234 94.0 (90.2, 96.7) 141 99.3 (96.1, 100.0) 228 92.5 (88.3, 95.6) 137 90.5 (84.3, 94.9)

hSBA serum bactericidal assay using human complement, LLOQ lower limit of quantification
a 1:16 for PMB80 (A22); 1:8 for PMB2001 (A56), PMB2948 (B24), and PMB2707 (B44)
b Number of subjects with valid and determinate hSBA titers for the given strain
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differences in the percentage of subjects
achieving titers C 1:4 were observed by sex, age,
and race across each of the four test strains.

DISCUSSION

Robust immunogenicity of MenB-FHbp has
been individually shown in each of the 11
clinical studies collectively enrolling[20,000
adolescents and adults [9]. A pooled analysis
from seven of these clinical studies, which
included[ 8000 subjects from the clinical
development program, was conducted to detect
any emergent effects of demographic factors on
MenB-FHbp immunogenicity. In this subgroup
analysis, immunogenicity was similar across
sex, ages assessed, and race (predominantly
white and black). Some variation in hSBA

responses was observed between individual test
strains across all groups analyzed; this is
expected based on differences in FHbp sequen-
ces and cell surface expression levels across
MenB strains [33, 34]. Moreover, although
minor differences by sex were observed among
percentages of subjects with C 4-fold rise in
titers from baseline, percentages of subjects
with titers C LLOQ, and GMTs, the percentages
of subjects with titers C 1:4 against each test
strain were highly consistent. Because an hSBA
titer of 1:4 is the accepted correlate of protec-
tion from meningococcal disease [31, 32], the
slight differences in immunogenicity end
points reported here are unlikely to be clinically
meaningful and do not impact current MenB-
FHbp vaccination recommendations [5].
Although the current analysis was focused on
immunogenicity only, it should be noted that a

Table 5 hSBA GMTs in the evaluable immunogenicity population 1 month after dose 3 according to subgroup

hSBA GMT

A22 A56 B24 B44

Na GMT (95% CI) Na GMT (95% CI) Na GMT (95% CI) Na GMT (95% CI)

Total 7577 66.5 (65.0, 68.1) 5084 164.6 (160.0, 169.3) 7478 30.0 (29.3, 30.8) 5046 40.4 (38.9, 42.1)

Sex

Male 3915 70.0 (67.8, 72.3) 2620 171.8 (165.3, 178.7) 3880 32.0 (31.0, 33.1) 2609 45.0 (42.7, 47.4)

Female 3662 63.0 (60.9, 65.1) 2464 157.3 (151.0, 163.8) 3598 28.0 (27.0, 29.0) 2437 36.1 (34.0, 38.3)

Age group, years

10–18 6033 64.3 (62.8, 65.9) 3547 159.0 (153.8, 164.3) 5944 26.2 (25.5, 26.9) 3513 37.1 (35.5, 38.8)

10–14 4031 62.4 (60.6, 64.2) 2038 161.9 (155.4, 168.7) 3971 25.4 (24.6, 26.1) 2024 37.3 (35.2, 39.5)

15–18 2002 68.4 (65.3, 71.5) 1509 155.1 (147.0, 163.6) 1973 28.0 (26.7, 29.3) 1489 36.9 (34.4, 39.5)

19–25 1544 75.9 (71.6, 80.5) 1537 178.4 (169.0, 188.3) 1534 50.9 (47.9, 54.0) 1533 49.3 (45.6, 53.3)

Race

White 6547 67.7 (66.0, 69.4) 4366 166.5 (161.4, 171.7) 6458 30.0 (29.2, 30.8) 4339 41.0 (39.3, 42.8)

Black 736 55.5 (51.6, 59.7) 534 144.8 (134.2, 156.2) 733 29.0 (27.1, 31.1) 527 35.0 (31.3, 39.2)

Asian 60 67.0 (53.1, 84.6) 43 165.7 (129.5, 212.0) 59 34.3 (26.9, 43.8) 43 33.0 (20.8, 52.4)

Other 234 72.7 (64.3, 82.1) 141 187.8 (159.5, 221.2) 228 31.9 (27.8, 36.6) 137 48.5 (37.7, 62.4)

GMT geometric mean titer, hSBA serum bactericidal assay using human complement
a Number of subjects with valid and determinate hSBA titers for the given strain
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previous analysis identified no safety concerns
among data pooled from adolescents and adults
in the MenB-FHbp clinical development pro-
gram (unpublished data).

Sex, age, and race were selected as factors to
include in this analysis because these charac-
teristics have previously been associated with
variable immunogenicity of numerous vaccines
[10–12, 15–23]. These demographic influences
also interact with one another, illustrated in
part by fluctuations in sex-dependent immune
responses at different times throughout the
lifespan [15, 19, 24]. A commonly observed
influential variable is age, which is typically
associated with decreased immunogenicity in
infants and adults aged C 65 years [10, 11]. As
an example, clinical trials with live-attenuated
and inactivated influenza vaccines are of

interest to highlight differences in vaccine effi-
cacy by age group. In a study of children aged
6–59 months, there were 54.9% fewer cases of
culture-confirmed influenza among study chil-
dren who received the live-attenuated vaccine
compared with the group who received the
inactivated vaccine [35]. In contrast, in a study
of adults aged 18–49 years, the inactivated vac-
cine provided a 50% reduction in confirmed
influenza compared with those given the live-
attenuated vaccine [36]. Among children, ado-
lescents, and young adults, aging may either
increase or decrease immune responses
depending on the vaccine [37–40]. Variable
vaccine efficacy among the above-listed age
groups has also been shown specifically for
some strain-specific MenB outer membrane
vesicle (OMV) vaccines. For example, a case-

Table 6 Percentage of subjects in the evaluable immunogenicity population achieving hSBA titers C 1:4 1 month after
dose 3 according to subgroup

Subjects with hSBA titers ‡ 1:4

A22 A56 B24 B44

Na % (95% CI) Na % (95% CI) Na % (95% CI) Na % (95% CI)

Total 7577 94.9 (94.4, 95.4) 5084 99.4 (99.1, 99.6) 7478 92.2 (91.6, 92.8) 5046 88.2 (87.3, 89.1)

Sex

Male 3915 95.6 (94.9, 96.2) 2620 99.5 (99.1, 99.7) 3880 94.4 (93.7, 95.1) 2609 91.1 (89.9, 92.2)

Female 3662 94.1 (93.3, 94.9) 2464 99.3 (98.9, 99.6) 3598 89.9 (88.9, 90.8) 2437 85.1 (83.7, 86.5)

Age group, years

10–18 6033 95.0 (94.4, 95.5) 3547 99.4 (99.0, 99.6) 5944 91.3 (90.5, 92.0) 3513 87.3 (86.2, 88.4)

10–14 4031 94.9 (94.1, 95.5) 2038 99.5 (99.1, 99.8) 3971 91.6 (90.7, 92.5) 2024 87.9 (86.4, 89.3)

15–18 2002 95.2 (94.2, 96.1) 1509 99.1 (98.5, 99.5) 1973 90.5 (89.1, 91.8) 1489 86.6 (84.7, 88.3)

19–25 1544 94.6 (93.3, 95.6) 1537 99.5 (99.0, 99.8) 1534 96.1 (95.0, 97.0) 1533 90.3 (88.7, 91.7)

Race

White 6547 95.2 (94.7, 95.7) 4366 99.4 (99.1, 99.6) 6458 92.1 (91.4, 92.8) 4339 88.4 (87.4, 89.4)

Black 736 92.1 (89.9, 94.0) 534 99.6 (98.7, 100.0) 733 92.6 (90.5, 94.4) 527 86.0 (82.7, 88.8)

Asian 60 96.7 (88.5, 99.6) 43 100.0 (91.8, 100.0) 59 98.3 (90.9, 100.0) 43 83.7 (69.3, 93.2)

Other 234 94.4 (90.7, 97.0) 141 99.3 (96.1, 100.0) 228 93.0 (88.9, 95.9) 137 92.0 (86.1, 95.9)

hSBA serum bactericidal assay using human complement
a Number of subjects with valid and determinate hSBA titers for the given strain
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control study of an OMV antigen-based vaccine
developed in Cuba found that protective effi-
cacy was greater among Brazilian adults aged
24–47 years compared with those aged\
24 years [39]. In a review of OMV antigen-based
MenB vaccines with vaccine efficacy or hSBA
data published before 2015, several studies
showed variability across age groups in both
vaccine effectiveness and hSBA responses [40].
Additionally, there is evidence to suggest
immune responses to vaccines can vary even
within the specific age range included in this
study. Two studies investigating the immuno-
genicity of a bivalent human papillomavirus
vaccine among female subjects aged 10–25 years
found that antibody responses following vacci-
nation were higher in subjects aged 10–14 years
compared with those aged 15–25 years [13, 14].
However, in the study presented here, the small
differences observed in immune responses
between different age groups were not consid-
ered clinically meaningful.

Sex differences in vaccine response have also
been reported for some vaccines [15–19].
Although the reasons for these differences are
not fully understood [15], underlying mecha-
nisms may include sex-based differences in
innate and adaptive immunity [17, 18], modu-
lations of immune cell function by sex hor-
mones [15–17, 24], genetic influences
[15, 17, 24], and sex-specific features of the diet
or microbiome [15]. Most vaccines elicit stron-
ger immune responses in women than in men
[15, 17], and this trend persists throughout the
lifespan from infancy into late adulthood
[19, 24]. An example of this observation is the
seasonal trivalent inactivated influenza vaccine,
which produces significantly higher GMTs in
women compared with men, regardless of dose
amount or age [41].

Additionally, some vaccines are associated
with variable immune responses based on race
or geographic location of the vaccinated subject
[20–23, 42, 43]. For example, compared with
infants from other countries, those from the
Philippines showed lower seroprotection rates
and geometric mean concentrations against
hepatitis B after vaccination with the combined
diphtheria, tetanus, and whole cell pertus-
sis–hepatitis B virus and Haemophilus influenzae

type b conjugate vaccine with oral live attenu-
ated poliovirus vaccine (DTPw-HBV/Hib-TT ?

OPV) coadministered with either a 7- or 10-va-
lent pneumococcal conjugate vaccine [43].
These and other variable responses could result
from genetic or environmental factors,
although the precise contributions of each are
unclear [20–23]. Because the predominant dis-
ease-causing vaccine serotypes may differ across
global regions [44, 45], responses to vaccina-
tions may also differ geographically.

The effects of sex, age, and race have not
been comprehensively reported for licensed,
broad-spectrum MenB vaccines. Controlled
studies that investigate the possible influence of
demographics on vaccine immunogenicity are
important for informing vaccine recommenda-
tions [15, 16, 19, 24]. The main strength of this
subgroup analysis was its large sample size
of[ 8000 subjects from the pooled evaluable
immunogenicity population across seven ran-
domized clinical studies conducted with similar
methodology. Limitations include the relatively
restricted age range of subjects (10–25 years),
although forthcoming data could potentially
address subgroup differences in immunogenic-
ity among younger cohorts. Moreover, general-
izability of age and race results is limited by the
age groups and races included in this study, as
most of the evaluable population was aged
10–18 years (80.7%) and white (87.0%). Addi-
tionally, most of the racial diversity from this
analysis came from only a small number of
studies; most of the subjects included were
white or black, with Asians and other races
representing 0.8% and 3% of the total evaluable
immunogenicity population, respectively. As
such, studies including a greater number of
Asians and other races are needed to reach
meaningful conclusions regarding immune
responses to MenB-FHbp in these groups. Fur-
thermore, this study focuses on the three-dose
MenB-FHbp vaccination schedule; the effects of
sex, age, and race on immune responses fol-
lowing a two-dose (0-, 6-month) schedule,
which is also approved [5], were not evaluated.
Despite these considerations, it is notable that
these analyses suggested no clinically mean-
ingful differences in immunogenicity between
groups based on sex, ages assessed, or races
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evaluated, which indicates that no changes in
the clinical management of these subpopula-
tions are warranted regarding vaccination with
MenB-FHbp. Additional insight could be pro-
vided by long-term follow-up from studies fur-
ther evaluating the impact of demographics on
immunogenicity.

CONCLUSIONS

The immunogenicity profile of the MenB-FHbp
vaccine suggested that there were no clinically
meaningful differences by sex, age groups
assessed or race (predominantly white and
black) across three-dose data pooled from the
clinical development program. The robust
immune responses and lack of clinically signif-
icant differences across demographic groups
support the continued use of MenB-FHbp for
prevention of MenB disease in these popula-
tions, as is currently recommended by health
authorities.
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